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Abstract. In many applicationsin mobilerobotics, it isimportant for arobot to exploreits environment in order
to construct a representation of space useful for guiding movement. We refer to such a representation as amap,
and the process of constructing a map from a set of measurements as map learning. In this paper, we develop
aframework for describing map-learning problems in which the measurements taken by the robot are subject to
known errors. We investigate approaches to learning maps under such conditions based on Valiant's probably
approximately correct learning model. We focus on the problem of coping with accumulated error in combining
local measurements to make global inferences. In one approach, the effects of accumulated error are eliminated
by the use of local sensing methods that never mislead but occasionally fail to produce an answer. In another
approach, the effects of accumulated error are reduced to acceptable levels by repeated exploration of the area
to be learned. We also suggest some insights into why certain existing techniques for map learning perform as
well as they do. The learning problems explored in this paper are quite different from most of the classification
and bool ean-function learning problems appearing in the literature. The methods described, while specific to map
learning, suggest directions to take in tackling other learning problems.
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1. Introduction

Many of the problems faced by robots navigating in the environment can be facilitated by
using expectationsin the form of explicit models of objects and the spacesthat they occupy.
We use the term map to refer to any model of large-scal e space used for purposes of naviga
tion. The construction of useful mapsis complicated by the fact that observationsinvolving
the position, orientation, and identification of spatially remote objects are invariably error
prone. Inthis paper, we exploreanumber of problemsinvolvedin constructing useful maps
from measurements taken with sensors subject to known errors.

In previous work (Dean, 1988), we have looked at various optimization problemsrelated
to constructing maps (e.g., construct the most accurate map consistent with a set of mea-
surements). Even in casesinvolving only a single dimension, such optimization problems
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Figure 1. Exploring a graph

can turn out to be NP-hard (Yemini, 1979). In this paper, rather than look at problems that
involve doing the best with what you have, we consider problems that involve going out
and getting what you need to generate useful representations. _

Map learning, as it is developed here, is different from most other learning tasks that
have been examined. In particular, we assume that the robot eventually will see all of the
environment it is trying to learn, rather than a small sample. Thus the problem is not so
much one of generalization or rule formation as of remembering and sifting through noisy
data. We have found, however, that some existing models for learning are applicable to
map learning. In particular, we consider forms of probabilistic learning such as probably
approximately correct learning (Valiant, 1984) and reliable and probably almost always
useful learning (Rivest & Sloan, 1994) in which the robot gathers information to ensure
that it nearly always (with probability 1 — §) can provide a probably good or guaranteed
perfect path from one location to another. A prerequisite to this latter sort of learning is that
the robot in moving around in its environment can discern the local properties of space with
absolute certainty with high probability having expended an amount of effort polynomial
in % and 7, where n is some measure of the size of the environment. It would seem that,
without this guarantee of being able to eliminate local uncertainty, errors will propagate
throughout the map rendering global queries unacceptably inaccurate. To illustrate, we
consider the problem of building an accurate map of a simple graph.

In Figure 1, an explorer is constructing a map of the graph shown. Suppose that the ex-
plorer begins at A, and explores east to B and C, noting the direction in which he is travelling,
but not the distance travelled. After turning south and finding D, moving west to E and
turning North, he encounters B’, a location which looks to him very much like B. Wishing
to return to A, but not sure whether he is really at B, he decides to perform an experiment
by retracing his steps. Moving cast, he finds C, D and, E as he expects, and returns to B’
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confident that he really is at B. This example illustrates several aspects of the problem of
map construction. First, the explorer may have some ability to recognize locations locally.
For example, the explorer in the graph above may have the ability to determine the degree
of vertices, and might have some general information about the direction of theedges. Thus
the explorer in the example can distinguish E from C, but not B from B’. Second, when this
is not sufficient, the explorer may use non-local evidence about the identity of the location.
For example, the explorer may measure his movements so as to be able to determine that
he is now at some previously visited location. In practice, however, these measurements
will be error-prone. The explorer can also gather evidence about the identity of alocation
by moving away from the location in the direction of some known location, or executing
some sequence of moveswhich servesto identify thelocation. Third, in some cases, simple
identification strategies may fail, asin the example given. Here, neither local identification
nor asimple retracing strategy allow disambiguation of B and B’.

In this paper, we are concerned with strategies which, with high probability, provide local
certainty. Most existing map-learning schemes exploit this sort of certainty in one way or
another (see Section 4). The rehearsal strategies of Kuipers (Kuipers & Byun, 1988) are
one exampl e of how arobot might plan to eliminate uncertainty. Once we have amethod for
eliminating uncertainty, the problem then reduces to one of planning out and executing the
necessary experimentsto extract certain information about the environment. What happens
if complete elimination of uncertainty is impossible? In general, the problem is hard, as
we have seen above. If, however, there are a number of landmarks distributed about the
environment, and these landmarks can be reliably identified by the robot in exploring that
environment, then the robot only hasto overcome propagation of uncertainty between these
landmarks.

In the next section we introduce amodel that facilitates the analysis of map learning, and
discuss severa types of uncertainty and their representations in this model. In Section 3,
we begin by analyzing a particular type of map learning that exploits knowledge of the
structure of the environment to eliminate local uncertainty. We then go on to show how
local uncertainty can be reduced to sufficiently low levelsto allow global learningin certain
cases where complete elimination is impossible, but there are some landmarks. Finally, in
Section 4, we examine several other approaches to the problem of map learning.

2. Spatial Representation

We model the world, for the purposes of studying map learning, as a graph with labels on
the edges at each vertex. In practice, agraph will beinduced from a set of measurements by
identifying a set of distinctive locations in the world, and by noting their connectivity. For
example, we might model a city by considering intersections of streets to be distinguished
locations, and thiswill induce agrid-like graph. Kuipers (Kuipers & Byun, 1988) develops
amapping based on locations distinguished by sensed features like those found in buildings
(see Figure 2).

Figure 3 shows a portion of abuilding and the graph that might be induced from it using
such amapping. Levitt (Levitt, et a., 1987) develops a mapping based on locationsin the
world distinguished by the visibility of landmarks at adistance. In genera, different map-
pings result in graphs with different characteristics, but there are some properties common
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Figure 2. Identifying distinguished locations

Figure 3. A building layout and its induced graph
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to most mappings. For example, if the mapping is built for the purpose of navigating on
a surface, the graph induced will almost certainly be planar and cyclic. Other properties
may include regularity or bounded degree. In what follows, we will always assume that the
graphs induced are connected and undirected; any other properties will be explicitly noted.

Following (Aleliunas, et a., 1979), agraph model consists of agraph, G = (V, E), aset
L of labels, and alabeling, ¢ : {V x E} — L, where we may assume that L has a null
element L which isthelabel of any pair (v € V, e € E) wheree isnot an edgefrom v. We
will frequently use the word direction to refer to an edge and its associated label from a
given vertex. With thisnotation, we can describe apath in the graph as a sequence of labels
indicating the edges to be taken at each vertex. We can describe a procedure to follow as a
function from V' — L indicating the preferred direction to follow from each vertex.

If the graph is a regular tessellation, we may assume that the labeling of the edges at
each vertex is consistent, i.e., thereisagloba scheme for labeling the edges and the labels
conform to this scheme at every vertex. For example, in agrid tessellation, it is natural to
label the edges at each vertex as North, South, East, and West. In general, we do not require
alabeling schemethat isglobally consistent. You canthink of thelabelson edgesemanating
from agiven vertex aslocal directions. Such local directions might correspond to the robot
having acompassthat islocally consistent but globally inaccurate, or local directions might
correspond to locally distinctive features visible from intersections in learning the map of
acity.

The robot’s activities are moving about in the world and sensing its environment. To
model these activities we introduce functions. A movement function is a function from
{V x L} — V. Theintuition behind thisfunction isthat for any location, one may specify
a desired edge to traverse, and the function gives the location reached when the move is
executed. A sensor functionisafunction from V' to some range of interest. One important
sensor function maps vertices to the number of out edges, that is, the degree of the vertex.
Another useful function maps vertices to the power set of labels, 2%, giving the possible
directionsto take from that vertex. More generally, we may partition the set of verticesinto
some number of equival ence classes and use afunction that maps verticesinto these classes.
We refer to this as a recognition sensor, since it allows the robot to recognize locations.
To introduce uncertainty, we may introduce probabilistic forms of these functions or alter
the partitioning. We now develop and explore three kinds of uncertainty that arise in map
learning.

2.1. Movement Uncertainty

There may be uncertainty in the movement of the robot. In particular, the robot may
occasionally move in an unintended direction. We refer to this as directional uncertainty,
and we model this type of uncertainty by introducing a probabilistic movement function.
For example, if G is agrid with the labeling given above, and we associate the vertices of
G with points (4, 5) in the plane, we might define a movement function as follows:
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(i,7 + 1) 70% of thetimeif (I = North)
(i+1,7) 10% of thetimeif (I = North)
¥((4,7),1) =< (i—1,5) 10% of thetimeif (I = North)
(i,7 — 1) 10% of thetimeif (I = North)
wherethe*. ..” indicate the distribution governing movement in the other three directions.

The probahilities associated with each direction sum to 1. If all directions are equally
likely regardless of theintended direction, then the movement function issaid to berandom.
Our goa has been to make as few assumptions as possible about the distribution of error in
the movement function. Throughout, we assume that the distribution governing movement
is static. Other assumptions include the ability to generate an uniform random walk or a
lower bound on the probability that movement is in the intended direction; these will be
made explicit wherethey are used.

2.2.  Recognition Uncertainty

A second source of uncertainty involves sensors, and in particular recognizing locations
that have been seen before. Therobot’s sensors have some error, and this can cause error in
the recognition of places previously visited; the robot might either fail to recognize some
previously visited location, or it might err by mistaking some new location for one seen in
the past. We refer to this type of uncertainty asrecognition uncertainty, and we may model
itintwo different ways. First, we may introduce anew range for the recognition function by
partitioning the set of vertices into equivalence classes. We then assume that the function
returns the same name for each class, i.e., that the robot is unable to distinguish between
elements of agiven class using only its sensors. In this case the recognition function maps
verticesto subsets that are the elements of the partition of the set of vertices. For example,
arobot that explores the interior of buildings might use sonar asits primary sensor and use
hallway junctions as its distinguished locations. In this case, the robot might be able to
distinguish an L junction fromaT junction, but might be unable to distinguish between two
T junctions. In general, expanding the sensor capabilities of the robot will result in better
discrimination of locations, i.e., more equivalence classes, but perfect discrimination will
likely be either impractical or impossible.

Some locations may be sufficiently distinct that they are distinguishable from all others
evenwith fairly simple sensors. Inthe model, these locations appear as singleton setsinthe
partition. Werefer to these locations aslandmarks. We usetheterm “landmark” advisedly;
our landmarks have only some of the usual properties. Specifically, our landmarks are
locations that we occupy, not things seen at a distance. They are landmarks because the
“view” from them (as opposed to the view of them) is unique. In the following, we make
the rather strong assumption that, not only can the robot name the equival ence classes, but
it can also determine if a given location is a member of an equivalence class that contains
exactly one member (i.e., the robot can identify landmarks). We might also model thiskind
of uncertainty by having a probabilistic recognition sensor, that is, one that simply gave the
wrong name for avertex with some probability.
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2.3.  Continuity Uncertainty

A third source of error involves another manifestation of sensor error. In representing
the world using a graph, some mapping must be established from a set of distinguished
locations in the world to V. Error in the sensors could cause the robot to fail to notice a
distinguished location some of the time. For example, arobot taxi might use intersections
as distinguished locations, leading to agrid-like graph. But if sensor error causes the robot
not to notice that it is passing through an intersection, its map will become flawed. In
exploring an office environment, the point in a hallway in front of a door may correspond
to avertex in the induced graph. If the door is closed, there is some chance that the robot
will not recognize the vertex in traversing the hall. We model this type of uncertainty by
introducing a probabilistic movement function that can skip over vertices. We refer to this
type of movement function as discontinuous and to the type of uncertainty modeled as
continuity uncertainty.

Apparently, the three types of uncertainty described above are orthogonal in the sense
that none implies or precludes the others. The issues involved in modeling and reasoning
about continuity uncertainty are complex and will not be treated further in this paper. In
the following, we are concerned with directional and recognition uncertainty.

3. Map Learning

For our purposes, a map is a data structure that facilitates queries concerning connectivity,
both local and global. Answersto queriesinvolving global connectivity will generally rely
on information concerning local connectivity, and hence we regard the fundamental unit of
information to be a connection between two nearby locations (i.e., an edge between two
verticesin theinduced undirected graph). We say that a graph has been learned completely
if for every location we know all of its neighbors and the directions in which they lie (i.e.,
we know every triple of the form (u, [, v) wherew and v are verticesand ! isthelabel at u of
an edgein G from u to v). We assume that the information used to construct the map will
come from exploring the environment, and we identify two different procedures involved
in learning maps: exploration and assimilation. Exploration involves moving about in the
world gathering information, and assimilation involves using that information to construct
a useful representation of space. Exploration and assimilation are generally handled in
parallel, with assimilation performed incrementally as new information becomes available
during exploration. In this section, we are concerned with the conditions under which a
graph can be completely learned, and how much time is reguired for the exploration and
assimilation.

3.1. Tessellation Graphs

It's not hard to see that any connected, undirected graph can be completely learned easily if
thereis no uncertainty. Kuipersand Byun (Kuipers & Byun, 1988) describe away of doing
this by building up an agenda consisting of unexplored paths leading out of locations and
then moving about so as to eventually exploreall such paths. Nothing about the graph need
be known before the exploration begins. Introducing the kinds of uncertainty described in
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Figure 4. A tessellation of order four

Section 2 complicates things considerably. If, however, the graph has additional structure,
then that structure can often be exploited to eliminate uncertainty. In the following, we
assumc that the robot has certain sensing and movement capabilities, modeled by functions.
The robot’s movement function is imperfect, that is, the robot has only partial control over
which way it moves. Our only assumption concerning movement is that the robot is able to
generate a uniform random walk. The robot has a perfect recognition function which allows
it to identify any vertex in the graph uniquely when that vertex is reached. The robot also
knows the degree of the graph. However, the robot’s information about how it has moved
is very limited. Once it moves, it has no way of knowing which direction it went, and no
way of knowing which direction it has come from when it arrives at its new location.

We now provide a proof that it is possible, given these capabilities, to efficiently learn maps
that correspond to regular tessellations without boundaries.! Figure 4 shows a portion of a
grid tessellation. It turns out that the cxploration component of learning regular tessellations
is quite simple; random walks suffice for polynomial-time performance. We first describe
an efficient incremental assimilation procedure that is called whenever the robot encounters
a new location during exploration, and then prove that this procedure can be used together
with a random walk to learn regular tessellations.

The assimilation algorithm uses two data structurcs: vertices and edges. Vertices have
two fields: NEIGHBORS (a list of known adjacent vertices) and ARCS (a list of known
incident edges). Edges have four fields, an ORIENTATION (a pair of labels, one at each
vertex), VERTEX1 (one incident vertex), VERTEXZ2 (the other incident vertex), and DEPEN-
DENCY_LIST (list of edges used during assimilation). All fields not known at the time a
data structure is created are initialized to NIL.

We say that an edge is established when its ORIENTATION is fixed (i.e., assigned a
particular direction from each vertex). We say that a vertex is established when all of
its incident edges are established. Absolute directional information is difficult to come
by without the use of an accurate compass. The assimilation algorithm presented here
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simply picks arandom direction the first time it establishes an edge; all subsequent edges
are established with respect to this initial assignment. The resulting map is guaranteed
correct up to areflection and rotation. One edge is said to be dependent on another when
establishing the second will enable us to establish the first. The following procedure takes
two locations: the location the robot started in and the location it ended up in as aresult of
moving. If [ isalocation that the robot has already seen, then it has a vertex data structure
denoted v(1).

Procedure: assimilate(l, [2)

1.
2.

If I has never been seen before, then createv(ly).
If there already is an edge from v(l;) to v(ly), then exit, else

(A) Addv(lz) to the NEIGHBORS Of v(l1).
(B) Addv(l,) to the NEIGHBORS Of v(I3).
(C) Createan edgefromv(l;) tov(ly), and set e to be that edge.

Check the two vertices of e to determine if either one can be established. A vertex v
can be established if all of the edges out of v areknown and all but one of the edges out
of v are established. If either of e's vertices can be established, then e is established
using the ORIENTATIONS of adjacent edges and the set NEW_EDGES is initiaized to
{} in preparation for propagating the conseguences of establishing e. If neither of e’s
vertices can be established and at least one ORIENTATION has already been assigned,
then exit as there are no other consequences to be realized.

Search the set of edgesfor other edgesthat complete a shortest possible cycleinvolving
e. (A shortest possible cycle for a grid is a cycle of length 4.) Two such cycles are
possible. If either or both cycles are found, they are analyzed as follows.

(A) If thisisthe first cycle discovered, then an ORIENTATION is randomly assigned
to e and the other edges in the cycle are assigned ORIENTATIONS in accord with
this initial assignment. These edges are now established, and they are added to
NEW_EDGES, and their DEPENDENCY_LISTS are set to {}. From now on, all
established edges get their orRIENTATIONS directly or indirectly from this initial
assignment.

(B) If two or more adjacent edges in the cycle are established, then all the edgesin the
cycle can be established. Add al of the newly established edges to NEW_EDGES
and set their DEPENDENCY _LISTStO {}.

(C) If the cycle contains one established edge, or more than one non-adjacent estab-
lished edge, then each non-established edge in the cycle is put on the DEPEN-
DENCY_LIST of each non-established edge adjacent to an established edge.

Establish each edge in the dependency list of e, add them to NEw_EDGES, and set their
DEPENDENCY _LISTStO {}.

If NEW_EDGES = {}, then exit, else remove some edge from NEW_EDGES, set it equal
to e and return to (4).
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We can run assimilate over atrace of locations or incrementally. There is no need to
keep explicit track of where the robot has been in a chain of locations. If edges are kept in
atableindexed by endpoints, then searching for ashortest possible cycleincluding avertex
v can be donein constant time: ¢ table lookups, where c isthe length of the shortest cycle,
and d is the order of the graph (i.e., the degree of v in this case). The worst-case running
time of assimilate is O(|E|), and if assimilate is used at each step on atour of length m
then the overall cost isjust O(m).

LEMMA 1 Theassimilation algorithm provided will learn a finite tessellation completely
if the exploration tour traverses every edge in the graph. The overall cost of assimilation
is O(m) where m isthe length of the tour.

Proof: Traversing every edge in the graph ensures that Step 2 will fill in the NEIGHBORS
fieldfor every vertexinthe graph. By selecting one shortest cyclein thegraph and assigning
an orientation (i.e., labeling) to each edge in this cycle, we can propagate outward from
that cycle and assign orientations to the remaining cycles. Since al cycles are found in
Step 4 if all edges are traversed, every edge in the graph will be labeled. The agorithm
is complicated somewhat by the fact that it operatesin a greedy fashion, i.e., it propagates
orientation as soon as possible. O

We now have to ensure that during exploration the robot traverses each edge in the graph
at least once with high probability. The following two lemmas establish that, for any
connected, regular, undirected graph G and any 6 > 0, arandom walk of length polynomial
in 1 and the size of G is sufficient for traversing every edge in G with probability 1 — 6.

LemMMA 2 Foranyd > 1, thereexistsa polynomial p(d, ¢ ) of order O(dlog dlog ) such
that with probability 1 — 6, p visitsto a vertex of order d result in traversing all edges out
of the vertex at least once.

Proof: Thisisavariationonthe Coupon Collector’sproblem (see(Graham, Knuth & Oren,
1994)). We consider only the traversals resulting from leaving the vertex, thus each visit to
thevertex resultsin thetraversal of one edge chosen at random. The expected number of vis-
itsrequiredfor traversing all edgesat least onceisshownin (Graham, Knuth & Oren, 1994)
to be dH; < dInd + d, where Hq is the value of the harmonic function at d. Let
k =2dInd+d,andlet P, bethe probability that every edge out of the vertex hasbeen tra-
versed at least oncegivenr visits. By Markov'sInequality, P, > 1. Further, P, > 1— 5=
and thiswill beat least 1 — 6 if n > log 1. Thusnk = O(dlog dlog }) visitswill suffice.
O

LemMA 3 For any connected, regular, undirected graph G = (V, E) with order d, any
6 > 0, and any m > 1, there exists a polynomial p(|E|, m, %) such that with probability
1 —6,arandomtour on G of length p visits every vertexin V' at least m times.

Proof: Werely onaresult dueto Aleliunas, etal. (Aleliunas, et a., 1979) that establishes
that the expected number of stepsfor an unbiased random walk to traverseevery undirected
edge in E is less than or equd to 2d|V|(|[V| — 1). This result combined with Markov’'s
Inequality assures that a tour of length 4d|V|(|V| — 1) traverses every edge in E with
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probability greater than 1, and, hence, apath of thislength visits every nodewith probability
greater than 1. If we let k be thislength, then we may consider each tour of length & asan
individual, independent trial, and the probability that every point is hit inr of these trials
isgreater than 1 — ($)". If we now consider each of these & length tours as independent
trials, the probability that m of these trials will result in every point being hit m or more
times s at least (1 — (3)")™. Itis this value that we must ensure is larger than 1 — 6.
Expanding and solving for r shows that » = log, (%) will suffice, making the entire tour
of length kmr = 4dmn (n — 1) log, (% ). d

In most cases, we can do better than random exploration. If the robot moves in the
intended direction with probability greater than % then the robot can traverse every edge
in the graph with high probability in time linear in the size of the graph. Using the above
threelemmasit is easy to prove the following.

THEOREM 1 Itispossibleto completely learn any finite regular tessellation G = (V, E)
with probability 1 — § in time polynomial in % and thesizeof G.

Proof: Let B]™ denote the event of making m visitsto vertex ¢, and Bm denote the event
of making m visits to every vertex in the graph. Let A; denote the event of traversing al
edges incident with vertex i, and A denote the event of traversing all edgesin the graph. If
n = |V, then we have

Pr(A|B™) = Pr(A,,A,,...,A,|B™)
= Pr(A,|B™)Pr(As|A;,B™) ... Pr(A,|Ar, As, ..., Ay_1,B™)

= HPI'(A”BI"?B?’, s 7B771n)

i=1
= []PraiB).
i=1
given that Pr(A;|B}") = Pr(A;) and Pr(A4;[A;) = Pr(A;) fori # j. In aregular graph,

the probability of traversing all edges incident with the ith vertex given m visits to the
vertex isthe same for al vertices, so let Pr(A4;|B!™) = = for al i, and we have

Pr(A) > 7" Pr(B™).

Our objective isto find, for a given G and 6, a polynomial p such that a random walk
of length p on G alows G to be learned completely with probability 1 — §. Clearly this
condition will be met if we can satisfy the following two inequalities:

Pr(B™) > 1-4/2 (@)
o> 1-8/2. )

By Lemma 3, (1) is satisfied by a polynomia number of steps if the number of visits, m,
is polynomial in the relevant variables, whereas (2) will be satisfied if

6
T>1— —

2n’ &
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and, by Lemma 2, the number of visits m to satisfy (3) is polynomial inn and 6. O

The lemmas and form of the proof described above provide a framework for proving
that other kinds of graphs can be reliably probably almost aways usefully learned in a
polynomial number of steps. In general, al werequireisthat apolynomial number of visits
to every vertex providesenough information to learn the graph. Perhaps, the most important
lesson to extract from this exerciseisthat the effects of multiplicative error in learning maps
of large-scale space can be eliminated if there is a reliable method for eliminating local
uncertainty that works with high probability. The above approach to map learning was
inspired by Rivest’smodel of learning (Rivest & Sloan, 1994), in which complex problems
are broken down into simple subproblems that can be learned independently. In order to
learn a useful representation of the global structure of its environment, it is sufficient that
a robot have reliable and usually effective methods for sensing the local structure of its
environment and a method for composing the local structure to generate an accurate global
structure. The sensing methods need not always provide useful answers; they need only
guarantee that the answer returned is not wrong. The problem then becomes largely one
of determining a sequence of sensing and movement tasks that will provide useful answers
with high probability. There are situations, however, in which reliable sensing methods are
not available, and it is still possible to learn useful maps of large-scale space.

3.2. General Graphs

The next problem we look at involves both recognition and directional uncertainty with
general undirected graphs. We show that a form of Valiant's probably approximately
correct learning is possible when applied to learning maps. In this section, we consider
the case in which movement in the intended direction takes place with probability greater
than % and that, upon entering a vertex, the robot knows with certainty the local name of
the edge upon which it entered. We call the latter requirement reverse movement certainty.
Results for related models are summarized in the next section.

At any point in time, the robot is facing in adirection defined by the label of a particular
edge/vertex pair—the vertex being the location of the robot and the edge being one of
the edges emanating from that vertex. We assume that the robot can turn to face in the
direction of any of the edges emanating from the robot’s location. We also assume that
upon entering a vertex the robot can determine with certainty the direction in which it
entered. Directional uncertainty ariseswhen the robot attemptsto moveinthedirectionitis
pointing. Let o > 0.5 be the probability that the robot movesinthe direction it is currently
pointing. More than 50% of the time, the robot ends up at the other end of the edge defining
its current direction, but some percentage of the time it ends up at the other end of some
other edge emanating fromits starting vertex. While the robot won't know that it has ended
up at some unintended location, it will know the direction to follow in trying to return to
its previous location. No further assumptions are made concerning the distribution of the
error probability, in particular, it need not be evenly distributed over the remaining edges.

With regard to recognition uncertainty, we assume that the locations in the world are
of two kinds, those that can be distinguished, and al others. That is, there is some set
of landmarks, in the sense explained above, and all other locations are indistinguishable.
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Figure 5. A path found between landmarks A and D

We model this situation using a partitioning W of V' and assuming that we have a sensor
function which maps V to W. Here W consists of some number of singleton sets plus
the set of all indistinguishable elements. We further assume that a second sensor function
allows us to determine whether the current location is or is nota landmark. For convenience,
we define D to be the subset of V' consisting of the landmark vertices and I to be the subset
of V consisting of the non-landmark vertices. We refer to this kind of graph as a landmark
graph. We define the landmark distribution parameter, r, to be the maximum distance
from any vertex in [ to its nearest landmark (if = 0, then / is empty and all vertices are
landmarks). We say that a procedure learns the local connectivity within radius b of some
v € D if it can provide the shortest path between v and any other vertex in D within a
radius b of v. We say that a procedure learns the global connectivity of a graph G within
a constant factor if, for any two vertices v and v in D, it can provide a path between u
and v whose length is within a constant factor of the length of the shortest path between w
and v in G. Our procedures will construct such a path from paths found between locally
connected landmarks (see Figure 5).

Thus, we may summarize the robot’s capabilities as follows. The robot’s movement
function is not perfect, but serves to move the robot in the intended direction more than half
the time. At each vertex, the robot knows how many out-edges there are, and what their
labels are. In addition, the robot knows which of these it has just arrived from, whether the
vertex is a landmark, and if so, what its unique name is.

We begin by showing that the multiplicative error incurred in trying to answer global
path queries can be kept low if the local error can be kept low, that the transition from a
local uncertainty measure to a global uncertainty measure does not increase the complexity
by more than a polynomial factor, and that it is possible to build a procedure that directs
exploration and map building so as to answer global path queries that are accurate and
within a small constant factor of optimal with high probability.

LEMMA 4 Let G be a landmark graph with distribution parameter v, and let ¢ be any
integer > 2. Given a procedure that, for any & > 0, learns the local connectivity within
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cr of every landmark in G in time polynomial in 3- L with probability 1 — &;, it is possible to
Iearntheglobal connectivity of G with probab|l|ty1 o4 forany 6, > 0 lnt|rnepolynom|al

twn&the length of the optimal path

Proof: Let m be the number of loca paths required to construct the longest answer we
might have to provide to a global query. Then the probability of correctness for any global
answer obeys

Pr(correct answer) > (1 — 6,)™. 4
A simple expansion of 4 gives

1-6)"=1—mé +FE >1—mby,
because £ > 0. Thus, ensuring that every §; < é,/m will ensure that

Pr(correct answer) > 1 — §,.

We use the given procedure to find the local connectivity of every distinguishable vertex
in the graph and the resulting representation is sufficient to provide a path between any two
distinguishable vertices. Note that we do not haveto know |V| in order to calculate é;, only
the length of the longest answer expected. Any path between two landmarks will use the
optimal pathsin and out of the intervening landmarks, and we will show that this path will
be within afactor < of the optimal path.

We now show that | thelengthsof thepathsreturned arewithin the stated limit. Letv = vy,
v1, Vg, ..., v; = v' be ashortest path in G from landmark v to landmark v’. (It might be
that none of the intermediate verticesin the path are landmarks.) We shall show that there
is a sequence of landmarks v = wy, w1, ..., wgx = v, such that each pair of consecutive
landmarks is within distance ¢r of one another and that there is a path from v to v" of
length < (%) that visits each landmark. This will imply that the global path returned
by the above. procedure has length at most (%), which will prove the lemma.

Let & = [j/(c —2)r]. We define the ‘ detour points’ dy = v, d; = v;(c—2), fOr
1<i<k—1,andd; = v'. Thedéfinition of the landmark distribution parameter r tells
usthat each d; iswithin distancer of somelandmark, call it w;. Werequirethat wy, = v and
wy, = v’. By transitivity, the distance between w;_; and wi, for 1 < i < k, isat most ¢r,
and thus w; is“visible” from w;_; using local connectivity. The distance of the modified
path from v to v’ that makes a detour at each d; to go to landmark w: and back is bounded

by

J 2r = ¢

] c—1)2r <j .
ik )T_j+(c—2)7“ c—2’

O

Briefly, the most important stage of the procedure referred to in the proof of Lemma 4
searches outward from a vertex v € D to a distance ¢r, and then uses the edges found
while entering vertices on the outward path to attempt to return to v. The directions used
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on the way out form an expectation for the labels observed on the way back. When these
expectations are not met, the traversal is said to have failed, and the procedure tries again.
The procedure keeps track of the edge/vertex labels associated with vertices visited during
exploration in order to ensure that it explores all paths of length - or less emanating from
each vertex in D with high probability.

There is a possibility that some combination of movement errors could result in false
positive or false negative tests. But we show by exploiting reverse certainty that we can
statistically distinguish between the true and false test results. By attempting enough
traversals, the procedure can ensure with high probability that the most frequently occurring
sets of directions corresponding to perceived traversals actually correspond to pathsin G.
What is required, then, is for the learning procedure to do enough exploration to identify
all paths of length cr or lessin G with high probability.

LeEMMA 5 Thereisaprocedurethat, for any é; > 0, learnsthelocal connectivitywithincr
of each vertexin any landmark graph with probability 1 — ¢; in time polynomial in + 5 . 12a,
and the size of G, and exponential in cr.

Proof: The learning algorithm can be broken down into three steps. alandmark identifi-
cation step in which the robot finds and identifies a set of landmarks, a candidate selection
step in which the robot finds a set of candidate paths in G connecting landmarks, and a
candidate filtering step in which the robot determines which of those candidate paths cor-
respond to actual pathsin G. In order to prove the lemma, landmark identification has to
succeed in identifying al landmarksin G with high probability, candidate selection has to
find all paths (or at least all of the shortest paths) between landmarks with high probability,
and candidate filtering has to determine which of the candidates correspond to actual paths
in G with high probability. We define 1 — 6;, 1 — é,, and 1 — 6, respectively, to be the
desired lower bounds on the probabilities that the three steps succeed in performing their
associated tasks. It sufficesto set 6; = &, = 65 = +6;. Wewill consider each of the three
stepsin turn.

Thefirst step iseasy. Therobot identifies all the Iandmarks in G with probability 1 —
by making a random walk whose length is polynomial in 3- L andthesizeof G. A more
sophisticated exploration might be possible, but arandom wal k sufficesfor polynomial-time
performance.

Having identified a set of landmarks, the robot enters the candidate selection step, in
which it tries al paths of length - starting from each identified landmark A. If d isthe
maximum degree of any vertex in G, then there can be as many as d“" paths of length ¢r
starting from A. Since we expect that ¢ will generally be small, this“local” exponential
factor should not be critical. The robot systematically tries all paths of length - trying to
connect other landmarks within aradius r. For each landmark (other than A) encountered
in a particular traversal, the robot records as a candidate path the subpath that it thinks it
traversedfrom A tothat landmark. For agiven starting landmark A, the resulting candidates
have the following form:

Aout, inXouty -+ in,_Xout, 1> in B> ®)
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where B istheending landmark, and ;,, X ;;; indicatesthat therobot observed itself entering
avertex of type X on thearc labeled in and it observed itself attempting to leave on the arc
labeled out.

The robot has to make enough attempts n to traverse each possible path of length or so
that with high probability it records all the actual paths of length < ¢r. For each path of
length ¢r starting from A that the robot attempts to traverse, the probability that it correctly
traverses that path during a given attempt is «“". Thus, the probability that the robot will
correctly traversethat path at least oncein n attemptsis

1—(1—a")".

In order to ensure that werecord all such pathswith probability 1 — ¢, wehaveto ensurethat
all possible paths of length cr are traversed at least once, which happens with probability
at least

(1= (1=am))"

This probability will be greater than 1 — ¢, if

1 1
n>— <2T10gd+log (—)) .
acr bs

The goal of the next step, candidate filtering, isto determine for each candidate path P, of
theform (5), whether P correspondsto an actua pathinthe graph. Therobot systematically
tries n times to traverse each candidate P. That is, starting from A it attempts to take the
following sequence of arcs:

outg, outy, ..., oubg_1.

During each attempt, the robot checks whether its reverse observations along the way are
consistent with the desired bidirectional path P in (5); that is, a the jth vertex on the
path, for 1 < j < k, the robot checks whether the incoming arc is labeled in;. The robot
also checks that it ended up at landmark B. If al the observations are consistent during a
particular attempted traversal of P, we say that the traversal of P is successful. We denote
by count(P) the number of attempted traversals of P (out of n) that are successful.

In order for atraversal of P by the robot to be successful, all the reverse observations
along the path, which are made with complete accuracy, must be consistent with (5). This
means that the reverse observationsmust be iny, ins, . . ., ing. When taken in reverse order
these observations form a path @ from B to A given by the arcs labeled

ng, ing_1, ..., ing.

We let ) denote the reversal of path @; note that ) isapath from A to B. This means that
the only possible way that an attempted traversal of P can be successful isif @ is actually
traversed.

If P isan actua path in the graph, then @ is the same as the forward traversal of P.
Thus, the probability that the traversal is successful (whichisa*“true positive” result) isthe
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Figure 6. Path traversals with (i) and without (ii) errors

probability that the robot correctly traverses each forward arc in £, which happens with
probability Yerue = af.

The other case is when I is not an actual path in the graph. The traversal will appear to
be successful (which we call a “false positive™ result) when the robot actually traverses Q
when it tries to traverse P. But Q is different from a forward traversal of P since P
is not an actual path in the graph. Let m > 1 be the number of arcs in which @ dif-
fers from a forward traversal of P. The probability of a false positive is thus at most
Vfalse = akim(l —a)™ =< ak—1(1 — ).

Figure 6.1 illustrates the case in which the robot thinks it traversed A1, 3X5, 3Xo, 3B when
in fact it traversed A1, 32X, 3X1, 3B. In order to get a false positive, the robot has to make
exactly the same mistakes that it made when it originally tried to traverse Aq, 3Xs, 3Xa, 3B
during candidate selection. Figure 6.ii illustrates the case in which the robot thinks it
traversed A1, 3X1, 3X1, 3B and is not mistaken.

We now show that the false positives can be statistically distinguished from true positives
in a reasonable amount of time. After n attempted traversals of a path P, if the path P
is an actual path in G the expected value of count(P) is 7y, Whereas if the path P is
not an actual path in G the expected value of count(P) is at most nypase. We set 7 =
2( Verue + Yfalse) and using nT as a threshold, we include in our constructed representation
only those candidate paths P for which count(P) > nr. By making n sufficiently large,
we can assure that this filtering accepts all and only real paths with the desired probability,
1 —éy.

We now show that the number of times n that the robot must attempt to traverse each
P during the candidate traversal step is polynomial in %, (2—;_—1—) ||, and is exponen-
tial in 7. If the path P is actually in G, then P is wrongfully excluded from the con-
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structed representation if the number count (P) of successful traversalsof P isat most nr.
The quantity count(P) isaBernoulli distributed random variable corresponding to n tri-
as, each with probability ~,-,. Of success; it has mean ny;.. and standard deviation
(nYirue (1 — Yirue ) /2. By Hoeffding's inequality (Hoeffding, 1963) we have

Pr(error on P) = Pr(count (P) — nyuue < —1(Virue — 7)) < €~ 2 true -’
Substituting vire — 7 > o (o = 5) > @ (o - 5), wefind that
Pr(error on P) < e~ 2@ T Ha=3))?

When P is not an actual path in the graph, the probability Pr(error on P) of wrongly
including a path in the constructed representation can be bounded in the same fashion.

Thus the probability of correctly including in the constructed representation all and only
the actual candidate pathsin G is at least

1 — |D|d**" Pr(erroron P) > 1 — |D|d2”e—2"(0‘"_1(04—%))27

which is greater than1 — ¢ when

1 1
> In —+2crInd+In|DJ).
' 2<acr—1<a—%>>2<“6f s )

O

THEOREM 2 It is possible to learn the global connectivity of any landmark graph with
probability 1 — § in time polynomial in £, ——, and the size of G, and exponential in r.

1—2a?

Theorem 2 is a simple consequence of Lemma 4 and 5. It has an immediate application
to the problem of learning the global connectivity of a graph where all the vertices are
landmarks. In this case, the parameter » = 0, and we need only explore paths of length 1
in order to establish the global connectivity of the graph. Because each candidate path has
length one, this process works even if there is no reverse certainty.

CoOROLLARY 1 Itispossibleto learn the connectivity of a graph G with only distinguish-
ablelocations with probability 1 — ¢ in time polynomial in ¢, ., and thesize of G, even
if thereis reverse uncertainty.

The notion of global connectivity defined above does not require that the graph be com-
pletely learned, (i.e., to recover the structure of the entire graph). It is assumed that the
indistinguishable vertices are of interest only in so far asthey provide directions necessary
to traverse adirect path between two landmarks. But it is easy to imagine situations where
the indistinguishable vertices and the paths between them are of interest. For instance, the
indistingui shabl e vertices might be partitioned further into equivalence classes so that one
could uniquely designate a vertex by specifying its equivalence class and some radius from
a particular global landmark (e.g., the bookstore just across the street from the Chrysler
building).

Wecan modify theaboveapproach andtry to completely learnthe graph by first compl etely
learning local neighborhoods of eachlandmark. Let usdefineG,4(v), for any positiveinteger
d, to be the subgraph of GG consisting of al vertices and edges within radius d of v.
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LEMMA 6 Let G bealandmark graph with distribution parameter . Given a procedure
that, for any 6, > 0, completely learns G2,.1(v) for each landmark v € G in time
polynomial in 5—1L with probability 1 — ¢;, itis possibleto completely learn G with probability
1 — ¢, for any 64 > 0 intime polynomial in % and thesize of G.

The proof for this lemmais a simple variation on the proof of lemma4.

The above agorithms used for determining the local connectivity of landmarks can be
thought of as building a search tree emanating from each landmark, in which each indis-
tinguishable vertex in G may correspond to several verticesin the search tree. In order to
completely learn G5,.11 (v) (as opposed to just learning the local connectivity), we must
avoid this redundant representation. Again, theideaisto systematically explore each path
away from each landmark. But in this case, each time the robot encounters a vertex that is
not alandmark along a new path, it must check to see if that vertex is actually one that it
has come upon previously by some other path.

It turns out that we can extend our methodsto completely learn Go,.11 (v). Theagorithm
builds G511 (v) viaan incremental breadth-first search in which each vertex encountered
istested viarepeated walks from v to determine with high probability if it has already been
added to G5, 1 (v). The proof requires a careful examination of the probabilities of true
and false test results.

LeEmMA 7 Thereisaprocedurethat, for any §; > 0 and ¢ > 2, completely learns G.... (v)
for each landmark v in a landmark graph with probability 1 — ¢; in time polynomial in il
—5— and the size of G, and exponential incr.

Proof: Therobot canidentify all landmarksasinLemmab. Let usturn our attention tothe
incremental step in the breadth-first search. Suppose that the robot has already determined
that the bidirectional path P

Aoutov ianloutlv R 1'n,€_1X’€—1outk_17 n, Xk (6)

is actualy in the graph, where A is alandmark and X, ..., X are distinct vertices for
k < cr. Therobot is currently attempting to determine if the extended path P’

Aoutov inXtout,s -+ ing_Xk—lout,_,> in,Xkout,> ink+1Xk+1 ()

isactualy in the graph, such that X}, isdistinct from al vertices encountered previously
in the breadth-first search.

Thisis done in two steps. In the first step, called path filtering, the robot determines if
thereis an outgoing arc from X, labeled out . that corresponds to the incoming arc ing11
into X1. Therobot tries n times to traverse the path of length 2( £ + 1) consisting of P’
followed by its reversal. (The value of n will be determined later.) The outgoing arcs it
attempts to take, starting from node A, are labeled

outg, outy, ..., outy, iNg41, iNg, ..., ing. (8)

During each round-trip traversal, therobot checkswhether itsreverse observationsal ong the
way are consistent with the desired bidirectional path P’, asfollows: At the jth vertex on
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thepath, for1 < j < k41, therobot checkswhether theincoming arcislabeled in;, and for
k+2 < j < 2(k+1), therobot checkswhether thetheincoming arcislabeled out o (j, 1) — ;-
The robot also checks whether the path ends at landmark A. If al the observations are
consistent during a particular round-trip traversal of P’, we say that the round-trip traversal
of P’ issuccessful. We denote by count (P’) the number of attempted round-trip traversals
of P’ (out of n) that are successful.

In order for around-trip traversal of P’ by the robot to be successful during the candidate
traversal step, all the reverse observations along the path must be consistent with (7). In
particular, as pointed out above, the 2(k + 1)st incoming arc must be labeled out, the
(2k + 1)st incoming arc must be labeled out;, and so on. Thus the sequence of arcs
actually traversed by the robot must be the reverse of the one specified in (8); no other
possible successful traversals are possible without some observation being inconsistent.

If P’ is an actua path in the graph, the reversal of (8) is equal to itself. Thus, the
probability that the round-trip traversal is successful (which isa“true positive” result) isthe
probability that the robot correctly traverseseach arc it attempts to traverse, which happens
with probability vy = a2+t

The other case iswhen P’ is not an actua path in the graph. The reversal of (8) is now
different from (8), since P’ is not an actual path in the graph. Let m > 2 be the number of
arcsinwhich thereversal of path (8). differsfrom (8). The probability of a“false positive”
result, in which the reverse of (8) is traversed, is at most Yfaise = o2*F+D =" (1 — )™ <
a? (1 —a)k

A statistical argument similar to that in Lemma 5 showsthat if

1

1
> In —+2lnd+mn|V|+In|D|),
" 2<a2cr—1<a—%>>2<“6p nd+nfV]+in ')

then with probability 1 — ¢, path filtering will correctly determine for all extensions P’ of
theform (7) whether thereis an outgoing arc from X, labeled out, that corresponds to the
endpoint vertex'sarc ing.y 1 .

The next step, which we call redundancy filtering, determineswhether X, ; hasalready
been processed during the breadth-first construction, and if so, which previous vertex it
is. For each vertex Y previously encountered in the breadth-first search, let R be the path
ending at Y that first reached Y in the breadth-first search. We shall denote that path by

R= Aoutov inlyloutlv T 1'nk_1Yj—1outj_17 ianj' 9)

HereY =Y. Therobot attempts» timesto traversethe path consisting of P’ followed by
thereversal of R. It checksits observations aong the way to see if they’re consistent with
(7) and (9) and if the traversal started and ended at A. If so the traversal is successful and
it increments count (P’, R).

Arguments similar to those above show that all successful traversals must follow the
reverse of the path consisting of R followed by the reverse of P’. This allows us to
statistically distinguish true positives (the case X1 = Y') from false positives (the case
Xiy1 #Y). Inorder for al the redundancy filterings to be correct with probability 1 — &4,
it suffices for
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1 1
In—+Ind+2In|V|+In|D||.
n>(2a20r_1(a_%))2<n6d+n +2mI V| +In| |>
This completes the proof of Lemma 7. O

THEOREM 3 Itispossibletocompletely learn any landmark graph with probability 1 — 6
in time polynomial in 1, —L— and the size of G, and exponential in r.

1-2a?

Theorem 3 is asimple consequence of Lemma6 and 7.

3.3. Extensions

We can get the same results as in the last section if we allow uncertainty in the reverse
direction, but demand forward movement certainty. The algorithms are similar, the justifi-
cations different. In this case, the graph can be reliably navigated by the same agent that
did the map learning.

We note that the purpose of either certainty requirement isto allow therobot to filter out
paths reported by sensorsthat aren’t really in the graph. In (Basye & Dean, 1989), we treat
the problem of map learning given a probabilistic oracle which, for any given traversal,
provides an answer to the question “was that traversal free of error” which is correct with
probability greater than £. Inthis paper, the certainty requirementsintroduced provide such
an oracle.

We are also investigating ways to remove the requirement of either reverse certainty or
forward certainty. Reversecertainty isused inthelast section to help distinguish probabilis-
tically between true and false resultsin our testing procedures. We can show, for example,
that if »(1 — «) is bounded by a small constant, then efficient map learning is possible
without either the reverse certainty or forward certainty requirement. Another way around
thisrestriction isto alow the exploring agent to drop pebblesor beaconsto remember where
it has been (Dudek, et al., 1988).

We can make map learning somewhat easier and more realistic by assuming that the robot
can do morework or takemoretimeto get better measurements. Thissuggestsaninteresting
optimization problem to work on: given a probabilistic performance requirement, generate
an exploration strategy that meets that requirement, minimizing some measure of cost. We
are just beginning to work on this problem.

It should be noted that we make very few assumptions regarding the structure of the
graphsthat we are trying to learn. In most real applications, however, there isagreat dea
of additional information that can be exploited to expeditelearning. Our intent hereistotry
to provide positive results about general classes of map-learning problems without relying
on agreat deal of domain-specific knowledge.

4, Related Work

There have been many approachesto dealing with uncertainty in spatial reasoning (Brooks,
1984, Davis, 1986, Kuipers, 1978, McDermott & Davis, 1982, Smith & Cheeseman, 1986,
Kurrant-Whyte, 1988, Moravec & Elfes, 1985), but most of these methods suffer from
the effects of multiplicative error in estimating relative position and orientation. This
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paper is concerned with eliminating or limiting the effects of multiplicative error either by
eliminating local uncertainty altogether, or by using aset of distributed landmarksto reduce
the effects of local uncertainty. Inthis section, we consider three related approaches.

Kuipers defines the notion of “place” in terms of a set of related visual events (Kuipers,
1978). This notion provides a basis for inducing graphs from measurements. In Kuipers
framework (Kuipers & Byun, 1988), locations are arranged in an unrestricted planar graph.
There is recognition uncertainty, but there is no directional uncertainty (if arobot tries to
traverseaparticular hall, thenit will actually traversethat hall; it may not be ableto measure
exactly how long the hall is, but it will not mistakenly move down the wrong hall). Kuipers
goes to some length to deal with recognition uncertainty. To ensure correctness, he hasto
assume that there is some reference location that is distinguishable from all other locations.
Sincethereisno directional uncertainty, any twolocationscan bedistinguished by traversing
paths to the reference location. Given a procedure that is guaranteed to uniquely identify a
location if it succeeds, and succeedswith high probability, we can show that aKuipers-style
map can be reliably probably almost always usefully learned using an analysis similar to
that of Section 3.

Levittetal (Levitt, et a., 1987) describe an approach to spatial reasoning that avoids mul-
tiplicative error by introducing local coordinate systems based on landmarks. Landmarks
correspond to environmenta features that can be acquired and, more importantly, reac-
quired in exploring the environment. Given that landmarks can be uniquely identified, one
can induce a graph whose vertices correspond to regions of space defined by the landmarks
visible in that region. If the identification and reacquisition of landmarks is guaranteed,
then the problem involves neither recognition nor movement uncertainty. (The robot will
not cross the line between one pair of landmarks thinking that it has crossed the line be-
tween some other pair of landmarks.) Of course, in an outdoor environment, landmark
identification and reacquisition are both situation and aspect dependent (i.e., the current
environmental factors and the direction from which the robot views a scene influence both
recognition and reacquisition). In such cases, some amount of recognition uncertainty will
certainly manifest itself.

Dudek et al (Dudek, et a., 1988) consider the problem of learning a graph in which all
vertices are indistinguishable and upon entering a vertex the robot can leave by any arc
indexed from the one it entered on. The robot can always retrace its steps if it remembers
the directionsit took at each point during exploration. The authors show that the problem
is unsolvable in general, but that by providing the robot with a number of distinct markers
(k > 1) the robot can learn the graph in time polynomial in the graph’s size. In order to
place amarker on a particular vertex, the robot must visit that vertex; in order to recover the
marker at later time, the robot must return to the vertex. A vertex with a marker on it acts
asatemporary landmark. No assumption is made regarding the planarity of the graph. The
problem with a single marker that can be placed once but not recovered is also unsolvable,
but, if you allow a compass in addition, the problem can be solved in polynomial time.

The sensor and movement functions presented in this paper are primarily useful for
the analysis of map learning in which sensing is local and the environment restricts the
choice of movement at any given location to a small number of options (e.g., office-like
environments). In Kuipers work landmarks are few and may be difficult to identify, but
movement errors are nonexistent. In Levitt's work, landmarks are plentiful and easy to
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identify, metric information is error prone, but the uncertainty is small. We are currently
considering how to apply our methods to the type of problem discussed in Levitt's work,
but there are a number of rather difficult barriers to be crossed.

We would like it to be the case that in exploring a bounded area, the robot generates a
map whose size is a polynomial function of, say, the number of distinctive places in that
bounded area. Most map-learning algorithms can not guarantee this. We can provide such
aguarantee for our algorithm, but only by making two rather restrictive assumptions: first,
that the robot is able to correctly identify landmarks, and, second, that the robot knows
the maximum out degree of any vertex in the induced graph. We believe that if the robot
has information about the spatial distribution of locations satisfying certain perceptible
properties and that distribution satisfies certain basic criteria, thenit ispossible to (probably
approximately correctly) learn amap in polynomial time. Theideaisthat if arobot knows
enough about the spatial distribution of the different types of locations, it should be able to
identify and reacquire landmarks with a greater than % probability of success; this degree
of competence should be sufficient for efficient map learning. Whether or not thisis a
reasonable assumption is primarily a function of the environment and the power of the
robot’s sensors. Our feeling is that there are interesting environments in which currently
practical sensors are sufficient for competent map learning.

Notes

1. These graphs are closed and finite. A similar technique works for regular tessellations with boundaries, but
the proof is more complicated.
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