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Abstract—We investigate the problem of smoothing multiplexed network traffic when either a streaming server transmits data to

multiple clients or a storage server accesses data from multiple storage devices or other servers. We introduce efficient algorithms for

lexicographically optimally smoothing the aggregate bandwidth requirements over a shared network link. Possible applications include

improvement in the bandwidth utilization of network links and reduction in the energy consumption of server hosts. In the data

transmission problem, we consider the case in which the clients have different buffer capacities and unlimited bandwidth constraints or

unlimited buffer capacities and different bandwidth constraints. For the data access problem, we handle the general case of a shared

buffer capacity and individual network bandwidth constraints. Previous approaches for the data access problem handled either the

case of only a single stream or did not compute the lexicographically optimal schedule. By provably minimizing the variance of the

required aggregate bandwidth, lexicographically optimal smoothing makes the maximum resource requirements within the network

more predictable and increases the useful resource utilization. It also improves fairness in sharing a network link among multiple users

and makes new requests from future clients more likely to be successfully admitted without the need for rescheduling previously

accepted traffic. With appropriate hardware and system support, data traffic smoothing can also reduce the energy consumption of the

host processor and the communication links. Overall, we expect that efficient resource management at the network edges will better

meet quality of service requirements without restricting the scalability of the system.

Index Terms—Data smoothing, streaming, prefetching, energy efficiency, content distribution networks, client/server systems,

optimization.
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1 INTRODUCTION

EMERGING applications that involve real-time delivery of
digital content motivate the deployment of scalable data

storage and transfer infrastructure with support for quality-
of-service guarantees. However, the high costs of installing
and maintaining network and storage equipment make
bandwidth overprovisioning an undesirable approach for
handling unpredictable surges in user demand. Costly
energy consumption in modern data centers is another
reason for trying to reduce peaks in the data transfer
capacity required over time [1]. Previous published
literature has already made the case that appropriate
shaping of the data traffic at the network edges has the
potential to achieve higher resource utilization, without
imposing scale limitations onto the network architecture [2],
[3]. In the present paper, we develop algorithms for
smoothing out the aggregate bandwidth required during
on-demand delivery of stored media files to multiple
different clients. We expect similar approaches to also be
applicable in other similar environments, such as ad hoc

and sensor networks, where individual nodes are both
clients and server hosts and can only use limited resources
including network bandwidth and energy [4].

Fig. 1 illustrates a simplified network hierarchy that
allows on-demand delivery of stored media files to multiple
users. By requesting stored streams with known time-
dependent resource requirements, the clients essentially
specify what data are required and when each portion is
actually needed. The source server node manages a
collection of secondary storage devices, where the media
files are originally stored. Memory space in the server is
available for buffering or caching data arriving from the
disks. At one or more intermediate layers, proxy servers
between the clients and the source server are responsible for
handling the client requests and appropriately commu-
nicating them back to the source server node. Data
transmission to the clients is adjusted according to the
buffer space and network link capacity of each client and
each proxy.

In this paper, we consider the generic problem of
scheduling network data transfers for streaming media
files. In Fig. 1, downstream nodes are on the left and
upstream nodes on the right. A practical and scalable
approach is to do the scheduling one layer at a time, starting
at the downstream layers and proceeding to the upstream
layers. In the course of this layer-by-layer process, the
scheduling problem that arises at each layer falls into one of
two basic types:

1. At the proxy-client layer, we have an instance of the
data transmission problem, where multiple clients
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share the network transmission bandwidth. After
this schedule is determined, we are left with a set of
data requests (with modified deadlines) that are
passed upstream from the proxy to the server (or
perhaps to another intermediate proxy), resulting in
another instance of the data transmission problem.

2. After scheduling the data transmissions from the
server to the proxies, we are left with a set of data
requests (with modified deadlines) that must be
passed upstream to the disks. The resulting data
access problem has the characteristics that the server
has a single shared buffer to service disk channels
with constraints on individual data transfer rates.

Further variants and combinations of these two problems
are possible for more complicated networks. We briefly
discuss caching issues, which are the subject of ongoing
research, in Section 8.

For both the data transmission and data access problems,
we introduce efficient algorithms for lexicographic optimal
smoothing (or simply lexopt smoothing) of the aggregate
bandwidth requirements. Among all data transfer schedules,
the lexopt schedule is the one with minimum bandwidth
variance. In the data transmission problem, where multiple
clients share the network bandwidth, we consider two client
models. In the first, the clientshavedifferent buffer capacities,
but no individual network bandwidth constraints; in the
second model, the clients have no buffer limitations, but
different link bandwidth capacities. For the data access
problem, we handle the general case of a shared buffer with
limited capacity and individual disk channel bandwidth
constraints. Previous approaches in the literature for the data
transmission and data access problems handled either the
case of only a single stream or did not compute the
lexicographically optimal schedule. We examine previous
related work in Section 2.

Lexopt smoothing of the aggregate data traffic has several
advantages over alternative traffic shaping methodologies.
It will not only minimize the maximum aggregate band-
width, but it will also keep the bandwidth requirements in
every time step of the aggregate data transfer sequence
minimal. By reducing the time period during which the
peak bandwidth is actually utilized, the chances for
successfully admitting requests from additional clients can
be improved [5], [6]. By avoiding rescheduling the entire
accepted network traffic every time a new playback request
is considered, the computation for admission control

becomes independent of the number of clients concurrently
supported by the system. The hierarchical approach for
applying the lexopt process itself distributes the smoothing
operation across multiple layers in order to take advantage
of buffering resources available in the entire system.

Recent research in processor circuits and network links
has also demonstrated how data traffic smoothing can
reduce the energy consumption of the host processor and
the communication links [7], [8]. Energy usage can be
assumed to be a convex function of processor speed, which
varies according to the circuitry voltage level. By reducing
the maximum transfer rate in a system, we can operate the
processor at a lower speed and the circuit at a lower voltage
level. As a result, traffic smoothing can reduce the energy
consumed by the system. We should make it clear that, by
applying the methods that we introduce in the present
paper, we reduce the maximum bandwidth required in
order to transfer multiplexed data through a network link,
while the average consumed bandwidth remains the same.
On the other hand, energy consumption is a convex
function of the processor speed that depends on the voltage
level of the circuit. If we reduce the voltage due to lower
demand for processing speed, essentially we end up with
lower energy consumption.

The rest of this paper is structured as follows: In
Section 2, we present previous related work. In Section 3,
we define the general data transmission problem, while, in
Sections 4 and 5, we describe algorithms for optimally
solving two important cases. In Section 6, we more formally
introduce the data access problem and we provide an
optimal algorithm for a natural model of the system. In
Section 7, we summarize some results from our experi-
mentation with actual video streams, while Section 8 briefly
discusses our conclusions and plans for future work.

2 RELATED WORK

Variable bit-rate encoding of video streams can achieve
quality equivalent to constant bit-rate encoding while
requiring an average bit rate that is significantly lower [9],
[10], [11]. Researchers have previously applied data
prefetching techniques in order to reduce bandwidth
requirements of variable bit-rate data transfers.

We comparedifferentdata transfer sequenceswith respect
to uniformity of bandwidth requirements over time by using
the lexicographic optimality criterion [12], [13] that we
formally specify in Section 3. Previously, Salehi et al.
described an algorithm that lexicographically optimizes
the data transfer sequence of a single stream when given a
limited client buffer capacity for prefetching [5]. Feng and
Rexford compare alternative methods for smoothing in-
dividual streams and demonstrate differences in the rate
change properties of the generated transfer sequences [14].
In particular, they examine a smoothing method that keeps
the transfer rate of individual streams below a bandwidth
constraint and transmits frames as late as possible. Despite
its similarity with part of a method (pruning) that we
present in the present paper, the purpose of that application
was to minimize the buffer utilization at the client rather
than smoothing the aggregate bandwidth. McManus and
Ross introduce a general dynamic programming approach
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Fig. 1. Hierarchical system model for streaming data distribution.

Downstream nodes are on the left and upstream nodes on the right.



for generating a piecewise constant rate sequence for a
single stream, optimized according to criteria related to the
required buffer space and transfer rate [15]. All these
solutions apply to individual streams without explicit
consideration of contention for network link bandwidth
from other concurrently served clients.

Similar optimization objectives have also been applied to
various other contexts. Hoang et al. propose a lexicographic
approach for choosing the quantization level during MPEG
video coding, subject to buffering constraints. Their target is
to achieve the most uniform visual quality of the trans-
mitted video [16]. Rexford et al. use client data prefetching
for smoothing live video streams, where the stream
requirements are known only for a limited period of time
instead of the entire playback period [17]. Mansour et al.
examine several resource trade offs in live video smoothing
[18]. Other studies have considered server-side resource
management [19], [20], [21]. Anastasiadis et al. investigate
the problem of lexicographically optimizing the bandwidth
of individual streams transferred from multiple disks into a
shared buffer [22].

Zhao and Tripathi describe an algorithm for minimizing
the maximum aggregate bandwidth required when multi-
plexing several video streams over a common network link
connected to clients with different buffer constraints [6]. In
a preliminary publication, we expanded on that work to
achieve lexicographically optimal smoothing of the aggre-
gate bandwidth rather than minimizing only the peak
bandwidth of the multiplexed traffic [23]. Additionally, in
the present paper, we motivate the aggregate smoothing
problem with applications to processor and link energy
savings, we strengthen our results with extended complex-
ity analyses, and we improve the readability of our proofs
by clearly explaining them in more detail.

Yao et al. introduce an offline processor scheduling
algorithm to meet job execution deadlines at minimum
energy consumption [24]. They assume that energy usage is
a convex function of processor speed and that processor
speed can vary according to the circuitry voltage level [7].
Lorch and Smith consider alternative sampling and dis-
tribution estimation methods to construct piecewise proces-
sing schedules. Their goal is to effectively approximate the
theoretical schedule with the minimum energy consump-
tion [25]. Elnozahy et al. combine hardware voltage scaling
with software request scheduling to reduce processor
energy usage [1]. Even though the job scheduling problem
is similar to several aspects of data transfer scheduling,
there are main differences between the two due to the
buffering constraints that are only involved in the latter and
the advance knowledge that is available when streaming
stored data. Shang et al. describe hardware that uses
historical utilization information to dynamically adjust the
frequency and voltage of network links in order to
minimize the power they consume [8]. Instead, we describe
techniques for data transfer smoothing that can be used for
reducing the energy involved in both the server processor
and the network links.

In our experimentation, we reserve the resources
deterministically, rather than estimating their requirements
from data transfer statistics. In fact, accurate statistical

representation of video traffic is a nontrivial problem, which
we don’t need to solve in our case because we take
advantage of the detailed information available in the
server for each stored stream. Prefetching techniques can
be successfully applied explicitly through smoothing, as is
demonstrated in the rest of this paper and previous related
work. They increase buffer space requirements at the client
side in order to improve the network bandwidth utilization
and to reduce the energy consumption in processors and
data links.

3 DEFINITION OF THE DATA TRANSMISSION

PROBLEM

We consider a set of K clients connected to a source (or

proxy) streaming media server over a shared network link.

We describe each stream k with the demand sequence dk of

length T . The demand sequence specifies the minimum

data requirements dkðiÞ at time step i, 1 � i � T . Therefore,

the client k must receive dkðiÞ bytes at time step i from

stream k in order for the stream decoding to continue

uninterrupted. We can transfer (prefetch) the requested

data to the client earlier provided that we can maintain

them in the client’s buffer until their actual use. We define

as LkðiÞ the cumulative minimum amount of data that the

client must receive by time step i or, equivalently,

LkðiÞ ¼
P

q�i dkðqÞ. For reading convenience, we summarize

the symbols that we use in the present article in Table 1.

When the local client buffer space is limited, UkðiÞ is the
maximum cumulative amount of data the client k can

receive by time step i. In general, we have to satisfy the

constraint UkðiÞ � LkðiÞ, for all 1 � i � T . Assuming the

available buffer space at client k is equal to �k, the

cumulative upper bound can be derived from the lower

bound: UkðiÞ ¼ Lkði� 1Þ þ �k. In addition, the link that

connects a client k to the network may have limited

bandwidth capacity �k. We define the sequence sk that

specifies the amount of data skðiÞ transferred from stream k

to client k during time i as the transfer schedule of an

individual stream k. A schedule is valid when it transfers to

client k the amount of data equal to the cumulative amount
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Summary of Symbols



LkðiÞ by step i without violating the buffer and bandwidth

constraints of the client. More specifically, for each client k,

we have LkðiÞ �
P

1�j�i skðjÞ � UkðiÞ and skðiÞ � �k, for

i ¼ 1; . . . ; T . The aggregate transfer schedule is the sequence sA

of the total amount of data, sAðiÞ ¼
P

k skðiÞ, transferred to

all clients during time step i.
To compare different transfer schedules with respect to

smoothness, we advocate using the lexicographic optim-

ality criterion [12], [13]. This criterion compares two

vectors starting from their first largest element. As long

as the respective lth largest elements are the same, it

proceeds to compare the ðlþ 1Þst largest element and so

on until two respective elements differ. The vector with

the smaller ðlþ 1Þst largest element is considered smoother

than the other. Of course, when transforming a data transfer

sequence to a smoother one, additional constraints apply as

a result of validity restrictions mentioned in the previous

paragraph.
More formally, for any x ¼ ðx1; . . . ; xnÞ 2 Rn, let the

square bracket subscripts denote the elements of x in

decreasing order x½1� � � � � � x½n�. Given a parameter G, a

sequence x 2 Rn is valid if xi � 0, for each 1 � i � n, andPn
i¼1 xi ¼ G. For any two valid sequences x, y, we say that

x is lexicographically smaller than y (denoted x � y) if, for

some 1 � l � n, we have

x½i� ¼ y½i�; for 1 � i < l;
x½l� < y½l�:

We consider x to be smoother than y if x � y. We say that

x� is lexicographically optimal if x� � x for all other valid x.

As a corollary, the maximum element of x� is no larger than

the maximum element of any other valid sequence or,

equivalently, x� is minmax-optimal over all valid sequences.

Furthermore, among all those sequences with the same

smallest maximum element, x� minimizes the second-

highest element, and so on. Lexicographic optimality is

thus a stronger notion than minmax optimality.

4 DATA TRANSMISSION TO CLIENTS WITH

UNLIMITED BUFFER AND LIMITED BANDWIDTH

In this section, we describe a newly derived algorithm for
constructing a lexicographically optimal schedule for data
transmission. We assume that, for each 1 � k � K, client k
has limited network bandwidth �k, but no memory
constraints (i.e., �k ¼ þ1). Practically, this means that the
client has sufficient storage space to receive the entire file,
which allows the data blocks to be prefetched at the client
any time prior to their playback deadlines. Unlimited buffer
space with limited bandwidth are typical characteristics of a
client device with ample local disk space and “last-mile”
network connection of limited bandwidth capacity. Exam-
ples of such devices include personal computers with
Internet connection and models of set-top boxes carrying
hard disks in bandwidth-constrained environments.

4.1 The Algorithm

As a preprocessing step, we prune the demand sequence of
each stream k so that its demand at any time step i does not
exceed its link capacity �k. We do this by examining
successive elements of the demand sequence, starting from
the last element and moving toward the first. At each step,
we transfer any demand exceeding �k to the previous time
step. We have to move the data transfers backward in order
to avoid violating any of the deadline restrictions. More
specifically, we update LkðiÞ :¼ maxfLkðiÞ; Lkðiþ 1Þ � �kg
as i decreases from T � 1 to 1. An example of this pruning
process is pictured in Fig. 2. We obtain the cumulative
lower bound LAðiÞ at time step i by summing LkðiÞ for each
stream k, i.e., LAðiÞ ¼

PK
k¼1 LkðiÞ, as shown in Fig. 3.

Starting from point i ¼ 0 of the cumulative lower bound
curve, we identify consecutive nonoverlapping longest
intervals ði; j�. We call them critical intervals and choose
them in a way that the line segment from LAðiÞ to LAðjÞ
does not meet the lower bound anywhere other than its
endpoints. The algorithm below constructs a transfer
schedule so that the aggregate bandwidth for each critical
interval is equal to the slope of the line segment. The
resulting schedule is lexicographically optimal.

We still need to show how to schedule the data transfers.
Let ði; j� be a critical interval and Rc denote its critical rate
corresponding to the slope of the line segment from LAðiÞ to
LAðjÞ. We start from the schedule that we constructed from
the pruned lower bounds. This schedule consists of the
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Fig. 2. Example of pruning the lower bound of an individual stream with
bandwidth capacity � ¼ 2. In both graphs, the light gray blocks refer to
data units exceeding the bandwidth constraint. The dark gray blocks
correspond to data that were prefetched as a result of pruning. The bold
line draws a profile of the actual amount of data transferred after pruning
the demand sequence.

Fig. 3. Example of aggregating the pruned lower bounds of two streams
for the unlimited buffer/limited bandwidth network multiplexing problem.
Pruning keeps every demand sequence at each time step bounded by
the corresponding bandwidth limit. Each segment on the convex hull
corresponds to a critical interval, and its slope is the critical rate.



pruned demand vectors with no prefetching other than
what we did during the pruning. This schedule is valid in
that the bandwidth for stream k is at most �k. However, the
aggregate bandwidth is highly variable. We do the
following step, iteratively, until the aggregate bandwidth
at each time step is Rc: Let time step q be the latest time in
the critical interval for which sAðqÞ > Rc and let time step p
be the latest time step earlier than q such that sAðpÞ < Rc.
We move minfsAðqÞ �Rc; Rc � sAðpÞg data units from time
step q to p. We describe below (proof of Theorem 1) how we
choose streams and how much data we move from each
stream. We outline the steps of the algorithm in Fig. 4. At
the end of this process, we are left with a constant-
bandwidth transfer schedule of bandwidth Rc for the
critical interval. This final schedule is lexicographically
optimal and corresponds to an aggregate bandwidth that
follows the convex hull of Fig. 3.

4.2 Optimality Proof

Lemma 1. From the line segments connecting consecutive outer
corners of the aggregate lower bound, we get a sequence of rates
that correspond to a valid aggregate transfer schedule.

Proof. Let dpkðiÞ be the demand of stream k after pruning its
lower bound. For each line segment connecting con-
secutive outer corners of the aggregate lower bound at
time step i, the corresponding rate is equal to

P
k d

p
kðiÞ.

Therefore, each stream k receives bandwidth dpkðiÞ at time
step i, which guarantees avoidance of both data
starvation and bandwidth overflow (due to pruning)
during step i for client k. tu

Theorem 1. The algorithm in Section 4.1 produces the
lexicographically optimal data transmission curve, which
satisfies the upper and lower bounds for each stream.

Proof. We show by construction that, in each critical
interval, we obtain a valid aggregate transfer schedule
such that the aggregate bandwidth for each step in the
interval is equal to the critical rate of the interval. We
start with the valid aggregate schedule of Lemma 1. This
corresponds to having each stream scheduled according
to its pruned demand sequence. Let’s focus on any
particular critical interval; we denote the critical rate for
the interval by Rc. For the algorithm in Section 4.1, we
need to show that we can transfer

minfsAðqÞ �Rc; Rc � sAðpÞg

data units from time step q to time step p. The result of
this transfer is that either time step q or time step p will
end up with an aggregate bandwidth of Rc.

The only reason for which we would not be able to
transfer the desired amount of data from time q to time p
is because some streams at time step p are going to be
above their bandwidth limits. Since the pruned schedule
is valid, the individual bandwidth constraints are
initially met. In particular, the streams that are transmit-
ting data at step q are at or below their individual
bandwidth limits. Since the aggregate bandwidth at time
step p is below that of time step q, there must be at least
one stream transmitting at time q that is not transmitting
at its bandwidth limit at time p. We can therefore move
data for that stream from time step q to p. We continue in
this manner until either time step q or time step p is at the
desired bandwidth Rc. For each time step in the critical
interval, we end up with constant aggregate bandwidth
Rc. From the way Rc is computed, the average
bandwidth is at least Rc for the time steps in the critical
interval. The constant-bandwidth schedule for the
critical interval is obviously the one that is lexicographi-
cally minimal. The concatenation of lexicographically
optimal schedules for the critical intervals is lexicogra-
phically optimal. tu

4.3 Algorithm Complexity

Our algorithm has complexity OðKT Þ both for pruning the

demand sequences and also for identifying and scheduling

the critical intervals. In particular, pruning the demand

sequence of each individual stream costs O(T), leading to

O(KT) total pruning cost across all the streams. We can

identify the critical intervals by applying to the aggregate

lower bound (simple polygon) a convex-hull calculation

algorithm with complexity O(T) [26]. Then, in each critical

interval, we first separate time steps with bandwidth above

Rc from those with bandwidth below Rc at total cost O(T)

across all the critical intervals. Then, for each time step with

aggregate bandwidth below Rc, we need to identify clients

that have not reached their link capacity at cost O(K). We

visit each time step with aggregate bandwidth above Rc and

prefetch excess data to time steps with aggregate band-

width below Rc at cost O(T). The total cost of the last two

calculations is O(KT). Thus, the total cost of the algorithm is

actually O(KT).

5 DATA TRANSMISSION TO CLIENTS WITH LIMITED

BUFFER AND UNLIMITED BANDWIDTH

As previously, we examine the scheduling of K distinct

streams, each consisting of T transmission steps. We assume

that each client k has a fixed amount of memory �k for

prefetching and unlimited network link capacity �k ¼ þ1.

At each step, we allow real-valued amounts of data to be

transferred. Our goal is to compute the lexopt schedule. The

case of limited buffer space and unlimited bandwidth

corresponds to a client with minimal local memory space

connected to the server within an intranet or a backbone

network of high capacity. Inexpensive set-top boxes con-

nected to cable networks with abundant bandwidth qualify

for the assumptions of the present section.
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Fig. 4. Algorithm outline for the data transmission problem with unlimited

buffer and limited bandwidth.



5.1 The Algorithm

Initially, our new algorithm follows the approach of Zhao

and Tripathi [6]. For each stream k, we construct the lower

and upper bounds, LkðiÞ and UkðiÞ, of the stream data that

we have to transmit by time step i. More specifically, the

lower bound LkðiÞ is the sum of the demands of stream k

between time steps 0 and i. The upper bound UkðiÞ is

�k units larger than Lkði� 1Þ. The upper bound limits the

amount of data over and above the aggregate demand that

can be prefetched at time i for use in later time steps. Our

algorithm is iterative. In each iteration, we schedule the

transmissions for one or more disjoint intervals, ði; j�. Then,
we remove these critical intervals from further consideration

by the algorithm. When we remove the critical interval ði; j�,
the demands at time step i and the time steps following j

are modified to appropriately reflect the transmission

sequence computed for the interval ði; j�. The modified

workload is the input to the next iteration of the algorithm.

Each individual interval is found using the algorithm of

Zhao and Tripathi. Our contribution is to show how we can

remove each identified critical interval and adjust appro-

priately the transmission sequence in order to compute the

lexopt schedule.
Every critical interval has an associated critical rate Rc.

This is the unavoidable aggregate bandwidth required

during that interval. All intervals identified in the same

iteration have the same value of Rc. This is strictly smaller

than the critical rate in any previous iteration. In each

iteration, we compute the critical rate, or the minimum

bandwidth necessary to schedule the modified aggregate

workload at that iteration. The sequence of critical rates that

we get corresponds to the lexicographically optimal

aggregate transfer schedule. Like the minmax algorithm of

Zhao and Tripathi [6], for the peak transfer rate of the

K streams, our algorithm achieves the following lower

bound:

Rc ¼ max
i<j

X
1�k�K

max
LkðjÞ � UkðiÞ

j� i
; 0

� �( )
: ð1Þ

This bound follows from the fact that each individual

stream k at time step i has delivered an amount of data at

most UkðiÞ to avoid buffer overflow and, at time step j, has

delivered an amount of data at least LkðiÞ to avoid

starvation. Thus, the stream needs to transfer data at

minimal ratemaxðLkðjÞ�UkðiÞ
j�i ; 0Þ during the time interval ði; j�.

If the difference LkðjÞ � UkðiÞ is negative, the stream

transfers no data during ði; j�.
Next, we consider any interval ði; j� where this lower

bound on peak transfer rate is achieved. As before, we call
this a critical interval. We use an earliest deadline first
approach (implicit in Lemma 2) to schedule each critical
interval with constant bandwidth equal to its critical rate.
For each critical interval, we call the streams that have a
positive contribution to the above sum saturating streams, or
LkðjÞ � UkðiÞ > 0. We call those streams with zero contribu-
tion to the sum nonsaturating streams, or LkðjÞ � UkðiÞ � 0.
Any saturating stream k satisfies two key properties:

1. It cannot transmit at a time step earlier than or equal
to j the data needed at time steps after j.

2. The prefetch buffer of client k must contain exactly
�k data units at time step i.

In other words, for each critical region, the client buffer for a
saturating stream starts full and ends up empty. Nonsatur-
ating streams do not transmit any data during the critical
interval. These observations allow us to recursively reduce
the problem by stripping away all critical intervals (Fig. 5).
When stripping any such ði; j� interval, the lower bound at
the boundary times i must be adjusted in accordance with
the observations above. The lower bound at time step i for
each saturating stream k must be increased by UkðiÞ � LkðiÞ,
while the corresponding lower bound for nonsaturating
streams must be increased by LkðjÞ � LkðiÞ. In addition, the
bounds of saturating streams in all time steps following j
have to be reduced by the amount of bytes transferred
during the (i; j] interval, which is equal to the quantity
LkðjÞ � UkðiÞ. Following these changes, the recursion can
now be applied (Fig. 6).

If we do this stripping simultaneously for all the critical
intervals, then the new problem instance will have a strictly
smaller peak rate than before. We find the lower bound on
the peak rates for each of the new problems and reapply the
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Fig. 5. Example of critical interval removal in the case of saturating and
nonsaturating streams. If a stream is saturating during the critical
interval, it transfers data at a minimal rate, making its full buffer at the
beginning of the interval end up empty at the end of the interval. In fact,
the removal of the critical interval creates a transition from full buffer to
empty buffer for the saturating stream. Instead, a nonsaturating stream
transfers no data during the critical interval. Therefore, the removal of
the critical interval enforces some data to be prefetched in order to
prevent the corresponding client from data starvation.

Fig. 6. Algorithm outline for the problem of data transmission to clients

with limited buffers and unlimited bandwidth.



above approach. Finally, we glue back the schedule for the
interval ði; j� into the resulting schedule. Because of the
strong property that every valid schedule that meets the
minmax bound must schedule the same transmissions
during time steps iþ 1; iþ 2; . . . ; j, we end up with a
provably lexicographically minimum schedule.

5.2 Optimality Proof

Lemma 2. In every point of the critical interval, the aggregate
transmission rate Rc is both necessary and sufficient for the
clients to avoid underflow and overflow of their buffers. In other
words, there is a valid schedule such that the aggregate
bandwidth at each time step in the critical interval is exactlyRc.

Proof. The above lemma is proven by Zhao and Tripathi [6].
We use that approach as a subroutine for finding the
lexicographically optimal schedule. tu

Theorem 2. When multiplexing streams for clients with limited
buffers, the process of iteratively identifying critical intervals
generates a valid lexicographically optimal sequence of
aggregate transfer rate requirements.

Proof. From Lemma 2, we know that the aggregate rate Rc

in each successive critical interval ði; j� is both necessary
and sufficient for the participating (saturating) stream to
avoid starvation or overflow. This results from the fact
that streams participating in ði; j� start with a full buffer
at i and end with an empty buffer at j. From the way that
the lower bound is updated when stripping out the
interval ði; j�, the requirements up to i and after j of each
saturating stream are preserved. Since only saturating
streams participate in ði; j�, the data transfer require-
ments of nonsaturating streams between i and j are
shifted in time to point i, thus prefetching the corre-
sponding data before or at time step i. Therefore, the
original constraints of each stream are correctly main-
tained during the iterative process. From the way critical
intervals are chosen, the minmax aggregate bandwidth
requirements of the current problem phase are identi-
fied. Since, at each iteration, the returned bandwidth is
unavoidable, the generated sequence of aggregate rates
is lexicographically optimal. tu

5.3 Algorithm Complexity

A straightforward implementation of the lexicographic
optimization algorithm for clients with limited buffer and
unlimited network bandwidth has a worst-case time com-
plexity of OðKT 3Þ. Every time an interval is stripped off,
recomputing the new minimum bandwidth takes OðKT 2Þ
time and, in the worst case, there are OðT Þ stripping steps.
However, by the use of appropriate data structures, it is
possible to reduce the time for each stripping step to
OðKT logT Þ. We sketch the idea here. For each stream k, we
initialize an upper-triangular matrix Dk½i�½j�, 1 � i < j � T

with the values ðLkðjÞ � UkðiÞÞ=ðj� iÞ, for j > i (Fig. 7a). In
order to compute Rc, we need to determine the maximum
value in each Dk. For stripping out the interval ðs; t�, we
delete the entries in Dk that correspond to the vertical strips
s < j � t and the horizontal strips s < i � t, where
1 � i < j � T . The reduced upper-triangular matrix consists
of three disjoint pieces: the left triangular portion

1 � i < j � s, the right triangular portion t < i < j � T ,
and the rectangular portion 1 � i � s, t < j � T (Fig. 7b).

After stripping off a critical interval, we update the
maxima of the matrix by organizing it as a set of
T � 1 diagonal stripes, where stripe w contains entries
Dk½i�½wþ i� for 1 � w � T � 1. When we remove a critical
interval ðs; t�, we may break each diagonal stripe into two or
three smaller segments. Each such segment lies either in the
left triangular portion, the right triangular portion, or the
rectangular portion of the reduced matrix. Along a diagonal
stripe, the entries in the two triangular portions are
unchanged by the removal of strip ðs; t�. Entries in the
rectangular region correspond to pairs (i; j) that straddle the
interval ðs; t�. The entries change value for saturating and
nonsaturating streams, as discussed earlier. In particular, let
d be the current value of an entry Dk½i�½j� in the rectangular
region. Then, its value after removing the interval ðs; t�
becomes dnew ¼ d� w=ðw� �Þ ��=ðw� �Þ, where w ¼ j� i
is the diagonal strip, � ¼ t� s is the width of the stripped
interval, and � is the amount by which LkðjÞ is reduced by
the stripping of interval ðs; t�. This linear transformation
preserves the maximum element in the subset to which it is
applied, permitting us to avoid recomputing dnew for all the
pairs. Successive transformations can be composed to
compute new � and � values, requiring only one pair of
values to be maintained for each segment that survives after
the removal of several critical intervals.

We organize each diagonal strip as an independent
complete binary tree with the matrix elements as its leaves.
Initially, the entire diagonal forms one strip. The inter-
mediate tree nodes initially contain the maximum elements
of their respective subtrees. As intervals are stripped off,
contiguous sections of the leaves of the binary tree are made
invalid. In any iteration, at most two sections are invali-
dated. To update the maxima, one has to traverse the tree
along the edges of the invalidated sections, moving from
the leaves to the root and recomputing the new maxima
along each edge path. During this update, the new values of
maxima encountered along the path are evaluated using the
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Fig. 7. (a) Upper-triangular matrix for efficiently identifying critical
intervals in the algorithm for transmissions to clients with limited buffer
and unlimited bandwidth. All intervals of equal length � ¼ j� i lie along a
common diagonal. (b) Supplementary binary tree for each diagonal
stripe. The highlighted part has become inactive due to the removal of
the interval ðs; t�.



transformation above. There are only a constant number of
such new endpoints created in every iteration and the
traversal from the endpoint to the root requires only a
constant-time operation at every node: applying the
transformation on the old maxima encountered in the path,
invalidating any sibling that is the root of a subtree with
invalidated leaves, and computing the new maxima of the
(noninvalidated) children of every node on the path. Thus,
for each interval stripped away, the update time per
diagonal is OðlogT ); since there are at most T � 1 diagonals
in any matrix and K streams, the worst-case complexity for
each stripping step is OðKT logT Þ and the total complexity
of lexopt becomes OðKT 2 logT Þ.

6 SHARED BUFFER DATA ACCESS OVER LIMITED

BANDWIDTH CHANNELS

We now focus on a different part of a content distribution
network. While, until now, we were examining the data
traffic transmitted from a server to multiple clients or
intermediate proxy nodes, here we study the transfer of
data from multiple storage devices into the server. The two
problems are complementary since they refer to two distinct
parts of the streaming infrastructure. We consider the
general data access problem of accessing data using a
shared buffer of size M. The data arrive from K different
storage devices over separate channels, each with limited
bandwidth �k. For each storage device k, there is a separate
demand sequence dk specifying the amount of data dkðiÞ
that should be received from that device during time step i.
Our objective is to lexicographically optimize the band-
width requirements of the aggregate data traffic arriving
from all the channels. This is useful for the particular case
that the shared link connecting the individual channels into
the server memory is the bottleneck resource. By achieving
the lexopt objective, we expect that we can improve the
future chance of successfully accepting into the server
newly arriving streams.

6.1 The Algorithm

First, we obtain the cumulative lower bound LAðiÞ by
summing up the corresponding LkðiÞs of each stream:
LAðiÞ ¼

PK
k¼1 LkðiÞ. Next, we compute the cumulative

upper bound UAðiÞ as UAðiÞ ¼ LAði� 1Þ þM. We then
prune LkðiÞ for each individual stream, as we described in
Section 4.1, and update the cumulative lower bound LAðiÞ
accordingly. The cumulative upper bound remains unmo-
dified through the pruning process. In order to identify the
sequence of aggregate rates required over time, we treat the
cumulative bounds as bounds of an individual stream.
Then, we apply a smoothing algorithm similar to the
shortest-path calculation algorithms for individual streams
[27], [5]. As Salehi et al. [5] described previously, we can
construct an optimal smooth schedule using linear seg-
ments. To ensure the best possible smoothness, each linear
segment should be as long as possible. When we change the
transfer rate to avoid buffer overflow or starvation, we do
so as early as possible. We set the lower and upper bounds
to LAðiÞ and UAðiÞ, respectively. The total complexity is
OðKT Þ, because the construction of the lower and upper
bounds requires OðKT Þ time and running the smoothing

algorithm on a single stream ðLA; UAÞ takes OðT Þ time. Our
algorithm is outlined in Fig. 8.

6.2 Optimality Proof

We prove the optimality of the schedule generated by the
above algorithm by using an iterative process of identifying
critical intervals [6], rather than the functionally equivalent
shortest-path algorithm that returns critical rates [27]. As
before, we define as the critical interval in each iteration the
interval with the line of highest slope connecting the upper
and lower bound at the beginning and end of the interval,
respectively. Previouswork by Salehi et al. [5] has shown that
the lexicographically optimal schedule for ðL;UÞ is exactly
the shortest path that connects the first and last point of the
lower bound and always remains within the permissible
region specified by the lower and upper bounds.

Lemma 3. In each critical interval, we meet the minimum data
access requirements for all channels without any violation of
maximum bandwidth or shared buffer capacity constraint.

Proof. There is no overflow of the shared buffer space and
the data access requirements for all channels are met as a
consequence of always remaining between the cumula-
tive lower and upper bounds. From the definition of the
critical interval ði; j�, if there is some point j0, for
i < j0 < j, where a lower bound violation occurs, then
j0 would have been chosen instead of j as the right
endpoint of the critical interval. Otherwise, the critical
rate of the interval ði; j0� would be higher. Similarly, if
there is some time step i0, for i < i0 < j, where buffer
overflow occurs, the i0 would be the preferred left
endpoint of the critical interval instead of i.

In order to prove that there is no point where the
bandwidth capacity of a channel has to be exceeded, we
show two claims:

1. The critical rate never exceeds the sum of the
bandwidth capacities of the channels.

2. A channel never needs to exceed its bandwidth
capacity in order to avoid violating its lower
bound.

In order to show Claim 1, we notice that the critical
rate is calculated as the exact rate to reach a lower bound
point from an upper bound point of the aggregate
requirements. Note that each upper bound is no less than
the corresponding lower bound. Since we have already
pruned the lower bounds of the individual streams, a
critical rate cannot exceed the sum of the bandwidth
capacities of the individual streams. When we strip off a
critical interval, the lower bound of the left endpoint is
raised to the height of the upper bound (as shown in
Fig. 5 for a saturating client). Our claim remains valid in
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Fig. 8. Algorithm outline for the data access problem with shared buffer

and channels with limited bandwidth.



that case because critical rates can only decrease from
one iteration to the next.

For Claim 2, we need to show that there is no
underflow risk when the transfer rate of each stream
does not exceed its bandwidth capacity. In any interval
of length one, a channel cumulative transmission curve
does not need to lie below the line connecting two
consecutive lower bound corners of the channel. This is a
result of the way the aggregate critical rate is defined. An
example is shown in Fig. 9, where the data transmission
remains at the left of the region specified by the two dark
gray triangles. The individual channel transfer schedules
sk can be derived from the aggregate transfer schedule
sA as follows: The available aggregate bandwidth at each
time step is distributed across the individual channels
such that each of them meets its next lower bound. Any
excessive bandwidth from the current step is used to
meet the lower bound of the second-next step of each
channel and so on. tu

Theorem 3. The aggregate transfer schedule returned by the
algorithm is valid and lexicographically optimal.

Proof. The validity is a result of Lemma 3, while the
optimality is a consequence of the shortest-path approach
followed for constructing the aggregate schedule. tu

7 EXPERIMENTATION AND DISCUSSION

The ability of lexopt smoothing to minimize the maximum
utilized bandwidth during the entire aggregate transfer
schedule can improve the probability of accepting new
playback requests when transmitting data to clients with
limited buffer space. In Fig. 10 and Fig. 11, we can observe
the bandwidth requirements over time when the aggregate
transfer schedule of different streams has been smoothed.
For smoothing, we use the minmax method by Zhao et al.
[6], the single smoothing method by Salehi et al. [5] applied
on individual streams, and lexopt. In these experiments, we
use six different MPEG-2 clips with distinct statistical
features that were generated with variable bit-rate encoding
parameters [22].

When multiplexing three streams of low bit-rate varia-
bility (Fig. 10), the difference between the average and the
maximum required aggregate bandwidth is relatively
small. Nevertheless, we notice how lexopt achieves the
mostly uniform bandwidth utilization during the entire
streaming period. With single smoothing, since the algorithm
ignores the aggregate bandwidth requirements, there are
several local peaks that the algorithm fails to remove. On

the other hand, the minmax algorithm keeps the aggregate

bandwidth highly variable even though it manages to crop

the maximum. In Fig. 11, we repeat the experiment by

multiplexing three streams of high bit-rate variability. This

makes the benefit of smoothing more visible and, in the

time period after 1,000 seconds, lexopt keeps the required

bandwidth about 20 percent lower than minmax. This is the

result of better managing the buffer space available across
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Fig. 9. The two dark gray triangles depict the region that is unreachable

by the channel transmission schedule.

Fig. 10. For video streams of low variability, the local maxima of the
bandwidth required over time are closer to the average when using
lexopt smoothing in comparison to no smoothing, minmax smoothing,
and single smoothing. The three smoothing methods were applied to the
bandwidth requirements of three different streams with low variability
and 2MB buffer space per client.

Fig. 11. For streams of high variability, lexopt eliminates significantly
more peaks of aggregate bandwidth in comparison to no smoothing,
minmax smoothing, and single smoothing. The alternative methods
were applied to the bandwidth requirements of three different streams
with high variability and 2MB buffer space per client.



the different clients in order to avoid coincidence of peak
bandwidth requirements across the different streams.
Again, in comparison to single smoothing, lexopt more
effectively eliminates the aggregate bandwidth peaks, such
as the one at the 400 seconds time point.

The actual benefit of smoothing can be further quantified
through the throughput achieved over a network link when
stream requests arrive dynamically over time and are
considered for playback. The achieved performance can be
affected by several parameters that include the buffer space
available for data prefetching at each client, the rate
variability of the requested streams, the load arriving into
the system, and the scheduling policy used for deciding
when a new client can be admitted. In particular, the system
load should be kept under control in order to avoid a high
request rejection ratio, which makes the service impractical.
Possible approaches for the scheduling policy depend on
how often the admitted data transfer traffic is reorganized
to take advantage of knowledge for resource requirements
that becomes available with new client arrivals. However,
periodical rescheduling of the entire accepted transfer
traffic can become expensive as it increases linearly with
the total number of active streams in the system. Further-
more, the advantage from data prefetching through
smoothing is reduced as the network link capacity increases
and the benefit from statistical multiplexing becomes larger.

An important issue that is not addressed by the present
study is adaptation of the aggregate transfer rate require-
ments according to network bandwidth conditions that
vary over time. Such a scenario would more closely
resemble best-effort assumptions currently made for the
Internet traffic. Instead, we assume that different streams
are multiplexed over a link of bandwidth capacity that
remains fixed, as would be the case with privately owned
links. The appeal of applying lexicographical smoothing to
multiplexed traffic when transmitting data to clients with
limited bandwidth is similar to the case of limited buffer. A
comparable advantage could be achieved when accessing
data into shared memory from multiple source devices,
assuming that the bottleneck resource is the bandwidth of
the shared link connecting the devices to the server. One
restriction for accepting new traffic when accessing data
from multiple storage devices arises from the fact that,
typically, the requested data is only stored on one source
device. Should this become an issue, replication of data
across multiple devices could be used for better balancing
the system load across the different devices, as storage
space becomes inexpensive relative to the storage device
bandwidth.

8 CONCLUSIONS AND FUTURE WORK

We address the problem of shaping the multiplexed
network traffic of streaming data in order to smooth their
aggregate bandwidth in a lexicographically optimal way
(lexopt smoothing). We consider lexopt smoothing in the
complementary problems of data transmission to multiple
clients and data access from multiple storage devices. In the
context of the data transmission problem, we developed
lexopt smoothing algorithms for two client models: clients
that have different buffer capacities but no individual

bandwidth constraints and clients that have different

bandwidth constraints but no buffer limitations. In the

context of the data access problem, we developed the lexopt

smoothing algorithm for the general case of a shared buffer

with limited capacity and individual data rate constraints.

Lexopt smoothing has several desirable features that

result in increased resource utilization and flexibility for

handling unknown future traffic during hierarchical sche-

duling. By provably minimizing the variance of the

required aggregate bandwidth, maximum resource require-

ments within the network become more predictable and

useful resource utilization increases. We can improve

fairness in sharing a network link among multiple users

and new requests from future clients are more likely to be

successfully admitted without the need for rescheduling

previously accepted traffic. Finally, we can take advantage

of the reduced maximum bandwidth toward operating the

host processor and the communication links at lower

voltage and achieving lower energy consumption.

It remains openhow to solve thegeneral data transmission

problem in which the clients differ in both their buffer

capacities and bandwidth constraints. Another key issue in

the performance of content distribution networks is caching,

which filters the amount of data requested from the upstream

nodes and reduces the corresponding control traffic sent

across the network. Also, by adjusting the length (granular-

ity) of individually requested file segments, we can trade

scheduling flexibility for reduced control traffic needed to

specify the segments received by different clients over time.
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