
APPLICATION-CONTROLLED PAGING FOR A SHARED CACHE∗

RAKESH D. BARVE† , EDWARD F. GROVE‡ , AND JEFFREY SCOTT VITTER§

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1290–1303

Abstract. We propose a provably efficient application-controlled global strategy for organizing
a cache of size k shared among P application processes. Each application has access to information
about its own future page requests, and by using that local information along with randomization in
the context of a global caching algorithm, we are able to break through the conventional Hk ∼ ln k
lower bound on the competitive ratio for the caching problem. If the P application processes always
make good cache replacement decisions, our online application-controlled caching algorithm attains
a competitive ratio of 2HP−1 + 2 ∼ 2 lnP . Typically, P is much smaller than k, perhaps by several
orders of magnitude. Our competitive ratio improves upon the 2P + 2 competitive ratio achieved
by the deterministic application-controlled strategy of Cao, Felten, and Li. We show that no online
application-controlled algorithm can have a competitive ratio better than min{HP−1, Hk}, even if
each application process has perfect knowledge of its individual page request sequence. Our results
are with respect to a worst-case interleaving of the individual page request sequences of the P
application processes.

We introduce a notion of fairness in the more realistic situation when application processes do
not always make good cache replacement decisions. We show that our algorithm ensures that no
application process needs to evict one of its cached pages to service some page fault caused by a
mistake of some other application. Our algorithm not only is fair but remains efficient; the global
paging performance can be bounded in terms of the number of mistakes that application processes
make.

Key words. caching, application-controlled, competitive, online, randomized

AMS subject classifications. 68N25, 68P01, 68P15, 68Q25, 68W20

PII. S0097539797324278

1. Introduction. Caching is a useful technique for obtaining high performance
in these days where the latency of disk access is relatively high. Today’s computers
typically have several application processes running concurrently on them, by means of
time sharing and multiple processors. Some processes have special knowledge of their
future access patterns. Cao, Felten, and Li [CFL94a, CFL94b] exploit this special
knowledge to develop effective file caching strategies.

An application providing specific information about its future needs is equivalent
to the application having its own caching strategy for managing its own pages in cache.
We consider the multiapplication caching problem, formally defined in section 3, in
which P concurrently executing application processes share a common cache of size k.
In section 4 we propose an online application-controlled caching scheme in which
decisions need to be taken at two levels: when a page needs to be evicted from cache,

∗Received by the editors July 14, 1997; accepted for publication (in revised form) September 10,
1998; published electronically February 18, 2000. An extended abstract of the results in this paper
appeared in Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995,
pp. 204–213.

http://www.siam.org/journals/sicomp/29-4/32427.html
†Department of Computer Science, Duke University, Durham, NC 27708-0129 (rbarve@cs.

duke.edu). This author was supported in part by an IBM graduate fellowship.
‡Department of Computer Science, Duke University, Durham, NC 27708-0129 (efg@cs.duke.edu).

This author was supported in part by Army Research Office grant DAAH04-93-G-0076.
§Department of Computer Science, Duke University, Durham, NC 27708-0129 (jsv@cs.duke.edu).

This author was supported in part by the National Science Foundation under grants CCR-9007851
and CCR-9522047 and by Air Force Office of Scientific Research grants F49620-92-J-0515 and F49620-
94-1-0217. Part of this work was done while the author was visiting Lucent Technologies, Bell
Laboratories, Murray Hill, NJ.

1290

APPLICATION-CONTROLLED PAGING FOR A SHARED CACHE 1291

the global strategy chooses a victim process, but the process itself decides which of
its pages will be evicted from cache.

Each application process may use any available information about its future page
requests when deciding which of its pages to evict. However, we assume no global
information about the interleaving of the individual page request sequences; all our
bounds are with respect to a worst-case interleaving of the individual request se-
quences.

Competitive ratios smaller than theHk lower bound for classical caching [FKL+91]
are possible for multiapplication caching, because each application may employ fu-
ture information about its individual page request sequence.1 The deterministic
application-controlled algorithm proposed by Cao, Felten, and Li [CFL94a] achieves a
competitive ratio of 2P +2, which we prove in the appendix. We show in sections 5–7
that our new randomized online application-controlled caching algorithm improves
the competitive ratio to 2HP−1 + 2 ∼ 2 lnP , which is optimal up to a factor of 2
in the realistic scenario when P < k. (If we use the algorithm of [FKL+91] for the
case P ≥ k, the resulting bound is optimal up to a factor of 2 for all P .) Our results
are significant since P is often much smaller than k, perhaps by several orders of
magnitude.

In the appendix, we also prove that no deterministic online application-controlled
algorithm can have a competitive ratio better than P+1. Thus the difference between
our competitive ratio and that attained by the algorithm by Cao, Felten, and Li is
a further indication of the (well-known) power of randomization while solving online
problems in general and online paging in particular.

In the scenario where application processes occasionally make bad page replace-
ment decisions (or “mistakes”), we show in section 8 that our online algorithm incurs
very few page faults globally as a function of the number of mistakes. Our algorithm is
also fair, in the sense that the mistakes made by one processor in its page replacement
decisions do not worsen the page fault rate of other processors.

2. Classical caching and competitive analysis. The well-known classical
caching (or paging) problem deals with a two-level memory hierarchy consisting of
a fast cache of size k and slow memory of arbitrary size. A sequence of requests to
pages is to be satisfied in their order of occurrence. In order to satisfy a page request,
the page must be in fast memory. When a requested page is not in fast memory, a
page fault occurs, and some page must be evicted from fast memory to slow memory
in order to make room for the new page to be put into fast memory. The caching (or
paging) problem is to decide which page must be evicted from the cache. The cost to
be minimized is the number of page faults incurred over the course of servicing the
page requests.

Belady [Bel66] gives a simple optimum offline algorithm for the caching problem;
the page chosen for eviction is the one in cache whose next request is furthest in
the future. In order to quantify the performance of an online algorithm, Sleator
and Tarjan [ST85] introduce the notion of competitiveness, which in the context of
caching can be defined as follows: for a caching algorithm A, let FA(σ) be the number
of page faults generated by A while processing page request sequence σ. If A is a
randomized algorithm, we let FA(σ) be the expected number of page faults generated
by A on processing σ, where the expectation is with respect to the random choices
made by the algorithm. An online algorithm A is called c-competitive if for every

1Here Hn represents the nth harmonic number
∑n

i=1
1/i ∼ lnn.

1292 R. D. BARVE, E. F. GROVE, AND J. S. VITTER

page request sequence σ, we have FA(σ) ≤ c · FOPT (σ) + b, where b is some fixed
constant. The constant c is called the competitive ratio of A. Under this measure, an
online algorithm’s performance needs to be relatively good on worst-case page request
sequences in order for the algorithm to be considered good.

For cache size k, Sleator and Tarjan [ST85] show a lower bound of k on the
competitive ratio of deterministic caching algorithms. Fiat et al. [FKL+91] prove a
lower bound of Hk if randomized algorithms are allowed. They also give a simple
and elegant randomized algorithm for the problem that achieves a competitive ratio
of 2Hk. McGeoch and Sleator [MS91] give a rather involved randomized algorithm
that attains the theoretically optimal competitive ratio of Hk.

3. Multiapplication caching problem. In this paper we take up the theoret-
ical issue of how best to use application processes’ knowledge about their individual
future page requests so as to optimize caching performance. For analysis purposes we
use an online framework similar to that of [FKL+91, MS91]. As mentioned before,
the caching algorithms in [FKL+91, MS91] use absolutely no information about future
page requests. Intuitively, knowledge about future page requests can be exploited to
decide which page to evict from the cache at the time of a page fault. In practice
an application often has advance knowledge of its individual future page requests.
Cao, Felten, and Li [CFL94a, CFL94b] introduced strategies that try to combine the
advance knowledge of the processors in order to make intelligent page replacement
decisions.

In the multiapplication caching problem we consider a cache capable of stor-
ing k pages that is shared by P different application processes, which we denote
P1, P2, . . . , PP . Each page in cache and memory belongs to exactly one process.
The individual request sequences of the processes may be interleaved in an arbitrary
(worst-case) manner.

Worst-case measure is often criticized when used for evaluating caching algorithms
for individual application request sequences [BIRS91, KPR92], but we feel that the
worst-case measure is appropriate for considering a global paging strategy for a cache
shared by concurrent application processes that have knowledge of their individual
page request sequences. The locality of reference within each application’s individual
request sequence is accounted for in our model by each application process’s knowledge
of its own future requests. The worst-case nature of our model is that it assumes
nothing about the order and duration of time for which application processes are
active. In this model our worst-case measure of competitive performance amounts to
considering a worst-case interleaving of individual sequences.

The approach of Cao, Felten, and Li [CFL94a] is to have the kernel determinis-
tically choose the process owning the least recently used page at the time of a page
fault and ask that process to evict a page of its choice (which may be different from
the least recently used (LRU) page). In the appendix we show under the assumption
that processes always make good page replacement decisions that Cao, Felten, and
Li’s algorithm has a competitive ratio between P + 1 and 2P + 2. The algorithm we
present in the next section and analyze thereafter improves the competitive ratio to
2HP−1 + 2 ∼ 2 lnP .

4. Online algorithm for multiapplication caching. Our algorithm is an on-
line application-controlled caching strategy for an operating system kernel to manage
a shared cache in an efficient and fair manner. We show in the subsequent sections
that the competitive ratio of our algorithm is 2HP−1+2 ∼ 2 lnP and that it is optimal

APPLICATION-CONTROLLED PAGING FOR A SHARED CACHE 1293

to within a factor of about 2 among all online algorithms. (If P ≥ k, we can use the
algorithm of [FKL+91].)

On a page fault, we first choose a victim process and then ask it to evict a suitable
page. Our algorithm can detect mistakes made by application processes, which enables
us to reprimand such application processes by having them pay for their mistakes. In
our scheme, we mark pages as well as processes in a systematic way while processing
the requests that constitute a phase.

Definition 4.1. The global sequence of page requests is partitioned into a consec-
utive sequence of phases; each phase is a sequence of page requests. At the beginning
of each phase, all pages and processes are unmarked. A page gets marked during a
phase when it is requested. A process is marked when all of its pages in cache are
marked. A new phase begins when a page is requested that is not in cache and all
the pages in cache are marked. A page accessed during a phase is called clean with
respect to that phase if it was not in the online algorithm’s cache at the beginning of
a phase. A request to a clean page is called a clean page request. Each phase always
begins with a clean page request.

Our marking scheme is similar to the one in [FKL+91] for the classical caching
problem. However, unlike the algorithm in [FKL+91], the algorithm we develop is a
nonmarking algorithm, in the sense that our algorithm may evict marked pages. In
addition, our notion of phase in Definintion 4.1 is different from the notion of phase
in [FKL+91], which can be looked upon as a special case of our more general notion.
We put the differences into perspective in section 4.1.

Our algorithm works as follows when a page p belonging to process Pr is requested:

(1) If p is in cache:
(a) If p is not marked, we mark it.
(b) If process Pr has no unmarked pages in cache, we mark Pr.

(2) If p is not in cache:
(a) If process Pr is unmarked and page p is not a clean page with respect

to the ongoing phase (i.e., Pr has made a mistake earlier in the phase
by evicting p), then
(i) We ask process Pr to make a page replacement decision and evict

one of its pages from cache in order to bring page p into cache. We
mark page p and also mark process Pr if it now has no unmarked
pages in cache.

(b) Else (process Pr is marked or page p is a clean page, or both)
(i) If all pages in cache are marked, we remove marks from all pages

and processes, and we start a new phase, beginning with the current
request for p.

(ii) Let S denote the set of unmarked processes having pages in the
cache. We randomly choose a process Pe from S, each process being
chosen with a uniform probability 1/|S|.

(iii) We ask process Pe to make a page replacement decision and evict
one of its pages from cache in order to bring page p into cache. We
mark page p and also mark process Pe if it now has no unmarked
page in cache.

Note that in steps 2(a)(i) and 2(b)(iii) our algorithm seeks paging decisions from
application processes that are unmarked. Consider an unmarked process Pi that has
been asked to evict a page in a phase, and consider Pi’s pages in cache at that time.
Let ui denote the farthest unmarked page of process Pi; that is, ui is the unmarked

1294 R. D. BARVE, E. F. GROVE, AND J. S. VITTER

page of process Pi whose next request occurs furthest in the future among all of Pi’s
unmarked cached pages. Note that process Pi may have marked pages in cache whose
next requests occur after the request for ui.

Definition 4.2. The good set of an unmarked process Pi at the current point
in the phase is the set consisting of its farthest unmarked page ui in cache and every
marked page of Pi in cache whose next request occurs after the next request for page ui.
A page replacement decision made by an unmarked process Pi in either step 2(a)(i)
or step 2(b)(iii) that evicts a page from its good set is regarded as a good decision
with respect to the ongoing phase. Any page from the good set of Pi is a good page
for eviction purposes at the time of the decision. Any decision made by an unmarked
process Pi that is not a good decision is regarded as a mistake by process Pi.

If a process Pi makes a mistake by evicting a certain page from cache, we can
detect the mistake made by Pi if and when the same page is requested again by Pi in
the same phase while Pi is still unmarked.

In sections 6 and 7 we specifically assume that application processes are always
able to make good decisions about page replacement. In section 8 we consider fairness
properties of our algorithm in the more realistic scenario where processes can make
mistakes.

4.1. Relation to previous work on classical caching. Our marking scheme
approach is inspired by a similar approach for the classical caching problem in
[FKL+91]. However, the phases defined by our algorithm are significantly differ-
ent in nature from those in [FKL+91]. Our phase ends when there are k distinct
marked pages in cache; more than k distinct pages may be requested in the phase.
The phases depend on the random choices made by the algorithm and are probabilis-
tic in nature. On the other hand, a phase defined in [FKL+91] ends when exactly
k distinct pages have been accessed, so that given the input request sequence, the
phases can be determined independently of the caching algorithm being used.

The definition in [FKL+91] is suited to facilitate the analysis of online caching
algorithms that never evict marked pages, called marking algorithms. In the case
of marking algorithms, since marked pages are never evicted, as soon as k distinct
pages are requested, there are k distinct marked pages in cache. This means that the
phases determined by our definition for the special case of marking algorithms are
exactly the same as the phases determined by the definition in [FKL+91]. Note that
our algorithm is in general not a marking algorithm since it may evict marked pages.
While marking algorithms always evict unmarked pages, our algorithm always calls
on unmarked processes to evict pages; the actual pages evicted may be marked.

4.2. Relation to the algorithm of Cao, Felten, and Li. The algorithm
proposed by Cao, Felten, and Li [CFL94a] for the multiapplication caching problem
amounts to evicting, at the time of a page fault, the farthest page from cache belonging
to the process that owns the LRU page in cache. Thus, for a given interleaving
of individual request sequences, the paging decisions made by that algorithm are
deterministic. We prove in the appendix that no deterministic online algorithm for
the multiapplication caching problem can have a competitive ratio better than P + 1,
and that the competitive ratio attained by the algorithm proposed by Cao, Felten,
and Li [CFL94a] attains a competitive ratio of 2P + 2. Thus, the performance of the
algorithm in [CFL94a] is within a factor of 2 of the best possible performance by any
deterministic online algorithm for the multiapplication caching problem.

Given the notion of good pages that we developed above, it turns out that we can
define a slightly more general version of the algorithm in [CFL94a] without changing

APPLICATION-CONTROLLED PAGING FOR A SHARED CACHE 1295

its paging performance. Basically, in order to attain the competitive ratio of 2P + 2,
it is enough, at the time of a page fault, to evict from cache any good page belonging
to the process that owns the LRU page in cache. We say that this is a slightly more
general version than the algorithm presented in [CFL94a] because it may very often
be the case that the good set of the process that owns the LRU page contains several
pages other than the farthest page of that process.

5. Lower bounds for OPT and competitive ratio. In this section we prove
that the competitive ratio of any online caching algorithm can be no better than
min{HP−1, Hk}. Let us denote by OPT the optimal offline algorithm for caching
that works as follows: when a page fault occurs, OPT evicts the page whose next
request is furthest in the future request sequence among all pages in cache.

As in [FKL+91], we will compare the number of page faults generated by our
online algorithm during a phase with the number of page faults generated by OPT
during that phase. We express the number of page fronts as a function of the number
of clean page requests during the phase. Here we state and prove a lower bound on
the (amortized) number of page faults generated by OPT in a single phase. The proof
is a simple generalization of an analogous proof in [FKL+91], which deals only with
the deterministic phases of marking algorithms.

Lemma 5.1. Consider any phase σi of our online algorithm in which `i clean
pages are requested. Then OPT incurs an amortized cost of at least `i/2 on the
requests made in that phase.2

Proof. Let di be the number of clean pages in OPT ’s cache at the beginning of
phase σi; that is, di is the number of pages requested in σi that are in OPT ’s cache
but not in our algorithm’s cache at the beginning of σi. Let di+1 represent the same
quantity for the next phase σi+1. Let di+1 = dm + du, where dm of the di+1 clean
pages in OPT ’s cache at the beginning of σi+1 are marked during σi and du of them
are not marked during σi. Note that d1 = 0 and di ≤ k for all i.

Of the `i clean pages requested during σi, only di are in OPT ’s cache, so OPT
generates at least `i − di page faults during σi. On the other hand, while processing
the requests in σi, OPT cannot use du of the cache locations, since at the beginning
of σi+1 there are du pages in OPT ’s cache that are not marked during σi. (These du
pages would have to be in OPT ’s cache before σi even began.) There are k marked
pages in our algorithm’s cache at the end of σi, and there are dm other pages marked
during σi that are out of our algorithm’s cache. So the number of distinct pages
requested during σi is at least dm + k. Hence, OPT serves at least dm + k requests
corresponding to σi without using du of the cache locations. This means that OPT
generates at least (k+ dm)− (k− du) = di+1 faults during σi. Therefore, the number
of faults OPT generates on σi is at least

max{`i − di, di+1} ≥ `i − di + di+1

2
.(5.1)

Let us consider the number of page faults made by OPT in the first j phases of
page request sequence σ. We can use the lower bound (5.1) for phases 2, 3, . . . , j−1.
In the jth phase, OPT makes at least `j − dj ≥ (`j − dj)/2 faults. In the first phase,
OPT generates k faults and we have `1 = k. Thus the sum of OPT ’s faults over all

2By “amortized” in Lemma 5.1 we mean for each j ≥ 1 that the number of page faults made

by OPT while serving the first j phases is at least
∑j

i=1
`i/2, where `i is the number of clean page

requests in the ith phase.

1296 R. D. BARVE, E. F. GROVE, AND J. S. VITTER

j phases is at least

`1 +

j−1∑
i=2

`i − di + di+1

2
+
`j − dj

2
≥

j∑
i=1

`i/2,

where we use the fact that d2 ≤ k = `1. Thus by definition, the amortized number of
faults OPT generates over any phase σi is at least `i/2.

Next we will construct a lower bound for the competitive ratio of any randomized
online algorithm even when application processes have perfect knowledge of their
individual request sequences. The proof is a straightforward adaptation of the proof
of the Hk lower bound for classical caching [FKL+91]. However, in the situation at
hand, the adversary has more restrictions on the request sequence that he can use to
prove the lower bound, thereby resulting in a lowering of the lower bound.

Theorem 5.2. The competitive ratio of any randomized algorithm for the multi-
application caching problem is at least min{HP−1, Hk} even if application processes
have perfect knowledge of their individual request sequences.

Proof. If P > k, the Hk lower bound on the classical caching problem from
[FKL+91] is directly applicable by considering the case where each process accesses
only one page each. This gives a lower bound of Hk on the competitive ratio.

In the case when P ≤ k, we construct a multiapplication caching problem based
on the nemesis sequence used in [FKL+91] for classical caching. In [FKL+91] a lower
bound of Hk′ is proved for the special case of a cache of size k′ and a total of k′ + 1
pages, which we denote c1, c2, . . . , ck′+1. All but one of the pages can fit in cache at the
same time. Our corresponding multiapplication caching problem consists of P = k′+1
application processes P1, P2, . . . , PP so that there is one process corresponding to each
page of the classical caching lower bound instance for a k′-sized cache. Process Pi
owns ri pages pi1, pi2, . . . , piri . The total number

∑P
i=1 ri of pages among all the

processes is k + 1, where k is the cache size; that is, all but one of the pages among
all the processes can fit in memory simultaneously.

In the instance of the multiapplication caching problem we construct, the request
sequence for each process Pi consists of repetitions of the double round-robin sequence

pi1, pi2, . . . , piri , pi1, pi2, . . . , piri(5.2)

of length 2ri. We refer to the double round-robin sequence (5.2) as a touch of pro-
cess Pi. When the adversary generates requests corresponding to a touch of process Pi,
we say that it “touches process Pi.”

Given an arbitrary adversarial sequence for the classical caching problem de-
scribed above, we construct an adversarial sequence for the multiapplication caching
problem by replacing each request for page ci in the former problem by a touch of
process Pi in the latter problem. We can transform an algorithm for this instance of
multiapplication caching into one for the classical caching problem by the following
correspondence: if the multiapplication algorithm evicts a page from process Pj while
servicing the touch of process Pi, the classical caching algorithm evicts page cj in
order to service the request to page ci. In Lemma 5.3 below, we show that there is
an optimum online algorithm for the above instance of multiapplication caching that
never evicts a page belonging to process Pi while servicing a fault on a request for
a page from process Pi. Thus the transformation is valid, in that page ci is always
resident in cache after the page request to ci is serviced. This reduction immediately
implies that the competitive ratio for this instance of multiapplication caching must
be at least Hk′ = HP−1.

APPLICATION-CONTROLLED PAGING FOR A SHARED CACHE 1297

Lemma 5.3. For the above instance of multiapplication caching, any online al-
gorithm A can be converted into an online algorithm A′ that is at least as good in
an amortized sense and that has the property that all the pages for process Pi are in
cache immediately after a touch of Pi is processed.

Proof. Intuitively, the double round-robin sequences force an optimal online al-
gorithm to service the touch of a process by evicting a page belonging to another
process. We construct online algorithm A′ from A in an online manner. Suppose that
both A and A′ fault during a touch of process Pi. If algorithm A evicts a page of Pj ,
for some j 6= i, then A′ does the same. If algorithm A evicts a page of Pi during the
first round-robin while servicing a touch of Pi, then there will be a page fault during
the second round-robin. If A then evicts a page of another process during the second
round-robin, then A′ evicts that page during the first round-robin and incurs no fault
during the second round-robin. The first page fault of A was wasted; the other page
could have been evicted instead during the first round-robin. If instead A evicts an-
other page of Pi during the second round-robin, then A′ evicts an arbitrary page of
another process during the first round-robin, and A′ incurs no page fault during the
second round-robin. Thus, if A evicts a page of Pi, it incurs at least one more page
fault than does A′.

If A faults during a touch of Pi, but A′ doesn’t, there is no paging decision for A′

to make. If A does not fault during a touch of Pi, but A′ does fault, then A′ evicts
the page that is not in A’s cache. The page fault for A′ is charged to the extra page
fault that A incurred earlier when A′ evicted one of Pi’s pages.

Thus the number of page faults that A′ incurs is no more than the number of
page faults that A incurs. By construction, all pages of process Pi are in algorithm
A′’s cache immediately after a touch of process Pi.

The double round-robin sequences in the above reduction can be replaced by single
round-robin sequences by redoing the explicit lower bound argument of [FKL+91].

6. Holes. In this section, we introduce the notion of holes, which plays a key
role in the analysis of our online caching algorithm. In section 6.2, we mention some
crucial properties of holes of our algorithm under the assumption that applications
always make good page replacement decisions. These properties are also useful in
bounding the page faults that can occur in a phase when applications make mistakes
in their page replacement decisions.

Definition 6.1. The eviction of a cached page at the time of a page fault on
a clean page request is said to create a hole at the evicted page. Intuitively, a hole
is the lack of space for some page, so that that page’s place in cache contains a hole
and not the page. If page p1 is evicted for servicing the clean page request, page p1 is
said to be associated with the hole. If page p1 is subsequently requested and another
page p2 is evicted to service the request, the hole is said to move to p2, and now p2 is
said to be associated with the hole, and so on, until the end of the phase. We say that
hole h moves to process Pi to mean that the hole h moves to some page p belonging
to process Pi.

6.1. General observations about holes. All requests to clean pages during a
phase are page faults and create holes. The number of holes created during a particular
phase equals the number of clean pages requested during that phase. Apart from clean
page requests, requests to holes also cause page faults to occur. By a request to a
hole we mean a request for the page associated with that hole. As we proceed down
the request sequence during a phase, the page associated with a particular hole varies
with time. Consider a hole h that is created at a page p1 that is evicted to serve a

1298 R. D. BARVE, E. F. GROVE, AND J. S. VITTER

request for clean page pc. When a request is made for page p1, some page p2 is evicted,
and h moves to p2. Similarly when page p2 is requested, h moves to some p3, and
so on. Let p1, p2, . . . , pm be the temporal sequence of pages all associated with hole
h in a particular phase such that page p1 is evicted when clean page pc is requested,
page pi, where i > 1, is evicted when pi−1 is requested and the request for pm falls
in the next phase. Then the number of faults incurred in the particular phase being
considered due to requests to h is m− 1.

6.2. Useful properties of holes. In this section we make the following obser-
vations about holes under the assumption that application processes make only good
decisions.

Lemma 6.2. Let ui be the farthest unmarked page in cache of process Pi at some
point in a phase. Then process Pi is a marked process by the time the request for page
ui is served.

Proof. This follows from the definition of farthest unmarked page and the nature
of the marking scheme employed in our algorithm.

Lemma 6.3. Suppose that there is a request for page pi, which is associated with
hole h. Suppose that process Pi owns page pi. Then process Pi is already marked at
the time of the present request for page pi.

Proof. Page pi is associated with hole h because process Pi evicted page pi when
asked to make a page replacement decision in order to serve either a clean request or
a page fault at the previous page associated with h. In either case, page pi was a good
page at the time process Pi made the particular paging decision. Since process Pi was
unmarked at the time the decision was made, pi was either the farthest unmarked
page of process Pi then or some marked page of process Pi whose next request is after
the request for Pi’s farthest unmarked page. By Lemma 6.2, process Pi is a marked
process at the time of the request for page pi.

Lemma 6.4. Suppose that page pi is associated with hole h. Let Pi denote the
process owning page pi. Suppose page pi is requested at some time during the phase.
Then hole h does not move to process Pi subsequently during the current phase.

Proof. The hole h belongs to process Pi. By Lemma 6.3 when a request is made
to h, Pi is already marked and will remain marked until the end of the phase. Since
only unmarked processes are chosen to evict pages, a request for h thereafter cannot
result in eviction of any page belonging to Pi, so a hole can never move to a process
more than once.

Let there be R unmarked processes at the time of a request to a hole h. For
any unmarked process Pj , 1 ≤ j ≤ R, let uj denote the farthest unmarked page of
process Pj at the time of the request to hole h. Without loss of generality, let us
relabel the processes so that

u1, u2, u3, . . . , uR(6.1)

is the temporal order of the first subsequent appearance of the pages uj in the global
page request sequence.

Lemma 6.5. In the situation described in (6.1) above, suppose during the page
request for hole h that the hole moves to a good page pi of unmarked process Pi to
serve the current request for h. Then h can never move to any of the processes
P1, P2, . . . , Pi−1 during the current phase.

Proof. The first subsequent request for the good page pi that Pi evicts, by def-
inition, must be the same as or must be after the first subsequent request for the
farthest unmarked page ui. So process Pi will be marked by the next time hole h is

APPLICATION-CONTROLLED PAGING FOR A SHARED CACHE 1299

requested, by Lemma 6.3. On the other hand, the first subsequent requests of the
respective farthest unmarked pages u1, . . . , ui−1 appear before that of page ui. Thus,
by Lemma 6.2, the processes P1, P2, . . . , Pi−1 are already marked before the next time
hole h (page pi) gets requested and will remain marked for the remainder of the phase.
Hence, by the fact that only unmarked processes get chosen, hole h can never move
to any of the processes P1, P2, . . . , Pi−1.

7. Competitive analysis of our online algorithm. Our main result is The-
orem 7.1, which states that our online algorithm for the multiapplication caching
problem is roughly 2 lnP -competitive, assuming application processes always make
good decisions (e.g., if each process knows its own future page requests). By the
lower bound of Theorem 5.2, it follows that our algorithm is optimal in terms of
competitive ratio up to a factor of 2.

Theorem 7.1. The competitive ratio of our online algorithm in section 4 for the
multiapplication caching problem, assuming that good evictions are always made, is
at most 2HP−1 + 2. Our competitive ratio is within a factor of about 2 of the best
possible competitive ratio for this problem.

The rest of this section is devoted to proving Theorem 7.1. To count the number
of faults generated by our algorithm in a phase, we make use of the properties of holes
from the previous section. If ` requests are made to clean pages during a phase, there
are ` holes that move about during the phase. We can count the number of faults
generated by our algorithm during the phase as

`+
∑̀
i=1

Ni,(7.1)

where Ni is the number of times hole hi is requested during the phase. Assuming
good decisions are always made, we will now prove for each phase and for any hole hi
that the expected value of Ni is bounded by HP−1.

Consider the first request to a hole h during the phase. Let Rh be the number of
unmarked processes at that point in time. Let CRh be the random variable associated
with the number of page faults due to requests to hole h during the phase.

Lemma 7.2. The expected number E(CRh) of page faults due to requests to hole h
is at most HRh .

Proof. We prove this by induction over Rh. We have E(C0) = 0 and E(C1) = 1.
Suppose for 0 ≤ j ≤ Rh − 1 that E(Cj) ≤ Hj . Using the same terminology and
notation as in Lemma 6.5, we let the farthest unmarked pages of the Rh unmarked
processes at the time of the request for h appear in the temporal order

u1, u2, u3, . . . , uRh

in the global request sequence. We renumber the Rh unmarked processes for conve-
nience so that page ui is the farthest unmarked page of unmarked process Pi.

When the hole h is requested, our algorithm randomly chooses one of the Rh
unmarked processes, say, process Pi, and asks process Pi to evict a suitable page.
Under our assumption, the hole h moves to some good page pi of process Pi. From
Lemmas 6.4 and 6.5, if our algorithm chooses unmarked process Pi so that its good
page pi is evicted, then at most Rh − i processes remain unmarked the next time h
is requested. Since each of the Rh unmarked processes is chosen with a probability

1300 R. D. BARVE, E. F. GROVE, AND J. S. VITTER

of 1/Rh, we have

E(CRh) ≤ 1 +
1

Rh

Rh∑
i=1

E(CRh−i)

= 1 +
1

Rh

Rh−1∑
i=0

E(Ci)

≤ 1 +
1

Rh

Rh−1∑
i=0

Hi

= HRh .

The last equality follows easily by induction and algebraic manipulations.
Now let us complete the proof of Theorem 7.1. By Lemma 6.3 the maximum

possible number of unmarked processes at the time a hole h is first requested is
P −1. Lemma 7.2 implies that the average number of times any hole can be requested
during a phase is bounded by HP−1. By (7.1), the total number of page faults
during the phase is at most `(1 + HP−1). We have already shown in Lemma 5.1
that the OPT algorithm incurs an amortized cost of at least `/2 for the requests
made in the phase. Therefore, the competitive ratio of our algorithm is bounded by
`(1+HP−1)/(`/2) = 2HP−1 +2. Applying the lower bound of Theorem 5.2 completes
the proof.

8. Application-controlled caching with fairness. In this section we analyze
our algorithm’s performance in the realistic scenario where application processes can
make mistakes, as defined in Definition 4.2. We bound the number of page faults
it incurs in a phase in terms of page faults caused by mistakes made by application
processes during that phase. The main idea here is that if an application process Pi
commits a mistake by evicting a certain page p and then during the same phase
requests page p while process Pi is still unmarked, our algorithm makes process Pi
pay for the mistake in step 2(a)(i).

On the other hand, if page p’s eviction from process Pi was a mistake, but pro-
cess Pi is marked when page p is later requested in the same phase, say, at time t,
then process Pi’s mistake is “not worth detecting” for the following reason: since
evicting page p was a mistake, it must mean that at the time t1 of p’s eviction, there
existed a set U of one or more unmarked pages of process Pi in cache whose sub-
sequent requests appear after the next request for page p. Process Pi is marked at
the time of the next request for p, implying that all pages in U were evicted by Pi
at some times t2, t3, . . . , t|U |+1 after the mistake of evicting p. If instead at time
t1, t2, . . . , t|U |+1 process Pi makes the specific good paging decisions of evicting the
farthest unmarked pages, the same set {p}∪U of pages will be out of cache at time t.
In our notion of fairness we choose to ignore all such mistakes and consider them “not
worth detecting.”

Definition 8.1. During an ongoing phase, any page fault corresponding to a
request for a page p of an unmarked process Pi is called an unfair fault if the request
for page p is not a clean page request. All faults during the phase that are not unfair
are called fair faults.

The unfair faults are precisely those page faults which are caused by mistakes
considered “worth detecting.” We state the following two lemmas that follow trivially
from the definitions of mistakes, good decisions, unfair faults, and fair faults.

APPLICATION-CONTROLLED PAGING FOR A SHARED CACHE 1301

Lemma 8.2. During a phase, all page requests that get processed in step 2(a)(i)
of our algorithm are precisely the unfair faults of that phase. That is, unfair faults
correspond to mistakes that get caught in step 2(a)(i) of our algorithm.

Lemma 8.3. All fair faults are precisely those requests that get processed in step
2(b)(iii).

We now consider the behavior of holes in the current mistake-prone scenario.

Lemma 8.4. The number of holes in a phase equals the number of clean pages
requested in the phase.

Lemma 8.5. Consider a hole h associated with a page p of a process Pi. If a
request for h is an unfair fault, process Pi is still unmarked and the hole h moves to
some other page belonging to process Pi. If a request for hole h is a fair fault, then
process Pi is already marked and the hole h can never move to process Pi subsequently
during the phase.

Proof. If the request for hole h is an unfair fault, then by definition process Pi
is unmarked and by Lemma 8.2, h moves to some other page p′ of process Pi. If the
request for h is a fair fault, then by definition and the fact that the request for h is
not a clean page request, process Pi is marked. Since our algorithm never chooses a
marked process for eviction, it follows that h can never visit process Pi subsequently
during the phase.

During a phase, a hole h is created in some process, say, P1, by some clean page
request. It then moves around zero or more times within process P1 on account of
P1’s mistakes, until a request for hole h is a fair fault, upon which it moves to some
other process P2, never to come back to process P1 during the phase. It behaves
similarly in process P2, and so on up to the end of the phase. Let Th denote the total
number of faults attributed to requests to hole h during a phase, of which Fh faults
are fair faults and Uh faults are unfair faults. We have Th = Fh + Uh.

By Lemma 8.5 and the same proof techniques as those in the proofs of Lemma
7.2 and Theorem 7.1, we can prove the following key lemma.

Lemma 8.6. The expected number E(Fh) of page requests to hole h during a
phase that result in fair faults is at most HP−1.

By Lemma 8.4, our algorithm incurs at most ` +
∑`
i=1 Thi page faults in a

phase with ` clean page requests. The expected value of this quantity is at most
`(HP−1 + 1) +

∑`
i=1 Uhi , by Lemma 8.6.

The expression
∑`
i=1 Uhi is the number of unfair faults, that is, the number of

mistakes considered “worth detecting.” Our algorithm is very efficient in that the
number of unfair faults is an additive term. For any phase φ with ` clean requests,
we denote

∑`
i=1 Uhi as Mφ.

Theorem 8.7. The number of faults in a phase φ with ` clean page requests and
Mφ unfair faults is bounded by `(1 + HP−1) + Mφ. At the time of each of the Mφ

unfair faults, the application process that makes the mistake that causes the fault must
evict a page from its own cache. No application process is ever asked to evict a page
to service an unfair fault caused by some other application process.

8.1. Extending fairness to the algorithm by Cao, Felten, and Li. It
turns out that our notion of fairness extends, without any change, to the generalized
version of the deterministic algorithm of [CFL94a] that we mentioned in section 4.2. It
is easy to see that in the case of the generalized version of the algorithm of [CFL94a],
a process incurs an unfair fault only if, at some time in the past, that process had
the LRU page and the page it evicted was not a good page. Consequently, a result

1302 R. D. BARVE, E. F. GROVE, AND J. S. VITTER

similar to Theorem 8.7 with (1 +HP−1) replaced by (1 +P) holds for the generalized
version of the algorithm of [CFL94a].

9. Conclusions. Cache management strategies are of prime importance for high
performance computing. We consider the case where there are P independent pro-
cesses running on the same computer system and sharing a common cache of size k.
Applications often have advance knowledge of their page request sequences. In this pa-
per we have addressed the issue of exploiting this advance knowledge to devise intelli-
gent strategies to manage the shared cache, in a theoretical setting. We have presented
a simple and elegant randomized application-controlled caching algorithm for the
multiapplication caching problem that achieves a competitive ratio of 2HP−1 +2. Our
result is a significant improvement over the competitive ratios of 2P + 2 [CFL94a] for
deterministic multiapplication caching and Θ(Hk) for classical caching, since the cache
size k is often orders of magnitude greater than P . We have proven that no online
algorithm for this problem can have a competitive ratio smaller than min{HP−1, Hk},
even if application processes have perfect knowledge of individual request sequences.
We conjecture that an upper bound of HP−1 can be proven, up to second-order terms,
perhaps using techniques from [MS91], although the resulting algorithm is not likely
to be practical.

Using our notion of mistakes we are able to consider a more realistic setting when
application processes make bad paging decisions and show that our algorithm is a fair
and efficient algorithm in such a situation. No application needs to pay for some other
application process’s mistake, and we can bound the global caching performance of our
algorithm in terms of the number of mistakes. Our notions of good page replacement
decisions, mistakes, and fairness in this context are new.

One related area of possible future work is to consider alternative models to
our model of worst-case interleaving. Another interesting area would be to consider
caching in a situation where some applications have good knowledge of future page
requests while other applications have no knowledge of future requests. We could also
consider pages shared among application processes.

Appendix. The Cao, Felten, and Li algorithm. The algorithm proposed
by Cao, Felten, and Li [CFL94a] for the multiapplication caching problem amounts
to evicting, at the time of a page fault, the farthest page from cache belonging to the
process that owns the LRU page in cache.

Theorem A.1. The algorithm of Cao, Felten, and Li is (2P + 2)-competitive. A
generalized version of the algorithm of Cao, Felten, and Li, in which, at the time of
a page fault, the process owning the LRU page in cache evicts any (deterministically
chosen) good page, is also (2P + 2)-competitive.

Proof. Let there be ` clean page requests in a phase. Then there are ` faults due
to clean page requests resulting in ` holes. The algorithm evicts only good pages from
cache, so holes are associated only with such pages. By Lemma 6.4 we can conclude
that each hole can result in at most one page fault per process up to the end of the
phase, so that the total number of page faults in the phase is bounded by ` + `P .
Using Lemma 5.1 gives the above competitive factor.

Theorem A.2. The competitive ratio of any deterministic online algorithm for
the multiapplication caching problem is at least P + 1.

Proof. Since the algorithm is deterministic, we can construct an interleave that
costs the algorithm a factor of P + 1 times the number of faults that OPT will
incur. For instance, consider a single clean request in each phase. On the basis
of our knowledge of the deterministic choices made by the algorithm, we can easily

APPLICATION-CONTROLLED PAGING FOR A SHARED CACHE 1303

make the resulting hole visit each process at least once so that the deterministic
online algorithm incurs at least P + 1 faults per phase, whereas OPT incurs just one
fault.

REFERENCES

[Bel66] A. L. Belady, A study of replacement algorithms for virtual storage computers, IBM
Systems J., 5 (1966), pp. 78–101.

[BIRS91] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality
of reference, in Proceedings of the 23rd Annual ACM Symposium on Theory of
Computation, New Orleans, LA, 1991, pp. 249–259.

[CFL94a] P. Cao, E. W. Felten, and K. Li, Application-controlled file caching policies, in
Proceedings of the Summer USENIX Conference, Boston, MA, 1994, pp. 171–182.

[CFL94b] P. Cao, E. W. Felten, and K. Li, Implementation and performance of application-
contolled file caching, in Proceedings of the First OSDI Symposium, Monterey, CA,
1994, pp. 165–177.

[FKL+91] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E.
Young, On competitive algorithms for paging problems, J. Algorithms, 12 (1991),
pp. 685–699.

[KPR92] A. R. Karlin, S. J. Phillips, and P. Raghavan, Markov paging, in Proceedings of the
33rd Annual IEEE Conference on Foundations of Computer Science, Pittsburgh,
PA, 1992, pp. 208–217.

[MS91] L. A. McGeoch and D. D. Sleator, A strongly competitive randomized paging algo-
rithm, Algorithmica, 6 (1991), pp. 816–825.

[ST85] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules,
Comm. ACM, 28 (1985), pp. 202–208.

