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Abstract. In this paper we present the external interval tree, an optimal external memory data
structure for answering stabbing queries on a set of dynamically maintained intervals. The external
interval tree can be used in an optimal solution to the dynamic interval management problem, which
is a central problem for object-oriented and temporal databases and for constraint logic program-
ming. Part of the structure uses a weight-balancing technique for efficient worst-case manipulation
of balanced trees, which is of independent interest. The external interval tree, as well as our new
balancing technique, have recently been used to develop several efficient external data structures.
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1. Introduction. In recent years external memory data structures have been
developed for a wide range of applications, including spatial, temporal, and object-
oriented databases and geographic information systems. Often the amount of data
manipulated in such applications is too large to fit in main memory, and the data must
reside on disk. In such cases the input/output (I/O) communication between main
memory and disk can become a bottleneck. In this paper we develop an I/O-optimal
and space-optimal external interval tree data structure for answering stabbing queries
among a changing set of intervals. The structure is the central part of an optimal
solution to the dynamic interval management problem.

1.1. Memory model and previous results. We will be working in the stan-
dard model for external memory with one (logical) disk [31, 4]. We assume that each
external memory access (called an I/O operation or just I/O) transmits one page of
B elements. We measure the efficiency of an algorithm in terms of the number of
I/Os it performs and the number of disk blocks it uses.1

The dynamic interval management problem is the problem of maintaining a set
of intervals such that, given a query interval Iq, all intervals intersecting Iq can be
reported efficiently. As discussed in [29, 30, 38], the problem is crucial for indexing
constraints in constraint databases and in temporal databases. The key component
of dynamic interval management is the ability to answer stabbing queries [30]. Given
a set of intervals, a stabbing query with a point q asks for all intervals containing q.
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By representing an interval [x, y] as the point (x, y) in the plane, a stabbing query
reduces to the special case of 2-sided 2-dimensional range searching called a diagonal
corner query. In the diagonal corner query problem a set of points in the plane above
the diagonal line x = y should be stored such that, given a query point (q, q), all
points (x, y) with x ≤ q and y ≥ q can be reported efficiently. The problem of 2-
dimensional range searching has been the subject of much research. While B-trees and
their variants [12, 21] have been an unqualified success in supporting 1-dimensional
external range searching, they are inefficient at handling higher-dimensional problems.
In internal memory many worst-case efficient structures have been proposed for 2-
dimensional and higher-dimensional range search; see [3] for a survey. Unfortunately,
most of these structures are not efficient when mapped to external memory. The
practical need for I/O support has also led to the development of a large number
of external data structures that do not have good theoretical worst-case update and
query I/O bounds but do have good average-case behavior for common problems;
see [24, 35] for surveys. The worst-case performance of these data structures is much
worse than the optimal bounds achievable for dynamic external 1-dimensional range
search using a B-tree.

Prior to the development of the structure presented in this paper, a number of
attempts had been made to solve the external stabbing query problem. Kanellakis et
al. [30] developed the metablock tree for answering diagonal corner queries in optimal
O(logB N + T/B) I/Os using optimal O(N/B) blocks of external memory. Here T
denotes the number of points reported. The structure supports insertions only in
O(logB N + (log2

B N)/B) I/Os amortized. A simpler static structure with the same
bounds was described by Ramaswamy [37]. In internal memory, the priority search
tree of McCreight [32] can be used to answer more general queries than diagonal
corner queries, namely 3-sided range queries, and a number of attempts have been
made at externalizing this structure [16, 28, 39]. The structure by Icking, Klein, and
Ottoman [28] uses optimal space but answers queries in O(log2 N + T/B) I/Os. The
structure by Blankenagel and Güting [16] also uses optimal space but answers queries
in O(logB N+T ) I/Os (see also [14]). In both papers a number of nonoptimal dynamic
versions of the structures are also developed. Ramaswamy and Subramanian [39] de-
veloped a technique called path caching for transforming an efficient internal memory
data structure into an I/O-efficient structure. Using this technique on the priority
search tree results in a structure that can be used to answer 2-sided queries, which are
more general than diagonal corner queries but less general than 3-sided queries. This
structure answers queries in the optimal O(logB N+T/B) I/Os and supports updates
in amortized O(logB N) I/Os but uses nonoptimal O((N/B) log2 log2 B) space. Var-
ious other external data structures for answering 3-sided queries are also developed
in [30] and [39]. Subramanian and Ramaswamy also designed the p-range tree for
answering 3-sided queries [40]. The structure uses linear space, answers queries in
O(logB N + T/B + IL∗(B)) I/Os, and supports updates in O(logB N + (log2

B N)/B)
I/Os amortized. (IL∗(·) denotes the iterated log∗ function, that is, the number of
times log∗ must be applied to get below 2). Finally, following the publication of the
extended abstract version of this paper (and based on the results in this paper), Arge,
Samoladas, and Vitter [8] developed an optimal external priority search tree, imme-
diately implying an optimal stabbing query structure. Several structures have also
been developed for the general 2- and higher-dimensional range searching problem, as
well as for several other related problems. See [5, 6, 41] for surveys.
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Table 1.1
Comparison of our data structure for stabbing queries with other data structures.

Space (blocks) Query I/O bound Update I/O bound

Pri. search tree [28] O(N
B
) O(log2 N + T/B)

XP-tree [16] O(N
B
) O(logB N + T )

[37] O(N
B
) O(logB N + T/B)

Metablock tree [30] O(N
B
) O(logB N + T/B) O(logB N + (logB N)2/B)

amortized (inserts only)

P-range tree [40] O(N
B
) O(logB N + T/B+ O(logB N + (logB N)2/B)

IL∗(B)) amortized

Path caching [39] O(N
B
log2 log2 B) O(logB N + T/B) O(logB N) amortized

Our result [11] ([8]) O(N
B
) O(logB N + T/B) O(logB N)

1.2. Overview of our results. The main contribution of this paper is an opti-
mal external memory data structure for the stabbing query problem. As mentioned,
our data structure gives an optimal solution to the interval management problem, and
thus it settles an open problem highlighted in [30, 39, 40]. The structure uses O(N/B)
disk blocks to maintain a set of N intervals such that insertions and deletions can
be performed in O(logB N) I/Os and such that stabbing queries can be answered in
O(logB N + T/B) I/Os. In Table 1.1 we compare our result with previous solutions.
Unlike previous nonoptimal structures, the update I/O bounds for our data structure
are worst-case, and our structure works without assuming that the internal memory
is capable of holding Ω(B2) elements. Our structure is significantly different from the
recently developed external priority search tree [8] and is probably of greater practical
interest since it uses relatively fewer random I/Os when answering a query. Most disk
systems are optimized for sequential I/O, and, consequently, random I/Os often take
a much longer time than sequential I/Os.

Our solution to the stabbing query problem is an external version of the interval
tree [22, 23]. In section 2, we present the basic structure, where the endpoints of the
intervals stored in the structure belong to a fixed set of N points. In section 3, we then
remove this “fixed endpoint-set assumption.” In internal memory, the assumption is
normally removed using a BB[α]-tree [34] as the base search tree structure [33], and
this leads to amortized update bounds. However, as BB[α]-trees are unsuitable for
implementation in external memory, we develop a new weight-balanced B-tree for use
in external memory. This structure resembles the k-fold tree of Willard [43]. Like
in internal memory, the use of a weight-balanced B-tree as the base tree results in
amortized update bounds. In section 4, we then show how to remove the amortization
from the structure.

Our external interval tree has been used to develop I/O-efficient structures for dy-
namic point location [1, 9].2 It has also been used in several visualization applications
[18, 19, 20]. Our weight-balanced B-tree has also found several other applications. In
internal memory it can, for example, be used to convert amortized bounds to worst-
case bounds. (Fixing B to a constant in our result yields an internal-memory interval
tree with worst-case update bounds.) It can also be used as a (simpler) alternative
to the rather complicated structure developed in [42] in order to add range restric-
tion capabilities to internal-memory dynamic data structures. (It seems possible to

2Even though the external priority search tree [8] solves a more general problem than the external
interval tree, it cannot be used as an alternative to the external interval tree in the point location
structures.
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use the techniques in [42] to remove the amortization from the update bound of the
internal interval tree, but our method is much simpler.) In external memory, it has
been used in the recently developed optimal external priority search tree [8], as well
as in numerous other structures (e.g., [25, 26, 13, 1, 9]).

Finally, in section 5, we discuss how to use the ideas utilized in our exter-
nal interval tree to develop an external segment tree using O((N/B) logB N) space.
This improves upon previously known external segment tree structures, which use
O((N/B) log2 N) disk blocks [15, 39].

2. External memory interval tree with fixed endpoint set. In this section,
we present our external interval tree structure, assuming that the endpoints of the
intervals stored in the structure belong to a fixed set E of size N . We also assume that
the internal memory is capable of holding O(B) blocks. We remove these assumptions
in sections 3 and 4.

2.1. Preliminaries. Our external interval tree makes extensive use of two kinds
of auxiliary structures: the B-tree [12, 21] and the “corner structure” [30]. B-trees, or
more generally (a, b)-trees [27], are search tree structures suitable for external memory.

Lemma 2.1. A set of N elements can be stored in a B-tree structure using
O(N/B) disk blocks such that updates and queries can be performed in O(logB N)
I/Os. The T smallest (largest) elements can be reported in O(T/B + 1) I/Os. Given
N sorted elements a B-tree can be built in O(N/B) I/Os.

A “corner structure” [30] is a data structure that can be used to answer stabbing
queries on O(B2) intervals.

Lemma 2.2. (Kanellakis et al. [30]) A set of K ≤ B2 intervals can be stored in
an external data structure using O(K/B) disk blocks such that a stabbing query can
be answered in O(T/B + 1) I/Os, where T is the number of reported intervals.

As discussed in [30], the corner structure can easily be made dynamic: updates
are inserted into an update block, and the structure is rebuilt using O(B) I/Os once
B updates have been performed. The rebuilding is performed simply by loading the
structure into internal memory, rebuilding it, and writing it back to external memory.

Lemma 2.3. Assuming M ≥ B2, a set of K ≤ B2 intervals can be stored in an
external data structure using O(K/B) disk blocks such that a stabbing query can be
answered in O(T/B+1) I/Os and such that an update can be performed in O(1) I/Os
amortized. The structure can be constructed in O(K/B) I/Os.

In section 4.2 (where it will become clearer why the structure is called a “corner
structure”), we show how the update bound can be made worst-case. In the process
we also remove the assumption on the size of the internal memory.

2.2. The structure. An internal memory interval tree consists of a binary base
tree on the sorted set of endpoints E, with the intervals stored in secondary struc-
tures associated with internal nodes of the tree [22]. An interval Xv consisting of
all endpoints below v is associated with each internal node v in a natural way. The
interval Xr of the root r is thus divided in two by the intervals Xvl

and Xvr asso-
ciated with its two children, vl and vr, and an interval is stored in r if it contains
the “boundary” between Xvl

and Xvr (if it overlaps both Xvl
and Xvr ). Intervals on

the left (right) side of the boundary are stored recursively in the subtree rooted in vl
(vr). Intervals in r are stored in two structures: a search tree sorted according to left
endpoints of the intervals and one sorted according to right endpoints. A stabbing
query with q is answered by reporting the intervals in r containing q and recursively
reporting the relevant intervals in the subtree containing q. If q is contained in Xvl

,
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the intervals in r containing q are found by traversing the intervals in r sorted accord-
ing to left endpoints, from the intervals with smallest left endpoints toward the ones
with largest left endpoints, until an interval not containing q is encountered. None of
the intervals in the sorted order after this interval can contain q. Since O(Tr) time is
used to report Tr intervals in r, a query is answered in O(log2 N + T ) time in total.

In order to externalize the interval tree structure in an efficient way, we need
to increase the fan-out of the base tree to decrease its height to O(logB N). This
creates several problems. The main idea behind our successful externalization of the
structure, as compared with previous attempts [16, 39], is to use a fan-out of

√
B

instead of B (following ideas from [7, 10]).
Structure. The external interval tree on a set of intervals I with endpoints in a

fixed set E of size N is defined as follows. (We assume without loss of generality that
the endpoints of the intervals in I are distinct.) The base tree T is a perfectly balanced
fan-out

√
B tree over the sorted set of endpoints E. Each leaf represents B consecutive

points from E. (If |E| is not (
√
B)iB for some i ≥ 0 we adjust the degree of the root of

T to be smaller than
√
B.) The tree has height O(log√B(N/B))+1 = O(logB N). As

in the internal case, with each internal node v we associate an interval Xv consisting
of all endpoints below v. The interval Xv is divided into

√
B subintervals by the

intervals associated with the children v1, v2, . . . , v√B of v. Refer to Figure 2.1. For
illustrative purposes, we call the subintervals slabs and the left (right) endpoint of a
slab a slab boundary. We define a multislab to be a contiguous range of slabs, such as,
for example, Xv2Xv3Xv4 in Figure 2.1. In a node v we store intervals from I that cross
one or more of the slab boundaries associated with v but none of the slab boundaries
associated with parent(v). In a leaf l we store intervals with both endpoints among
the endpoints in l. The number of intervals stored in a leaf is less than B/2 and can
therefore be stored in one block. We store the set of intervals Iv ⊂ I associated with
v in the following Θ(B) secondary structures associated with v.

• For each of
√
B − 1 slab boundaries bi, 1 < i ≤ √

B, we store the following:
– A right slab list Ri containing intervals from Iv with right endpoint

between bi and bi+1. Ri is sorted according to right endpoints.
– A left slab list Li containing intervals from Iv with left endpoint between

bi and bi−1. Li is sorted according to left endpoints.
– O(

√
B) multislab lists—one for each boundary to the right of bi. The

list Mi,j for boundary bj (j > i) contains intervals from Iv with left
endpoint between bi−1 and bi and right endpoint between bj and bj+1.
Mi,j is sorted according to right endpoints.

• If the number of intervals stored in a multislab list Mi,j is less than Θ(B),
we instead store them in an underflow structure U along with intervals as-
sociated with all the other multislab lists with fewer than Θ(B) intervals.
More precisely, only if more than B intervals are associated with a multi-
slab do we store the intervals in the multislab list. Similarly, if fewer than
B/2 intervals are associated with a multislab, we store the intervals in the
underflow structure. If the number of intervals is between B/2 and B, they
can be stored in either the multislab list or in the underflow structure. Since
O((

√
B)2) = O(B) multislabs lists are associated with v, the underflow struc-

ture U always contains fewer than B2 intervals.
We implement all secondary list structures associated with v using B-trees and

the underflow structure using a corner structure (Lemmas 2.1 and 2.3). In each node
v, in O(1) index blocks, we also maintain information about the size and place of each
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v

v1 v2 v3 v4 v5

Xv

Xv2
Xv3

Xv4
Xv5

s

Xv1

b1 b2 b3 b4 b5 b6 bi+1qbi

Fig. 2.1. A node in the base tree. In-
terval s is stored in L2, R4, and either M2,4

or U .

Fig. 2.2. Intervals containing q
are stored in Rbi , Lbi+1

, the multi-
slab lists spanning the slab, and U .

of the O(B) structures associated with v.
With the definitions above, an interval in Iv is stored in two or three structures:

two slab lists Li and Rj and possibly in either a multislab list Mi,j or in the underflow
structure U . For example, we store interval s in Figure 2.1 in the left slab list L2 of b2,
in the right slab list R4 of b4, and in either the multislab list M2,4 corresponding to b2
and b4 or the underflow structure U . Note the similarity between the slab lists and the
two sorted lists of intervals in the nodes of an internal interval tree. As in the internal
case, s is stored in a sorted list for each of its two endpoints. This represents the part
of s to the left of the leftmost boundary contained in s and the part to the right of
the rightmost boundary contained in s. Unlike in the internal case, in the external
case we also need to represent the part of s between the two extreme boundaries. We
do so using one of O(B) multislab lists.

The external interval tree uses linear space: the base tree T itself uses O(|E|/B)
blocks, and each interval is stored in a constant number of linear space secondary
structures (Lemmas 2.1 and 2.3). The number of other blocks used in a node is
O(

√
B): O(1) index blocks and one block for the underflow structure and for each of

the 2
√
B slab lists. Since T has O(|E|/(B√

B) ) internal nodes, the structure uses a
total of O(|E|/B) blocks. Note that if we did not store the sparse multislab lists in
the underflow structure, we could have Ω(B) sparsely utilized blocks in each node,
which would result in a superlinear space bound.

Query. In order to answer a stabbing query q, we search down T for the leaf
containing q, reporting all relevant intervals among the intervals Iv stored in each
node v encountered. Assuming q lies between slab boundaries bi and bi+1 in v, we
report the relevant intervals in Iv as follows:

• We load the O(1) index blocks.
• We report intervals in all multislab lists containing intervals crossing bi and

bi+1, that is, multislab lists Ml,k with l ≤ i and k > i.
• We perform a stabbing query with q on the underflow structure U and report

the result.
• We report intervals in Ri from the largest toward the smallest (according to

right endpoint) until we encounter an interval not containing q.
• We report intervals in Li+1 from the smallest toward the largest until we

encounter an interval not containing q.
It is easy to see that our algorithm reports all intervals in Iv containing q: all

relevant intervals are stored either in a multislab list Ml,k with l ≤ i < k, in U , in Ri,
or in Li+1. Refer to Figure 2.2. We correctly report all intervals in Ri containing q,
since if an interval in the right-to-left order of this list does not contain q, then neither
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does any other interval to the left of it. A similar argument holds for the left-to-right
search in Li+1.

The query algorithm uses an optimal O(logB N + T/B) I/Os. In T we visit
O(log√B N) = O(logB N) nodes. In each node v we use only O(1) I/Os that are not
“paid for” by reportings (blocks read that contain Θ(B) output intervals): we use
O(1) I/Os to load the index blocks, O(1) overhead to query U , and O(1) overhead for
Ri and Li+1. Note how U is crucial for obtaining the O(logB N + T/B) bound since
it guarantees that all visited multislab lists contain Θ(B) intervals.

Lemma 2.4. Assuming M ≥ B2, there exists a data structure using O(N/B) disk
blocks to store intervals with unique endpoints in a set E of size N such that stabbing
queries can be answered in O(logB N + T/B) I/Os.

Updates. We insert a new interval s in the external interval tree as follows: we
search down T to find the first node v where s contains one or more slab boundaries.
Then we load the O(1) index blocks of v and insert s into the two relevant slab lists Li

and Rj . If the multislab list Mi,j exists, we also insert s there. Otherwise, the other
intervals (if any) corresponding to Mi,j are stored in the underflow structure U , and
we insert s in this structure. If that brings the number of intervals corresponding to
Mi,j up to B, we delete them all from U and insert them in Mi,j . Finally, we update
and store the index blocks. Similarly, in order to delete an interval s, we search down
T until we find the node storing s. We then delete s from two slab lists Li and Rj .
We also delete s from U or Mi,j ; if s is deleted from Mi,j and the list now contains
B/2 intervals, we delete all intervals in Mi,j and insert them into U . Finally, we again
update and store the index blocks.

To analyze the number of I/Os used to perform an update, first note that for
both insertions and deletions we use O(logB N) I/Os to search down T , and then
in one node we use O(logB N) I/Os to update the secondary list structures. The
manipulation of the underflow structure U uses O(1) I/Os, except in the cases where
Θ(B) intervals are moved between U and a multislab list Mi,j . In the latter case
we use O(B) I/Os, but then there must have been at least B/2 updates involving
intervals in Mi,j and requiring only O(1) I/Os since the last time an O(B) cost was
incurred. Hence the amortized I/O cost is O(1), and we obtain the following.

Theorem 2.5. Assuming M ≥ B2, there exists a data structure using O(N/B)
disk blocks to store intervals with unique endpoints in a set E of size N such that
stabbing queries can be answered in O(logB N + T/B) I/Os in the worst case and
such that updates can be performed in O(logB N) I/Os amortized.

3. General external interval tree. In order to remove the fixed endpoint
assumption from our external interval tree, we need to use a dynamic search tree as
the base tree. In internal memory a BB[α]-tree [34] is often used as the base tree
for structures with secondary structures. In such a tree, a node v with weight w
(i.e., with w elements below it) can be involved in a rebalancing operation only once
for every Ω(w) updates that access (i.e., pass through) v [17, 33]. If the necessary
reorganization of the secondary structures after a rebalance operation on v can be
performed in O(w) time, we then obtain an O(1) amortized bound on performing a
rebalancing operation. Unfortunately, a BB[α]-tree is not suitable for implementation
in external memory; it is binary, and there seems to be no easy way of grouping nodes
together in order to increase the fan-out while at the same time maintaining its other
useful properties. On the other hand, a B-tree, which is the natural choice as dynamic
base structure, does not have the property that a node v of weight w can be involved
in a rebalance operation only for every Ω(w) updates accessing v.
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In section 3.1, we describe a variant of B-trees, called weight-balanced B-trees,
combining the useful properties of B-trees and BB[α]-trees. They are balanced using
normal B-tree operations (split and fusion of nodes) while at the same time having the
weight property of a BB[α]-tree. An important feature of a weight-balanced B-tree is
that the ratio between the largest and smallest weight subtree rooted in children of
a node v is a small constant factor. In a B-tree this ratio can be exponential in the
height of the subtrees. In section 3.2, we use the weight-balanced B-tree to remove
the fixed endpoint assumption from our external interval tree.

3.1. Weight-balanced B-tree. In a normal B-tree [12, 21] all leaves are on the
same level, and each internal node has between a and 2a−1 children for some constant
a. In a weak B-tree, or (a, b)-tree [27], a wider range in the number of children is
allowed. We define the weight-balanced B-tree by imposing constraints on the weight
of subtrees rather than on the number of children. The other B-tree characteristics
remain the same: the leaves are all on the same level (level 0), and rebalancing is
performed by splitting and fusing internal nodes.

Definition 3.1. The weight w(vl) of a leaf vl is defined as the number of elements
stored in it. The weight of an internal node v is defined as w(v) =

∑
v=parent(c) w(c).

Corollary 3.2. The weight w(v) of an internal node v is equal to the number
of elements in leaves below v.

Definition 3.3. T is a weight-balanced B-tree with branching parameter a and
leaf parameter k, a > 4 and k > 0, if the following conditions hold:

• All leaves of T are on the same level and have weight between k and 2k − 1.
• An internal node on level l has weight less than 2alk.
• Except for the root, an internal node on level l has weight larger than 1

2a
lk.

• The root has more than one child.
Lemma 3.4. Except for the root, all nodes in a weight-balanced B-tree with pa-

rameters a and k have between a/4 and 4a children. The root has between 2 and 4a
children.

Proof. The leaves fulfill the internal node weight constraint, since k > 1
2a

0k and
2k − 1 < 2a0k. Thus the minimal number of children an internal node on level l
can have is 1

2a
lk/2al−1k = a/4, and the maximal number of children v can have is

2alk/ 1
2a

l−1k = 4a. The root upper bound follows from the same argument, and the
lower bound is by definition.

Corollary 3.5. The height of an N element weight-balanced B-tree with pa-
rameters a and k is O(loga(N/k)).

To perform an update on a weight-balanced B-tree T , we first search down T for
the relevant leaf. After performing the actual update, we may need to rebalance T
in order to fulfill the constraints in Definition 3.3. For simplicity we consider only
insertions in this section. Deletions can easily be handled using global rebuilding [36]
(as discussed further in the next section). After inserting an element in leaf u of T ,
the nodes on the path from u to the root of T can be out of balance; that is, the
node vl on level l can have weight 2alk. In order to rebalance the tree we split all
such nodes starting with u and working towards the root. If u is a leaf containing 2k
elements we split it into two leaves u and u′, each containing k elements, and insert a
reference to u′ in parent(u). In general, on level l we want to split a node vl of weight
2alk into two nodes v′l and v′′l of weight alk and insert a reference in parent(vl). (If
parent(vl) does not exist, that is, if we are splitting the root, we create a new root with
two children.) However, a perfect split is generally not possible if we want to perform
the split so that v′l gets the first (leftmost) i of v’s children and v′′l gets the rest of the
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children. Nonetheless, since nodes on level l− 1 have weight less than 2al−1k, we can
always find an i such that if we split at the ith child the weights of both v′l and v′′l are
between alk − 2al−1k and alk + 2al−1k. Since a > 4, v′l and v′′l fulfill the constraints
of Definition 3.3; that is, their weights are strictly between 1

2a
lk and 2alk.3 Note that

splitting node v does not change the weight of parent(v). As a result, the structure is
relatively simple to implement. In each node we need only to store its level and the
weight of each of its children, information we can easily maintain during an update.
The previous discussion and Corollary 3.5 combine to prove the following.

Lemma 3.6. The number of rebalancing operations (splits) after an insertion in
a weight-balanced B-tree T with parameters a and k is bounded by O(loga(|T |/k)).

The following lemma will be crucial in our application.
Lemma 3.7. After a split of a node vl on level l into two nodes v′l and v′′l , at

least alk/2 inserts have to be performed below v′l (or v′′l ) before it splits again. After
a new root r in a tree containing N elements is created, at least 3N insertions have
to be performed before r splits again.

Proof. After a split of vl the weight of each of v′l and v′′l is less than alk+2al−1k <
3/2alk. Each such node will split again when its weight reaches 2alk. It follows that
the weight must increase by at least alk/2. When a root r is created on level l it
has weight 2al−1k = N . It will not split before it has weight 2alk > 2 · 4al−1k
= 4N .

One example of how the weight-balanced B-tree can be used as a simpler al-
ternative to existing internal memory data structures is in adding range restriction
capabilities to dynamic data structures [42]. The general technique for adding range
restrictions developed in [42] utilizes a base BB[α]-tree with each interval node v
augmented with a dynamic data structure on the set of elements below v. This struc-
ture needs to be rebuilt when a rebalancing operation is performed on v, and the
use of a BB[α]-tree leads to amortized bounds. In [42] it is shown how worst-case
bounds can be obtained by a relatively complicated redefinition of the BB[α]-tree.
On the other hand, using our weight-balanced B-tree with branching parameter a = 5
and leaf parameter k = 1 as base tree we immediately obtain worst-case bounds: the
large number of updates between splits of a node immediately implies good amortized
bounds, and the bounds can easily be made worst-case by performing the secondary
structure rebuilding lazily. The ideas and techniques used in this construction are
very similar to the ones presented in the succeeding sections of this paper and are
therefore omitted. The use of lazy rebuilding in the BB[α]-tree solution is complicated
because rebalancing is performed using rotations, which means that we cannot simply
continue to query and update the old secondary structure while lazily building new
ones.

As mentioned, the weight-balanced B-tree has been used in the development of
numerous efficient internal as well as external data structures (e.g., [26, 13, 8, 25, 9,
2, 41]). In order to obtain an external tree structure suitable for use in our interval
tree, we choose 4a =

√
B and 2k = B and obtain the following.

Theorem 3.8. There exists an N element search tree data structure using
O(N/B) disk blocks such that a search or an insertion can be performed in O(logB N)
I/Os in the worst case.

Each internal node v at level l in the structure, except for the root, has Θ(
√
B)

children, dividing the w(v) = Θ((
√
B)lB) elements below v into Θ(

√
B) sets. The root

3If a > 8 we can even split the node at child i− 1 or i+1 instead of at child i and still fulfill the
constraints. We will use this property in the next section.
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has O(
√
B) children. Rebalancing after an insertion is performed by splitting nodes.

When a node v is split, at least Θ(w(v)) elements must have been inserted below v
since the last time v was split. In order for a new root to be created, Θ(N) elements
have to be inserted into the data structure.

Proof. Each internal node can be represented using O(1) blocks, and the space
bound follows since each leaf contains Θ(B) elements. A split at v can be performed
in O(1) I/Os: we load the O(1) blocks storing v into internal memory, split v, and
write the O(1) blocks defining the two new nodes back to disk. Finally, we update
the information in the parent using O(1) I/Os. Thus the insertion and search I/O
bounds follow directly from Corollary 3.5 and Lemma 3.6.

The second part of the theorem follows directly from Definition 3.3, Corollary 3.2,
and Lemmas 3.4 and 3.7.

3.2. Using the weight-balanced B-tree to remove the fixed endpoint
assumption. We now show how to remove the fixed endpoint assumption from our
external interval tree using the weight-balanced B-tree as the base tree T . To insert
an interval, we first insert the two new endpoints in the base tree and perform the
necessary rebalancing. Then we insert the interval as described in section 2. Since
rebalancing is performed by splitting nodes, we need to consider how to split a node v
in our interval tree. Figure 3.1 illustrates how the slabs associated with v are affected
when v splits into nodes v′ and v′′: All the slabs on one side of a slab boundary b get
associated with v′; the boundaries on the other side of b get associated with v′′; and b
becomes a new slab boundary in parent(v). As a result, all intervals in the secondary
structures of v that contain b need to be inserted into the secondary structures of
parent(v). The rest of the intervals need to be stored in the secondary structures of v′

and v′′. Furthermore, as a result of the addition of the new boundary b, some of the
intervals in parent(v) containing b also need to be moved to new secondary structures.
Refer to Figure 3.2.

✆
✆✆

❇
❇❇

✂
✂✂

❍❍❍❍❍
❆
❆❆

✂
✂✂

✟✟✟✟✟

❏
❏❏

❇
❇❇

✡
✡✡

✂
✂✂

❍❍❍❍❍✟✟✟✟✟

❊
❊❊� � � �

❄

�

�

�

�

� �

�����

����

v

b

b

v”v’

Fig. 3.1. Splitting a node; v splits along b, which becomes a new boundary in parent(v).

First consider the intervals in the secondary structures of v. Since each interval
is stored in a left slab list and a right slab list, we can collect all intervals containing
b (to be moved to parent(v)) by scanning through all of v’s slab lists. We first
construct a list Lr of the relevant intervals sorted according to right endpoint by
scanning through the right slab lists. We scan through every right slab list (stored
in the leaves of a B-tree) of v in order, starting with the rightmost slab boundary,
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bi

b

bi+1

v

Fig. 3.2. All solid intervals need to move. Intervals in v containing b move to parent(v), and
some intervals move within parent(v).

adding intervals containing b to Lr. This way Lr will automatically be sorted. We
construct a list Ll sorted according to left endpoint by scanning through the left slab
lists in a similar way. Since the secondary structures of v contain O(w(v)) intervals
(they all have an endpoint below v), and since we can scan through each of the
O(

√
B) slab lists in a linear number of I/Os (Lemma 2.1), we construct Lr and Ll

in O(
√
B + w(v)/B) = O(w(v)/B) I/Os. Next we construct the slab lists of v′ and

v′′, simply by removing intervals containing b from each slab list of v. We remove the
relevant intervals from a given slab list by scanning through the leaves of its B-tree,
collecting the intervals for the new list in sorted order, and then constructing a new list
(B-tree). This way we construct all the slab lists in O(w(v)/B) I/Os. We construct
the multislab lists for v′ and v′′ simply by removing all multislabs lists containing b.
Since each removed list contains Ω(B) intervals, we can do so in O(w(v)/B) I/Os.
We construct the underflow structures for v′ and v′′ by first scanning through the
underflow structure for v and collecting the intervals for the two structures, and then
constructing them individually using O(w(v)/B) I/Os (Lemma 2.3). We complete
the construction of v′ and v′′ in O(w(v)/B) I/Os by scanning though the lists of each
of the nodes, collecting the information for the index blocks.

Next consider parent(v). We need to insert the intervals in Ll and Lr into the
secondary structures of parent(v) and move some of the intervals already in these
structures. The intervals we need to consider all have one of their endpoints in Xv.
For simplicity we consider only intervals with left endpoint in Xv; intervals with right
endpoint in Xv are handled similarly. All intervals with left endpoint in Xv that
are stored in parent(v) cross boundary bi+1. Thus we need to consider each of these
intervals in one or two of

√
B + 1 lists, namely, in the left slab list Li+1 of bi+1

and possibly in one of O(
√
B) multislab lists Mi+1,j . When introducing the new

slab boundary b, some of the intervals in Li+1 need to be moved to the new left
slab list of b. In a scan through Li+1 we collect these intervals in sorted order in
O(|Xv|/B) = O(w(v)/B) I/Os. The intervals in Ll also need to be stored in the left
slab list of b, so we merge Ll with the collected list of intervals and construct a B-tree
on the resulting list. We can easily do so in O(w(v)/B) I/Os (Lemma 2.1), and we
can update Li+1 in the same bound. Similarly, some of the intervals in multislab
lists Mi+1,j need to be moved to new multislab lists corresponding to multislabs with
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b as left boundary instead of bi+1. We can easily move the relevant intervals (and
thus construct the new multislab lists) in O(w(v)/B) I/Os using a scan through the
relevant multislab lists, similarly to the way we moved intervals from the left slab list
of bi+1 to the left slab list of b. (Note that intervals in the underflow structure do not
need to be moved.) If any of the new multislab lists contain fewer than B/2 intervals,
we instead insert the intervals into the underflow structure U . We can easily do so
in O(B) = O(w(v)/

√
B) I/Os by rebuilding U . Finally, to complete the split process

we update the index blocks of parent(v).
To summarize, we can split a node v in O(w(v)/

√
B) I/Os, and since O(w(v))

endpoints must have been inserted below v since it was constructed (Theorem 3.8),
the amortized cost of a split is O(1/

√
B) I/Os. Since O(logB N) nodes split during

an insertion, we obtain the following.
Lemma 3.9. Assuming M ≥ B2, there exists a data structure using O(N/B) disk

blocks to store N intervals such that stabbing queries can be answered in O(logB N +
T/B) I/Os in the worst case and such that an interval can be inserted in O(logB N)
I/Os amortized.

As mentioned in section 3.1, deletions can be handled using global rebuilding [36].
To delete an interval s we first delete it from the secondary structures as described
in section 2 without deleting the endpoints of s from the base tree T . Instead we
just mark the two endpoints in the leaves of the base tree as deleted. This does not
increase the number of I/Os needed to perform a later update or query operation, but
it does not decrease it either. After N/2 deletions have been performed we rebuild
the structure in O(N logB N) I/Os, leading to an O(logB N) amortized delete I/O
bound: first we scan through the leaves of the old base tree and construct a sorted
list of the undeleted endpoints. This list is then used to construct the new base tree.
All of this can be done in O(N/B) I/Os. Finally, we insert the O(N) intervals one by
one without rebalancing the base tree, using O(N) ·O(logB N) I/Os.

Theorem 3.10. Assuming M ≥ B2, there exists an external interval tree using
O(N/B) disk blocks to store N intervals such that stabbing queries can be answered
in O(logB N + T/B) I/Os in the worst case and such that updates can be performed
in O(logB N) I/Os amortized.

4. Removing amortization. In this section, we discuss how to make the up-
date bound of Theorem 3.10 worst-case. Amortized bounds appeared in several places
in our structure; in the fixed endpoint version of our structure, amortization was in-
troduced as a result of the amortized O(1) update bound of the underflow structure
(Lemma 2.3), as well as when moving intervals between the underflow and multislab
lists. In the dynamic base tree version, amortization was introduced in the amortized
node split bound (insertions) as well as in the use of global rebuilding (deletions).

In sections 4.1 and 4.2, we show how to remove amortization from the node split
and underflow (corner structure) update bounds, respectively. In section 4.2, we
also show how to remove the M ≥ B2 assumption from the corner structure and
thus from our external interval tree. The remaining amortization can be removed
using standard lazy global rebuilding techniques [36]. We make the global rebuilding
(deletion) bound worst-case as follows: instead of using O(N logB N) I/Os to rebuild
the entire structure when the number of endpoints fall below N/2, we distribute the
rebuilding over the next 1/3 · N/2 updates using O(logB N) I/Os on rebuilding at
each update. We use and update the original structure while constructing the new
structure. When the new structure is completed the 1/3 ·N/2 updates that occurred
after the rebuilding started still need to be performed in the new structure. We
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perform these updates during the next 1/3 · (1/3 · N/2) operations. This process
continues until both structures store the same set of intervals (with at least (1 −
(1/3+ 1/9+ · · ·))N/2 ≥ 1/2 ·N/2 endpoints). Then we dismiss the old structure and
use the new one instead. Since the rebuilding is finished before the structure contains
only N/4 endpoints, we are in the process of constructing at most one new structure
at any given time. The amortization introduced when moving intervals between the
underflow structure and multislab lists can be removed in a similar way: recall that
we moved B intervals using O(B) I/Os when the underflow structure contained B
intervals belonging to the same multislab list Mi,j and when the number of intervals in
a multislab list fell below B/2. We remove this amortization by moving the intervals
over B/4 updates. If the size of a multislab list Mi,j falls to B/2, we move two
intervals from Mi,j to the underflow structure over each of the next B/4 insertions or
deletions involving Mi,j . Insertions themselves are also performed on the underflow
structure, and deletions are performed on the underflow structure or Mi,j . When all
intervals are moved there are between 1

4B and 3
4B intervals belonging to Mi,j stored

in U . Similarly, if the number of intervals in the underflow structure belonging to
Mi,j reaches B, we move the B intervals during the next B/4 updates involving Mi,j .
Even though this way Mi,j can contain o(B) intervals, the optimal space and query
bounds are maintained since Mi,j and U together contain Θ(B) intervals during the
process. This proves our main result.

Theorem 4.1. There exists an external interval tree using O(N/B) disk blocks
to store N intervals such that stabbing queries can be answered in O(logB N + T/B)
I/Os in the worst case and such that updates can be performed in O(logB N) I/Os in
the worst case.

4.1. Splitting nodes lazily. Recall that when a node v splits along a boundary
b the intervals in v containing b need to be moved to parent(v), and some of the
intervals in parent(v) containing b need to move internally in parent(v) (Figure 3.2).
In section 3, we showed how to move the intervals in O(w(v)/

√
B) I/Os, and since

O(w(v)) updates have to be performed below v between splits (Theorem 3.8) we
obtained an O(1/

√
B) amortized split bound. When performing an update in a leaf

l it affects the weight of O(logB N) nodes on the path from the root to l. These
nodes are all accessed in the search for l performed before the actual insertion. In this
section we show how to split a node v (move the relevant intervals) lazily using O(1)
I/Os during the next O(w(v)) updates accessing v while still being able to query the
secondary structures of v efficiently. This way we are done splitting v before a new
split is needed, and we obtain an O(1) worst-case split bound.

Our lazy node splitting algorithm works as follows. When v needs to be split
along a boundary b, in O(1) I/Os we first insert b as a partial slab boundary into
parent(v). The boundary remains partial until we have finished the split. In order
to keep different split processes from interfering with each other, we want to avoid
splitting nodes along partial boundaries. Since v, or rather the nodes it splits into,
cannot split again as long as b is partial, at most every second boundary in parent(v)
can be partial. As discussed in section 3.1 (footnote 3), this means that we can
always split a node along a nonpartial boundary without violating the constraints
on the base weight-balanced B-tree T . Next we move the relevant intervals in two
phases: in an up phase, we first construct the new secondary structures for v′ and
v′′ as before, by removing the intervals in secondary structures of v containing b
and collecting them in two sorted lists Ll and Lr. Below we show how to do so
lazily using O(1) I/Os over O(w(v)/

√
B) updates accessing v so that we can still
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query and update the “old” secondary structures of v. During this phase we can
therefore perform queries as before, simply by ignoring the partial slab boundary b
in parent(v). Next, in the rearrange phase, in O(1) I/Os, we split v into v′ and v′′

by switching to the new structures and splitting the index blocks. We also associate
the lists Ll and Lr with the partial boundary b in parent(v). Then we move the
relevant intervals in parent(v) containing b by constructing new updated versions of
all secondary structures containing intervals with endpoints in Xv. Below we discuss
how to do so lazily over O(w(v)/

√
B) updates accessing v (v′ and v′′) so that the

“old” structures can still be queried and updated. In order to answer queries between
bi and bi+1 in parent(v) correctly during the rearrange phase, we first perform a query
as before while ignoring the partial slab boundary b. To report the relevant intervals
among the intervals we have removed from v and inserted into Ll and Lr, we then
query the relevant one of the two slab lists. Since this adds only O(1) I/Os to the
query procedure in parent(v), the optimal query bound is maintained. At the end of
the rearrange phase, we finish the split of v in O(1) I/Os by switching to the new
structures and marking b as a normal slab boundary.

All that remains is to describe how to perform the up and rearrange phases. Each
of these phases can be performed lazily using O(1) I/Os during each of O(w(v)/

√
B)

updates accessing v. However, our algorithms will assume that only one up or rear-
range phase is in progress on a node v at any given time, which means that when
we want to perform a phase on v we might need to wait until we have finished an-
other phase. In fact, other phases may also be waiting, and we may need to wait
until v has been accessed enough times for us to finish all of them. Luckily, since
an up and rearrange phase requires only O(w(v)/

√
B) accesses to finish, and since

we need only to finish our phase in O(w(v)) accesses, we can afford to wait for
quite a while. Before an up phase can be performed on v we at most have to fin-
ish O(

√
B) rearrange phases (one for each partial slab boundary), each requiring

O((w(v)/
√
B)/

√
B) = O(w(v)/B) accesses, for a total of O(w(v)/

√
B) accesses. Af-

ter finishing the up phase on v we might need to finish O(
√
B) other rearrange phases

and one up phase on parent(v) before performing the rearrange phase. These phases
require at most O(

√
B) · O(w(v)/

√
B) + O((w(v) · √B)/

√
B) = O(w(v)) accesses.

Thus in total we finish the split of v in the allowed O(w(v)) accesses. Note that
the waiting can be implemented simply by associating a single block with v storing
a queue with information about the O(

√
B) phases waiting at v. When we want to

perform a phase on v we simply insert it in the queue, and each time v is accessed
O(1) I/Os are performed on the phase in the front of the queue. When v has been
accessed enough times to finish one phase we start the next phase in the queue. Note
also that while we are waiting to perform a phase on a node v, or even while we are
performing the phase, new partial slab boundaries may be inserted in v, and new slab
lists may be inserted for such boundaries (due to splits of children of v). However, this
does not interfere with the up or rearrange phase, since we do not split along partial
boundaries and since the intervals in the two new slab lists for a partial boundary
contain only the partial boundary.

After having described how to guarantee that we are working on only one up or
rearrange phase in a node v at any given time, we can now describe how to perform
such a phase lazily over O(w(v)/

√
B) accesses. We do so basically using lazy global

rebuilding: during normal updates we maintain a copy of each secondary structure—
called a shadow structure. Maintaining such shadow structures along with the original
structures does not change the asymptotic space, update, or query bounds of the
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interval tree. When we start an up or rearrange phase on v, we first “freeze” the
shadow structures of v; that is, instead of performing updates on them we just store
updates as they arrive. Then we perform the necessary movement of intervals on
the shadow structures as described in section 3. It is easy to realize how we can
perform these movements over the next O(w(v)/

√
B) updates accessing v such that

O(1) I/Os are used at each access. The only slight complication is that we need to
make sure that updates performed in v during the process (that is, updates that were
stored at v and still need to be performed on the shadow structures) are performed
after we have moved the relevant intervals. To do so within the O(w(v)/

√
B) bound,

we actually perform Θ(logB N) instead of only O(1) I/Os on the shadow structure
movement process every time an update is performed in v. This does not change
the overall O(logB N) update I/O bound, since an update (insertion or deletion of
an interval) takes place only in one node of T (or, equivalently, since we are already
using O(logB N) I/Os to perform the update on the original secondary structures of
v). After finishing the interval movement, we then perform the stored updates lazily
using O(1) I/Os each time v is accessed. Since we performed Θ(logB N) I/Os on the
shadow structures each time an update was stored at v, we are guaranteed that we
will finish performing the updates within O(w(v)/

√
B) accesses to v. Finally, after

moving intervals and performing updates, we (lazily) make a copy (shadow) of the new
shadow structures in the same I/O bound. We handle updates performed during this
copying in the same way we handled updates during global rebuilding of the external
interval tree (to remove delete amortization). We finish the phase by discarding the
old secondary structures and instead use the updated shadow structures (along with
their shadow) as the secondary structures.

4.2. Removing amortization from the corner structure. In this section
we sketch the “corner structure” of Kannelakis et al. [30] (Lemma 2.3) and discuss
how its O(1) amortized update bound can be made worst-case. At the same time we
remove the assumption that M ≥ B2.
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Fig. 4.1. (a) Vertical regions. (b) The set C∗ (the marked points). The dark lines represent the
boundaries of queries whose corners are points in C∗. One (horizontally blocked) query is shaded.
(c) The sets Ωi, ∆

−1
i , ∆−2

i , and ∆+
i . c∗j is the last point that was added to C∗, and ci is being

considered for inclusion in C∗.

The corner structure is designed to store a set S of K ≤ B2 points in the plane
above the x = y line such that diagonal corner queries can be answered in O(1+T/B)
I/Os [30]. As discussed in the introduction, this problem is equivalent to the stabbing
query problem. The structure is defined as follows: First S is divided into 
K/B�
vertical regions containing B points each. Refer to Figure 4.1(a). The points in these
regions are stored in 
K/B� blocks. Let C be the set of points at which the right
boundaries of the 
K/B� regions intersect the y = x line. An iterative procedure is
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used to choose a subset C∗ of these points, and one or more horizontally oriented
blocks are used to explicitly store the answer to each query with a corner c∗ ∈ C∗.
Refer to Figure 4.1(b). First the highest point c∗1 ∈ C is included in C∗. Then each
point in C is considered in turn along the x = y line. Let c∗j be the point of C most
recently added to C∗; initially, this is c∗1. When considering ci ∈ C, the sets Ωi ⊂ S,
∆−1

i ⊂ S, ∆−2
i ⊂ S, and ∆+

i ⊂ S are defined as shown in Figure 4.1(c). The set
S∗
j = Ωi ∪ ∆−1

i is the answer to a query whose corner is c∗j , and Si = Ωi ∪ ∆+
i is the

answer to a query whose corner is ci. Let ∆−
i = ∆−1

i ∪ ∆−2
i . The point ci is then

added to C∗ if and only if

|∆−
i |+ |∆+

i | > |Si|.

In [30] it is shown that the total number of blocks used to store the sets S∗
i is O(K/B).

The corner structure consists of these blocks, as well as O(1) blocks storing the sets
C and C∗. In [30] it is also shown how a diagonal corner query can be answered in
O(1 + T/B) I/Os using this representation.

The corner structure can easily be constructed in O(K/B) I/Os when M ≥ B2

(since in this case it fits in main memory). As discussed, the structure can therefore
easily be made dynamic with an O(1) amortized update bound using an update block
and global rebuilding [30]. In the following we show how to construct the structure
in O(K/B) I/Os incrementally over O(K/B) updates such that no more than O(1)
blocks are loaded into main memory at any time. This immediately removes the
M ≥ B2 assumption. Using this result and lazy global rebuilding, the O(1) amortized
update bound can then be made worst-case: once B/2 updates have been collected
in the update block, the structure is rebuilt during the next B/2 updates using O(1)
I/Os at each update.

We first discuss how to construct a corner structure on K points in O(K/B) I/Os
using O(1) blocks of main memory. After that we discuss how the construction can be
performed lazily. We assume that the K points are given in two lists sorted according
to x- and y-coordinates, respectively. We can easily store two such lists along with the
corner structure itself using O(K/B) space. At the start of a rebuilding process, we
first merge the O(B) points in the update block into these two lists in O(K/B) I/Os
using O(1) blocks of main memory. Then we construct the corner structure in three
steps: first we compute the vertical blocking, that is, the set C. Then we compute
C∗. Finally, we construct the horizontal blocking corresponding to each of the points
in C∗.

c0

c1

c2

ac1

Fig. 4.2. Definition of aci .

The vertical blocking is simply the list sorted according to x-coordinates. We
can easily make a copy of this list and thus compute the set C in O(K/B) I/Os
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Fig. 4.3. Definition of Bt, Bm, and bb and computation of C∗.

using O(1) blocks of memory. Let ci ∈ C be the ith point in the sorted sequence of
points on the x = y line. To aid the computation of C∗ we first compute for each
ci ∈ C a number aci . We define aci to be the number of points with y-coordinates
between the y-coordinates of ci and ci+1. Refer to Figure 4.2. We compute all acis
in O(K/B) I/Os using O(1) blocks of main memory in a single scan of the list of
points sorted by y-coordinates. We then compute C∗ as previously by proceeding
along the x = y line and including ci ∈ C in C∗ if |∆−

i | + |∆+
i | > |Si|. Since the

number of points in C is O(K/B), our goal is to decide if ci should be included in
O(1) I/Os. We can do so if we can compute |Ωi+1|, |∆+

i+1|, |∆−1
i+1|, and |∆−2

i+1| in

O(1) I/Os, given |Ωi|, |∆+
i |, |∆−1

i |, |∆−2
i |, c∗j , ci, ci+1, and ai+1. (These values/points

can all be loaded into main memory in O(1) I/Os.) Figure 4.3 illustrates how we can
compute |Ωi+1|, |∆+

i+1|, |∆−1
i+1|, and |∆−2

i+1| once Bt, Bm, and Bb have been computed.
We compute these three sets, containing a total of B points, in O(1) I/Os, simply
by loading the relevant vertical block. Thus overall we can compute C∗ in O(K/B)
I/Os.

To compute and horizontally block the points in the answer S∗
j to a query at

each of the points c∗j ∈ S∗, we again proceed along the x = y line considering each
point c∗i ∈ C∗ in turn. Assume we have already blocked S∗

j and that we know the
position p of the last (lowest y-coordinate) point in S∗

j in the list of points sorted by
y-coordinates. Initially, S∗

j is empty, and p is the first point in the list of points sorted
by y-coordinates. To block S∗

j+1, we scan through the horizontal blocking of S∗
j ,

collecting the points with x-coordinate smaller than the x-coordinate of c∗j+1. This
way we obtain the points in S∗

j+1 above the y-coordinate of s∗j horizontally blocked
(sorted by y-coordinates). Then we collect the remaining points in S∗

j+1 horizontally
blocked by scanning through the list of points sorted by y-coordinates, starting at p.
Altogether we use O(|S∗

j |/B+ |S∗
j+1|/B) I/Os to compute the blocking of S∗

j+1. Thus
we use O(2

∑
j∈1..|S∗| |S∗

j /B|) I/Os to compute the blocking corresponding to all the

points in C∗. This is O(K/B) since the structure uses linear space.
We have shown how to construct the corner structure in O(K/B) I/Os using O(1)

blocks of main memory. We can easily modify the algorithm to work in an incremental
way, that is, to run in O(K/B) steps of O(1) I/Os without using any main memory
between two steps: throughout the algorithm we can represent the current state of
the algorithm by a constant number of pointers and values. We can therefore perform
one step by loading the current state into main memory using O(1) I/Os, performing
the step using O(1) I/Os, and finally using O(1) I/Os to write the new state back to
disk. In total we have proved the following.
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Lemma 4.2. A set of K ≤ B2 intervals can be stored in an external data structure
using O(K/B) disk blocks such that a stabbing query can be answered in O(T/B + 1)
I/Os and such that updates can be performed in O(1) I/Os. The structure can be
constructed in O(K/B) I/Os.

5. External segment tree. In this section we sketch how the ideas used in
the external interval tree can also be used to develop an external segment tree-like
structure with a better space bound than previously known for such structures [15, 39].
Like an interval tree, a segment tree solves the stabbing query problem. Unlike the
interval tree, however, it uses superlinear space. It is often used as base tree structure
in multidimensional structures (refer, e.g., to [10, 3]).

Structure. In internal memory, as in the case of the interval tree, a segment
tree consists of a binary base tree with intervals stored in secondary structures of
internal nodes. Unlike for the interval tree, an interval can be stored in the secondary
structures of up to two nodes on each level of the base tree. More precisely, an interval
s is stored in all nodes v such that s contains the interval associated with at least one
of v’s children but not the interval Xv associated with v. As in the interval tree case,
we externalize the structure by using a weight-balanced B-tree (Theorem 3.8) as the
base tree. As previously, an internal node v defines Θ(

√
B) slabs and Θ(B) multislabs,

and Θ(B) secondary structures are associated with v. An interval s is stored only in
the secondary structures of v if it spans one of v’s slabs but not the whole interval Xv.
Thus, unlike in the external interval tree, where s is stored only in the highest node
for which it contains a slab boundary, s can be stored in O(logB N) nodes—refer to
Figure 5.1(a). As in the interval tree, s is stored in a multislab list corresponding to
the largest multislab it spans, and as before intervals from multislab lists containing
o(B) intervals are stored in an underflow structure. Note how an external segment
tree corresponds to an external interval tree, where parts of an interval not completely
spanning a slab in a node v are stored recursively instead of in a slab list. Multislab
lists are implemented as simple (unordered) lists, and with each interval s we store
pointers to the copies of s in the nearest ancestor and descendent of v storing copies
of s. These pointers are not directly maintained for intervals in underflow structures.
Instead we keep a separate lists of intervals in the underflow structure of each node v,
and pointers are maintained for these intervals. This allows us to rebuild an underflow
structure containing K intervals in O(K/B) I/Os and thus maintain the O(1) update
bound of the underflow structure (Lemma 4.2); maintaining pointers would have
required O(K) I/Os. Finally, we maintain an auxiliary B-tree containing all intervals
in the structure, ordered according to right endpoint, such that given an interval s we
can obtain a pointer to the copy of s stored in the topmost node storing s. This B-tree
uses linear space, and since the secondary structures of a node also use linear space
the external segment tree uses O((N/B) logB N) disk blocks to store N intervals.

Query. We answer a stabbing query q on an external segment tree in O(logB N +
T/B) I/Os, simply by searching down the base tree for q and in each node querying
the underflow structure and reporting all intervals in lists corresponding to multislabs
containing q.

Updates. To insert an interval s into an external segment tree we first insert the
endpoints of s in the base tree and rebalance the tree by splitting nodes. Below we
show how a node v can be split in O(w(v)) I/O such that an endpoint is inserted in
O(logB N) I/Os amortized. Then we perform the actual insertion of s by traversing
two paths in the base tree, inserting s in the relevant multislab lists. As the multislab
lists are unsorted, we can insert s in a list in O(1) I/O while at the same time
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Fig. 5.1. (a) Node v in the base tree. The interval s is stored in v as well as (recursively) in
v1 and v4. (b) Splitting a segment tree node.

storing the relevant pointers to other copies of s. We handle the cases involving the
underflow structure in O(1) I/Os precisely as in the external interval tree case. In
total we can perform an insertion in O(logB N) I/Os. We delete an interval s from
an external segment tree in O(logB N) I/Os simply by locating s in the auxiliary B-
tree—obtaining a pointer to the topmost of the O(logB N) occurrences of s—deleting
s from the B-tree, and then using the pointers between copies of s to find and remove
all occurrences of s in O(logB N) I/Os; note that even though in a node where s is
stored in the underflow structure we obtain a pointer to the separate list of intervals,
we can still delete s from the underflow structure in O(1) I/Os. As in the interval
tree case, we remove the endpoints of s from the base tree in O(logB N) I/Os using
global rebuilding.

All that remains is to describe how to efficiently split a node v along a slab
boundary b. When v splits into v′ and v′′, all intervals in multislabs containing b
need to be moved. These intervals fall into two categories: intervals that contain the
leftmost or rightmost slab boundaries b1 and bl of v and those that do not. Refer to
Figure 5.1(b). Intervals not containing b1 or bl (but containing b) need to be stored
in multislab lists of both v′ and v′′. Thus to move these intervals we simply need
to make a copy of the relevant lists for both v′ and v′′. We also need to update the
relevant pointers between intervals. We can easily do so in O(w(v)) I/Os. Intervals
that contain b1 or bl (and b) need to be inserted in v′ or v′′, as well as moved within
parent(v). Consider, for example, intervals containing b and bl (e.g., interval s in
Figure 5.1(b). Such intervals need to be inserted in multislab lists for v′, as well as
either inserted into parent(v) or moved within parent(v): if one of these intervals s is
already stored in parent(v) we use the pointer stored with s in v to locate and delete
s in parent(v), and then we insert s in the relevant new multislab list. Since each
interval can be moved in O(1) I/Os, and since all moved intervals have an endpoint
in Xv, we use O(w(v)) I/Os in total to split a node v. Finally, as in the interval
tree case, we can perform the split over O(w(v)) updates accessing v and thus obtain
worst-case bounds.

Theorem 5.1. There exists an external segment tree using O((N/B) logB N) disk
blocks to store N intervals such that stabbing queries can be answered in O(logB N +
T/B) I/Os and such that updates can be performed in O(logB N) I/Os.
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