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Abstract. In many applications in mobile robotics, it is important for a robot to explore its environment in order
to construct a representation of space useful for guiding movement. We refer to such a representation as a map,
and the process of constructing a map from a set of measurements as map learning. In this paper, we develop
a framework for describing map-learning problems in which the measurements taken by the robot are subject to
known errors. We investigate approaches to learning maps under such conditions based on Valiant’s probably
approximately correct learning model. We focus on the problem of coping with accumulated error in combining
local measurements to make global inferences. In one approach, the effects of accumulated error are eliminated
by the use of local sensing methods that never mislead but occasionally fail to produce an answer. In another
approach, the effects of accumulated error are reduced to acceptable levels by repeated exploration of the area
to be learned. We also suggest some insights into why certain existing techniques for map learning perform as
well as they do. The learning problems explored in this paper are quite different from most of the classification
and boolean-function learning problems appearing in the literature. The methods described, while specific to map
learning, suggest directions to take in tackling other learning problems.
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1. Introduction

Many of the problems faced by robots navigating in the environment can be facilitated by
using expectations in the form of explicit models of objects and the spaces that they occupy.
We use the term map to refer to any model of large-scale space used for purposes of naviga-
tion. The construction of useful maps is complicated by the fact that observations involving
the position, orientation, and identification of spatially remote objects are invariably error
prone. In this paper, we explore a number of problems involved in constructing useful maps
from measurements taken with sensors subject to known errors.

In previous work (Dean, 1988), we have looked at various optimization problems related
to constructing maps (e.g., construct the most accurate map consistent with a set of mea-
surements). Even in cases involving only a single dimension, such optimization problems
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confident that he really is at B. This example illustrates several aspects of the problem of
map construction. First, the explorer may have some ability to recognize locations locally.
For example, the explorer in the graph above may have the ability to determine the degree
of vertices, and might have some general information about the direction of the edges. Thus
the explorer in the example can distinguish E from C, but not B from B′. Second, when this
is not sufficient, the explorer may use non-local evidence about the identity of the location.
For example, the explorer may measure his movements so as to be able to determine that
he is now at some previously visited location. In practice, however, these measurements
will be error-prone. The explorer can also gather evidence about the identity of a location
by moving away from the location in the direction of some known location, or executing
some sequence of moves which serves to identify the location. Third, in some cases, simple
identification strategies may fail, as in the example given. Here, neither local identification
nor a simple retracing strategy allow disambiguation of B and B′.

In this paper, we are concerned with strategies which, with high probability, provide local
certainty. Most existing map-learning schemes exploit this sort of certainty in one way or
another (see Section 4). The rehearsal strategies of Kuipers (Kuipers & Byun, 1988) are
one example of how a robot might plan to eliminate uncertainty. Once we have a method for
eliminating uncertainty, the problem then reduces to one of planning out and executing the
necessary experiments to extract certain information about the environment. What happens
if complete elimination of uncertainty is impossible? In general, the problem is hard, as
we have seen above. If, however, there are a number of landmarks distributed about the
environment, and these landmarks can be reliably identified by the robot in exploring that
environment, then the robot only has to overcome propagation of uncertainty between these
landmarks.

In the next section we introduce a model that facilitates the analysis of map learning, and
discuss several types of uncertainty and their representations in this model. In Section 3,
we begin by analyzing a particular type of map learning that exploits knowledge of the
structure of the environment to eliminate local uncertainty. We then go on to show how
local uncertainty can be reduced to sufficiently low levels to allow global learning in certain
cases where complete elimination is impossible, but there are some landmarks. Finally, in
Section 4, we examine several other approaches to the problem of map learning.

2. Spatial Representation

We model the world, for the purposes of studying map learning, as a graph with labels on
the edges at each vertex. In practice, a graph will be induced from a set of measurements by
identifying a set of distinctive locations in the world, and by noting their connectivity. For
example, we might model a city by considering intersections of streets to be distinguished
locations, and this will induce a grid-like graph. Kuipers (Kuipers & Byun, 1988) develops
a mapping based on locations distinguished by sensed features like those found in buildings
(see Figure 2).

Figure 3 shows a portion of a building and the graph that might be induced from it using
such a mapping. Levitt (Levitt, et al., 1987) develops a mapping based on locations in the
world distinguished by the visibility of landmarks at a distance. In general, different map-
pings result in graphs with different characteristics, but there are some properties common
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to most mappings. For example, if the mapping is built for the purpose of navigating on
a surface, the graph induced will almost certainly be planar and cyclic. Other properties
may include regularity or bounded degree. In what follows, we will always assume that the
graphs induced are connected and undirected; any other properties will be explicitly noted.

Following (Aleliunas, et al., 1979), a graph model consists of a graph,G = (V,E), a set
L of labels, and a labeling, φ : {V × E} → L, where we may assume that L has a null
element⊥which is the label of any pair (v ∈ V, e ∈ E) where e is not an edge from v. We
will frequently use the word direction to refer to an edge and its associated label from a
given vertex. With this notation, we can describe a path in the graph as a sequence of labels
indicating the edges to be taken at each vertex. We can describe a procedure to follow as a
function from V → L indicating the preferred direction to follow from each vertex.

If the graph is a regular tessellation, we may assume that the labeling of the edges at
each vertex is consistent, i.e., there is a global scheme for labeling the edges and the labels
conform to this scheme at every vertex. For example, in a grid tessellation, it is natural to
label the edges at each vertex as North, South, East, and West. In general, we do not require
a labeling scheme that is globally consistent. You can think of the labels on edges emanating
from a given vertex as local directions. Such local directions might correspond to the robot
having a compass that is locally consistent but globally inaccurate, or local directions might
correspond to locally distinctive features visible from intersections in learning the map of
a city.

The robot’s activities are moving about in the world and sensing its environment. To
model these activities we introduce functions. A movement function is a function from
{V ×L} → V . The intuition behind this function is that for any location, one may specify
a desired edge to traverse, and the function gives the location reached when the move is
executed. A sensor function is a function from V to some range of interest. One important
sensor function maps vertices to the number of out edges, that is, the degree of the vertex.
Another useful function maps vertices to the power set of labels, 2L, giving the possible
directions to take from that vertex. More generally, we may partition the set of vertices into
some number of equivalence classes and use a function that maps vertices into these classes.
We refer to this as a recognition sensor, since it allows the robot to recognize locations.
To introduce uncertainty, we may introduce probabilistic forms of these functions or alter
the partitioning. We now develop and explore three kinds of uncertainty that arise in map
learning.

2.1. Movement Uncertainty

There may be uncertainty in the movement of the robot. In particular, the robot may
occasionally move in an unintended direction. We refer to this as directional uncertainty,
and we model this type of uncertainty by introducing a probabilistic movement function.
For example, if G is a grid with the labeling given above, and we associate the vertices of
G with points (i, j) in the plane, we might define a movement function as follows:
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ψ((i, j), l) =


(i, j + 1) 70% of the time if (l = North)
(i + 1, j) 10% of the time if (l = North)
(i − 1, j) 10% of the time if (l = North)
(i, j − 1) 10% of the time if (l = North)
. . .

where the “. . .” indicate the distribution governing movement in the other three directions.

The probabilities associated with each direction sum to 1. If all directions are equally
likely regardless of the intended direction, then the movement function is said to be random.
Our goal has been to make as few assumptions as possible about the distribution of error in
the movement function. Throughout, we assume that the distribution governing movement
is static. Other assumptions include the ability to generate an uniform random walk or a
lower bound on the probability that movement is in the intended direction; these will be
made explicit where they are used.

2.2. Recognition Uncertainty

A second source of uncertainty involves sensors, and in particular recognizing locations
that have been seen before. The robot’s sensors have some error, and this can cause error in
the recognition of places previously visited; the robot might either fail to recognize some
previously visited location, or it might err by mistaking some new location for one seen in
the past. We refer to this type of uncertainty as recognition uncertainty, and we may model
it in two different ways. First, we may introduce a new range for the recognition function by
partitioning the set of vertices into equivalence classes. We then assume that the function
returns the same name for each class, i.e., that the robot is unable to distinguish between
elements of a given class using only its sensors. In this case the recognition function maps
vertices to subsets that are the elements of the partition of the set of vertices. For example,
a robot that explores the interior of buildings might use sonar as its primary sensor and use
hallway junctions as its distinguished locations. In this case, the robot might be able to
distinguish an L junction from a T junction, but might be unable to distinguish between two
T junctions. In general, expanding the sensor capabilities of the robot will result in better
discrimination of locations, i.e., more equivalence classes, but perfect discrimination will
likely be either impractical or impossible.

Some locations may be sufficiently distinct that they are distinguishable from all others
even with fairly simple sensors. In the model, these locations appear as singleton sets in the
partition. We refer to these locations as landmarks. We use the term “landmark” advisedly;
our landmarks have only some of the usual properties. Specifically, our landmarks are
locations that we occupy, not things seen at a distance. They are landmarks because the
“view” from them (as opposed to the view of them) is unique. In the following, we make
the rather strong assumption that, not only can the robot name the equivalence classes, but
it can also determine if a given location is a member of an equivalence class that contains
exactly one member (i.e., the robot can identify landmarks). We might also model this kind
of uncertainty by having a probabilistic recognition sensor, that is, one that simply gave the
wrong name for a vertex with some probability.
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2.3. Continuity Uncertainty

A third source of error involves another manifestation of sensor error. In representing
the world using a graph, some mapping must be established from a set of distinguished
locations in the world to V . Error in the sensors could cause the robot to fail to notice a
distinguished location some of the time. For example, a robot taxi might use intersections
as distinguished locations, leading to a grid-like graph. But if sensor error causes the robot
not to notice that it is passing through an intersection, its map will become flawed. In
exploring an office environment, the point in a hallway in front of a door may correspond
to a vertex in the induced graph. If the door is closed, there is some chance that the robot
will not recognize the vertex in traversing the hall. We model this type of uncertainty by
introducing a probabilistic movement function that can skip over vertices. We refer to this
type of movement function as discontinuous and to the type of uncertainty modeled as
continuity uncertainty.

Apparently, the three types of uncertainty described above are orthogonal in the sense
that none implies or precludes the others. The issues involved in modeling and reasoning
about continuity uncertainty are complex and will not be treated further in this paper. In
the following, we are concerned with directional and recognition uncertainty.

3. Map Learning

For our purposes, a map is a data structure that facilitates queries concerning connectivity,
both local and global. Answers to queries involving global connectivity will generally rely
on information concerning local connectivity, and hence we regard the fundamental unit of
information to be a connection between two nearby locations (i.e., an edge between two
vertices in the induced undirected graph). We say that a graph has been learned completely
if for every location we know all of its neighbors and the directions in which they lie (i.e.,
we know every triple of the form 〈u, l, v〉where u and v are vertices and l is the label at u of
an edge in G from u to v). We assume that the information used to construct the map will
come from exploring the environment, and we identify two different procedures involved
in learning maps: exploration and assimilation. Exploration involves moving about in the
world gathering information, and assimilation involves using that information to construct
a useful representation of space. Exploration and assimilation are generally handled in
parallel, with assimilation performed incrementally as new information becomes available
during exploration. In this section, we are concerned with the conditions under which a
graph can be completely learned, and how much time is required for the exploration and
assimilation.

3.1. Tessellation Graphs

It’s not hard to see that any connected, undirected graph can be completely learned easily if
there is no uncertainty. Kuipers and Byun (Kuipers & Byun, 1988) describe a way of doing
this by building up an agenda consisting of unexplored paths leading out of locations and
then moving about so as to eventually explore all such paths. Nothing about the graph need
be known before the exploration begins. Introducing the kinds of uncertainty described in
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simply picks a random direction the first time it establishes an edge; all subsequent edges
are established with respect to this initial assignment. The resulting map is guaranteed
correct up to a reflection and rotation. One edge is said to be dependent on another when
establishing the second will enable us to establish the first. The following procedure takes
two locations: the location the robot started in and the location it ended up in as a result of
moving. If l is a location that the robot has already seen, then it has a vertex data structure
denoted v(l).
Procedure: assimilate(l1, l2)

1. If l2 has never been seen before, then create v(l2).

2. If there already is an edge from v(l1) to v(l2), then exit, else

(A) Add v(l2) to the neighbors of v(l1).

(B) Add v(l1) to the neighbors of v(l2).

(C) Create an edge from v(l1) to v(l2), and set e to be that edge.

3. Check the two vertices of e to determine if either one can be established. A vertex v
can be established if all of the edges out of v are known and all but one of the edges out
of v are established. If either of e’s vertices can be established, then e is established
using the orientations of adjacent edges and the set new edges is initialized to
{} in preparation for propagating the consequences of establishing e. If neither of e’s
vertices can be established and at least one orientation has already been assigned,
then exit as there are no other consequences to be realized.

4. Search the set of edges for other edges that complete a shortest possible cycle involving
e. (A shortest possible cycle for a grid is a cycle of length 4.) Two such cycles are
possible. If either or both cycles are found, they are analyzed as follows.

(A) If this is the first cycle discovered, then an orientation is randomly assigned
to e and the other edges in the cycle are assigned orientations in accord with
this initial assignment. These edges are now established, and they are added to
new edges, and their dependency lists are set to {}. From now on, all
established edges get their orientations directly or indirectly from this initial
assignment.

(B) If two or more adjacent edges in the cycle are established, then all the edges in the
cycle can be established. Add all of the newly established edges to new edges

and set their dependency lists to {}.

(C) If the cycle contains one established edge, or more than one non-adjacent estab-
lished edge, then each non-established edge in the cycle is put on the depen-

dency list of each non-established edge adjacent to an established edge.

5. Establish each edge in the dependency list of e, add them to new edges, and set their
dependency lists to {}.

6. If new edges = {}, then exit, else remove some edge from new edges, set it equal
to e and return to (4).
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We can run assimilate over a trace of locations or incrementally. There is no need to
keep explicit track of where the robot has been in a chain of locations. If edges are kept in
a table indexed by endpoints, then searching for a shortest possible cycle including a vertex
v can be done in constant time: cd table lookups, where c is the length of the shortest cycle,
and d is the order of the graph (i.e., the degree of v in this case). The worst-case running
time of assimilate is O(|E|), and if assimilate is used at each step on a tour of length m
then the overall cost is just O(m).

Lemma 1 The assimilation algorithm provided will learn a finite tessellation completely
if the exploration tour traverses every edge in the graph. The overall cost of assimilation
is O(m) where m is the length of the tour.

Proof: Traversing every edge in the graph ensures that Step 2 will fill in the neighbors

field for every vertex in the graph. By selecting one shortest cycle in the graph and assigning
an orientation (i.e., labeling) to each edge in this cycle, we can propagate outward from
that cycle and assign orientations to the remaining cycles. Since all cycles are found in
Step 4 if all edges are traversed, every edge in the graph will be labeled. The algorithm
is complicated somewhat by the fact that it operates in a greedy fashion, i.e., it propagates
orientation as soon as possible.

We now have to ensure that during exploration the robot traverses each edge in the graph
at least once with high probability. The following two lemmas establish that, for any
connected, regular, undirected graphG and any δ > 0, a random walk of length polynomial
in 1

δ and the size of G is sufficient for traversing every edge in G with probability 1− δ.

Lemma 2 For any d > 1, there exists a polynomial p(d, 1
δ ) of orderO(d log d log 1

δ ) such
that with probability 1− δ, p visits to a vertex of order d result in traversing all edges out
of the vertex at least once.

Proof: This is a variation on the Coupon Collector’s problem (see (Graham, Knuth & Oren,
1994)). We consider only the traversals resulting from leaving the vertex, thus each visit to
the vertex results in the traversal of one edge chosen at random. The expected number of vis-
its required for traversing all edges at least once is shown in (Graham, Knuth & Oren, 1994)
to be dHd < d ln d + d, where Hd is the value of the harmonic function at d. Let
k = 2d ln d+ d, and let Pr be the probability that every edge out of the vertex has been tra-
versed at least once given r visits. By Markov’s Inequality,Pk ≥ 1

2 . Further, Pnk ≥ 1− 1
2n

and this will be at least 1− δ if n ≥ log 1
δ

. Thus nk = O(d log d log 1
δ
) visits will suffice.

Lemma 3 For any connected, regular, undirected graph G = (V,E) with order d, any
δ > 0, and any m ≥ 1, there exists a polynomial p(|E|,m, 1

δ
) such that with probability

1− δ, a random tour on G of length p visits every vertex in V at least m times.

Proof: We rely on a result due to Aleliunas, et al. (Aleliunas, et al., 1979) that establishes
that the expected number of steps for an unbiased random walk to traverse every undirected
edge in E is less than or equal to 2d|V |(|V | − 1) . This result combined with Markov’s
Inequality assures that a tour of length 4d|V |(|V | − 1) traverses every edge in E with
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probability greater than 1
2 , and, hence, a path of this length visits every node with probability

greater than 1
2 . If we let k be this length, then we may consider each tour of length k as an

individual, independent trial, and the probability that every point is hit in r of these trials
is greater than 1 − (1

2
)r . If we now consider each of these rk length tours as independent

trials, the probability that m of these trials will result in every point being hit m or more
times is at least (1 − (1

2 )r)m. It is this value that we must ensure is larger than 1 − δ.
Expanding and solving for r shows that r = log2(

m
δ ) will suffice, making the entire tour

of length kmr = 4dmn(n− 1) log2(
m
δ ).

In most cases, we can do better than random exploration. If the robot moves in the
intended direction with probability greater than 1

2 then the robot can traverse every edge
in the graph with high probability in time linear in the size of the graph. Using the above
three lemmas it is easy to prove the following.

Theorem 1 It is possible to completely learn any finite regular tessellationG = (V,E)
with probability 1− δ in time polynomial in 1

δ and the size of G.

Proof: Let Bm
i denote the event of making m visits to vertex i, and Bm denote the event

of making m visits to every vertex in the graph. Let Ai denote the event of traversing all
edges incident with vertex i, and A denote the event of traversing all edges in the graph. If
n = |V |, then we have

Pr(A|Bm) = Pr(A1, A2, . . . , An|Bm)
= Pr(A1|Bm) Pr(A2|A1,Bm) . . .Pr(An|A1, A2, . . . , An−1,Bm)

=
n∏
i=1

Pr(Ai|Bm
1 , Bm

2 , . . . , B
m
n )

=
n∏
i=1

Pr(Ai|Bm
i ).

given that Pr(Ai|Bm
j ) = Pr(Ai) and Pr(Ai|Aj) = Pr(Ai) for i 6= j. In a regular graph,

the probability of traversing all edges incident with the ith vertex given m visits to the
vertex is the same for all vertices, so let Pr(Ai|Bm

i ) = π for all i, and we have

Pr(A) ≥ πn Pr(Bm).

Our objective is to find, for a given G and δ, a polynomial p such that a random walk
of length p on G allows G to be learned completely with probability 1 − δ. Clearly this
condition will be met if we can satisfy the following two inequalities:

Pr(Bm) ≥ 1− δ/2; (1)

πn ≥ 1− δ/2. (2)

By Lemma 3, (1) is satisfied by a polynomial number of steps if the number of visits, m,
is polynomial in the relevant variables, whereas (2) will be satisfied if

π ≥ 1− δ

2n
, (3)
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and, by Lemma 2, the number of visits m to satisfy (3) is polynomial in n and δ.

The lemmas and form of the proof described above provide a framework for proving
that other kinds of graphs can be reliably probably almost always usefully learned in a
polynomial number of steps. In general, all we require is that a polynomial number of visits
to every vertex provides enough information to learn the graph. Perhaps, the most important
lesson to extract from this exercise is that the effects of multiplicative error in learning maps
of large-scale space can be eliminated if there is a reliable method for eliminating local
uncertainty that works with high probability. The above approach to map learning was
inspired by Rivest’s model of learning (Rivest & Sloan, 1994), in which complex problems
are broken down into simple subproblems that can be learned independently. In order to
learn a useful representation of the global structure of its environment, it is sufficient that
a robot have reliable and usually effective methods for sensing the local structure of its
environment and a method for composing the local structure to generate an accurate global
structure. The sensing methods need not always provide useful answers; they need only
guarantee that the answer returned is not wrong. The problem then becomes largely one
of determining a sequence of sensing and movement tasks that will provide useful answers
with high probability. There are situations, however, in which reliable sensing methods are
not available, and it is still possible to learn useful maps of large-scale space.

3.2. General Graphs

The next problem we look at involves both recognition and directional uncertainty with
general undirected graphs. We show that a form of Valiant’s probably approximately
correct learning is possible when applied to learning maps. In this section, we consider
the case in which movement in the intended direction takes place with probability greater
than 1

2 , and that, upon entering a vertex, the robot knows with certainty the local name of
the edge upon which it entered. We call the latter requirement reverse movement certainty.
Results for related models are summarized in the next section.

At any point in time, the robot is facing in a direction defined by the label of a particular
edge/vertex pair—the vertex being the location of the robot and the edge being one of
the edges emanating from that vertex. We assume that the robot can turn to face in the
direction of any of the edges emanating from the robot’s location. We also assume that
upon entering a vertex the robot can determine with certainty the direction in which it
entered. Directional uncertainty arises when the robot attempts to move in the direction it is
pointing. Let α > 0.5 be the probability that the robot moves in the direction it is currently
pointing. More than 50% of the time, the robot ends up at the other end of the edge defining
its current direction, but some percentage of the time it ends up at the other end of some
other edge emanating from its starting vertex. While the robot won’t know that it has ended
up at some unintended location, it will know the direction to follow in trying to return to
its previous location. No further assumptions are made concerning the distribution of the
error probability, in particular, it need not be evenly distributed over the remaining edges.

With regard to recognition uncertainty, we assume that the locations in the world are
of two kinds, those that can be distinguished, and all others. That is, there is some set
of landmarks, in the sense explained above, and all other locations are indistinguishable.
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cr of every landmark in G in time polynomial in 1
δl

with probability 1− δl, it is possible to
learn the global connectivity ofG with probability 1−δg for any δg > 0 in time polynomial
in 1

δg
and the size of the graph. Any global path returned as a result will be at most c

c−2

times the length of the optimal path.

Proof: Let m be the number of local paths required to construct the longest answer we
might have to provide to a global query. Then the probability of correctness for any global
answer obeys

Pr(correct answer) ≥ (1 − δl)m. (4)

A simple expansion of 4 gives

(1 − δl)m = 1−mδl +E ≥ 1−mδl,

because E ≥ 0. Thus, ensuring that every δl ≤ δg/m will ensure that

Pr(correct answer) ≥ 1− δg.

We use the given procedure to find the local connectivity of every distinguishable vertex
in the graph and the resulting representation is sufficient to provide a path between any two
distinguishable vertices. Note that we do not have to know |V | in order to calculate δl, only
the length of the longest answer expected. Any path between two landmarks will use the
optimal paths in and out of the intervening landmarks, and we will show that this path will
be within a factor c

c−2 of the optimal path.
We now show that the lengths of the paths returned are within the stated limit. Letv = v0,

v1, v2, . . . , vj = v′ be a shortest path in G from landmark v to landmark v′. (It might be
that none of the intermediate vertices in the path are landmarks.) We shall show that there
is a sequence of landmarks v = w0, w1, . . . , wk = v′, such that each pair of consecutive
landmarks is within distance cr of one another and that there is a path from v to v′ of
length ≤ ( c

c−2 )j that visits each landmark. This will imply that the global path returned
by the above procedure has length at most ( c

c−2
)j, which will prove the lemma.

Let k = dj/(c − 2)re. We define the “detour points” d0 = v, di = vi(c−2)r , for
1 ≤ i ≤ k − 1, and dk = v′. The definition of the landmark distribution parameter r tells
us that each di is within distance r of some landmark, call itwi . We require thatw0 = v and
wk = v′. By transitivity, the distance between wi−1 and wi , for 1 ≤ i ≤ k, is at most cr ,
and thus wi is “visible” from wi−1 using local connectivity. The distance of the modified
path from v to v′ that makes a detour at each di to go to landmark wi and back is bounded
by

j + (k − 1)2r ≤ j +
j

(c− 2)r
2r =

c

c− 2
j.

Briefly, the most important stage of the procedure referred to in the proof of Lemma 4
searches outward from a vertex v ∈ D to a distance cr , and then uses the edges found
while entering vertices on the outward path to attempt to return to v. The directions used
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on the way out form an expectation for the labels observed on the way back. When these
expectations are not met, the traversal is said to have failed, and the procedure tries again.
The procedure keeps track of the edge/vertex labels associated with vertices visited during
exploration in order to ensure that it explores all paths of length cr or less emanating from
each vertex in D with high probability.

There is a possibility that some combination of movement errors could result in false
positive or false negative tests. But we show by exploiting reverse certainty that we can
statistically distinguish between the true and false test results. By attempting enough
traversals, the procedure can ensure with high probability that the most frequently occurring
sets of directions corresponding to perceived traversals actually correspond to paths in G.
What is required, then, is for the learning procedure to do enough exploration to identify
all paths of length cr or less in G with high probability.

Lemma 5 There is a procedure that, for any δl > 0, learns the local connectivity within cr
of each vertex in any landmark graph with probability 1−δl in time polynomial in 1

δl
, 1

1−2α ,
and the size of G, and exponential in cr .

Proof: The learning algorithm can be broken down into three steps: a landmark identifi-
cation step in which the robot finds and identifies a set of landmarks, a candidate selection
step in which the robot finds a set of candidate paths in G connecting landmarks, and a
candidate filtering step in which the robot determines which of those candidate paths cor-
respond to actual paths in G. In order to prove the lemma, landmark identification has to
succeed in identifying all landmarks in G with high probability, candidate selection has to
find all paths (or at least all of the shortest paths) between landmarks with high probability,
and candidate filtering has to determine which of the candidates correspond to actual paths
in G with high probability. We define 1 − δi, 1 − δs, and 1 − δf , respectively, to be the
desired lower bounds on the probabilities that the three steps succeed in performing their
associated tasks. It suffices to set δi = δs = δf = 1

3δl. We will consider each of the three
steps in turn.

The first step is easy. The robot identifies all the landmarks in G with probability 1− δi
by making a random walk whose length is polynomial in 1

δi
and the size of G. A more

sophisticated exploration might be possible, but a random walk suffices for polynomial-time
performance.

Having identified a set of landmarks, the robot enters the candidate selection step, in
which it tries all paths of length cr starting from each identified landmark A. If d is the
maximum degree of any vertex in G, then there can be as many as dcr paths of length cr
starting from A. Since we expect that cr will generally be small, this “local” exponential
factor should not be critical. The robot systematically tries all paths of length cr trying to
connect other landmarks within a radius r. For each landmark (other than A) encountered
in a particular traversal, the robot records as a candidate path the subpath that it thinks it
traversed fromA to that landmark. For a given starting landmarkA, the resulting candidates
have the following form:

Aout0
, in1

Xout1
, . . . , ink−1

Xoutk−1
, inkB, (5)
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whereB is the ending landmark, and inXout indicates that the robot observed itself entering
a vertex of type X on the arc labeled in and it observed itself attempting to leave on the arc
labeled out.

The robot has to make enough attempts n to traverse each possible path of length cr so
that with high probability it records all the actual paths of length ≤ cr . For each path of
length cr starting from A that the robot attempts to traverse, the probability that it correctly
traverses that path during a given attempt is αcr . Thus, the probability that the robot will
correctly traverse that path at least once in n attempts is

1− (1− αcr )n .

In order to ensure that we record all such paths with probability 1−δs we have to ensure that
all possible paths of length cr are traversed at least once, which happens with probability
at least

(1− (1− αcr)n)d
cr

.

This probability will be greater than 1− δs if

n ≥ 1
αcr

(
2r log d+ log

(
1
δs

))
.

The goal of the next step, candidate filtering, is to determine for each candidate pathP , of
the form (5), whetherP corresponds to an actual path in the graph. The robot systematically
tries n times to traverse each candidate P . That is, starting from A it attempts to take the
following sequence of arcs:

out0, out1, . . . , outk−1.

During each attempt, the robot checks whether its reverse observations along the way are
consistent with the desired bidirectional path P in (5); that is, at the jth vertex on the
path, for 1 ≤ j ≤ k, the robot checks whether the incoming arc is labeled inj . The robot
also checks that it ended up at landmark B. If all the observations are consistent during a
particular attempted traversal of P , we say that the traversal of P is successful. We denote
by count (P) the number of attempted traversals of P (out of n) that are successful.

In order for a traversal of P by the robot to be successful, all the reverse observations
along the path, which are made with complete accuracy, must be consistent with (5). This
means that the reverse observations must be in1, in2, . . . , ink. When taken in reverse order
these observations form a path Q from B to A given by the arcs labeled

ink, ink−1, . . . , in1.

We let Q denote the reversal of path Q; note that Q is a path from A to B. This means that
the only possible way that an attempted traversal of P can be successful is if Q is actually
traversed.

If P is an actual path in the graph, then Q is the same as the forward traversal of P .
Thus, the probability that the traversal is successful (which is a “true positive” result) is the
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structed representation if the number count (P ) of successful traversals of P is at most nτ .
The quantity count (P ) is a Bernoulli distributed random variable corresponding to n tri-
als, each with probability γtrue of success; it has mean nγtrue and standard deviation
(nγtrue (1 − γtrue ))1/2. By Hoeffding’s inequality (Hoeffding, 1963) we have

Pr(error on P ) = Pr(count (P ) − nγtrue ≤ −n(γtrue − τ )) ≤ e−2n(γtrue−τ)2 .

Substituting γtrue − τ ≥ αk−1(α− 1
2 ) ≥ αcr−1(α− 1

2 ), we find that

Pr(error on P ) ≤ e−2n(αcr−1(α− 1
2 ))2 .

When P is not an actual path in the graph, the probability Pr(error on P ) of wrongly
including a path in the constructed representation can be bounded in the same fashion.

Thus the probability of correctly including in the constructed representation all and only
the actual candidate paths in G is at least

1− |D|d2cr Pr(error on P ) ≥ 1− |D|d2cre−2n(αcr−1(α− 1
2 ))2 ,

which is greater than 1− δf when

n >
1

2(αcr−1(α− 1
2))2

(
ln

1
δf

+ 2cr ln d+ ln |D|
)
.

Theorem 2 It is possible to learn the global connectivity of any landmark graph with
probability 1− δ in time polynomial in 1

δ , 1
1−2α , and the size of G, and exponential in r.

Theorem 2 is a simple consequence of Lemma 4 and 5. It has an immediate application
to the problem of learning the global connectivity of a graph where all the vertices are
landmarks. In this case, the parameter r = 0, and we need only explore paths of length 1
in order to establish the global connectivity of the graph. Because each candidate path has
length one, this process works even if there is no reverse certainty.

Corollary 1 It is possible to learn the connectivity of a graphG with only distinguish-
able locations with probability 1− δ in time polynomial in 1

δ
, 1

1−2α
, and the size of G, even

if there is reverse uncertainty.

The notion of global connectivity defined above does not require that the graph be com-
pletely learned, (i.e., to recover the structure of the entire graph). It is assumed that the
indistinguishable vertices are of interest only in so far as they provide directions necessary
to traverse a direct path between two landmarks. But it is easy to imagine situations where
the indistinguishable vertices and the paths between them are of interest. For instance, the
indistinguishable vertices might be partitioned further into equivalence classes so that one
could uniquely designate a vertex by specifying its equivalence class and some radius from
a particular global landmark (e.g., the bookstore just across the street from the Chrysler
building).

We can modify the above approach and try to completely learn the graph by first completely
learning local neighborhoods of each landmark. Let us defineGd(v), for any positive integer
d, to be the subgraph of G consisting of all vertices and edges within radius d of v.
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Lemma 6 Let G be a landmark graph with distribution parameter r. Given a procedure
that, for any δl > 0, completely learns G2r+1(v) for each landmark v ∈ G in time
polynomial in 1

δl
with probability 1−δl, it is possible to completely learnG with probability

1− δg for any δg > 0 in time polynomial in 1
δg

and the size of G.

The proof for this lemma is a simple variation on the proof of lemma 4.
The above algorithms used for determining the local connectivity of landmarks can be

thought of as building a search tree emanating from each landmark, in which each indis-
tinguishable vertex in G may correspond to several vertices in the search tree. In order to
completely learn G2r+1(v) (as opposed to just learning the local connectivity), we must
avoid this redundant representation. Again, the idea is to systematically explore each path
away from each landmark. But in this case, each time the robot encounters a vertex that is
not a landmark along a new path, it must check to see if that vertex is actually one that it
has come upon previously by some other path.

It turns out that we can extend our methods to completely learnG2r+1(v). The algorithm
builds G2r+1(v) via an incremental breadth-first search in which each vertex encountered
is tested via repeated walks from v to determine with high probability if it has already been
added to G2r+1(v). The proof requires a careful examination of the probabilities of true
and false test results.

Lemma 7 There is a procedure that, for any δl > 0 and c > 2, completely learns Gcr (v)
for each landmark v in a landmark graph with probability 1− δl in time polynomial in 1

δl
,

1
1−2α

and the size of Gcr , and exponential in cr .

Proof: The robot can identify all landmarks as in Lemma 5. Let us turn our attention to the
incremental step in the breadth-first search. Suppose that the robot has already determined
that the bidirectional path P

Aout0
, in1

X1out1
, . . . , ink−1

Xk−1outk−1
, inkXk (6)

is actually in the graph, where A is a landmark and X1, . . . , Xk are distinct vertices for
k < cr . The robot is currently attempting to determine if the extended path P ′

Aout0
, in1

X1out1
, . . . , ink−1

Xk−1outk−1
, inkXkoutk , ink+1

Xk+1 (7)

is actually in the graph, such that Xk+1 is distinct from all vertices encountered previously
in the breadth-first search.

This is done in two steps. In the first step, called path filtering, the robot determines if
there is an outgoing arc from Xk labeled outk that corresponds to the incoming arc ink+1

into Xk+1. The robot tries n times to traverse the path of length 2(k + 1) consisting of P ′

followed by its reversal. (The value of n will be determined later.) The outgoing arcs it
attempts to take, starting from node A, are labeled

out0, out1, . . . , outk, ink+1, ink, . . . , in1. (8)

During each round-trip traversal, the robot checks whether its reverse observations along the
way are consistent with the desired bidirectional path P ′, as follows: At the jth vertex on



84 K. BASYE, T. DEAN AND J.S. VITTER

the path, for 1 ≤ j ≤ k+1, the robot checks whether the incoming arc is labeled inj , and for
k+2 ≤ j ≤ 2(k+1) , the robot checks whether the the incoming arc is labeledout2(k+1)−j .
The robot also checks whether the path ends at landmark A. If all the observations are
consistent during a particular round-trip traversal ofP ′, we say that the round-trip traversal
of P ′ is successful. We denote by count (P ′) the number of attempted round-trip traversals
of P ′ (out of n) that are successful.

In order for a round-trip traversal of P ′ by the robot to be successful during the candidate
traversal step, all the reverse observations along the path must be consistent with (7). In
particular, as pointed out above, the 2(k + 1)st incoming arc must be labeled out0, the
(2k + 1)st incoming arc must be labeled out1, and so on. Thus the sequence of arcs
actually traversed by the robot must be the reverse of the one specified in (8); no other
possible successful traversals are possible without some observation being inconsistent.

If P ′ is an actual path in the graph, the reversal of (8) is equal to itself. Thus, the
probability that the round-trip traversal is successful (which is a “true positive” result) is the
probability that the robot correctly traverses each arc it attempts to traverse, which happens
with probability γtrue = α2(k+1) .

The other case is when P ′ is not an actual path in the graph. The reversal of (8) is now
different from (8), since P ′ is not an actual path in the graph. Letm ≥ 2 be the number of
arcs in which the reversal of path (8). differs from (8). The probability of a “false positive”
result, in which the reverse of (8) is traversed, is at most γfalse = α2(k+1)−m(1 − α)m ≤
α2k(1 − α)2.

A statistical argument similar to that in Lemma 5 shows that if

n >
1

2(α2cr−1(α− 1
2 ))2

(
ln

1
δp

+ 2 ln d+ ln |V |+ ln |D|
)
,

then with probability 1− δp path filtering will correctly determine for all extensions P ′ of
the form (7) whether there is an outgoing arc fromXk labeled outk that corresponds to the
endpoint vertex’s arc ink+1.

The next step, which we call redundancy filtering, determines whether Xk+1 has already
been processed during the breadth-first construction, and if so, which previous vertex it
is. For each vertex Y previously encountered in the breadth-first search, let R be the path
ending at Y that first reached Y in the breadth-first search. We shall denote that path by

R = Aout0
, in1

Y1out1
, . . . , ink−1

Yj−1outj−1
, injYj. (9)

Here Y = Yj . The robot attempts n times to traverse the path consisting of P ′ followed by
the reversal of R. It checks its observations along the way to see if they’re consistent with
(7) and (9) and if the traversal started and ended at A. If so the traversal is successful and
it increments count (P ′, R).

Arguments similar to those above show that all successful traversals must follow the
reverse of the path consisting of R followed by the reverse of P ′. This allows us to
statistically distinguish true positives (the case Xk+1 = Y ) from false positives (the case
Xk+1 6= Y ). In order for all the redundancy filterings to be correct with probability 1− δd,
it suffices for
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n >
1

(2α2cr−1(α− 1
2 ))2

(
ln

1
δd

+ ln d+ 2 ln |V |+ ln |D|
)
.

This completes the proof of Lemma 7.

Theorem 3 It is possible to completely learn any landmark graph with probability 1− δ
in time polynomial in 1

δ , 1
1−2α , and the size of G, and exponential in r.

Theorem 3 is a simple consequence of Lemma 6 and 7.

3.3. Extensions

We can get the same results as in the last section if we allow uncertainty in the reverse
direction, but demand forward movement certainty. The algorithms are similar, the justifi-
cations different. In this case, the graph can be reliably navigated by the same agent that
did the map learning.

We note that the purpose of either certainty requirement is to allow the robot to filter out
paths reported by sensors that aren’t really in the graph. In (Basye & Dean, 1989), we treat
the problem of map learning given a probabilistic oracle which, for any given traversal,
provides an answer to the question “was that traversal free of error” which is correct with
probability greater than 1

2 . In this paper, the certainty requirements introduced provide such
an oracle.

We are also investigating ways to remove the requirement of either reverse certainty or
forward certainty. Reverse certainty is used in the last section to help distinguish probabilis-
tically between true and false results in our testing procedures. We can show, for example,
that if r(1 − α) is bounded by a small constant, then efficient map learning is possible
without either the reverse certainty or forward certainty requirement. Another way around
this restriction is to allow the exploring agent to drop pebbles or beacons to remember where
it has been (Dudek, et al., 1988).

We can make map learning somewhat easier and more realistic by assuming that the robot
can do more work or take more time to get better measurements. This suggests an interesting
optimization problem to work on: given a probabilistic performance requirement, generate
an exploration strategy that meets that requirement, minimizing some measure of cost. We
are just beginning to work on this problem.

It should be noted that we make very few assumptions regarding the structure of the
graphs that we are trying to learn. In most real applications, however, there is a great deal
of additional information that can be exploited to expedite learning. Our intent here is to try
to provide positive results about general classes of map-learning problems without relying
on a great deal of domain-specific knowledge.

4. Related Work

There have been many approaches to dealing with uncertainty in spatial reasoning (Brooks,
1984, Davis, 1986, Kuipers, 1978, McDermott & Davis, 1982, Smith & Cheeseman, 1986,
Kurrant-Whyte, 1988, Moravec & Elfes, 1985), but most of these methods suffer from
the effects of multiplicative error in estimating relative position and orientation. This
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paper is concerned with eliminating or limiting the effects of multiplicative error either by
eliminating local uncertainty altogether, or by using a set of distributed landmarks to reduce
the effects of local uncertainty. In this section, we consider three related approaches.

Kuipers defines the notion of “place” in terms of a set of related visual events (Kuipers,
1978). This notion provides a basis for inducing graphs from measurements. In Kuipers’
framework (Kuipers & Byun, 1988), locations are arranged in an unrestricted planar graph.
There is recognition uncertainty, but there is no directional uncertainty (if a robot tries to
traverse a particular hall, then it will actually traverse that hall; it may not be able to measure
exactly how long the hall is, but it will not mistakenly move down the wrong hall). Kuipers
goes to some length to deal with recognition uncertainty. To ensure correctness, he has to
assume that there is some reference location that is distinguishable from all other locations.
Since there is no directional uncertainty, any two locations can be distinguished by traversing
paths to the reference location. Given a procedure that is guaranteed to uniquely identify a
location if it succeeds, and succeeds with high probability, we can show that a Kuipers-style
map can be reliably probably almost always usefully learned using an analysis similar to
that of Section 3.

Levitt et al (Levitt, et al., 1987) describe an approach to spatial reasoning that avoids mul-
tiplicative error by introducing local coordinate systems based on landmarks. Landmarks
correspond to environmental features that can be acquired and, more importantly, reac-
quired in exploring the environment. Given that landmarks can be uniquely identified, one
can induce a graph whose vertices correspond to regions of space defined by the landmarks
visible in that region. If the identification and reacquisition of landmarks is guaranteed,
then the problem involves neither recognition nor movement uncertainty. (The robot will
not cross the line between one pair of landmarks thinking that it has crossed the line be-
tween some other pair of landmarks.) Of course, in an outdoor environment, landmark
identification and reacquisition are both situation and aspect dependent (i.e., the current
environmental factors and the direction from which the robot views a scene influence both
recognition and reacquisition). In such cases, some amount of recognition uncertainty will
certainly manifest itself.

Dudek et al (Dudek, et al., 1988) consider the problem of learning a graph in which all
vertices are indistinguishable and upon entering a vertex the robot can leave by any arc
indexed from the one it entered on. The robot can always retrace its steps if it remembers
the directions it took at each point during exploration. The authors show that the problem
is unsolvable in general, but that by providing the robot with a number of distinct markers
(k ≥ 1) the robot can learn the graph in time polynomial in the graph’s size. In order to
place a marker on a particular vertex, the robot must visit that vertex; in order to recover the
marker at later time, the robot must return to the vertex. A vertex with a marker on it acts
as a temporary landmark. No assumption is made regarding the planarity of the graph. The
problem with a single marker that can be placed once but not recovered is also unsolvable,
but, if you allow a compass in addition, the problem can be solved in polynomial time.

The sensor and movement functions presented in this paper are primarily useful for
the analysis of map learning in which sensing is local and the environment restricts the
choice of movement at any given location to a small number of options (e.g., office-like
environments). In Kuipers’ work landmarks are few and may be difficult to identify, but
movement errors are nonexistent. In Levitt’s work, landmarks are plentiful and easy to
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identify, metric information is error prone, but the uncertainty is small. We are currently
considering how to apply our methods to the type of problem discussed in Levitt’s work,
but there are a number of rather difficult barriers to be crossed.

We would like it to be the case that in exploring a bounded area, the robot generates a
map whose size is a polynomial function of, say, the number of distinctive places in that
bounded area. Most map-learning algorithms can not guarantee this. We can provide such
a guarantee for our algorithm, but only by making two rather restrictive assumptions: first,
that the robot is able to correctly identify landmarks, and, second, that the robot knows
the maximum out degree of any vertex in the induced graph. We believe that if the robot
has information about the spatial distribution of locations satisfying certain perceptible
properties and that distribution satisfies certain basic criteria, then it is possible to (probably
approximately correctly) learn a map in polynomial time. The idea is that if a robot knows
enough about the spatial distribution of the different types of locations, it should be able to
identify and reacquire landmarks with a greater than 1

2
probability of success; this degree

of competence should be sufficient for efficient map learning. Whether or not this is a
reasonable assumption is primarily a function of the environment and the power of the
robot’s sensors. Our feeling is that there are interesting environments in which currently
practical sensors are sufficient for competent map learning.

Notes

1. These graphs are closed and finite. A similar technique works for regular tessellations with boundaries, but
the proof is more complicated.
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