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Abstract

We consider the problem of sorting a file of N records on the D-disk model of parallel I/O
in which there are two sources of parallelism. Records are transferred to and from disk
concurrently in blocks of B contiguous records. In each I/O operation, up to one block can
be transferred to or from each of the D disks in parallel. We propose a simple, efficient,
randomized mergesort algorithm called SRM that uses a forecast-and-flush approach to over-
come the inherent difficulties of simple merging on parallel disks. SRM exhibits a limited use
of randomization and also has a useful deterministic version. Generalizing the technique of
forecasting, our algorithm is able to read in, at any time, the “right” block from any disk,
and using the technique of flushing, our algorithm evicts, without any I/O overhead, just the
“right” blocks from memory to make space for new ones to be read in. The disk layout of
SRM is such that it enjoys perfect write parallelism, avoiding fundamental inefficiencies of
previous mergesort algorithms. By analysis of generalized maximum occupancy problems we
are able to derive an analytical upper bound on SRM’s expected overhead valid for arbitrary
inputs.

The upper bound derived on expected I/O performance of SRM indicates that SRM is
provably better than disk-striped mergesort (DSM) for realistic parameter values D, M ,
and B. Average-case simulations show further improvement on the analytical upper bound.
Unlike previously proposed optimal sorting algorithms, SRM outperforms DSM even when
the number D of parallel disks is small.

Key Words : I/O, External Memory, Disk, Parallel Disks, Sorting, Mergesort, Merging,
Forecasting, Maximum Occupancy, Disk Striping.
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1 Introduction

The classical problem of sorting and related processing is reported to consume roughly 20
percent of computing resources in large-scale installations [Knu73, LV85]. In the light of the
rapidly increasing gap between processor speeds and disk memory access times, popularly
referred to as the I/O bottleneck , the specific problem of external memory sorting assumes
particular importance. In external sorting, the records to be sorted are simply too many
to fit in internal memory and so have to be stored on disk, thus necessitating I/O as a
fundamental, frequently used operation during sorting.

One way to alleviate the effects of the I/O bottleneck is to use parallel disk systems
[HGK+94, PGK88, Uni89, GS84, Mag87]. Aggarwal and Vitter [AV88], generalizing initial
work done by Floyd [Flo72] and Hong and Kung [HK81], laid the foundation for I/O algo-
rithms by studying the I/O complexity of sorting and related problems. The model they
studied [AV88] considers an internal memory of size M and I/O reads or writes that each
result in a transfer of D blocks, where each block is comprised of B contiguous records, from
or to disks. Subsequently, Vitter and Shriver [VS94] considered a realistic D-disk two-level
memory model in which secondary memory is partitioned into D physically distinct and
independent disk drives or read-write heads that can simultaneously transmit a block of
data, with the requirement that M ≥ 2DB.

In the D-disk two-level memory hierarchy [VS94], there are two sources of parallelism.
First, as in traditional I/O systems, records are transferred concurrently in blocks of B con-
tiguous records. Secondly, in a single I/O operation, each of the D disks can simultaneously
transfer one (but only one) block of B records, so that each I/O operation can potentially
transfer DB records in parallel.

To be more precise, D is the number of blocks that can be transmitted in parallel at the
speed at which data comes off or goes onto the magnetic disk media. The parameter D may
thus be smaller than the actual number of disks if the channel bandwidth from the disks
is not sufficient for each disk to transmit or receive a block simultaneously. It then might
be useful to consider two disk parameters D and D′, where D is the channel bandwidth
in terms of the number of blocks coming off or going onto disk that can be transferred
simultaneously, and D′ is the number of disks sharing the bandwidth. As long as at least D
of the D′ disks have a block to transmit, the I/O channel can remain busy. Hybrid models
with multiple channels and several disks per channel are also possible. In this paper we
adopt the simpler and more restrictive model in which D = D′ and develop algorithms that
are near-optimal even for this more restrictive model. A more detailed discussion of disk
models and characteristics appears in [RW94].

The problem of external sorting in the D-disk model has been extensively studied.
Algorithms have been developed that use an asymptotically optimal Θ( N

DB
log(N/B)
log(M/B) ) number

of I/O operations1, as well as doing an optimal amount of work in internal memory. The
previously developed sorting algorithms for the D-disk model have larger than desired
constant factors, and some are complicated to implement. As a result, the simple technique
of mergesort with disk striping (DSM), which can be asymptotically sub-optimal in terms
of number of I/Os by a multiplicative factor of ln(M/B), is commonly used in practice for

1Throughout this paper we use the standard asymptotic notation f(n) = O(g(n)) to mean that there
are constants C, n0 > 0 such that |f(n)| ≤ C|g(n)| for all n ≥ n0. We say that f(n) = Ω(g(n)) if g(n) =
O(f(n)). We write f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)). We say that f(n) = o(g(n)) if
f(n)/g(n)→ 0 as n→∞. The above asymptotic notations can be applied in a generalized manner as well.
For example, we write f(n) = g(n)+O(h(n)) if f(n)−g(n) = O(h(n)), and we say that f(n) ≤ g(n)+O(h(n))
if there is some j(n) such that f(n) ≤ j(n) and j(n) = g(n) +O(h(n)).
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external sorting on parallel disks[NV90, NV93]. In DSM, the disks are coordinated so that in
each parallel read and write, the locations of the blocks accessed on each disk are the same,
which has the logical effect of sorting with D′ = 1 disk and block size B′ = DB. In each
merge pass, R = Θ(M/DB) runs are merged together at a time, except possibly in the last
pass. The number of passes required is thus ln(N/M)/ ln(M/DB), with an additional pass
for initial run formation. The resulting I/O complexity of DSM is Θ( N

DB (1 + log(N/M)
log(M/DB))).

The advantage of DSM is its simplicity, which results in very small constant factors, thus
making it attractive for efficient implementation on existing parallel disk systems. But the
disadvantage of DSM is that it becomes inefficient as the number of disks gets larger.

Thus, on the one hand we have external sorting algorithms that are optimal (up to a
constant factor) but are not efficient in practice unless the number of disks is very large,
and on the other hand we have a simple disk striping technique that works well with a small
number of disks.

In this paper, we propose a Simple Randomized Mergesort (SRM) that is practical and
provably efficient for a wide range of values of D. We show that SRM is asymptotically
optimal within very small constant factors when M = Ω(DB logD), which is generally
satisfied in practice. Moreover, even for ranges of D, M , and B when SRM is sub-optimal,
it still remains efficient and faster than DSM, as borne out by our theoretical analysis and
empirical simulations.

In the next section we describe SRM and some previous approaches to external merge-
sort, and we list our main theoretical result Theorem 1, which gives an analytical upper
bound on SRM’s expected number of I/Os in the worst case. Sections 3–8 focus on SRM
and its analysis. Section 3 discusses the basic idea of SRM and the way that records are
distributed on the disks, which is important to attain efficient read and write parallelism.
Section 4 discusses the forecasting data structure needed for parallel reads. Section 5 de-
scribes the merge process in detail. We analyze the merge process in Sections 6, 7, and 7.1
and prove Theorem 1. In Section 8, we briefly discuss the potential benefits of a determin-
istic version of our algorithm.

In Sections 9 and 10, we demonstrate the practical merit of SRM by comparison with
DSM. We base our comparisons on both our analytical worst-case expected bounds as well
as the more optimistic empirical simulations of average-case performance, for a wide variety
of values for the parameters M , D, and B.

2 Main Results

2.1 Background

The first step in mergesorting a file of N records is to sort the records internally, one half
memoryload at a time so as to overlap computation with I/O, to get 2N/M sorted runs
each of length M/2. Techniques like replacement selection [Knu73] can produce roughly
N/M runs each of length about M . Then, in a series of passes over the file, R sorted runs
of records are repeatedly merged together until the file is sorted. At each step of the merge,
the record with the smallest key value among the R leading records of the R runs being
merged is appended to the output run. The merge order parameter R is preferably chosen
as close to M/2B as possible so as to reduce the number of passes and still allow double
buffering.

In order to carry out a merge, the leading portions of all the runs need to be in main
memory. As soon as any run’s leading portion in memory gets depleted by the merge
process, an I/O read operation is required. Since a large number of runs (close to M/2B
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runs) are merged together at a time, the amount of memory available for buffering leading
portions of runs is very small on average. It is of paramount importance that only those
blocks that will be required in the near future with respect to the merge process are fetched
into main memory by the parallel reads. However, this memory management is difficult to
achieve since the order in which the data in various disk blocks will participate in the merge
process is input dependent and unknown. Vitter and Shriver [VS94] give further intuition
regarding the difficulty of mergesorting on parallel disks. In Greed Sort [NV90], the trick of
“approximate merging” is used to circumvent this difficulty. Aggarwal and Plaxton [AP94]
use the Sharesort technique that does repeated merging with accompanying overhead.

Recently, Pai et al [PSV94] considered the average-case performance of a simple merging
scheme for R = D sorted runs, one run on each disk. They use an approximate model of
average-case inputs and require that the internal memory be sufficiently large. They also
require that each run reside entirely on a single disk; in order to get full output bandwidth,
the output run must be striped across disks. A mergesort based on their merge scheme thus
requires an extra transposition pass between merge passes so that striped output runs of
the previous merge pass can be realigned onto individual disks.

2.2 Overview of SRM

We present an efficient, practical, randomized algorithm for external sorting called Simple
Randomized Mergesort (SRM). Our algorithm uses a generalization of the forecasting tech-
nique [Knu73] in order to carry out parallel prefetching of appropriate disk blocks during
merging. Randomization is used only while choosing, for each input run, the disk on which
to place the first block of the run; the remaining blocks of that run are cyclically striped
across the disks. The use of randomization is thus very restricted; the merging itself is
deterministic.

If the internal memory available is of size M , with block size B and with D parallel
disks, SRM merges R runs together at a time in each merge pass, where R is the largest
integer satisfying M/B ≥ 2R+ 4D +RD/B. We note that M/B is the number of internal
memory blocks available. Hence the merge order (the number of runs SRM merges together
at a time) is determined by the amount of internal memory at its disposal. As a function of
M , B, and D, the merge order R is given by (M/B − 4D)/(2 +D/B). In the the realistic
case that D = O(B), SRM merges an optimal number (namely, R = Θ(M/B)) of runs
together at a time. For simplicity in the exposition, we assume that D = O(B). (We can
use the partial striping technique of [VS94] to enforce the assumption if needed.)

There are two aspects to our analysis of the algorithm—one theoretical and one practical.
The first (and main) part of our analysis is bounding the expected number of I/Os of SRM,
where the expectation is with respect to the randomization internal to SRM and the bound
on the expectation holds for any input. SRM uses an elegant internal memory management
scheme to solve the fundamental prefetching difficulties of simple merging on parallel disks
alluded to earlier in Section 2.1. Below we briefly sketch this technique:

At any time while merging together R runs, let us consider how SRM reads in the next
R blocks on disk required by the merge process. Observing that the next R blocks on
disk will not, in general, be uniformly distributed among the D disks, we denote as d∗ the
maximum number of blocks among these R blocks that reside on a single disk. The blocks
of the R input runs are striped across the disks. In order to maximize parallelism, in each
I/O read operation, SRM fetches into memory one block from each disk whenever there
is space to accomodate D blocks in main memory. In any I/O read operation, the block
that is read in from each disk is the one that contains the smallest key among all the input
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blocks on that disk that are not yet in memory. This is achieved by using the forecasting
technique. In the event that there is only enough free memory to read in F additional disk
blocks, where F < D, SRM flushes out D − F previously read blocks from memory back
to disk. Among the blocks already in memory, the D − F blocks chosen for flushing are
precisely the D − F blocks that will participate in the merge farthest in the future. The
internal memory buffer SRM that uses is just large enough to ensure that no block that
is among the R blocks required next by the merge is ever flushed out. Moreover, there is
no actual I/O that accompanies the flushing operation; SRM merely pretends that those
blocks had never been read into memory. The forecasting and flushing are enough to ensure
that bringing precisely those R blocks that are next required by the merge from disk into
memory will take no more than d∗ I/O read operations.

This memory management scheme enables us to obtain a handle on SRM’s performance.
We are able to relate SRM’s performance to a combinatorial problem we call the dependent
maximum occupancy problem, which is a generalization of the classical maximum occupancy
problem [KSC78, VF90].

Our main theorem below gives expressions for the I/O performance of SRM for three
patterns of growth rate between the number M/B of blocks in internal memory and the
number D of disks in the parallel disk system. The different sizes of internal memory
considered correspond to certain values of the merge order R as defined by the formula
R = (M/B − 4D)/(2 +D/B) given above. The general formulation in terms of occupancy
statistics is given later.

Theorem 1 Under the assumption that D = O(B), the merge order R = Θ(M/B) of SRM
is optimal. SRM mergesort uses N

DB (1 + ln(N/M)
lnR ) I/O write operations2, which is optimal.

The expected number ReadsSRM of I/O read operations done by SRM can be bounded from
above as follows:

1. If R = kD for constant k, as R, D →∞, we have

ReadsSRM ≤
N

DB
+
N

DB

ln(N/M)
ln kD

lnD
k ln lnD

(
1 +

ln ln lnD
ln lnD

+
1 + ln k
ln lnD

+O

(
(log log logD)2

(log logD)2

))
.

2. If R = rD lnD for constant r, as R, D →∞, we have

ReadsSRM ≤
N

DB
+ c

N

DB

ln(N/M)
ln(rD lnD)

+O(1)

which is optimal within a constant factor, namely c. The magnitude of c depends on
r.

3. If R = rD lnD where r = Ω(1), we have

ReadsSRM ≤
N

DB
+
N

DB

ln(N/M)
ln(rD lnD)

(
1 +

√
2
r

+
ln r√

2r lnD
+O

(
1
r

+
log r
r logD

+
1

D
√
r

))
which is asymptotically optimal; that is, the factor of proportionality multiplying the
N
DB

ln(N/M)
ln(rD lnD) term is 1.

2Strictly speaking, the expressions for the exact number of “passes” and hence the number of I/O oper-
ations required to sort N records using a mergesort involves applying the ceiling (d e) function to certain
logarithmic terms. Employing these exact expressions would mean dealing with a complicated dependence
on N , without having any significant impact on our results for large N . Thus in this exposition we choose
to overlook this issue and not apply the ceiling function, thus obtaining simplified expressions for I/O
complexity.
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The mergesort algorithm by Pai et al [PSV94] uses significantly more I/Os and internal
memory. In their scheme, the internal memory size needs to be Ω(D2B) to attain an efficient
merging algorithm.

The other aspect of our analysis deals with the practical merit of our SRM mergesort al-
gorithm on existing parallel disk systems. In Sections 9 and 10, we consider implementations
of disk striping (DSM) and SRM mergesort algorithms for the interesting case R = kD, in
which the number of blocks in internal memory scales linearly with the number of disks D
being used. We demonstrate that SRM’s good I/O performance is not merely asymptotic,
but extends to practical situations as well. Like DSM, SRM also overlaps I/O operations
and internal computation, which is important in practice.

3 SRM Data Layout

Our primary goal in this paper is to take advantage of mergesort’s simplicity and potential
for high efficiency in practice when used with parallel disk systems. We use striped input
runs in our merging procedure so that the output runs of one merge pass written with full
write parallelism can participate as input runs in the next pass without any reordering or
transposition. In this scheme, if the 0th block of a run r is on disk dr, then the ith block
resides on disk (i + dr) mod D. Striping alone is not enough to ensure good performance.
If many runs are being merged and the disk dr for each run r is chosen deterministically,
the merging algorithm can have abysmal worst case performance. Throughout the entire
duration of the merge, the R leading blocks of the R runs may always lie on the same disk,
thus causing I/O throughput to be only a factor of 1/D of optimal.

A natural alternative that we pursue in this paper is to consider a randomized approach
to mergesort. We randomly assign the starting disk dr for each input run r. Then, on
average, it is not necessary to read many blocks from the same disk at one time. The
analysis involves an interesting reduction to a maximum bucket occupancy problem.

In order to facilitate analysis, for each run r we choose the disk dr on which r’s initial
block will reside independently and identically with uniform probability. The location of
every subsequent block of run r is determined deterministically by cycling through the
disks. We will measure our algorithm’s performance by bounding the expected number of
I/Os required to merge R runs for any arbitrary (that is, worst-case) set of input runs; the
expectation is with respect to the randomization in the placement of the first block of the
runs. The actual key values of the records that constitute the runs can be arbitrary and
their relative order does not affect the bounds we derive.

If we consider the problem of deterministic mergesorting with random inputs, as opposed
to randomized mergesorting, we believe that the same analysis technique can yield similar
bounds (but for the average-case) for a version of our algorithm in which the starting
disk dr for run r is deterministically chosen to be uniformly staggered, so that dr = 0 for
r = 0, 1, . . . , R/D − 1, dr = 1 for r = R/D,R/D + 1, . . . , 2R/D − 1 and so on. Moreover, as
we indicate in Section 8, by taking into consideration the lengths of the runs being merged in
different stages of the mergesort, it may be possible to improve the bound on overall average
I/O performance. In this paper, however, we concentrate on our SRM method, since a very
limited amount of explicit randomization in SRM (used to determine the random starting
disks dr) enables us to get around the average-case assumption of the deterministic version,
thus facilitating the elegant analysis presented here.
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4 Forecasting Format and Data Structure

As observed earlier, each of the R runs that participate in a merge is output onto disk
either during the run formation stage or during some earlier merge. This enables us to
begin each run on a uniformly random disk. We can also format each block of every run so
as to implant some future information as explained below. This is a generalization of the
forecasting technique of [Knu73]. We denote the ith block of a run r as br,i and the smallest
(first) key in block br,i as kr,i. Blocks of a run r are formatted as follows:

• Implanted in the initial block br,0 of run r are the key values kr,j for 0 ≤ j ≤ D − 1.
(Typically in practice, the D key values will indeed fit in a small portion of one block.
Even if this is not so, since D = O(B), this information will fit in at most O(1)
blocks.)

• Implanted in the ith block br,i, where i > 0, of run r is the single key value kr,(i+D).

The extra information for forecasting in each block is only one key value, not one record.
So the extra space taken up by the forecasting format of runs is negligible. For simplicity,
we assume that all key values are distinct.

Definition 1 At any time t during the merge, consider the unprocessed portions of the R
runs. Among these records, the record with the smallest key is called the next record of the
merge at time t. A block belonging to any run is said to begin participating in the merge
process at the time t when its first record becomes the next record of the merge. A block
ceases to participate in the merge as soon as all of its records get depleted by the merge. At
any point of time, consider all the blocks not in memory that reside on disk i. The smallest
block of run j on disk i is the block that will be the earliest participating block among all
the blocks of run j on disk i. The smallest block on disk i is the the earliest participating
block on disk i at that time. At any time, the leading block of a run is the block (possibly
partly consumed) that contains the smallest key value in that run at that time. Note that
a block can become a leading block much before beginning to participate in the merge.

On an I/O read, the block read in by SRM from disk i is always the smallest block on
disk i at that time. To be able to do this, SRM maintains a forecasting data structure.

Definition 2 The forecasting data structure (FDS) consists of D arrays H0,H1, . . . ,HD−1,
one corresponding to each disk. At any point of time, Hi[j] stores Ki,j , where Ki,j is the
smallest key value in the smallest block of run j on disk i.

At any time, in order for SRM to read in the smallest block from disk i, it merely needs
to read in the smallest block of run j on disk i, where j is the run with the smallest key
in Hi.

5 The SRM Merging Procedure

In this section, we discuss how SRM merges R runs striped across D disks, with the ran-
domized layout described in Section 3.

The SRM merging process can be specified as a set of two concurrent logical control flows
corresponding to internal merge processing and I/O scheduling , respectively. By internal
merge processing, we refer to the computation that merges the leading portions of runs after
these leading portions have been brought into internal memory. Internal merge processing
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has to wait when some run’s leading portion in memory gets depleted or when the write
buffers get full and need to be written to disk. By I/O scheduling we refer to the algorithm
that decides which blocks to bring in from the disks. I/O scheduling decisions are based on
information from the FDS data structure and the amount of unoccupied internal memory.
Implementing internal merge processing and the I/O schedule as concurrent modules makes
the overlapping of CPU computation and I/O operations an easier task.

Internal merge processing can be implemented using a variety of techniques; we refer
the reader to [Knu73]. In this section, we focus on the I/O scheduling algorithm. We first
discuss issues pertaining to management of internal memory and maintaining the FDS data
structure during the merge. We then go on to introduce some terminology and notation
that helps us describe I/O operations and the I/O scheduling algorithm. The terminology
we develop here will be used even in subsequent sections when we analyze the algorithm.

5.1 Internal Memory Management

Management of internal memory blocks plays a key role in the interaction between the I/O
scheduling algorithm and internal merge processing. In SRM, internal memory management
of merge data is done at block level granularity, so internal fragmentation within internal
memory blocks is not an issue. By an internal block, we mean a set of contiguous internal
memory locations with fixed boundaries, large enough to hold B records. Note that the
internal structures pertaining to internal memory management need to be updated whenever
internal merge processing is in certain critical states and after every I/O read operation. In
this subsection, we describe some of the more important aspects of SRM’s internal memory
management.

The number M/B of blocks in internal memory, expressed in terms of R, B and D,
is 2R + 4D + RD/B. Of these, SRM maintains a dynamically changing partition
{ML,MR,MD,MW } of 2R + 4D physical blocks of internal memory.

Definition 3 The set ML of R internal blocks is maintained such that at any time, if the
leading block of any run is in internal memory, its internal block is in ML. The set MD

contains D internal blocks maintained such that each I/O read operation of SRM can read
in D blocks from disks into the internal memory blocks of MD. The remaining R + D
internal memory blocks comprise the set MR. The sets are maintained such that as soon
as there are D unoccupied internal blocks, a parallel read can be initiated into MD. In
addition, SRM uses a set MW of 2D internal memory blocks as an output buffer.

The D internal memory blocks of MD are used specifically to initiate I/O read oper-
ations at the earliest possible time, potentially bringing in blocks even before they begin
participating. The output buffer MW is large enough to ensure that the output run can be
written out with full parallelism in the forecasting format described earlier.

The forecasting data structure FDS and related auxiliary data structures occupy not
more than about RD/B blocks.

5.2 Maintaining the dynamic partition of internal memory

As internal merging proceeds and the parallel I/O operations keep transferring blocks be-
tween the parallel disk system and internal memory, internal memory blocks need to be
exchanged among the sets ML, MR, MD, and MW in order to ensure that the assertions
in Definition 3 are met. Below, we describe three types of exchanges of internal memory
blocks in the management of ML, MR, and MD:
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1. Consider any state of internal merge processing when the last record in the leading
block of a run r gets consumed by the merge. If run r’s new leading block occupies
an internal block of MR, then MR and ML mutually exchange the internal blocks
corresponding to the new and old leading blocks so that MR gets an unoccupied
internal block and ML gets an occupied one.

2. Consider any I/O read operation that has just completed. I/O read operations always
read in blocks into the D internal memory blocks of set MD. If the read operation
brings into MD a block that is the leading block of some run r, then ML and MD

exchange internal blocks corresponding to the old and new leading blocks, so that MD

gets an unoccupied internal block and ML gets an occupied one.

3. Whenever MR has at least one unoccupied internal memory block and MD has at
least one occupied internal memory block, MR and MD exchange internal memory
blocks so that MD obtains an unoccupied block and MR gets an occupied one.

In addition, records are added to blocks of MW as the internal merging proceeds.

5.3 Maintaining the Forecasting Data Structure

Whenever a block belonging to run j is read into memory from disk i, the forecasting data
from that block is used to update the entry Hi[j] of FDS.

We will see in Definition 6 that SRM may at times flush a block belonging to run j to
the disk i it originated from. This will not require any I/O but merely require that the
entry Hi[j] of FDS be updated with the smallest key of the particular block being flushed.
If more than one block from a particular run j are flushed together, all to the same disk i,
then the entry Hi[j] is updated with the smallest key value among all the blocks from run j
being flushed to disk i.

5.4 Terminology and Notation

Definition 4 Suppose we order a set A of blocks in ascending order by the blocks’ smallest
key values. We define RankA(b), for b ∈ A, to be the rank of block b in this order. The first
(smallest-valued) block has rank 1 and the last (largest-valued) block has rank |A|. For any
time t during the merge, we define the following terms:

• Ft denotes the set of full blocks in internal memory such that no block b in Ft is the
leading block of any run at time t.

• St denotes the set of D blocks, each of which is the smallest block on one of the D
disks.

• Fset t(l) = {b | b ∈ Ft, RankFt(b) ≥ |Ft| − l + 1} denotes the set of the l highest
ranked blocks of Ft. By definition, no block of Fset t(l) is a leading block.

• OutRank t = minb∈St{RankFt∪St(b)} denotes the rank of the smallest-ranked block of
St in the set Ft ∪ St.

Definition 5 The operation ParReadt is executed at a time t only when D unoccupied
internal blocks are available in MD. Using FDS, it reads in the set St of D blocks into MD,
exchanging internal blocks of MD with ML as in point 2 of Section 5.1 if necessary. FDS is
updated as described in Section 5.3 using the implanted information in blocks of St.
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Definition 6 The operation Flusht(j) virtually flushes out the j blocks of the set Fset t(j)
occupying internal blocks in MR at time t. In SRM, we have j ≤ D whenever Flusht(j)
is invoked. The flushing of blocks is virtual in the sense that the blocks do not actually
have to be written out to disk , so there is no I/O involved. FDS is updated as described
in Section 5.3 to reflect the fact that the flushed out blocks will have to be read back from
their original disks when needed.

An important feature of SRM exploited in Section 6 is that leading blocks of runs are
never flushed out.

5.5 I/O Scheduling Algorithm

In this subsection, we specify the parallel I/O schedule of SRM. As far as writes go, Each
write is executed with full write parallelism as soon as the next output stripe of D formatted
blocks are ready in the output buffer MW . With respect to reads, the basic idea is to read
in D blocks of the set St whenever possible; flushing a few of the highest ranked non-leading
blocks in Ft, if necessary.

1. At the beginning, SRM reads the first block from each of the R runs into the R
internal blocks of ML using parallel reads.

2. Until the merge is completed, whenever the I/O system is free at a time t when D
unoccupied blocks are available in MD, SRM does the following:

(a) If there are D unoccupied internal blocks in the set MR at time t, a ParReadt
operation is initiated.

(b) Else if the number of occupied internal blocks in MR at time t is R+extra, where
1 ≤ extra ≤ D, and if OutRank t > extra , a ParReadt operation is initiated.

(c) Else if the number of occupied internal blocks in MR at time t is R + extra
where 1 ≤ extra ≤ D, and if OutRank t ≤ extra, a Flusht(extra −OutRank t + 1)
operation is invoked, followed by initiation of a ParReadt operation.

In Step 2c, the flushed out blocks are the ones that will not be used in the “near future,”
as we will see in the next section. Lemma 1 below ensures that SRM merging runs to
completion, needing only the specified amount of memory.

Lemma 1 Consider any ParReadt operation invoked by SRM at time t. No block not
in internal memory when ParReadt has completed begins participating in the merge until
D unoccupied physical blocks are available in the set MD of internal memory blocks. This
ensures that there will be enough space for the next read operation to begin before any outside
block begins participating.

Proof : Consider step 2a of the algorithm: D unoccupied internal blocks are available in the
setMR before ParReadt gets initiated. In this case, the requirement of havingD unoccupied
blocks in internal memory for the next parallel read is trivially met by exchange operations
as in point 3 of Section 5.1. Consider step 2b of the algorithm in which only D − extra
unoccupied blocks are available in MR but OutRank t > extra just before ParReadt gets
initiated. In this case, by definition of OutRank t, extra blocks that belong to the set MR

just before ParReadt gets initiated begin participation before any block not yet in memory
after completion of ParReadt. These extra blocks become leading blocks of their respective
runs before participating. Thus by exchange operations as in point 1 of Section 5.1, MR
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gets extra unoccupied internal memory blocks from ML. This means that by means of
exchange operations as in point 3 of Section 5.1, MD has D−extra +extra = D unoccupied
blocks before participation of any block that is still on disk after ParReadt is completed.
Similarly, in case of step 2c of the algorithm, OutRank t − 1 internal blocks of MR become
unoccupied owing to participation while extra − OutRank t + 1 blocks of MR are flushed.
These unoccupied blocks, along with the D − extra unoccupied blocks already present in
MR ensure that the set MD does obtain D unoccupied blocks before any outside block
begins participating in the merge. This completes the proof of the lemma.

Lemma 1 shows that a ParRead operation can be initiated before any block brought in
by that operation begins participation. Thus there is genuine prefetching ability, which is
useful in overlapping I/O operations with internal processing.

6 Using Phases to Count ParRead Operations

For the purpose of analysis, we break the process of merging R runs comprising a total of
N ′ records into a sequence of phases, and we upper bound the expected number of read
operations required during a phase. The overall bound on the merge process can then be
computed using the linearity of expectations.

Consider the set of all blocks except blocks in the initial set. Each such block can
participate in the merge only after its preceding blocks have ceased to participate, so that
if the ith block of a run is currently participating, at least (i − 1)B records from that run
have already been output.

Definition 7 Consider the set R0 of all blocks of all runs excluding the initial block of each
run. The participation index of any block in R0 is i if it is the ith block, in chronological
order, to begin participating in the merge, where 1 ≤ i ≤ N ′−RB

B . We denote by set Pj ,
where 1 ≤ j ≤ N ′−RB

RB , the subset of R0 consisting of blocks whose participating indices are
in the range [(j − 1)R+ 1, jR].

Using parallel reads, SRM tries to fill the R internal blocks of MR using FDS. Every
incoming block provides new implanted information. When a block with small participation
index is on disk while memory is full, we bring it in, by flushing blocks that are surely not
among the next R blocks to begin participating in the merge, as Lemma 2 shows.

Lemma 2 Consider a flush Flusht at time t. The R+OutRank t−1 smallest-ranked blocks
of Ft (in MR) do not get flushed out: they remain in MR after the flush completes.

Proof : Since Flusht is invoked at time t, it means that the number of blocks in MR is
R + extra (1 ≤ extra ≤ D) and 0 < OutRank t ≤ extra. By definition of the Flusht
operation, extra −OutRank t + 1 blocks corresponding to the extra −OutRank t + 1 highest
ranked blocks in the set of all blocks occupying internal blocks of MR are flushed out. This
means that R+ OutRank t− 1 of the lowest ranking blocks remain in internal memory even
after the Flusht operation. Hence the lemma is proved.

The merge proceeds in a sequence of phases, each contributing R blocks to the output
run.

Definition 8 The first phase begins at the time p0 of the last ParReadp0 read operation
invoked in Step 1 of SRM. The jth phase ends at the time pj of the read ParReadpj such
that any block b ∈ R0 with participation index ib, where ib ≤ jR, has been read into
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memory (at least once) from disk by some ParReadt such that t ≤ pj. The ParReadt read
operations such that pj−1 < t ≤ pj are the reads forming the jth phase, and the set Pj
defined above is the set of blocks forming the jth phase.

The next step is to show that when the jth phase is over, blocks with participation
indices smaller than jR have already been “taken care of.”

Lemma 3 After the read ParReadpj at time pj is complete, the following invariants hold:

1. No block still on disk has a participating index less than jR + 1.

2. No block b with participating index ib ≤ (j + 1)R can be flushed out by any Flusht,
where t > pj.

Proof : We prove the claims by induction. For the base case j = 1, observe that by time p1,
all blocks having participation indices at most R are read in at least once. By Lemma 2,
none of these blocks could be flushed out at any time t ≤ p1 because they would be among
the R smallest ranked blocks of MR, thus proving the claim. Now consider the second claim
for j = 1. Suppose there is a flush Flusht at any time t > p1. By the previous claim, if X is
the number of blocks in MR that have participating indices at most R, then OutRank t > X.
By Lemma 2, the R+OutRank t−1 smallest ranked blocks at time t remain in MR after the
flush. Of these, at most X ≤ OutRank t−1 blocks have ranks smaller than R. Thus if there
is any block b with rank at most 2R at time t, then b must be among the R+ OutRank t− 1
smallest ranked blocks. Hence the base case is proved for both claims.

Now suppose both claims are true for some j − 1. Then by inductive hypothesis for
Claim 1, when the read ParReadpj−1 at pj−1 completes, the smallest participating index
of any block still on disk is (j − 1)R + 1. By the inductive hypothesis for Claim 2 none of
the blocks with participating indices at most jR can get flushed at any time t > pj−1. By
definition, all blocks with indices at most jR are read in by pj. Since none of them can
get flushed after pj−1, the first claim is true for j. The second claim for j follows by an
argument identical to the argument for its base case.

We are led immediately to the following lemma that gives the number of blocks in the
output run of the merge at the end of the first j phases.

Lemma 4 At least jRB records from blocks of the set R0 are already in the merged output
of SRM before any block still on disk after time pj begins participating in the merge. Thus
all reads ParReadt such that t ≤ pj and the reads I0 required in the step 1 of SRM can be
charged to these jRB records in the output of SRM.

We wish to obtain a handle on the number of read operations ParReadt where pj−1 <
t ≤ pj (the reads associated with the jth phase). We will show that this number is the
largest number of blocks in Pj that need to be read in from any particular disk.

Definition 9 Consider the blocks of the set Pj+1 just after ParReadpj is completed. Such
a block b is said to be on level 0 if it is already in internal memory and level h if it is the
hth smallest block on its disk at that time. Let Lj+1 denote the highest level of any block
of Pj+1. In the case of the first phase, let L1 be the highest level of any block of P1 after
Step 1 of the algorithm in Section 5.5.

We prove the following characterization of the number of reads associated with the
(j + 1)st phase.
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Lemma 5 The Lj+1th read of SRM after time pj is done at time pj+1.

Proof : The proof follows from Lemma 3. No block with participation index at most jR
is still on disk after the read at pj completes. Moreover no block with participation index
at most (j + 1)R can be flushed out after pj . Clearly then, since any ParReadt operation
reads in the smallest block from every disk at time t, we have the nice property that all
blocks of Pj+1 that are at the hth level will get read by the hth read after pj, never to get
flushed out. This proves the lemma.

We can now relate progress in the merge to the number of read operations involved in
phases by means of the following lemma that follows from Lemmas 5 and 4.

Lemma 6 The first I0 +
∑

1≤i≤j Li reads of SRM can be charged to at least jRB records
in the output of the merge, where I0 is the number of reads SRM incurs in Step 1 of the
algorithm in Section 5.5. The total number of I/O read operations required to complete the
merge is given by the above sum with j = N ′/B−R

R .

In the next section we give a bound on the expectation of Li with respect to the ran-
domization involved in the choice of disks for the initial blocks of the runs. Thereafter,
Lemma 6 can be used to obtain the overall bound on the number of reads involved in SRM.

7 Probabilistic Analysis

Consider any arbitrary R runs input to SRM. The initial block of each run is placed on a
disk chosen with a uniform probability of 1/D independently of other runs. Since runs are
cycled across disks, the position of the initial block of the run determines the position of
the other blocks of the run. As a result, for any j, the jth block of a run is on any one of
the D disks, each with probability 1/D, depending only on the disk containing that run’s
initial block.

Lemma 7 Consider the ith phase and the related set Pi of blocks such that 1 ≤ i ≤ N ′−RB
RB .

Let nj denote the number of blocks from the jth run in Pi, so that
∑

0≤j≤R−1 nj = R. Let Cj
denote the ordered list 〈bj,0, bj,1, . . . , bj,nj−1〉 of the nj blocks of run j in Pi, where the order
is the chronological order of participation. Let Dj denote the disk from which the block bj,0
originates, for each run j, 0 ≤ j ≤ R− 1. Then the disks Dj are independently distributed,
each with uniform probability over the set {0, 1, . . . ,D − 1} of D disks.

Definition 10 We call each Cj a chain of length nj of contiguous blocks of run j. The
disk corresponding to any given block of Cj is determined by the disk of the lead block bj,0
of Cj.

We recall that the number of reads Li in the ith phase is the maximum level of any
block on any disk at time pi−1.

Definition 11 Consider the set Pi. Let L′i be the maximum level of any block of Pi on
disk, considering all of Pi’s blocks on their respective original disks.

In the following subsections, we will be able to bound E (L′i). The following lemma
shows that L′i is an overestimate of Li, so we get a bound on Li too.

Lemma 8 With Li and L′i defined as above, we have Li ≤ L′i and E (Li) ≤ E (L′i).
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(b) Classical Occupancy(a) Dependent Occupancy

Figure 1: (a) Dependent occupancy instance with Nb = 12, C = 5, D = 4. Arrows indicate
the cyclical order of blocks in the same chain. The maximum occupancy is 4, as realized
in the second bin. (b) Classical occupancy instance with Nb = 12, D = 4. Blocks fall
independently of each other. The maximumm occupancy is 5, as realized in the second bin.

7.1 The Dependent Occupancy Problem

In this section, we define the dependent occupancy problem, which along with the well-
studied classical occupancy problem (a special case of the former), is directly related to the
I/O performance of SRM.

In the classical occupancy problem of parameters {Nb,D}, Nb balls are
thrown into D bins independently each with uniform probability of 1/D of falling
into any bin. We denote the asymptotically tight expression for the expectation
of the maximum number of balls in any bin [VF90, KSC78] by C(Nb,D).

In the dependent occupancy problem, we consider D bins but instead of
balls, we consider C chains of balls, such that the total number of balls summed
over the C chains, is Nb. A chain of length ` consists of ` balls linked together
in a chain. A chain of length ` is said to fall or get thrown into a bin s,
where 0 ≤ s ≤ D − 1, if the leading ball of the chain falls into bin s and the
remaining ` − 1 balls of that chain are deposited cyclically into bins; that is
the i-th ball (with 0 ≤ i ≤ ` − 1 ) of that chain falls in bin (s + i) mod D.
Since the sum of the number of balls from all the chains is exactly Nb, the
maximum length of a chain is Nb. Denoting as nj , the number of chains of
length j, we have

∑
1≤j≤Nb nj = C and

∑
1≤j≤Nb jnj = Nb. We are interested in

the expectation of the maximum occupancy of any bin when each of the C chains
gets independently and identically randomly thrown, such that the probability
of each chain falling into any of the D bins is 1/D.

The classical occupancy problem is the special case of the dependency occupancy prob-
lem when C = Nb and n1 = Nb with nj = 0 for 1 < j ≤ Nb. Figure 1 above shows one
instance of both types of problems for Nb = 12, D = 4, and with C = 5 for the depen-
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dent occupancy problem. The figure uses square blocks instead of balls and uses arrows to
connect together blocks from the same chain.

7.2 Asymptotic Expansions of the Maximum Occupancy

Our goal here is to obtain a bound on the expected maximum occupancy in dependent
occupancy problems. As mentioned earlier, the leading terms in our upper bounds for this
quantity are the same as those in the well-known bounds for C(Nb,D) in the classical oc-
cupancy problem [KSC78]. We conjecture that the expected maximum classical occupancy
C(Nb,D) is an upper bound for the maximum dependent occupancies.

Consider the following intuition: in dependent occupancy, a chain of length ` results in a
maximum occupancy of d`/De because of the constraint that balls of the chain are cyclically
distributed among the D bins. The cyclic distribution tends to reduce the variance of the
individual occupancies, thus lowering the maximum occupancy. In classical occupancy,
the average occupancy of any bin when ` balls are independently and uniformly randomly
thrown is `/D but more than `/D of them can easily fall into the same bin.

For instance, in Figure 1, it can be seen that pairs of blocks from the same chain that are
forced to occupy different bins in the dependent occupancy problem may occupy the same
bin in the classical version of the occupancy problem. Intuitively, independence increases
the expected maximum occupancy.

In [BGV96], our approach was to use the well known bounds for the classical maximum
occupancy to bound dependent maximum occupancies; however, the proof of the bound we
gave was erroneous. We do believe, however, that the bound is correct, as we conjecture
above. In this paper, we instead derive a direct bound on the expectation of the maximum
dependent occupancy via interesting analytical and asymptotic techniques, and as a result
our proof is independent of the classical occupancy bounds of [KSC78].

As a first step toward obtaining an upper bound on the maximum dependent occupancy,
we first state and prove a simple lemma that shows that it will suffice for us to focus on
dependent problems having no chains of length greater than D:

Lemma 9 Consider any dependent occupancy problem X involving C chains, D bins and
a total of Nb balls such that one or more chains in X are of length greater than D. Let
Xmax denote the maximum occupancy random variable of X . Then there is a dependent
occupancy problem X ∗ involving a total of Nb balls and D bins such that no chain involved
in X ∗ has length greater than D and E [Xmax] = E [X∗max], where X∗max is the maximum
occupancy random variable for X ∗.

Proof : Consider the dependent occupancy problem X 1 obtained by replacing a chain C1 of
X of length aD + b, where a ≥ 1 and 0 ≤ b < D, with, instead, a chains of length D and
one chain of length b. Let X1

max denote the maximum occupancy random variable of X 1.
We claim that the occupancy distribution of Nb balls among the D bins in the problem X
is exactly the same as that of the problem X 1.

To see this, first consider the occupancy distribution of balls of chain C1 among
the bins when it is randomly thrown into the bins. Let us suppose that 1 ≤
b < D. When the chain C1 gets thrown, b contiguously placed bins numbered, say
s, (s+ 1) mod D, . . . , (s+ b− 1) mod D with 0 ≤ s ≤ D − 1, each get a + 1 balls. The
other D − b bins each get exactly a balls. There are D distinct sets S0, S1, . . . , SD−1, each
set consisting of b contiguously placed bins. Let us denote by S′i the set of bins other than
those in Si. Then for 0 ≤ i ≤ D − 1, the probability that set Si’s b bins each receive a+ 1
balls of C1 whereas bins in the set S′i each receive a balls is exactly 1/D.
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Now let us consider the occupancy distribution of balls when a chains each of length D
and one chain of length b get randomly thrown into the bins. It is not hard to see that the
occupancy distribution of balls that results from throwing in these a+1 chains independently
and uniformly randomly among the bins is precisely the occupancy distribution of balls that
results from throwing chain C1, described in the previous paragraph. Even in the case when
b = 0, the occupancy distribution of balls that results from throwing in chain C1 is the same
as that obtained from throwing in a chains of length D each.

Moreover, the two occupancy distributions that result from the other balls are obviously
identical since the same C−1 chains are involved in both the distributions. By independence
and the claim in the previous paragraphs, the occupancy distribution of balls in problem X
is the same as the one in problem X 1.

Since we can replace one chain (C1) of problem X with a multiple number of chains of
length at most D to obtain a problem X 1 with the same occupancy distribution of balls, we
can repeat this process on X 1 to replace one more chain of length greater than D to obtain
another problem X 2, and so on, retaining the same occupancy distribution of balls as in
the orginal problem X . We continue this process until we have a dependency problem with
no chain of length greater than D and denote this problem as X ∗. Since the occupancy
distributions of X and X ∗ are identical, so are their expected maximum occupancies. This
proves the lemma.

We now use the above lemma in proving an upper bound on the expected maximum
occupancy of dependent occupancy problems involving a total of Nb balls and D bins.

Theorem 2 Consider any dependent occupancy problem X ′ that involves C ′ chains, D
bins and a total of Nb balls from the C ′ chains. Let X ′max denote the maximum occupancy
random variable for X ′. Let Nb = kD, for k > 0. Then

1. If k is a constant as D →∞,

E [X ′max] ≤ lnD
ln lnD

(
1 +

ln ln lnD
ln lnD

+
1 + ln k
ln lnD

+O

(
(log log logD)2

(log logD)2

))
.

2. In the case where k = r lnD and r = Ω(1), we have

E [X ′max] ≤
(

1 +
√

2
r

+
ln r√

2r lnD
+O

(
1
r

+
log r
r logD

+
1

D
√
r

))
Nb

D
.

Note that the right hand side is of the form Nb
D (1 + o(1)) when r → ∞. In the case

when r = Θ(1), we have E [X ′max] ≤ cNb/D for some constant c > 0.

Since the classical occupancy problem is a special case of the dependent occupancy
problem, an immediate implication is the following corollary.

Corollary 1 Consider a classical occupancy problem in which Nb balls are independently,
uniformly randomly thrown into D bins. The expected maximum occupancy C(Nb,D) of this
problem is bounded from above by the same upper bounds that we proved in Theorem 2 for
the expectation E [X ′max] of the maximum occupancy of any dependent occupancy problem
involving a total of Nb balls and D bins.

The upper bounds we prove for the expectation of maximum occupancy in the de-
pendent occupancy problem are precisely the asymptotically tight bounds for the classical
maximum occupancy problem derived in [KSC78]. In fact, our proof for the upper bound
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on dependent expected maximum occupancy constitutes an alternate approach to obtaining
the same asymptotically leading terms as those in [KSC78] for the classical expected maxi-
mum occupancy. (The proof in [KSC78] also serves as a lower bound on classical expected
maximum occupancy but our techniques can be modified to do the same.)

Proof of Theorem 2: The given dependency problem X ′ might involve some chains that
are longer than D in length. Lemma 9 ensures us that there always exists a dependency
problem X such that E [Xmax] = E [X ′max] where Xmax is the maximum occupancy random
variable of X , and X involves no chain of length greater than D. We will thus focus our
attention on this problem X .

Let C denote the number of chains in X , and for 1 ≤ j ≤ Nb, let nj denote the number
of chains of length j. Thus we have ∑

1≤j≤D
nj = C, (1)

and ∑
1≤j≤D

jnj = Nb. (2)

Let T denote any positive integer. One way of computing E [Xmax] is

E [Xmax] =
∑
m≥0

Pr{Xmax > m} (3)

≤ T +
∑
m≥T

Pr{Xmax > m} (4)

≤ T +
∑
m≥T

D · Pr{X > m}. (5)

where X is the random variable corresponding to the occupancy of one particular bin,
say bin b0, the bin numbered 0. We will derive an apppropiate bound on the quantity∑
m≥T Pr{X > m} and then apply it in inequality (5) above to bound E [Xmax].

If all the chains involved are of length 1, computing Pr{X > m} is relatively straight-
forward. The fact that there can be up to C = Nb chains whose lengths may vary from
1 through D introduces dependencies that complicate the task of obtaining a bound for
Pr{X > m}. To obtain a bound on Pr{X > m}, we will use a generating function ap-
proach.

Definition 12 Consider a random variable W that takes integral values. The probability
generating function (PGF) of W , denoted GW (z), is defined to be the function

GW (z) =
∑
t

Pr{W = t}zt.

Thus the coefficient of zt in GW (z) is Pr{W = t}.

In the simple case when dependency problem X has only one chain, and the chain has
length `, the PGF GX(z) is

GX(z) =
(

1− 1
`

)
z0 +

1
`
z1 = 1− 1

`
+

1
`
z.
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In the general case when dependency problem X has C independent chains, the PGF is the
product of the PGFs corresponding to each individual chain, which gives us

GX(z) =
∏

1≤j≤D

(
1− j

D
+
jz

D

)nj
. (6)

For 0 ≤ m ≤∑1≤j≤D nj = C, the coefficient Pr{X = m} of zm in GX(z) is also the residue
at z = 0 of the complex analytic function GX(z)/zm+1 [GK81]. Moreover, z = 0 is the only
pole of GX(z)/zm+1 enclosed in a circle of radius P centered at z = 0 in the complex plane,
where P is any positive number. Therefore, the residue theorem states that

Pr{X = m} =
1

2πi

∮
|z|=P

GX(z)
zm+1 dz , (7)

where i =
√
−1. It follows that

Pr{X = m} ≤ 1
2π

∮
|z|=P

∣∣∣∣GX(z)
zm+1

∣∣∣∣ dz (8)

≤ 1
2π

(2πP )
GX (P )
Pm+1 . (9)

Step (9) follows because the coefficients of the PGF GX(z) are non-negative real num-
bers and thus |GX(z)| is maximized on the circle of radius P when z is positive, namely,
when z = P . By (6) and (9), we get

Pr{X = m} ≤ GX(P )
Pm

(10)

=
1
Pm

∏
1≤j≤D

(
1 +

(P − 1)j
D

)nj
(11)

≤ 1
Pm

∏
1≤j≤D

(
1 +

P − 1
D

)jnj
(12)

=
1
Pm

(
1 +

P − 1
D

)Nb
. (13)

Step (12) follows from the inequality (1 + (P − 1)j/D) ≤ (1 + (P − 1)/D)j when j ≥ 0 and
P ≥ 1. Step (13) follows from (2). Note that if the probability generating function for the
maximum occupancy random variable of classical occupancy with Nb balls and D bins is
denoted GY (z), then GY (P ) is precisely the expression (1 + (P − 1)/D)Nb .

We need to select an appropriate value of P in the bound (13) for Pr{X = m}. The
idea is to optimize the value of P so that the right hand side of (5) is minimal. In what
follows, we will denote P as 1 + α, where α is a positive quantity to be determined later.
It is understood that P (and thus α) may be a function of D.

Substituting P = 1 + α into (13), we have

Pr{X = m} ≤ 1
(1 + α)m

(
1 +

α

D

)Nb
. (14)

Using (14) to bound Pr{X > m}, we have

Pr{X > m} =
∑
t>m

Pr{X = t} (15)
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≤
(

1 +
α

D

)Nb ∑
t>m

(1 + α)−t (16)

=
(

1 +
α

D

)Nb 1
(1 + α)m

∑
t>0

(1 + α)−t (17)

=
(

1 +
α

D

)Nb 1
α(1 + α)m

. (18)

We know that E [Xmax] ≥ Nb/D trivially. In order to conveniently manipulate the right
hand side of (5), which will be a function of T and α, we parametrize T as T = 1 + ρNb/D,
where ρ > 1 is chosen so that ρNb/D is an integer. Plugging in this parametrization and
simplifying (5) using (18), we have

E [Xmax] ≤
(
ρNb

D
+ 1

)
+

∑
m>ρNb/D

D · Pr{X > m} (19)

≤
(
ρNb

D
+ 1

)
+D

∑
m>ρNb/D

(
1 +

α

D

)Nb 1
α(1 + α)m

(20)

≤
(
ρNb

D
+ 1

)
+D

(
1 +

α

D

)Nb 1
α(1 + α)ρNb/D

∑
m>0

1
(1 + α)m

(21)

=
(
ρNb

D
+ 1

)
+D

(
1 +

α

D

)Nb 1
α2(1 + α)ρNb/D

. (22)

If the value of ρ is large enough, the second term of (22) will be negligible. Now we
derive the smallest value ρ can take that still ensures that the second term in (22) is at
most 1:

D

(
1 +

α

D

)Nb 1
α2(1 + α)ρNb/D

≤ 1.

Taking natural logarithms on both sides, we have

lnD +Nb ln
(

1 +
α

D

)
− ρNb

D
ln(1 + α)− 2 lnα ≤ 0.

Rearranging terms, we get

ρ
Nb

D
ln(1 + α) ≥ Nb ln

(
1 +

α

D

)
+ lnD − 2 lnα (23)

ρ ≥
D ln

(
1 + α

D

)
ln(1 + α)

+
D lnD

Nb ln(1 + α)
− 2D lnα
Nb ln(1 + α)

. (24)

We take ρ∗ to be the smallest real number satisfying (24) such that ρ∗Nb/D is integral.
Replacing ρ by ρ∗ in (22) and exploiting the fact that the second term in (22) is at most 1,
we get

E [Xmax] ≤
(
ρ∗Nb

D
+ 1

)
+ 1 (25)

≤ ρ∗Nb

D
+ 2. (26)

We are now ready to consider the different cases regarding the relationship between
Nb and D. The basic idea is to choose different values of α for the different cases so as to
optimize the bounds obtained using (26). Throughout this derivation we will make use of
the bound ln(1 + x) = x− x2/2 +O(x3) for bounded positive x.
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Case 1: Nb = kD for constant k > 0. In this case, we choose

α =
1/r

ln(1/r)
=

(lnD)/k
ln lnD − ln k

.

Substituting and simplifying, the first term in expression (24) can be written as

lnD
k(ln lnD)2

(
1 +O

(
log log logD

log logD

))
,

and the second term in expression (24) can be written as

lnD
k ln lnD

(
1 +

ln ln lnD
ln lnD

+
ln k

ln lnD
+O

(
(log log logD)2

(log logD)2

))
.

The third term of expression (24) is O(1). Hence the bound on ρ∗ can be written as

ρ∗ =
lnD

k ln lnD

(
1 +

ln ln lnD
ln lnD

+
1 + ln k
ln lnD

+O

(
(log log logD)2

(log logD)2

))
. (27)

Using inequality (27) in inequality (26) and simplifying, we get

E [Xmax] ≤ lnD
ln lnD

(
1 +

ln ln lnD
ln lnD

+
1 + ln k
ln lnD

+O

(
(log log logD)2

(log logD)2

))
. (28)

This completes the proof of Case 1 of Theorem 2.

Case 2: Nb = rD lnD with r = Ω(1). In this case, we choose α =√
2/r. Since α/D =

√
2/r/D → 0 asymptotically as D → ∞, it follows that

D ln(1 + α/D) =
√

2/r(1 +O(
√

2/r/D)).
Let us first consider the more interesting subcase when r →∞, α→ 0. In this the first

term on the right hand side of inequality (24) equals

D ln
(
1 + α

D

)
ln(1 + α)

=

√
2/r

(
1 +O

(√
2/r
D

))
√

2/r − 1/r +O(1/r
√
r)

= 1 +
√

1
2r

+O

(
1
r

+
1

D
√
r

)
. (29)

The second term on the right hand side of (24) equals

D lnD
Nb ln(1 + α)

=
1/r√

2/r − 1/r +O(1/r
√
r)

=
1√
2r

+O

(
1
r

)
. (30)

The third term of (24) is

−2D lnα
Nb ln(1 + α)

=
−2 lnα

(r lnD)α(1 +O(α))
(31)

=
ln r − ln 2

r(lnD)
√

2/r(1 +O(1/
√
r))

(32)

<
ln r√

2r(lnD)(1 +O(1/
√
r))

(33)

=
ln r√

2r lnD
+O

(
log r
r logD

)
. (34)

By (29),(30), and (34), we can choose ρ∗ to be

ρ∗ = 1 +
√

2
r

+
ln r√

2r lnD
+O

(
1
r

+
log r
r logD

+
1

D
√
r

)
. (35)
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For the bound on the expected maximum occupancy, applying (35) in inequality (26)
and simplification yields

E [Xmax] ≤
(

1 +
√

2
r

+
ln r√

2r lnD
+O

(
1
r

+
log r
r logD

+
1

D
√
r

))
Nb

D
+ 2

≤
(

1 +
√

2
r

+
ln r√

2r lnD
+O

(
1
r

+
log r
r logD

+
1

D
√
r

))
Nb

D

In the subcase when r = k = Θ(1) for some k > 0, it is easily seen that the right hand
side of (24) depends on r but it is O(1), and thus ρ∗ = O(1). Using ρ∗ ≤ c′, where c′ is a
positive constant, in inequality (26), we have

E [Xmax] ≤ c′
Nb

D
+ 2. (36)

This completes the proof of Case 2 of Theorem 2.

7.3 Proof of Theorem 1

An intuitive way to look at the analysis of SRM is that the number of I/O read operations
corresponding to a phase is the expected maximum occupancy of a dependent occupancy
problem involving Nb = R balls and D bins. Thus to compute the number of reads for
the entire mergesort, we have to multiply the expected maximum occupancy by the total
number of phases in the mergesort, which is the product of the number ln(N/M)/ lnR of
passes over the file other than the initial run formation pass and the number N/RB of
phases in a merge pass.

Using Lemmas 6 and 8, with the random variables I0 and L′i defined as in those lemmas,
the random variable that bounds the number of I/O read operations during a merge of N ′

records during SRM is I0 +
∑

1≤i≤J L
′
i, where J = N ′/B−R

R . The expected number of read
operations in a merge is thus

E [I0] +
∑

1≤i≤J
E [L′i]. (37)

The random variable I0 is the maximum occupancy of a classical occupancy problem involv-
ing R balls and D bins and each L′i is the maximum occupancy of a dependent occupancy
problem involving R balls and D bins.

Let us consider Case 1 of Theorem 1, in which we have R = kD for constant k > 0.
In terms of occupancies, this corresponds to Case 1 of Theorem 2, in which a total of
Nb = R = kD balls are thrown into D bins. From the bounds for Case 1 of Theorem 2
and Corollary 1, the expectations E [I0] and E [L′i] are all bounded by the right hand side
of (28). Substituting (28) into (37) and simplifying, we find that the number of reads in a
merge of N ′ records during SRM is given by

(J + 1)

(
lnD

ln lnD

(
1 +

ln ln lnD
ln lnD

+
1 + ln k
ln lnD

+O

(
(log log logD)2

(log logD)2

)))

=
N ′

kDB
· lnD

ln lnD

(
1 +

ln ln lnD
ln lnD

+
1 + ln k
ln lnD

+O

(
(log log logD)2

(log logD)2

))
. (38)

In each pass over the file, the sum of the sizes of all the runs that are merged is
∑
N ′ = N .

Therefore by (38), the expected number of reads done by SRM in each pass on the file is

N

kDB
· lnD

ln lnD

(
1 +

ln ln lnD
ln lnD

+
1 + ln k
ln lnD

+O

(
(log log logD)2

(log logD)2

))
. (39)
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There are (ln(N/M))/(ln(kD)) merge passes other than the initial run formation pass, which
costs N/DB read operations. Thus, the expected number of read operations required to
sort N using SRM in Case 1 of Theorem 1 is

N

DB
+

ln(N/M)
ln(kD)

N

DB

lnD
k ln lnD

(
1 +

ln ln lnD
ln lnD

+
1 + ln k
ln lnD

+O

(
(log log logD)2

(log logD)2

))
.

Similarly, we can apply occupancy bounds from other cases of Theorem 2 and Corollary 1
to bound the expectations E [I0] and E [L′i], where 1 ≤ i ≤ J , in Cases 2 and 3 of Theorem 1,
and we get the desired expressions shown in the statement of Theorem 1. This completes
the proof of Theorem 1.

8 A Deterministic Variant

As mentioned earlier in Section 3, when the input data records of the runs are randomly
and uniformly distributed, we expect a version of our algorithm that uses a deterministic
staggered distribution of starting blocks of runs on disks to give an average performance
comparable to the bounds we showed in Theorem 1. Intuitively, this effect occurs because
with long, random input runs, the R leading blocks of the R input runs at any time during
the merge tend to be spread no worse than randomly among the D disks.

When the R input runs are staggered on the D disks, the first run has its first block
on disk 0 with subsequent blocks cyclically stored on the disks, the next run has ts first
block stored on disk 1, and so on. If the runs are “short enough,” we can expect the runs
to maintain their stagger on the disks throughout the duration of the merge on the average,
ensuring very efficient I/O. On the other hand, as observed in the previous paragraph,
even when runs are “long,” we can expect I/O to be reasonably efficient. Hence, if an
analysis of having runs staggered deterministically during initial merge stages (when runs are
“short”) is combined with an analysis that exploits the randomness in maximum occupancy
situations during later merge stages (when runs are “long”), we might be able to obtain an
improvement in overall I/O performance of the mergesort. We might thus be able to prove
theoretical optimality (within a constant factor) for an increased range of values of M , B
and D for our mergesort, compared with the range in Theorem 1.

9 Comparisons between SRM and DSM in Practice

In DSM, the popularly-used merging technique with disk striping, there are O(M/DB) runs
merged in each merge step with perfect read parallelism. The price that DSM pays for not
using the disks independently is that it can merge only Θ(M/DB) rather than Θ(M/B) runs
at a time. However, DSM is often more efficient in practice than the previously developed
asymptotically optimal sorting algorithms, since the latter algorithms have larger overheads
[VV96].

When the amount M of internal memory is small or the number D of disks is large, our
SRM method is clearly superior to DSM. For example, if M = Θ(DB), DSM is suboptimal
by a factor of Θ(logD) whereas SRM is suboptimal by a factor of Θ(logD/ log logD). The
improvement of SRM over DSM shows up in practice even when M is substantially larger
or the number of disks D is small, which is when DSM has better I/O performance than
previously developed external sorting algorithms.

In this section, we compare the performance of the DSM and SRM mergesorts on existing
parallel disk systems. In Subsection 9.2 we make a comparison based on an estimate of the
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upper bound on the expected worst-case number of I/O operations of an SRM mergesort with
the exact number of I/O operations for the standard DSM mergesort with disk striping,
using parameters of presently existing or feasible parallel disk systems. In Subsection 9.3
we make a similar comparison based on actual simulations of SRM to estimate its average-
case I/O performance on random inputs. Both the comparisons show that SRM’s I/O
performance is always better than DSM’s. Moreover, simulations indicate that SRM’s
actual I/O performance is much better than that implied by the estimate of the analytical
bound in Subsection 9.2.

9.1 Expressions for the number of I/O operations

In this subsection and the following ones, we assume that SRM is able to merge R = kD
runs at a time, for interesting values of k and D. We consider DSM using the same amount
of memory and estimate the relative performances of SRM and DSM.

We will first consider SRM, which merges R = kD runs at a time. The amount of
internal memory needed to support the merging is M = (2kD + 4D)B + kD2. The total
number of writes SRM requires is N

DB (1 + ln(N/M)
ln(kD) ) since it has perfect write parallelism.

In terms of reads, SRM requires N/DB reads corresponding to the initial run formation
pass. It subsequently requires ln(N/M)

ln(kD) passes to perform the merging, each incurring v N
DB

reads, where v = v(k,D) is the overhead factor that represents a multiplicative overhead
over and above the minimum number N

DB of reads for a single pass. The total number of
I/O operations SRM takes to sort N records is thus

N

DB

(
2 +

ln(N/M)
ln(kD)

(1 + v)
)

=
N

DB

(
2 + CSRM ln

N

M

)
,

where
CSRM =

1 + v

ln(kD)
. (40)

Now let us compute in a similar way the number of I/O operations needed by DSM to
sort N records using the same amount of memory as SRM above. We assume that DSM
uses 2D blocks per run for I/O read buffers and 2D blocks for I/O write buffers. DSM
merges (M/B − 2D)/2D = k + 1 + kD/2B runs at a time. It can be verified that the
number of I/O operations required by DSM to sort N records is

N

DB

(
2 + 2

ln(N/M)
ln(k + 1 + kD/2B)

)
=

N

DB

(
2 + CDSM ln

N

M

)
,

where
CDSM =

2
ln(k + 1 + kD/2B)

. (41)

9.2 Comparison based on expected worst-case performance of SRM

Our goal in this subsection is to compare SRM and DSM based on the expected worst-
case performance of SRM. Our comparison uses k and D values corresponding to realistic
systems. To make the comparison possible, we need to obtain an estimate of the overhead
factor v(k,D) defined in the previous subsection corresponding to these values of k and D.

Note that for a pair of given finite values of k and D, the estimate of the expected
worst-case value of v using Theorem 1 is lax because of contributions from lower-order
terms. As explained in Section 7.3, the expected number of reads done by SRM is bounded
by an expression involving expected maximum occupancies of the classical and dependent
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D = 5 D = 10 D = 50 D = 100 D = 1000
k = 5 1.6 1.7 2.2 2.3 2.7
k = 10 1.4 1.5 1.8 1.9 2.2
k = 20 1.3 1.4 1.5 1.6 1.8
k = 50 1.2 1.2 1.3 1.4 1.5
k = 100 1.11 1.16 1.22 1.26 1.3
k = 1000 1.04 1.05 1.08 1.08 1.1

Table 1: The overhead v(k,D), computed by estimating C(kD,D)/k using computer simu-
lations.

cases. We get more useful comparisons between SRM and DSM by replacing the maximum
dependent occupancy by the maximum classical occupancy in the bound for the expected
number of reads required by SRM. This approach can be justified on two counts. First, the
upper bound in Theorem 2 that we proved for the expected maximum dependent occupancy
is the same as the expression for the expected maximum of the classical occupancy problem.
Moreover, we conjecture that expected classical maximum occupancy is never less than the
expected maximum occupancy of dependent occupancy problems involving the same number
of balls and bins, as explained in Section 7.2.

For given values of k and D, we simulate throwing kD balls into D bins repeatedly to
estimate C(kD,D). Thus the expected worst-case overhead v(k,D) is estimated by repeated
ball-throwing experiments to estimate C(kD,D)

k . Table 1 shows the values of v based on such
experiments.

For every k, D pair considered, we use (40) to estimate an expected worst-case value for
CSRM using the abovementioned estimates for v. In Table 2 we present the CSRM /CDSM
ratio for several values of k and D. The ratio CSRM /CDSM represents the relative I/O
advantage of SRM over DSM, neglecting the 2N/DB I/Os that both methods require
during the initial run formation. We used block size B = 1000 records for all k,D pairs.
(The choice of B is not significant so long as it is reasonable.) In our representation, 2k is
roughly the number of internal memory blocks available per disk.

Table 2 shows that the SRM uses signficantly fewer I/Os than does DSM. For example,
for D = 50, k = 100, which translates into M = 10.5 million records of internal memory,
SRM uses 0.60 times as many I/Os as does the slower DSM, not counting the initial run
formation pass that they share in common. When D is small, as k increases relative to D,
the CSRM /CDSM ratio gradually increases toward 1, which indicates a lessening advantage
of SRM over DSM when there are few disks and a huge amount of internal memory. As
we show in the next subsection, since we overestimate the number of reads required by
SRM in our analysis, SRM actually exhibits even better performance than indicated in
Tables 1 and 2.

9.3 Using simulations to count SRM’s I/O operations

In the previous subsection we showed by using classical maximum occupancy to estimate
the overhead term v that SRM performs well compared to DSM on arbitrary inputs. In
this section we use simulations of the algorithm itself to estimate v on average-case inputs
and make a similar comparison.

Our experiments consist of simulating SRM while merging R = kD sorted runs, and
each of length L, for a large range of k and D values. The runs input to the merge were
generated such that each set of input runs was equally likely. SRM’s actions while merging
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D = 5 D = 10 D = 50 D = 100 D = 1000
k = 5 0.71 0.62 0.51 0.48 0.46
k = 10 0.72 0.66 0.54 0.50 0.48
k = 20 0.75 0.68 0.56 0.53 0.49
k = 50 0.77 0.71 0.59 0.55 0.50
k = 100 0.78 0.72 0.61 0.57 0.51
k = 1000 0.83 0.77 0.67 0.63 0.56

Table 2: The performance ratio CSRM /CDSM for memory size M = (2k + 4)DB + kD2,
with block size B = 1000. (Both M and B are expressed in units of records.) The overhead
factor v in CSRM is based on computer simulations of C(kd,D)/k.

D = 5 D = 10 D = 50
k = 5 1.0 1.0 1.2
k = 10 1.00 1.0 1.1
k = 50 1.00 1.00 1.00

Table 3: The overhead factor v(k,D) for memory size M = (2k + 4)DB + kD2 obtained
from simulations.

depend only on the relative order of the input keys. Thus, there is an obvious one-to-
one correspondence between the set of all possible input runs to the merge and the set of
partitions of the set I = {1, 2, . . . , LkD}, each partition splitting I into kD disjoint subsets
of size L. We generate average-case inputs to the merge by generating partitions of the
set I, with each partition being equally likely.

Our simulations indicate that SRM’s I/O overhead is noticeable only when k is small
compared with the number of disks D. We ran our simulations for several different sets
of parameters. Not only did we vary k and D, but for each k, D pair we also varied B
and L (where L is as defined above). We present here an illustrative sample of typical
simulation outcomes, with our main focus on the parameters k and D. Table 3 shows the
multiplicative overhead v corresponding to simulations for interesting k,D pairs. It can be
seen that the estimates of v based on average-case inputs are smaller than the corresponding
estimates of the expectation of worst-case values of v in Table 1. (For values of k larger
than the ones shown here, the simulations gave values v that were practically equal to
1.) The simulations show in the average-case that SRM has little or no overhead when
k is reasonably large and that the number of I/O read operations required to carry out
the merge is practically N ′/DB, where N ′ = LkD is the number of records in the merged
output. In our simulations, N ′ was always 1000 times bigger than kDB. Longer simulations
tend to be time consuming.

The average-case simulations indicate when k is reasonably large that there is little or
no flushing of blocks by SRM. Intuitively, the rate of consumption (due to merging) of the
blocks in internal memory is such that there is almost always space to read in the next
“smallest” D blocks without the need to flush.

In order to make a similar comparison as the previous subsection, but based on results of
simulations of the algorithm itself, we computed the term C ′SRM analogously to CSRM using
(40), by using the average-case values for v obtained from simulations of the algorithm.

Table 4 below shows the C ′SRM /CDSM ratios so obtained, for various k,D pairs. We note
that the entries in Table 4 are smaller than the corresponding entries in Table 2, indicating
that SRM’s performance is indeed better than that implied by the more pessimistic upper
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D = 5 D = 10 D = 50
k = 5 0.56 0.47 0.37
k = 10 0.61 0.52 0.40
k = 50 0.71 0.63 0.51

Table 4: The performance ratio C ′SRM /CDSM for memory size M = (2k + 4)DB + kD2

where C ′SRM is computed using the overhead value v(k,D) obtained from simulations.

bound. Moreover, SRM’s low overhead in the average-case indicates that for all practical
purposes it is an optimal external sorting algorithm.

10 Realistic Values for Parameters k, D, and B

We have shown in the previous section for a wide range of k, D, and B values that SRM
performs very efficiently. Since not every k, D, B triplet corresponds to that of a realistic
machine, we try in this section to obtain a crude approximation of the relative magnitudes
of k, D, and B in typical computers. We argue that k is generally much larger than D in
realistic machines, which implies that SRM is the method of choice on such machines, still
noticeably faster than DSM.

In our terminology, where the internal memory size is M = (2kD+4D)B+kD2 and the
merge order is R = kD, the expression 2kD is roughly equal to M/B, the number of blocks
that fit in main memory, under the realistic assumption that D = O(B). Let us consider a
fast, uniprocessor workstation attached to, say, D = 5 independent disks for parallel I/O.
We are likely to find internal memories of the order of 100 megabytes on such machines and
disk block or track sizes of the order of 10–50 kilobytes. This would mean that k may be
on the order of 200–1000 when D = 5 on such workstations. If the same amount of main
memory is used with instead 10 disks and 50-kilobyte disk blocks, k would be on the order
of 100. On the other hand when the number of disks is relatively high as in large-scale
multiprocessor computing systems, we would still expect k to be large, even after factoring
in the increased block sizes that such machines have. This is primarily because large-scale
computing systems tend to have huge internal memories. For instance, in a system with
100 parallel disks and 100-kilobyte disk blocks, one would expect on the order of at least
5–10 gigabytes or more of aggregate internal memory. This would correspond to k being
on the order of 500–1000 or more. The relative magnitudes of k, D, and B cited here are
meant to represent likely scenarios; it is conceivable that there are systems with different
relationships among the values of k, D, and B.

For most values of of k, D, and B, the previous section shows that SRM is extremely
efficient. Looking back at the occupancy analysis, the reason for SRM’s efficiency is that
throwing a large number (say, kD) of balls uniformly and independently into a small number
of bins (say, D) does result in a more or less balanced distribution. Even DSM will perform
well when D is small and k is large, since it will merge k runs at a time, which is not
much worse than merging the optimal kD runs at a time. However, SRM’s extremely low
overhead still gives it an advantage over DSM.

11 Conclusions

In this paper, we presented a simple, efficient mergesort algorithm for parallel disks that
makes a limited use of randomization. The analysis of the I/O performance involved a
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reduction to certain maximum occupancy problems. We demonstrated the practical merit
of the algorithm by showing that it incurs fewer I/O operations than the commonly used
disk-striped mergesort, even on realistic parallel disk systems with a small number of disks.
We did so analytically by estimating the maximum bucket occupancy values for several k,
D pairs and empirically by using simulations to count the number of I/O operations needed
by SRM in the average case. We argued that SRM may be considered an optimal external
sorting algorithm in practice. The technique of staggering runs might yield further gains in
practice if combined with our general approach.
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