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External-Memory Algorithms for Processing Line
Segments in Geographic Information Systems1

Lars Arge,2 Darren Erik Vengroff,3 and Jeffrey Scott Vitter4

Abstract. In the design of algorithms for large-scale applications it is essential to consider the problem
of minimizing I/O communication. Geographical information systems (GIS) are good examples of such
large-scale applications as they frequently handle huge amounts of spatial data. In this paper we develop
efficient external-memory algorithms for a number of important problems involving line segments in the
plane, including trapezoid decomposition, batched planar point location, triangulation, red–blue line segment
intersection reporting, and general line segment intersection reporting. In GIS systems the first three problems
are useful for rendering and modeling, and the latter two are frequently used for overlaying maps and extracting
information from them.
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1. Introduction. The Input/Output communication between fast internal memory and
slower external storage is the bottleneck in many large-scale applications. The signifi-
cance of this bottleneck is increasing as internal computation gets faster, and especially
as parallel computing gains popularity [24]. Currently, technological advances are in-
creasing CPU speeds at an annual rate of 40–60% while disk transfer rates are only
increasing by 7–10% annually [26]. Internal memory sizes are also increasing, but not
nearly fast enough to meet the needs of important large-scale applications, and thus it is
essential to consider the problem of minimizing I/O communication.

Geographical information systems (GIS) are a rich source of important problems that
require good use of external-memory techniques. GIS systems are used for scientific
applications such as environmental impact, wildlife repopulation, epidemiology analysis,
and earthquake studies and for commercial applications such as market analysis, facility
location, distribution planning, and mineral exploration. In support of these applications,
GIS systems store, manipulate, and search through enormous amounts of spatial data
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[16], [28]. NASA’s EOS project GIS system [16], for example, is expected to manipulate
petabytes (thousands of terabytes or millions of gigabytes) of data!

Typical subproblems that need to be solved in GIS systems include point location,
triangulating maps, generating contours from triangulated elevation data, and producing
map overlays, all of which require manipulation of line segments. As an illustration,
the computation of new scenes or maps from existing information—also called map
overlaying—is an important GIS operation. Some existing software packages are com-
pletely based on this operation [28]. Given two thematic maps (piecewise linear maps
with, e.g., indications of lakes, roads, pollution level), the problem is to compute a new
map in which the thematic attributes of each location is a function of the thematic at-
tributes of the corresponding locations in the two input maps. For example, the input
maps could be a map of land utilization (farmland, forest, residential, lake), and a map
of pollution levels. The map overlay operation could then be used to produce a new map
of agricultural land where the degree of pollution is above a certain level. One of the
main subproblems in map overlaying is “line-breaking,” which can be abstracted as the
red–blue line segment intersection problem.

In this paper we present efficient external-memory algorithms for large-scale geo-
metric problems involving collections of line segments in the plane, with applications to
GIS systems. In particular, we address region decomposition problems such as trapezoid
decomposition and triangulation, and line segment intersection problems such as the
red–blue segment intersection problem and more general formulations.

1.1. The I/O Model of Computation. The primary feature of disks that we model is
their extremely long access time relative to that of solid state random-access memory. In
order to amortize this access time over a large amount of data, typical disks read or write
large blocks of contiguous data at once. Our problems are modeled by the following
parameters:

N = # of items in the problem instance;
M = # of items that can fit into internal memory;
B = # of items per disk block,

where M < N and 1 ≤ B ≤ M/2. Depending on the size of the data items, typical values
for workstations and file servers in production today are on the order of M = 106 or 107

and B = 103. Large-scale problem instances can be in the range N = 1010 to N = 1012.
In order to study the performance of external-memory algorithms, we use the standard

notion of I/O complexity [1]. We define an input/output operation (or simply I/O for
short) to be the process of reading or writing a block of data to or from the disk. The
I/O complexity of an algorithm is simply the number of I/Os it performs. For example,
reading all of the input data requires N/B I/Os. We use the term scanning to describe
the fundamental primitive of reading (or writing) all items in a set stored contiguously
on external storage by reading (or writing) the blocks of the set in a sequential manner.

For the problems we consider we define two additional parameters:

K = # of queries in the problem instance;
T = # of items in the problem solution.
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Since each I/O can transmit B items simultaneously, it is convenient to introduce the
following notation:

n = N

B
, k = K

B
, t = T

B
, m = M

B
.

We say that an algorithm uses a linear number of I/O operations if it uses at most O(n)
I/Os to solve a problem of size N .

An increasingly popular approach to increase the throughput of I/O systems further
is to use a number of disks in parallel. The number D of disks range up to 102 in current
disk arrays. One method of using D disks in parallel is disk striping [31], in which the
heads of the disks are moved synchronously, so that in a single I/O operation each disk
reads or writes a block in the same location as each of the others. In terms of performance,
disk striping has the effect of using a single large disk with block size B ′ = DB. Even
though disk striping does not in theory achieve asymptotic optimality [31] when D is
very large, it is often the method of choice in practice for using parallel disks, especially
when D is moderately sized [29].

1.2. Our Results. Early work on I/O algorithms concentrated on algorithms for sorting
and permutation related problems; external sorting requires�(n logm n) I/Os,5 which is
the external-memory equivalent of the well-known �(N log N ) time bound for sorting
in internal memory [1]. More recently, researchers have designed external-memory algo-
rithms for a number of problems in different areas, such as in computational geometry,
graph theory and string processing; some encouraging experimental results regarding
the practical merits of the developed algorithms have also been obtained. Refer to recent
surveys for references [30], [3].

In this paper we combine and modify in novel ways several of the previously known
techniques for designing efficient algorithms for external memory. In particular we use
the distribution sweeping and batch filtering paradigms of [19] and the buffer tree data
structure of [4]. In addition we also develop a powerful new technique that can be regarded
as an external-memory version of batched fractional cascading on an external-memory
version of a segment tree. This enables us to improve on existing external-memory
algorithms as well as to develop new algorithms and thus partially answer some open
problems posed in [19].

In Section 2 we introduce the endpoint dominance problem, which is a subproblem
of trapezoid decomposition. We introduce an O(n logm n)-I/O algorithm to solve the
endpoint dominance problem, and we use it to develop an algorithm with the same
asymptotic I/O complexity for trapezoid decomposition, planar point location, trian-
gulation of simple polygons and for the segment sorting problem. In Section 3 we give
external-memory algorithms for line segment intersection problems. First we show how
our segment sorting algorithm can be used to develop an O(n logm n+ t)-I/O algorithm
for red–blue line segment intersection, and then we discuss an O((n + t) logm n)-I/O
algorithm for the general segment intersection problem.

Our results are summarized in Table 1. For all but the batched planar point loca-
tion problem, no algorithms specifically designed for external memory were previously

5 For convenience we define logm n = max{1, (log n)/log m}.
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Table 1. Summary of results.

I/O bound of Result using mod.
Problem new result internal memory alg.

Endpoint dominance O(n logm n) O(N logB n)
Trapezoid decomposition O(n logm n) O(N logB n)
Batched planar point location O((n + k) logm n)
Triangulation O(n logm n) �(N )
Segment sorting O(n logm n) O(N logB n)
Red–blue line segment intersection O(n logm n + t) O(N logB n + t)
Line segment intersection O((n + t) logm n) �(N )

known. The batched planar point location algorithm that was previously known [19] only
works when the planar subdivision is monotone, and the problems of triangulating a sim-
ple polygon and reporting intersections between other than orthogonal line segments are
stated as open problems in [19].

For the sake of contrast, our results are also compared with modified internal-memory
algorithms for the same problems. In most cases these modified algorithms are plane-
sweep algorithms modified to use B-tree-based dynamic data structures rather than binary
tree-based dynamic data structures, following the example of a class of algorithms studied
experimentally in [14]. Such modifications lead to algorithms using O(N logB n) I/Os.
For two of the algorithms the known optimal internal-memory algorithms [10], [11] are
not plane-sweep algorithms and can therefore not be modified in this manner. It is difficult
to analyze precisely how those algorithms perform in an I/O environment; however, it
is easy to realize that they use at least�(N ) I/Os. The I/O bounds for algorithms based
on B-trees have a logarithm of base B rather than a logarithm of base m. However, the
most important difference between such algorithms and our results is the fact that the
updates to the dynamic data structures are handled on an individual basis, which leads to
an extra multiplicative factor of B in the I/O bound, which is very significant in practice.

As mentioned, the red–blue line segment intersection problem is of special interest
because it is an abstraction of the important map-overlay problem, which is the core
of several vector-based GIS [2], [23], [28]. Although a time-optimal internal-memory
algorithm for the general intersection problem exists [11], a number of simpler solutions
have been presented for the red–blue problem [9], [12], [20], [23]. Two of these algo-
rithms [12], [23] are not plane-sweep algorithms, but both sort segments of the same
color in a preprocessing step with a plane-sweep algorithm. The authors of [23] claim
that their algorithm will perform well with inadequate internal memory owing to the fact
that data are mostly referenced sequentially. A closer look at the main algorithm reveals
that it can be modified to use O(n log2 n) I/Os in the I/O model, which is only a factor
of log m from optimal. Unfortunately, the modified algorithm still needs O(N logB n)
I/Os to sort the segments.

In this paper we focus our attention on the single disk model. As described in Sec-
tion 1.1, striping can be used to implement our algorithms on parallel disk systems with
D > 1. Additionally, techniques from [22] and [21] can be used to extend many of our
results to parallel disk systems. In the conference version of this paper we conjectured
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that all our results could be improved by the optimal factor of D on parallel disk systems
with D disks, but it is still an open problem whether the required merges can be done
efficiently enough to allow this.

2. The Endpoint Dominance Problem. In this section we consider the endpoint dom-
inance problem (EPD) defined as follows: Given N nonintersecting line segments in the
plane, find the segment directly above each endpoint of each segment.

EPD is a powerful tool for solving other important problems as we will illustrate in
Section 2.1. As mentioned in the Introduction a number of techniques for designing I/O-
efficient algorithms have been developed in recent years, including distribution sweeping,
batch filtering [19] and buffer trees [4]. However, we do not seem to be able to solve
EPD efficiently using these techniques directly. Section 2.2 briefly reviews some of the
techniques and during that process we try to illustrate why they are inadequate for solving
EPD. Fortunately, as we will demonstrate in Section 2.3, we are able to combine the
existing techniques with several new ideas in order to develop an I/O-efficient algorithm
for the problem, and thus for a number of other important problems.

2.1. Using EPD to Solve Other Problems. In this section with three lemmas we illus-
trate how an I/O-efficient solution to EPD can be used in the construction of I/O-efficient
solutions to other problems.

LEMMA 1. If EPD can be solved in O(n logm n) I/Os, then the trapezoid decomposition
of N nonintersecting segments can be computed in O(n logm n) I/Os.

PROOF. We solve two instances of EPD, one to find the segments directly above each
segment endpoint and one (with all y coordinates negated) to find the segment directly
below each endpoint—see Figure 1 for an example of this on a simple polygon. We then
compute the locations of all O(N ) vertical trapezoid edges. This is done by scanning
through the output of the two EPD instances in O(n) I/Os. To construct the trapezoids
explicitly, we sort all trapezoid vertical segments by the IDs of the input segments they
lie on, breaking ties by x coordinate. This takes O(n logm n) I/Os. Finally, we scan this
sorted list, in which we find the two vertical edges of each trapezoid in adjacent positions.
The total amount of I/O used is thus O(n logm n).

Fig. 1. Using EPD to compute the trapezoid decomposition of a simple polygon.
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LEMMA 2. If EPD can be solved in O(n logm n) I/Os, then a simple polygon with N
vertices can be triangulated in O(n logm n) I/O operations.

PROOF. In [18] an algorithm is given for triangulating a simple polygon in O(N )
time once its trapezoid decomposition has been computed. The algorithm first breaks
the polygon up into unimonotone subpolygons using the trapezoidation. A polygon
(P1, P2, . . . , PN ) is unimonotone if there is an i such that Pi and Pi+1 are the vertices with
minimum and maximum x coordinates and the x coordinates of Pi+2, Pi+3, . . . , Pi−1

are in nondecreasing or nonincreasing order (all indices are modulo N ). Every such
subpolygon is then triangulated using a simple algorithm which takes a tour around the
polygon, repeatedly cutting off convex corners. It is easy to realize that such a tour can
be performed in a linear number of I/Os provided that the vertices are given in sorted
order around the polygon.

In [18] the decomposition of a polygon into unimonotone subpolygons is performed
by adding an edge between every pair of original vertices of the polygon which define
a trapezoid in the trapezoid decomposition of the polygon, provided that they do not
already share an edge. In order to create distinct subpolygons two identical edges are
actually added in each relevant trapezoid (in Figure 1 two edges would be added in
both of the nondegenerated trapezoids). The decomposition is done using a recursive
procedure which may not be I/O-efficient. However, solving two instances of EPD and
performing a constant number of sorting steps as in the proof of Lemma 1, it easy to add
the edges in O(n logm n) I/Os.

In order to rearrange the vertices such that the vertices of each unimonotone sub-
polygon is given in sorted order we first, in a linear number of I/Os, scan through the
representation of the polygons and identify the leftmost and rightmost vertices of each
polygon. Then we create a linked list L of vertices where each vertex, except for the
leftmost vertex of each subpolygon, points to the one of its two neighboring vertices
with the largest x coordinate. The leftmost vertex of a polygon is made to point to the
rightmost vertex of another polygon such that only one left vertex points to each right
vertex. L can easily be created in a linear number of I/Os. To create the desired rep-
resentation we simply have to list rank L . This can be done in O(n logm n) I/Os using
algorithms from [15] and [4].

We define a segment AB in the plane to be above another segment C D if we can
intersect both AB and C D with the same vertical line l, such that the intersection
between l and AB is above the intersection between l and C D. Note that two segments
are incomparable if they cannot be intersected with the same vertical line. Figure 2
demonstrates that if two segments are comparable then it is enough to consider vertical
lines through the four endpoints to obtain their relation. The problem of sorting N non-
intersecting segments in the plane is to extending the partial order defined in the above
way to a total order. This problem will become important in the solution to the red–blue
line segment intersection problem in Section 3.1.

LEMMA 3. If EPD can be solved in O(n logm n) I/Os, then a total ordering of N
nonintersecting segments can be found in O(n logm n) I/Os.
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Fig. 2. Comparing segments. Two segments can be related in four different ways.

PROOF. We first solve EPD on the input segments augmented with the segment S∞ with
endpoints (−∞,∞) and (∞,∞). The existence of S∞ ensures that all input segment
endpoints are dominated by some segment. We define an aboveness relation ↘ on
elements of a nonintersecting set of segments S such that AB ↘ C D if and only if either
(C, AB) or (D, AB) is in the solution to EPD on S. Here (A, BC) denotes that BC is
the segment immediately above A. Similarly, we solve EPD with negated y coordinates
and a special segment S−∞ to establish a belowness relation ↗. As discussed sorting
the segments corresponds to extending the partial order defined by↘ and↗ to a total
order.

In order to obtain a total order we define a directed graph G = (V, E) whose nodes
consist of the input segments and the two extra segments S∞ and S−∞. The edges
correspond to elements of the relations ↘ and ↗. For each pair of segments AB and
C D, there is an edge from AB to C D iff C D ↘ AB or AB ↗ C D. To sort the segments
we simply have to sort G topologically. As G is a planar s,t-graph of size O(N ) this can
be done in O(n logm n) I/Os using an algorithm of [15].

2.2. Buffer Trees and Distribution Sweeping. In internal memory EPD can be solved
optimally with a simple plane-sweep algorithm: We sweep the plane from left to right with
a vertical line, inserting a segment in a search tree when its left endpoint is reached and
removing it again when the right endpoint is reached. For every endpoint we encounter
we also do a search in the tree to identify the segment immediately above the point.

In [4] a number of external-memory data structures called buffer trees are developed
for use in plane-sweep algorithms. Buffer trees are data structures that can support the
processing of a batch of N updates and K queries on an initially empty dynamic data
structure of elements from a totally ordered set in O((n+ k) logm n+ t) I/Os. They can
be used to implement plane-sweep algorithms in which the entire sequence of updates
and queries is known in advance. The queries that such plane-sweep algorithms ask of
their dynamic data structures need not be answered in any particular order; the only
requirement on the queries is that they must all eventually be answered. Such problems
are known as batch dynamic problems [17], [5]. The plane-sweep algorithm for EPD
sketched above can be stated as a batched dynamic problem. However, the requirement
that the elements stored in the buffer tree are taken from a totally ordered set is not
fulfilled in the algorithm, as we do not know any total order of the segments. Actually, as
demonstrated in Lemma 3, finding such an ordering is an important application of EPD.
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Therefore, we cannot use the buffer tree as the tree structure in the plane-sweep algorithm
and get an I/O-efficient algorithm. For the other problems we are considering in this
paper, the known internal-memory plane-sweep solutions cannot be stated as batched
dynamic algorithms (since the updates depend on the queries) or else the elements
involved are not totally ordered.

In [19] a powerful external memory version of the plane-sweep paradigm called distri-
bution sweeping is introduced. Unfortunately, direct application of distribution sweeping
appears insufficient to solve EPD. In order to illustrate why distribution sweeping is in-
adequate for the task at hand, we briefly review how it works. We divide the plane into m
vertical slabs, each of which contains �(n/m) input objects, for example points or line
segment endpoints. We then sweep down vertically over all of the slabs to locate compo-
nents of the solution that involve interaction of objects in different slabs or objects (such
as line segments) that completely span one or more slabs. The choice of m slabs is to en-
sure that one block of data from each slab fits in main memory. To find components of the
solution involving interaction between objects residing in the same slab, we recursively
solve the problem in each slab. The recursion stops after O(logm n/m) = O(logm n)
levels when the subproblems are small enough to fit in internal memory. In order to get
an O(n logm n) algorithm one therefore needs to be able to do one sweep in O(n) I/Os.
Normally this is accomplished by sorting the objects by y coordinate in a preprocessing
step. This e.g. allows one to avoid having to sort before each recursive application of
the technique, because as the objects are distributed to recursive subproblems their y
ordering is retained. The reason that distribution sweeping fails for EPD is that there
is no necessary relationship between the y ordering of endpoints of segments and their
endpoint dominance relationship. In order to use distribution sweeping to get an opti-
mal algorithm for EPD we instead need to sort the segments in a preprocessing step
which leaves us with the same problem we encountered in trying to use buffer trees
for EPD.

As know techniques fail to solve EPD optimally we are led instead to other approaches
as discussed in the next section.

2.3. External-Memory Segment Trees. The segment tree [8], [25] is a well-known
dynamic data structure used to store a set of segments in one dimension, such that given
a query point all segments containing the point can be found efficiently. Such queries are
called stabbing queries. An external-memory segment tree based on the approach in [4]
is shown in Figure 3. The tree is perfectly balanced over the endpoints of the segments
it represents and has branching factor

√
m/4. Each leaf represents M/2 consecutive

segment endpoints. The first level of the tree partitions the data into
√

m/4 intervals
σ1, σ2, . . . , σ√m/4

, separated by dashed lines in Figure 3—for illustrative reasons we

call these intervals slabs. Multislabs are defined as contiguous ranges of slabs, that
is, [σ1, σ1], [σ1, σ2], . . . , [σ1, σ√m/4

], [σ2, σ2], . . . , [σ2, σ√m/4
], . . . , [σ√

m/4
, σ√

m/4
].

There are m/8 − √m/4 multislabs. The key point is that the number of multislabs is
a quadratic function of the branching factor. The reason why we choose the branching
factor to be �(

√
m ) rather than �(m) is that we now have room in internal memory

for a constant number of blocks for each of the�(m)multislabs. The smaller branching
factor at most doubles the height of the tree.
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Fig. 3. An external-memory segment tree based on a buffer tree over a set of N segments, three of which, AB,
C D, and E F , are shown.

Segments such as C D that completely span one or more slabs are called long segments.
A copy of each long segment is stored in a list associated with the largest multislab it
spans. Thus, C D is stored in the multislab list of [σ2, σ4]. All segments that are not long
are called short segments and are not stored in any multislab list. Instead, they are passed
down to lower levels of the tree where they may span recursively defined slabs and be
stored. AB and E F are examples of short segments. The portions of long segments that
do not completely span slabs are treated as small segments. On each level of the tree
there are at most two such synthetically generated short segments for each segment and
total space utilization is thus O(n logm n) blocks.

To answer a stabbing query, we simply proceed down a path in the tree searching for
the query value. At each node we encounter, we report all the long segments associated
with each of the multislabs that contain the query value.

Because of the size of the nodes and auxiliary multislab data, the buffer tree approach
is inefficient for answering single queries. In batch dynamic environments, however, it
can be used to develop optimal algorithms. In [4], techniques are developed for using
external-memory segment trees in a batch dynamic environment such that inserting N
segments in the tree and performing K queries requires O((n + k) logm n + t) I/Os.

It is possible to come close to solving EPD by first constructing an external-memory
segment tree over the projections of the segments onto the x-axis and then performing
stabbing queries at the x coordinates of the endpoints of the segments. However, what we
want is the single segment directly above each query point in the y dimension, as opposed
to all segments it stabs. Fortunately, we are able to modify the external segment tree in
order to answer a batch of this type of queries efficiently. The modification requires two
significant improvements over existing techniques. First, as discussed in Section 2.3.1,
we need to strengthen the definition of the structure, and the tree construction techniques
of [4] must be modified in order to guarantee optimal performance when the structure
is built. Second, as discussed in Section 2.3.2, the batched query algorithm must be
augmented using techniques similar to fractional cascading [13].
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2.3.1. Constructing extended external segment trees. We construct what we call an
extended external segment tree using an approach based on distribution sweeping. An
extended external segment tree is just an external segment tree as described in the last
section built on nonintersecting segments in the plane, where the segments in each of
the multislab lists are sorted according to the aboveness relation. Note that when we
are building an external segment tree on nonintersecting segments we can compare all
segments in the same multislab just by comparing the order of their endpoints on one
of the boundaries. Before discussing how to construct an extended external segment
tree I/O-efficiently we show a crucial property, namely that the segments stored in
the multislab lists of a node in such a structure can be sorted efficiently. We use this
extensively in the rest of the paper. When we talk about sorting segments in the multislab
lists of a node we imagine that they are “cut” to the slab boundaries, that is, that we have
removed the part of the segments that are stored recursively further down the structure.
Note that this might result in another total order than if we considered the original
segments.

LEMMA 4. The set of N segments stored in the multislab lists of an internal node of an
extended external segment tree can be sorted in O(n) I/O operations.

PROOF. We claim that we can construct a sorted list of the segments by repeatedly
looking at the top segment in each of the multislabs, and selecting one which is not
dominated by any of the others to go to the sorted list.

To prove the claim, assume for the sake of contradiction that there exists a top seg-
ment s in one of the multislab lists which is above the top segment in all the other
multislab lists it is comparable with, but which must be below another segment t in a
total order. If this is the case there exist a series of segment s1, s2 . . . , si such that t is
above s1 which is above s2 and so on ending with si being above s. However, if si is
above s then so is the top segment in the multislab list containing si contradicting the
fact that s is above the top segment in all multislab lists it is comparable with.

As the number of multislab lists is O(m) there is room for a block from each of them
in internal memory. Thus the sorted list can be constructed in O(n) I/Os by performing
a standard external-memory merge of O(m) sorted lists into a single sorted list.

In order to construct an extended external segment tree on N segments, we first use
an optimal sorting algorithm to create a list of all the endpoints of the segments sorted
by x-coordinate. This list is used during the whole construction algorithm to find the
medians we use to split the interval associated with a given node into

√
m/4 vertical

slabs. We now construct the O(m) sorted multislab lists associated with the root in the
following way: First we scan through the segments and distribute the long segments to
the appropriate multislab lists. This can be done in O(n) I/Os because we have enough
internal memory to hold a block of segments for each multislab list. Then we sort each
of these lists individually with an optimal sorting algorithm. Finally, we recursively
construct an extended external segment tree for each of the slabs. The process continues
until the number of endpoints in the subproblems falls below M/2.

Unfortunately, this simple algorithm requires O(n log2
m n) I/Os, because we use

O(n logm n) I/Os to sort the multislab lists on each level of the recursion. To avoid
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this problem, we modify our algorithm to construct the multislab lists of a node not only
from a list of segments but also from two other sorted lists of segments. One sorted list
consists of segments that have one endpoint in the x range covered by the node under
construction and one to the left thereof. The other sorted list is similar but contains seg-
ments entering the range from the right. Both lists are sorted by the y coordinate at which
the segments enter the range of the node being constructed. In the construction of the
structure the two sorted lists will contain segments which were already stored further up
the tree. We begin to build a node just as we did before, by scanning through the unsorted
list of segments, distributing the long segments to the appropriate multislab lists, and
then sorting each such list. Next, we scan through the two sorted lists and distribute the
long segments to the appropriate multislab lists. Segments will be taken from these lists
in sorted order, and can thus be merged into the previously sorted multislab lists at no
additional asymptotic cost. This completes the construction of the sorted multislab lists,
and now we simply have to produce the input for the algorithm at each of the

√
m/4 chil-

dren of the current node. The
√

m/4 unsorted lists are created by scanning through the
list of segments as before, distributing the segments with both endpoints in the same slab
to the list associated with the slab in question. In this process we also handle segments
with endpoints in two neighboring slabs by breaking them at the boundary between the
slabs. Note that each segment will be broken at most once. The 2

√
m/4 sorted lists of

segments are constructed from the sorted multislab lists generated at the current level:
First we use a linear number of I/Os to sort the segments (Lemma 4), and then the 2

√
m/4

lists can be constructed by scanning through this sorted list of segments, distributing the
segments to the appropriate of 2

√
m/4 lists. These lists will be sorted automatically.

In the above process all the distribution steps can be done in a linear number of I/Os,
because the number of lists we distribute into is always O(m), which means that we have
enough internal memory to hold a block of segments for each output list. Thus, each of the
O(logm n) levels of recursion uses O(n) I/Os plus the number of I/Os used on sorting.
Each segment participates in a sorting only once, namely the first time it is distributed
to a multislab list. Thus, if Ni is the number of segments participating in the i th sorting,
the overall number of I/Os used on sorting is O(

∑
i ni logm ni ) = O(n logm n):

LEMMA 5. An extended external segment tree on N nonintersecting segments in the
plane can be constructed in O(n logm n) I/O operations.

2.3.2. Filtering queries through an extended tree. Having constructed an extended
external segment tree, we can now use it to find the segment directly above each of a
series of K query points. In solving EPD, we have K = 2N , and the query points are
the endpoints of the original segments. To find the segment directly above a query point
p, we examine each node on the path from the root of the tree to the leaf containing p’s
x coordinate. At each such node, we find the segment directly above p by examining
the sorted segment list associated with each multislab containing p. This segment can
then be compared with the segment that is closest to the query point p so far, based on
segments seen further up the tree, to see if it is the new globally closest segment. All
K queries can be processed through the tree at once using a technique similar to batch
filtering [19], in which all queries are pushed through a given level of the tree before
moving onto the next level.
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Unfortunately, the simple approach outlined in the preceding paragraph is not ef-
ficient. There are two problems that have to be dealt with. First, we must be able to
find the position of a query point in many of the multislabs lists corresponding to a
given node simultaneously. Second, searching for the position of a point in the sorted
list associated with a particular multislab may require many I/Os, but as we are looking
for an O(n logm n) solution we are only allowed to use a linear number of I/Os to find
the positions of all the query points. To solve the first problem we take advantage of
the internal memory that is available to us. The second problem is solved with a notion
similar to fractional cascading [12], [13]. The basic idea behind fractional cascading on
internal-memory segment trees [27] is that instead of searching for the same element in
a number of sorted lists of different nodes, we augment the list at a node with sample
elements from lists at the children nodes. We then build “bridges” between elements
in the augmented list and the corresponding elements in the lists of the children nodes.
These bridges obviate the need for full searches in the lists at the children. We take a
similar approach for our external-memory problem, except that we send sample elements
from parents to children. Furthermore, we do not use explicit bridges. Our approach uses
ideas similar to ones used in [6] and [7].

As a first step towards a solution based on fractional cascading, we preprocess the ex-
tended external segment tree in the following way (corresponding to “building bridges”):
For each internal node, starting with the root, we produce a set of sample segments. For
each of the

√
m/4 slabs (not multislabs) we produce a list of samples of the segments

in the multislab lists that span it. The sample list for a slab consists of every (2
√

m/4 )th
segment in the sorted list of segments that spans it, and we “cut” the segments to the
slab boundaries. All the samples are produced by scanning through the sorted list of
all segments in the node produced as in Lemma 4, distributing the relevant segments
to the relevant sample lists. This can be done efficiently simply by maintaining

√
m/4

counters during the scan, counting how many segments so far have been seen spanning a
given slab. For every slab we then augment the multislab lists of the corresponding child
by merging the sampled list with the multislab list of the child that contains segments
spanning the whole x-interval. This merging happens before we proceed to preprocess
the next level of the tree. At the lowest level of nodes, the sampled segments are passed
down and stored in the leaves.

We now prove a crucial lemma about the I/O complexity of the preprocessing steps
and the space use of the resulting data structure.

LEMMA 6. The preprocessing described above uses O(n logm n) I/Os. After the pre-
processing there are still O(N ) segments stored in the multilists on each level of the
structure. Furthermore, each leaf contains less than M segments.

PROOF. Before any samples are passed down the tree, we have at most 2N segments
represented at each level of the tree. Let Ni be the number of long segments, both
original segments and segments sent down from the previous level, in all the nodes
at level i of the tree after the preprocessing step. At the root, we have N0 ≤ 2N .
We send at most Ni/(2

√
m/4 ) · √m/4 = Ni/2 segments down from level i to level

i + 1. Thus, Ni+1 ≤ 2N + Ni/2. By induction on i , we can show that for all i , Ni ≤(
4− (1/2)i−1

)
N = O(N ). From Lemma 4 and the fact that the number of multislab
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lists is O(m)—and that we thus can do a distribution or a merge step in a single pass
of the data—it follows that each segment on a given level is read and written a constant
number of times during the preprocessing phase. The number of I/Os used at level i of
the tree is thus O(ni ), where ni = Ni/B. Since there are O(logm n) levels, we in total
use O(n logm n) I/Os.

Before preprocessing, the number of segments stored in a node is less than the number
of endpoints in the leaves below the node. To be precise, a leaf contains less than M/2
segments and a node i levels up the tree from a leaf contains less than M/2 · (√m/4)i

segments. After preprocessing, the number of segments Hl in a leaf at level l in the tree
must be Hl ≤ M/2+ Hl−1/2

√
m/4, where Hl−1 is the maximal number of segments in

a node at level l − 1. This is because at most every (2
√

m/4)th of these segments is sent
down to the leaf. Thus,

Hl ≤ M

2
+ M/2 · √m/4+ Hl−2/2

√
m/4

2
√

m/4
≤ M

2
+ M

4
+ Hl−2

(2
√

m/4)2

and so on, which means that Hl < M .

Having preprocessed the tree, we are now ready to filter the K query points through
it. We assume without loss of generality that K = O(N ). If K = �(N ) we break the
queries into K/N groups of K ′ = N queries and process each group individually. For
EPD, we have K = 2N , so this grouping is not necessary. However, as we will see
later, grouping reduces the overall complexity of processing a batch of queries when K
is very large. Since our fractional cascading construction is done “backwards” (sampled
segments sent downwards), we filter queries from the leaves to the root rather than
from the root to the leaves. To start, we sort the K query points by their x coordinates
using O(k logm k) I/Os. We then scan the sorted list of query points to determine which
leaf a given query belongs to, producing a list of queries for each leaf as indicated on
Figure 4(a)). Next we iterate through the leaves, and for each query point assigned to a
given leaf we find the dominating segment among the segments in the leaf. (Note that
each query point must have a dominating segment since the added sample segments span
the entire x-range of the leaf.) This is done by loading the entire set of segments stored
at that leaf (which fits in memory according to Lemma 6), and then using an internal-
memory algorithm to find the dominating segment for each query. As the total size of
the data in all the leaves is O(N ), the total I/O complexity of the process is O(k + n).

(a) (b) (c)

Fig. 4. Filtering queries through the structure. An arrow in a list indicates that it is sorted according to
dominating segment.
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Fig. 5. All queries between sampled segments (indicated by thick lines) must appear together in the list of
queries for the slab.

In order to prepare for the general step of moving queries up the tree, we sort the queries
that went into each leaf by dominating segment, ending up in a situation as indicated in
Figure 4(b)). This takes O(k logm k) I/Os.

Each filtering step of the algorithm begins with a set of queries at a given level,
partitioned by the nodes at that level and ordered within the nodes by the order of the
segments found to be directly above them on the level. This is exactly what the output
of the leaf processing was. The filtering step should produce a similar configuration on
the next level up the tree. This is indicated for one node in Figure 4(c)). Remember that
throughout the algorithm we also keep track of the segment found to be closest to a
given query point so far, so that when the root is reached we have found the dominating
segment of all query points.

To perform one filtering step on a node we merge the list of queries associated with its
children (slabs) and the node’s multislab lists. The key property that allows us to find the
dominating segments among the segments stored in the node in an I/O-efficient manner,
and sort the queries accordingly, is that the list of queries associated with a child of the
node cannot be too unsorted relative to their dominating segment in the node. This is
indicated in Figure 5.

In order to produce, for each slab of a node, a list of the queries in the slab, sorted
according to dominating segment in the node, we again produce and scan through a sorted
list of segments in the multislab lists of the node, just like when we generated the samples
that were passed down the tree in the preprocessing phase. This time, however, instead of
generating samples to pass down the tree, we insert a given segment in a list for each slab
it spans. Thus if a segment completely spans four slabs it is inserted in four lists. When,
during the scan, we encounter a segment which was sampled in slab s in the sampling
phase, we stop the scan and process the queries in the list of queries for s between the
sampled segment just encountered and the last sampled segment. As previously discussed
these queries appear together in the sorted (according to dominating segment on the last
level) list of queries for s. When this is done we clear the list of segments spanning s and
continue the scan. The scan continues until all multislab segments have been processed.
The crucial property is now that during the scan we can hold all the relevant segments
in the main memory because at no time during the scan do we store more than 2

√
m/4

segments for each slab, that is, 2
√

m/4 · √m/4 = m/2 segments in total. Thus we can
perform the scan, not counting the I/Os used to process the queries, in a linear number
of I/Os.

To process the queries in a slab between two sampled segments we maintain 2
√

m/4
output blocks, each of which corresponds to a segment between the two sampled seg-
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ments. The block for a segment is for queries with the segment as the dominating segment
among the segments in the multislab list. As we read queries from the output of the child,
we place them in the appropriate output block for the slab. If these output blocks become
full, we write them back to the disk. Once all queries between the two sampled segments
have been processed, we concatenate the outputs associated with each of the segments
between the samples. This results in a list of queries sorted according to dominating
segment in the node, and this list is appended to an output list for the slab. All of the
above is done in a number of I/Os linear in the number of queries processed.

When we finish the above process, in a linear number of I/Os we merge the sorted
output query lists of all the slabs to produce the output of the current node.

As discussed above, once this process has reached the root, we have the correct
answers to all queries. The total I/O complexity of the algorithm is given by the following
theorem.

THEOREM 1. An extended external segment tree on N nonintersecting segments in the
plane can be constructed, and K query points can be filtered through the structure in
order to find the dominating segments for all these points, in O((n + k) logm n) I/O
operations.

PROOF. According to Lemmas 5 and 6 construction and preprocessing together require
O(n logm n) I/Os.

Assuming K ≤ N , sorting the K queries takes O(n logm n) I/Os. Filtering the queries
up one level in the tree takes O(n) I/Os for the outer scan and O(k) I/Os to process
the queries. This occurs through O(logm n) levels, giving an overall I/O complexity of
O(n logm n).

When K > N , we can break the problem into K/N = k/n sets of N queries. Each
set of queries can be answered as shown above in O(n logm n) I/Os, giving a total I/O
complexity of O(k logm n).

Theorem 1 immediately gives us the following bound for EPD, for which K = 2N .

COROLLARY 1. The endpoint dominance problem can be solved in O(n logm n) I/O
operations.

We then immediately get the following from Lemmas 1–3:

COROLLARY 2. The trapezoid decomposition and the total order of N nonintersecting
segments in the plane, as well as the triangulation of a simple polygon, can all be
computed in O(n logm n) I/O operations.

It remains open whether a simple polygon can be triangulated in O(n) I/Os when
the input vertices are given by their order on the boundary of the polygon, which would
match the linear internal-memory bound [10].

As a final direct application of our algorithm for EPD we consider the multipoint
planar point location problem. This is the problem of reporting the location of K
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query points in a planar subdivision defined by N line segments. In [19] an O((n +
k) logm n)-I/O algorithm for this problem is given for monotone subdivisions of the
plane. Using Theorem 1 we can immediately extended the result to arbitrary planar
subdivisions.

LEMMA 7. The multipoint planar point location problem can be solved using
O((n + k) logm n) I/O operations.

3. Line Segment Intersection. In this section we design algorithms for line segment
intersection reporting problems. In Section 3.1 we develop an I/O-efficient algorithm
for the red–blue line segment intersection problem and in Section 3.2 we develop an
algorithm for the general line segment intersection problem.

3.1. Red–Blue Line Segment Intersection. Using our ability to sort segments (accord-
ing to the aboveness relation) as described in Section 2, we can now overcome the
problems in solving the red–blue line segment intersection problem with distribution
sweeping. Given input sets Sr of nonintersecting red segments and Sb of nonintersecting
blue segments, we construct two intermediate sets:

Tr = Sr ∪
⋃

(p,q)∈Sb

{(p, p), (q, q)},

Tb = Sb ∪
⋃

(p,q)∈Sr

{(p, p), (q, q)}.

Each new set is the union of the input segments of one color and the endpoints of the
segments of the other color (or rather zero length segments located at the endpoints).
Both Tr and Tb are of size O(|Sr| + |Sb|) = O(N ). We sort both Tr and Tb using the
algorithm from the previous section, and from now on assume they are sorted. This
preprocessing sort takes O(n logm n) I/Os.

We now locate intersections between the red and blue segments with a variant of
distribution sweeping with a branching factor of

√
m. As discussed in Section 2.2, the

structure of distribution sweeping is that we divide the plane into
√

m slabs, not unlike the
way the plane was divided into slabs to build an external segments tree in Section 2.3.
We define long segments as those crossing one or more slabs. Segment that are not
long are called short segments. Furthermore, we shorten the long segments by “cutting”
them at the right boundary of the slab that contain their left endpoint, and at the left
boundary of the slab containing their right endpoint. This may produce up to two new
short segments for each long segment, and below we show how to update Tr and Tb

accordingly in O(n) I/Os. We also show how to report all Ti intersections between
the long segments of one color and the long and short segments of the other color in
O(n+ ti ) I/Os. Next, we use one scan to partition the sets Tr and Tb into

√
m parts, one

for each slab, and we recursively solve the problem on the short segments contained in
each slab to locate their intersections. Each original segment is represented at most twice
at each level of recursion, thus the total problem size at each level of recursion remains
O(N ) segments. Recursion continues through O(logm n) levels until the subproblems
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are of size O(M) and thus can be solved in internal memory. This gives us the following
result.

THEOREM 2. The red–blue line segment intersection problem on N segments can be
solved in O(n logm n + t) I/O operations.

Now, we simply have to fill in the details of how we process the segments on one
level of the recursion. First, we consider how to insert the new points and segments
generated when we cut a long segment at the slab boundaries into the sorted orders Tr

and Tb. Consider a cut of a long red segment s into three parts. Changing Tr accordingly
is easy, as we just need to insert the two new segments just before or after s in the total
order. In order to insert all new red endpoints generated by cutting long red segments
(which all lie on a slab boundary) in Tb, we first scan through Tr generating the points
and distributing them to

√
m lists, one for each boundary. The lists will automatically be

sorted and therefore it is easy to merge them into Tb in a simple merge step. Altogether
we update Tr and Tb in O(n) I/Os.

Next, we consider how intersections involving long segments are found. We divide
the algorithm into two parts; reporting intersections between long and short segments of
different colors and between long segments of different colors.

Because Tr and Tb are sorted, we can locate interactions between long and short
segments using the distribution-sweeping algorithm used to solve the orthogonal segment
intersection problem in [19]. We use the algorithm twice and treat long segments of one
color as horizontal segments and short segments of the other color as vertical segments.
We sketch the algorithm for long red and blue short segments (details can be found
in [19]): We sweep from top to bottom by scanning through the sorted list of red segments
and blue endpoints Tr. When a top endpoint of a short blue segment is encountered, we
insert the segment in an active list (a stack where we keep the last block in internal
memory) associated with the slab containing the segment. When a long red segment
is encountered we then scan through all the active lists associated with the slabs it
completely spans. During this scan we know that every short blue segment in the list
either is intersected by the red segment or will not be intersected by any of the following
red segments (because we process the segments in sorted order), and can therefore be
removed from the list. A simple amortization argument then shows that we use O(n+ ti )
I/Os to do this part of the algorithm.

Next we turn to the problem of reporting intersections between long segments of
different colors. We define a multislab as in Section 2.3.1 to be a slab defined by two of
the
√

m boundaries. In order to report the intersections we scan through Tr and distribute
the long red segments into the O(m) multislabs. Next, we scan through the blue set Tb,
and for each long blue segment we report the intersections with the relevant long red
segments. This is the same as reporting intersections with the appropriate red segments in
each of the multislab lists. Now consider Figure 6. A long blue segments can “interact”
with a multislab in three different ways. It can have one endpoint in the multislab, it
can cross the multislab completely, or it can be totally contained in the multislab. First,
we concentrate on reporting intersections with red segments in multislabs for which the
blue segment intersects the left boundary. Consider a blue segment b and a multislab
containing its right endpoint, and define yp to be the y coordinate of a point p. We have
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Fig. 6. Long blue segments (dashed lines) can interact with multislab in three ways.

the following:

LEMMA 8. If a blue segment b intersects the left boundary of a multislab at point p
then all blue segments reached after b in a top-down processing of the segments, if
intersecting the boundary, will have the intersection point q below p.

Let r be the left endpoint of a red segment in the multislab list. If yr ≥ yp and b
intersects the red segment, then b intersects all red segments in the multislab list with
left endpoints in the y-range [yp, yr ]. The case yr ≤ yp is symmetric.

PROOF. The first part follows immediately from the fact that we process the segments
in sorted order. Figure 7 demonstrates that the second part holds.

Using this lemma we can now complete the design of the algorithm for our problem
using a merging scheme. As discussed above, we process the blue segments in Tb one at a
time and report intersections with red segments in multislab lists where the blue segments
intersect the left boundary. For each such multislab list we do the following: (1) We scan
forward from the current position in the list until we find the first red segment sr whose
left endpoint lies below the intersection between the blue segment and the multislab
boundary. (2) Then we scan backward or forward as necessary in the multislab list in
order to report intersections. Lemma 8 shows that the algorithm reports all intersections
because all intersected segments lies consecutively above or belove sr. Furthermore,
it shows that we can use blocks efficiently. In total we in (1) only scan through each

r

b

x

y

p

Fig. 7. Proof of Lemma 8: a segment between x and y must intersect b.
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multislab list once without reporting intersections. When reporting intersections in (2) for
a given blue segment and multislab list, if the report size is at least one full block we
can charge a possible last nonfull block of intersections to that full block. If the report
size is less than one block no further I/Os are needed. Thus, our algorithm uses a total
of O(n + ti ) I/Os.

This takes care of the cases where the blue segment completely spans a multislab
or where it has its right, and only the right, endpoint in the multislab. The case where
the blue segment only has its left endpoint in the multislab can be handled analogously.
The remaining case can be handled with the same algorithm, just by distributing the
blue segments instead of the red segments, and then processing one long red segment r
at a time, reporting intersections with blue segments in multislab lists corresponding to
multislabs completely spanned by r . Only completely spanned multislabs are considered
in order to avoid reporting the same intersection twice. To summarize, we have shown
how to perform one step of the distribution sweeping algorithm in O(n + ti ) I/Os, and
thus proven Theorem 2.

3.2. General Line Segment Intersection. The general line segment intersection prob-
lem cannot be solved by distribution sweeping as in the red–blue case, because the↗
and ↘ (Lemma 3) relations for sets of intersecting segments are not acyclic, and thus
the preprocessing phase to sort the segments cannot be used to establish an ordering
for distribution sweeping. However, as we show below, extended external segment trees
can be used to establish enough order on the segments to make distribution sweeping
possible. The general idea in our algorithm is to build an extended external segment
tree on all the segments, and during this process to eliminate any inconsistencies that
arise because of intersecting segments on the fly. This leads to a solution for the general
problem that integrates all the elements of the red–blue algorithm into one algorithm.
In this algorithm, intersections are reported both during the construction of an extended
external segment tree and during the filtering of endpoints through the structure.

In order to develop the algorithm we need an external-memory priority queue [4].
Given mp blocks of internal memory, N insert and delete-min operations can be per-
formed on such a structure in O(n logmp

n) I/Os. If we chose mp to be mc for some
constant c (0 < c < 1), we can perform the N operations using O(n logm n) I/Os. In the
construction of an extended external segment tree for general line segment intersection,
we use two priority queues for each multislab. In order to have enough memory to do
this, we reduce the fan-out of the extended segment tree from

√
m/4 to (m/4)1/4. This

does not change the asymptotic height of the tree, but it means that each node will have
less than

√
m/4 multislabs. We chose mp to be

√
m. Thus, with two priority queues per

multislab, each node of the external segment tree still requires less than m/2 blocks of
internal memory. Exactly what goes into the priority queues and how they are used will
become clear as we describe the algorithm.

3.2.1. Constructing the extended external segment tree. In the construction of an ex-
tended external segment tree in Section 2.3.1 we used the fact that the segments did not
intersect to establish an ordering on them. The main idea in our algorithm is a mechanism
for breaking long segments into smaller pieces every time we discover an intersection
during construction of the multislab lists of a node. In doing so we manage to construct
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an extended segment tree with no intersections between long segments stored in the
multislab lists of the same node.

In order to construct the extended external segment tree on the N (now possibly
intersecting) segments, we as in Section 2.3.1 first in O(n logm n) I/Os create a sorted
list of all the endpoints of the segments. The list is sorted by x coordinate, and used
during the whole algorithm to find the medians we use to split the interval associated
with a node into (m/4)1/4 vertical slabs. Recall that in Section 2.3.1 one node in the tree
was constructed from three lists, one sorted list of segments for each of the two extreme
boundaries and one unsorted list of segments. In order to create a node we start as in
the nonintersecting case by scanning through the unsorted list of segments, distributing
the long segments to the appropriate multislab lists. Next, we sort the multislab lists
individually according to the left segment endpoint. Finally, we scan through the two
sorted lists and distribute the segments from these lists. The corresponding multislab
lists will automatically be sorted according to the endpoint on one of the boundaries.

Now we want to remove inconsistencies by removing intersections between long seg-
ments stored in the multislab lists. We start by removing intersections between segments
stored in the same list. To do so we initialize two external priority queues for each of the
multislabs, one for each boundary. Segments in these queues are ordered according to
the order of the their endpoint on the boundary in question, and the queues are structured
such that a delete-min operation returns the topmost segment. We process each of the
multislab lists individually as follows: We scan through the list and check if any two
consecutive segments intersect. Every time we detect an intersection we report it, remove
one of the segments from the list, and break it at the intersection point as indicated in
Figure 8. This creates two new segments. If either one of them is long we insert it in both
the priority queues corresponding to the appropriate multislab list. Any short segments
that are created are inserted into a special list of segments which is distributed to the chil-
dren of the current node along with normal short segments. The left part of s in Figure 8
between s1 and s3 is for example inserted in the queues for multislab [s1, s3], and the
part to the right of s3 is inserted in the special list. It should be clear that after processing
a multislab list in this way the remaining segments are nonintersecting (because every
consecutive pair of segments are nonintersecting), and it will thus be consistently sorted.
As we only scan through a multislab list once the whole process can be done in a linear
number of I/Os in the number of segments processed, plus the I/Os used to manipulate
the priority queues.

s

t

s1 s2 s3 s4 s5 s6 s6

Fig. 8. Breaking a segment.
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s

u

t

Fig. 9. Proof of Lemma 9.

Unfortunately, we still have inconsistencies in the node because segments in different
multislab lists can intersect each other. Furthermore, the newly produced long segments
in the priority queues can intersect each other as well as segments in the multislab lists.
In order to remove the remaining intersections we need the following lemma.

LEMMA 9. If the minimal (top) segments of all the priority queues and the top segments
of all the multislab lists are all nonintersecting, then the topmost of them is not intersected
by any long segment in the queues or lists.

PROOF. First, consider the top segment in the two priority queues corresponding to
the two boundaries of a single multislab. If these two segments do not intersect, then
they must indeed be the same segment. Furthermore, no other segment in these queues
can intersect this top segment. Now consider the top segment in the multislab list of the
same multislab. As the two segments are nonintersecting one of them must be completely
above the other. This segment is not intersected by any segment corresponding to the same
multislab. Now consider this top segment in all the multislabs. Pick one of the topmost
of these nonintersecting segments and call it s. Now consider Figure 9. Assume that s is
intersected by another segment t in one of the queues or multislab lists. By assumption t
is not the top segment in its multislab. Call the top segment in this multislab u. Because
u does not intersect either t or s, and as it is above t , it also has to be above s. This
contradicts the assumption that s is above all the top segments.

Our algorithm for finding and removing intersections now proceeds as follows. We
repeatedly look at the top segment in each of the priority queues and multislab lists. If
any of these segments intersect, we report the intersection and break one of the segments
as before. If none of the top segments intersect we know from Lemma 9 that the topmost
segment is not intersected at all. This segment can then be removed and stored in a
list that eventually becomes the final multislab list for the node in question. When we
have processed all segments in this way, we end up with O(m) sorted multislab lists
of nonintersecting segments. We have enough internal memory to buffer a block from
each of the lists involved in the process, so we only need a number of I/Os linear in the
number of segments processed (original and newly produced ones), plus the number of
I/Os used to manipulate the priority queues.

Finally, as in Section 2.3.1, we produce the input to the next level of recursion by
distributing the relevant segments (remembering to include the newly produced short
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segments) to the relevant children. As before, this is done in a number of I/Os linear in
the number of segments processed. We stop the recursion when the number of original
endpoints in the subproblems fall below M/4.

If the total number of intersections discovered in the above construction process is T
then the number of new segments produced is O(T ), and thus the number of segments
stored on each level of the structure is bounded by O(N + T ). As in Section 2.3.1
we can argue that each segment is only contained in one list being sorted and thus we
use a total of O((n + t) logm(n + t)) = O((n + t) logm n) I/Os to sort the segments.
In constructing each node we only use a linear number of I/Os, plus the number of
I/Os used on priority queue operations. Since the number of priority queue operations
is O(T ), the total number of I/Os we use to construct the whole structure is bounded by
O((n + t) logm n).

3.2.2. Filtering queries through the structure. We have now constructed an extended
external segment tree on the N segments, and in the process of doing so we have reported
some of the intersections between them. The intersections that we still have to report must
be between segments stored in different nodes. In fact, intersections involving segments
stored in a node v can only be with segments stored in nodes below v or in nodes on the
path from v to the root. Therefore we will report all intersections if, for all nodes v, we
report intersections between segments stored at v and segments stored in nodes below v.
However, in v segments stored in nodes below v must be similar to the segments we
called short in the red–blue line segment algorithm. Thus, if in each node v we had a list
of endpoints of segments stored in nodes below v, sorted according to the long segment
in v immediately on top of them, we could report the remaining intersections with the
algorithm that was used in Section 3.1 to report intersections between long segments of
one color and short segments of the other color

In order to report the remaining intersections we therefore preprocess the structure
and filter the endpoints of the O(N + T ) segments through the structure as we did in
Section 2.3.2. At each node the filtering process constructs a list of endpoints below the
node sorted according to the dominating segment among the segments stored in the node.
At each node we can then scan this list to collect the relevant endpoints, merge them into
the sorted list of long segments, and then report intersections with the algorithm used
in Section 3.1. For all nodes on one level of the structure the cost of doing so is linear
in the number of segments and endpoints processed, that is, O(n + t) I/Os, plus a term
linear in the number of new intersections reported.

Recall, that the preprocessing of the structure in Section 2.3.2 consisted of a sampling
of every (2

√
m/4)th segment of every slab in a node, which was then augmented to the

segments stored in the child corresponding to the slab. The process was done from the
root towards the leaves. We will do the same preprocessing here, except that because we
decreased the fanout to (m/4)1/4 we only sample every (2(m/4)1/4)th segment in a slab.
However, as we are building the structure on intersecting segments we should be careful
not to introduce intersections between segments stored in the multislab lists of a node
when augmenting the lists with sampled segments. Therefore we do the preprocessing
while we are building the structure. Thus, in the construction process described in the
previous section, after constructing the sorted multislab lists of a node, we sample every
(2(m/4)1/4)th segment in each slab precisely as in Section 2.3.2. We then send these
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segments down to the next level together with the other “normal” segments that need
to be recursively stored further down the tree. However, we want to make sure that the
sampled segments are not broken, but stored on the next level of the structure. Otherwise
we cannot I/O-efficiently filter the query points through the structure, as the sampled
segments are stored on the next level to make sure that the points are not too unsorted
relative to the segments stored in a node. Therefore we give the sampled segments a
special mark and make sure that we only break unmarked segments. We can do so
because two marked segments can never intersect—otherwise they would have been
broken on the previous level.

By the same argument used in Section 2.3.2 to prove Lemma 6 we can prove that
the augmentation of sampled segments does not asymptotically increase the number of
segments stored on each level of the structure. Also all the sampling and augmentation
work can be done in a linear number of I/Os on each level of the structure. This means
that the number of I/Os used to construct the structure is kept at O((n+ t) logm n), even
when the preprocessing is done as an integrated part of it.

After the construction and preprocessing we are ready to filter the O(N+T ) endpoints
through the O(logm n) levels of the structure. Recall by referring to Figure 4 that in order
to do the filtering we first sort the points by x coordinate and distribute them among the
leaves. Then for each leaf in turn we find the dominating segments of the points assigned
to the leaf and sort the points accordingly. Finally, the points are repeatedly filtered one
level up until they reach the root.

The sorting of the points by x coordinate can be done in O((n + t) logm(n + t)) =
O((n + t) logm n) I/Os. Also each of the filtering steps can be done in a linear number
of I/Os by the same argument as in Section 2.3.2 and the previous discussion. However,
our structure lacks one important feature which we used in Section 2.3.2 to find the
dominating segments in the leaves. As the tree is constructed based on the sorted set of
x coordinates of the original N segments, we can argue (as in Section 2.3.2) that a leaf
represents less than M/4 endpoints of the original segments, but as O(T ) new segments
and thus endpoints are introduced during the construction of the structure we cannot
guarantee that the number of segments stored in a leaf is less than M/2. Potentially,
all O(T ) additional endpoints could be assigned to one leaf, and there is no way of
predicting this when the initial sorting (to construct the tree) is performed. Therefore, we
cannot find the dominating segments by just loading all segments stored in a leaf into the
internal memory and use an internal memory algorithm. Also, the segments stored in a
leaf may intersect each other and we need to find and reports such intersections. However,
assuming that we can report such intersections and produce the sorted list of endpoints
for each leaf, the rest of the algorithm runs in O((n + t) logm n + t ′) I/Os, where T ′

is the number of intersections found during the filtering of the endpoints through the
structure. If T1 = T + T ′ is the total number of intersections reported then this number
is clearly O((n + t1) logm n).

In order to overcome the problems with leaves containing more than M segments we
treat the segments in each such leaf as a new subproblem, which we recursively solve
by building an extended external segment tree on the segments and filter the relevant
endpoint through this structure. The recursion process can be viewed as “growing” the
leaves containing too many segments until we finally have a unified tree where all leaves
contain less than M segments. In order to analyze the I/O use of the complete algorithm,
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consider the first level of recursion, that is, the trees build upon the relevant segments
in the leaves of the initial tree. Let xi denote the number of segments in the i th leaf of
the initial tree containing more than M segments. The number of such leaves is bounded
by T/(M − M/2) = T/(M/2), which means that

∑
i xi ≤ T + (T/(M/2))(M/2) =

2T ≤ 2T1. If T2i denotes the number of intersections reported when growing the subtree
of leaf i and T2 =

∑
i T2i , the total I/O use on the first level of recursion is

∑
i O((xi +

t2i ) logm xi ) ≤
∑

i O((xi + t2i ) logm n) ≤ O((2t1+ t2) logm n). The same argument can
be used on the second level of recursion which involves less than 2T2 segments. The
total number of I/Os used is thus O(n logm n + 2

∑
j tj logm n) = O((n + tt ) logm n),

where Tt is the total number of intersections reported.

THEOREM 3. All T intersections between N line segments in the plane can be reported
in O((n + t) logm n) I/O operations.

4. Conclusions. In this paper, we have presented efficient external-memory algorithms
for large-scale geometric problems involving collections of line segments in the plane.
We have obtained these algorithms by combining buffer trees and distribution sweeping
with a powerful new variant of fractional cascading designed for external memory.

A number of important problems, which are related to those we have discussed in
this paper, remain open. Most notably if it is possible to solve the general line segment
intersection reporting problem in O(n logm n+ t) I/O operations, and if it is possible to
triangulate a polygon in O(n) I/Os, given the N vertices in the order they appear around
the perimeter of the polygon.
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