
DOI: 10.1007/s00224-002-1031-0

Theory Comput. Systems35, 189–215 (2002) Theory of
Computing

Systems
© 2002 Springer-Verlag

New York Inc.

A Simple and Efficient Parallel Disk Mergesort∗

R. D. Barve1 and J. S. Vitter2

1Winphoria Networks, c/o B23 Swagat Mahakali Caves Road,
Andheri, Mumbai 400 093, India
rbarve@winphoria.com

2Center for Geometric and Biological Computing, Department of Computer Science,
Duke University, Durham, NC 27708-0129, USA
jsv@cs.duke.edu

Abstract. External sorting—the process of sorting a file that is too large to fit
into the computer’s internal memory and must be stored externally on disks—is a
fundamental subroutine in database systems [G], [IBM]. Of prime importance are
techniques that use multiple disks in parallel in order to speed up the performance
of external sorting. Thesimple randomized merging(SRM) mergesort algorithm
proposed by Barve et al. [BGV] is the first parallel disk sorting algorithm that
requires a provably optimal number of passes and that is fast in practice. Knuth [K,
Section 5.4.9] recently identified SRM (which he calls “randomized striping”) as
the method of choice for sorting with parallel disks.

In this paper we present an efficient implementation of SRM, based upon novel
and elegant data structures. We give a new implementation for SRM’slookahead
forecastingtechnique for parallel prefetching and itsforecast and flushtechnique
for buffer management. Our techniques amount to a significant improvement in
the way SRM carries out theparallel, independentdisk accesses necessary to read
blocks of input runs efficiently during external merging. Our implementation is
based onsynchronousparallel I/O primitives provided by the TPIE programming

∗ A shortened version of this paper appeared inProceedings of the11th Annual ACM Symposium on
Parallel Algorithms and Architectures(SPAA ’99), St. Malo, June 1999, pp. 232–241. Part of this work was
done while the first author was at Duke University and was supported in part by an IBM Graduate Fellowship,
by Army Research Office MURI Grant DAAH04-96-1-0013, and by National Science Foundation Research
Grant CCR-9522047. Part of this work was done while the second author was visiting I.N.R.I.A. in Sophia
Antipolis, and was supported in part by Army Research Office Grants DAAH04-96-1-0013 (MURI) and
DAAD19-01-1-0725 and by National Science Foundation Research Grants CCR-9877133, EIA-9870724, and
CCR-0082986.

190 R. D. Barve and J. S. Vitter

environment [TPI]; whenever our program issues an I/O read (write) operation, one
block of data is synchronously read from (written to) each disk in parallel.

We compare the performance of SRM over a wide range of input sizes with that
of disk-striped mergesort(DSM), which is widely used in practice. DSM consists of
a standard mergesort in conjunction with striped I/O for parallel disk access. SRM
merges together significantly more runs at a time compared with DSM, and thus it
requires fewer merge passes. We demonstrate in practical scenarios that even though
the streaming speeds for merging with DSM are a little higher than those for SRM
(since DSM merges fewer runs at a time), sorting using SRM is often significantly
faster than with DSM (since SRM requires fewer passes).

The techniques in this paper can be generalized to meet the load-balancing re-
quirements of other applications using parallel disks, including distribution sort and
multiway partitioning of a file into several other files. Since both parallel disk merg-
ing and multimedia processing deal with streams that get “consumed” at nonuniform
and partially predictable rates, our techniques for lookahead based upon forecasting
data may have relevance in video server applications.

1. Introduction and Motivation

The problem of external sorting (i.e., sorting a massive data set that is too large to fit into
the computer’s internal memory and must be stored externally on disks) is fundamental
to database systems. External sorting not only is a common application but it is also a
core subroutine in many other database operations [G], [IBM], as well as in external
memory graph algorithms [CGG+] and geometric algorithms [GTVV]. Modern tech-
nology trends indicate that processor speeds are increasing at a faster rate than disk drive
performance [Vi], [GVW], and so the development of external sorting techniques capable
of utilizing multiple disks in parallel is of prime importance for database systems.

External mergesort is the most commonly used technique to perform large-scale
sorting [ZL2]. In this paper we address problems arising in the development of a simple
and efficient parallel disk mergesort. External mergesort consists of a run formation
phase, which produces sorted runs, and a merge phase, which merges sorted runs to
produce the sorted output. While it is simple to modify run formation techniques devel-
oped for single disk systems to work efficiently on parallel disk systems, fundamental
difficulties1 need to be overcome in order to merge together several runs, each one striped
across the disks, in a manner that efficiently utilizes all the disks in parallel.

In this paper we present the design, implementation, and performance of an ex-
tremely simple and efficient parallel disk merging technique. Our implementation is
based on parallel I/O primitives provided by the TPIE [TPI] programming environment
for external memory programming. High-performance external sorting depends crucially
on being able tooverlapI/O and CPU processing fully. To achieve this, it is imperative
to usenonblockingI/O operations in which the file system cache is bypassed and data

1 It is easy to carry out an efficient parallel disk merge of several runs when each run resides entirely on
a single disk [PSV], provided the output can be striped across all the disks. However, such a merging scheme
is fundamentally inefficient for a parallel disk mergesort, since extra transposition passes would be needed.

A Simple and Efficient Parallel Disk Mergesort 191

is transferred directly to and from buffers provided by the application, thereby avoiding
expensive copy operations. The TPIE I/O primitives we employ for the implementation
described in this paper are based on nonblockingmemory-mappedfile I/O which allows
portions of a file to be mapped directly into the program’s address space, avoiding the
need for any data copying and allowing file access using simple array references. More-
over, overlapping of I/O and CPU processing is made possible in our implementation by
the fact that the algorithms implemented access files almost exclusively in a sequential
pattern and the operating system applies sequential read-ahead also to memory mapped
files. As a consequence, our performance comparisons also carry over to external sort
implementations using more traditional mechanisms for nonbuffered, nonblocking I/O
based on explicit OS support other than memory-mapped file I/O.

The most significant aspects of our parallel disk merging technique are its elegant and
novel data structures and the prefetching and buffer management technique that together
constitute a practical implementation of the external mergesort algorithm SRM (simple
randomized mergesort) [BGV], which was shown to have provably efficient parallel I/O
performance guarantees for the parallel disk model of Vitter and Shriver [VS]. SRM
was recently identified by Knuth [K]2 in the new edition of his seminal work as the
method of choice for optimal sorting on parallel disks. Another interesting aspect of our
implementation technique is that it can be easily modified to suit the load balancing needs
of other applications in a parallel disk context, including external distribution sort and a
multiway partitioning of a file into other files. The technique we develop to implement
a lookahead mechanism via forecasting also has potential applications during parallel
prefetching in video servers in which many striped files may need to be streamed at
nonuniform rates with real time constraints.

Although a tremendous amount of research has been conducted on external sort-
ing [ECW], [ZL2], [Sa], [ZL1], the focus has largely been on single disk systems and
on goals such as efficient layout of disk blocks, efficient scheduling of I/O at disks, and
techniques to implement read-aheads in the course of external sorting. In this paper we
focus on the orthogonal approach of minimizing elapsed time by developing techniques
to exploit I/O parallelism and minimizeparallel I/O operationsin a system contain-
ing several disks. While some of the techniques developed in [ECW], [ZL2], [Sa], and
[ZL1] can be potentially used in conjunction with the ones we develop here, exploring
that avenue is beyond the scope of this paper. The parallel disk model (PDM) [VS] is
meant for designing algorithms capable of exploiting I/O parallelism. In the PDM an
input file containingN items3 is striped in blocks containingB items acrossD disk
drives, all of which may be used in parallel as follows: in each I/O operation, an ap-
plication can transfer at most one block ofB items between internal memory and each
disk drive; so up toD blocks can be transferred in a single I/O operation. With re-
spect to the problem of external sorting, results in [VS] and earlier work [AV] show that
given an internal memory capable of holding up toM items, sorting a file ofN items
requires2((N/DB) logM/B(N/B)) I/O operations. Sorting requiresdlogM/B (N/B)e
passesover the data; each pass can be done in a linear number of I/O operations (N/DB

2 Knuth refers to the SRM algorithm as “randomized striping.”
3 By items, we refer to records or tuples. While discussing I/O complexity bounds, it is convenient to

state block sizes and file sizes in terms of items instead of bytes.

192 R. D. Barve and J. S. Vitter

reads andN/DB writes). The main difficulty in parallel disk sorting is laying out in-
termediate data blocks, accessing blocks, and designing computation in such a manner
that on average each I/O operation transfers2(D) blocks, and, additionally, the data
blocks residing in memory at a given time are such that the I/O required to get them
there can be charged to the amount of “internal memory work” that can be accomplished
using that set of memory resident data blocks. Several interesting parallel disk sorting
algorithms [VS], [VN], [AP] performing an optimal number2((N/DB) logM/B(N/B))
of I/O operations have been proposed, but they are somewhat complicated and difficult
to implement in practice.

As a consequence, an attractive alternative to implement sorting algorithms for
parallel disks is to use the technique ofdisk striping(or striped I/O) in conjunction with
well known single disk sorting techniques as follows: In each striped-I/O operation,
the logical locations of the blocks accessed at each one of theD disks are the same.
Logically, the effect of striped I/O is to reduce the number of disks to 1 and increase the
block size toDB from the application’s point of view. As a result, single disk algorithms
such as external mergesort and external radix sort with block size configured toDB
can be implemented to utilizeD disks on a parallel disk system. Since double-buffered
mergesort has been shown to be very efficient [Sa], its disk-striped version, called disk-
striped mergesort (DSM) [Ve], is considered particularly attractive. Sorting algorithms
such as DSM and disk-striped radix sort [CH] based upon striped I/O are simple and all
their I/O operations can achieve fullD-disk parallelism. However, because the logical
block size blows up fromB toDB, the number of runs participating in each merge of DSM
goes down by a factor ofD, from orderM/B to orderM/DB, and hence DSM (and, for
similar reasons, all other striped-I/O sorting algorithms) requires a nonoptimal number
dlogM/DB (N/DB)e of passes over the data. The degree of nonoptimality increases with
D; most importantly, the nonoptimality shows up in practice even for a moderately small
numberD of disks.

Motivated by the need for a simple and provably efficient parallel disk sorting al-
gorithm, Barve et al. [BGV] proposedsimple randomized mergesort(SRM). The SRM
algorithm is the first parallel disk sorting algorithm that requires a provably optimal
number∼ dlogM/B(N/B)e of passes over the data and is simple enough to be consid-
ered a candidate for implementation. For practical ranges of the parametersB and D,
each pass takes a linear optimal numberO(N/DB) of I/Os. While merging, SRM uses
a generalization of Knuth’sforecastingtechnique [K] and a new buffer management
technique calledforecast and flushin order to access theD disks efficiently in aparallel,
independentmanner fundamentally different from striped I/O. The basic prefetching
technique in SRM is to use forecasting information to read in the “smallest” block from
each one of theD disks in every I/O operation; if there is not enough space in internal
memory to readD blocks, SRM simplyflushes(without any I/O) a sufficient number
of “largest” blocks from memory.

DSM inherentlyrequiressynchronous parallel I/O operations because of the nature
of disk-striping. For a direct comparison with DSM and because of the I/O primitives
provided by TPIE, our SRM implementation uses synchronous parallel I/O operations.
An interesting project, but one beyond the scope of this paper, would be to adapt the
basic SRM buffer management and prefetching technique for a system that provides
asynchronous parallel I/O operations on multiple disks. Asynchronous I/O should offer

A Simple and Efficient Parallel Disk Mergesort 193

speedups in practice by making use of otherwise idle time; its advantages and disadvan-
tages relative to the implementation presented in this paper merit a close look. In contrast
to SRM, DSM cannot be adapted to exploit the potential advantages of asynchronous
parallel I/O, because it relies fundamentally on disk striping.

1.1. Our Contributions

In this paper we present novel and elegant data structures and techniques to implement the
forecast and flush buffer management scheme of SRM. The latter scheme, as proposed
in [BGV], requires the use ofD separate priority queues [CLR], each corresponding
to a unique disk and each involvingR forecasting keys at any time, whereR is the
merge order. Furthermore, the scheme in [BGV] did not cover details of internal memory
management and how to track down efficiently the “largest” blocks in memory at the time
of the flush operations. In this paper we present an implementation of the forecasting and
flush scheme that requires only a single priority queue comprisingR forecasting keys,
to be used in conjunction withD ordinary queues implemented as simple arrays. The
novelty lies in the way we store, use, and manage forecasting data during the merging
process. We also show how to implement memory management and how to perform
flush operations. Our design significantly simplifies the implementation of SRM.

The second interesting contribution of our paper is the practical comparison of the
merging phase implementation of DSM and SRM, on a state-of-the-art computer system
consisting of six disks that can be used independently and in parallel. Our implementa-
tion employs nonblocking and nonbuffered memory-mapped I/O operations, making it
possible for us to overlap I/O and CPU processing, which is crucial to external memory
sorting. In each merge operation, DSM merges together approximatelyM/2DB runs,
whereas SRM merges together a significantly larger number of runs (which can go up
to approximatelyM/2B). DSM will thus tend to have higher disk locality in each merg-
ing operation, compared with SRM. As a result, each merge pass of SRM incurs some
overhead relative to each merge of DSM, on account of higher disk latencies (since a
larger number of streams is involved) as well as because each merge pass may require
morethanN/DB read I/O operations [BGV], as we explain later. Hence, even if SRM
requires a smaller number of merge passes on a given input, comparing the practical
performance of SRM’s and DSM’s merging phases remains an interesting exercise. Our
intuition is borne out in practice when we find that the data streaming speed attained by
DSM while merging is noticeably better than that of SRM. However, the overhead in
our implementation of SRM relative to DSM is small enough that SRM’s merging phase
easily outperforms DSM’s merging phase by a significant margin.

An interesting aspect of our technique is that it can be easily modified to suit the
load balancing needs of other applications in a parallel disk context, including external
distribution sort and a multiway partitioning of a file into other files which is used in
hash-join computations in database systems. The technique we develop to implement
a lookahead mechanism via forecasting also has potential applications during parallel
prefetching in video servers in which many striped files may need to be streamed at
nonuniform rates with real time constraints.

In Section 2 we go through some preliminaries for external mergesort, discuss rel-
evant previous work, and describe DSM. In Section 3 we present the SRM merging

194 R. D. Barve and J. S. Vitter

algorithm and sketch previous results for SRM. In Section 4 we present our implementa-
tion of the SRM merging algorithm, including some pseudocode. In Section 5 we present
various aspects of the performance comparison of the merging phases of SRM and DSM.
In Section 6 we present various applications of generalizations of the implementation
techniques we develop here. Finally, in Section 7, we make some concluding remarks
including avenues for related future work.

2. Preliminaries and Previous Work

External sorting has been studied extensively by many researchers. Knuth [K] and
Vitter [Vi] give a comprehensive analysis of methods. External mergesort is arguably
the most widely used of the external sorting techniques.

2.1. Run Formation+ Merging Passes= Mergesort

External mergesort consists of arun formationphase followed by amerging phase. Run
formation consists of repeatedly reading in a memoryload, sorting it in memory, and
writing it out to disk(s), thus resulting in the formation of2(N/M) sorted runs, each of
size2(M), which need to be merged together.

The merging phase consists of repeatedly carrying outmerge operationsuntil only
a single sorted run remains. Each merge operation merges together some numberR of
runs, whereR is called themerge order. The merge orderR is typically set in accordance
with the amountM of internal memory available, the sizeB of disk blocks, and in the
case of striped-I/O mergesort, the numberD of disks. The total number ofmerge passes
over the data during the merging phase isdlogR(N/M)e.

2.2. Participation Order of Blocks in a Merge

During a merge, data is transferred between internal memory and disks in blocks ofB
items. The blocks of the runs input to an external merge operation have a natural total
order that is useful to define. In the process we also define the crucial notion of the
leading block of a run at any time.

Definition 1. Consider an external merge involvingR input runs. A block of items is
said to bedepletedor consumedby a merge as soon as the last item in that block is
written into the output run. Theleading blockof ther th run, where 0≤ r < R, at any
time is defined as follows: At the beginning of the merge, the 0th block of ther th run is
the leading block of that run. Fori > 0, thei th block of ther th run becomes that run’s
leading block as soon as the(i − 1)st block of that run gets depleted by the merge. A
block is said to beginparticipatingin the merge as soon as it becomes the leading block
of its run. Theparticipation order4 of the blocks of the input runs is defined as follows:
The 0th block of ther th run is ther th block in the participation order. The remaining
blocks of the input runs follow the 0th blocks of theR runs in the order in which they
begin participating in the merge.

4 Sometimes this order is also referred to as theconsumption sequence[ZL2] of blocks of a merge.

A Simple and Efficient Parallel Disk Mergesort 195

In general the leading block of every input run needs to be in internal memory for
a merge computation to proceed, unless the input run has been completely depleted by
the merge. As a result, the order in which input blocks are read into memory tends to
follow approximately the participation order of input blocks.

2.3. Previous Work on External(Single Disk) Merging

It is beyond the scope of this paper to carry out a comprehensive survey of the vast body
of research on external merging. Salzberg [Sa] showed that double buffering [K] with
reasonably large sized buffers is an efficient approach to implement external merging in
general. Zheng and Larson [ZL1] suggested using six to ten floating buffers per input run
on average and proposed a planning strategy that utilizes the extra buffer space to read
disk blocks in an order different from the participation order with a view to optimizing
seek time. Estivill-Castro and Wood [ECW] extended this work, in part, to exploit the
pre-existing order in input data. Recently, Zhang and Larson [ZL2] suggested further
improvements to the planning strategy via extended forecasting and block clustering.

The abovementioned approaches try to maximize overlapping of I/O and compu-
tation and minimize delays on account of disk latency during external merging. While
Zheng and Larson do apply their planning strategy in a multiple disk situation, these
studies are primarily oriented toward single disk systems. Our interest lies in speeding
up external merging using the orthogonal approach of maximizing I/O parallelism. Al-
though some of the abovementioned approaches can be used in conjunction with parallel
I/O, we do not pursue that line of work in this paper. In this paper, as in the NOW-
Sort [ADAD+] implementation, we assume that efficient filesystem performance can be
obtained as long as the logical block sizeB is reasonably large (of the order of 256 KB)
andB is also the size of an input or output buffer in internal memory. Since all the merg-
ing approaches mentioned in the above paragraph use, on average, a constant number
of input buffers for each input run, the merge order isR = O(M/B) and the number
of merge passes required is roughly logM/B(N/M), which is optimal for the case when
D = 1.

2.4. Parallel Disk Sorting Using Disk Striping

Disk striping is a simple technique used to transform single disk sorting algorithms to
parallel disk sorting algorithms. DSM is a double-buffered mergesort that can be easily
implemented with striped I/O. The NOWSort [ADAD+] implementation uses a disk-
striped mergesort to perform an external sort locally at each individual workstation. By
the nature of striped I/O, the size of each input buffer in DSM isDB and the orderR
of external merging in DSM isR ≈ M/2DB. Each run is striped blockwise across all
the D disks in a round-robin manner. Initially the two buffers of each input run are read
into internal memory. During the merge, whenever a run’s leading buffer gets depleted
a parallel read operation to load the nextDB items into the free input buffer is issued,
while the merge proceeds using the other input buffer of the run. The output of the merge
is written in units ofDB items and is doubly buffered as well.

Clearly, DSM has the advantage of being simple, enjoying fullD-disk parallelism,
and an overlap of computation and I/O activity. However, the numberPdsm of merge
passes required in DSM is approximatelydlogM/DB(N/M)e, which can be larger than the

196 R. D. Barve and J. S. Vitter

optimal numberPopt = dlogM/B(N/M)e of passes by a factor5 approachingÄ(log D) as
D approachesÄ(M/B). More importantly, from a practical point of view, the increase
in the number of merge passes shows up even when the numberD of disks is only
moderately high, thus hindering the performance of DSM in practice.6

Another known parallel disk sorting implementation is the disk-striped radix sort [CH],
but it suffers from the same drawbacks as DSM mentioned above.

2.5. Difficulty of Merging Optimally with Parallel Independent Disks

Optimal sorting on parallel disks requires the ability to accessD disks in aparallel,
independentmanner in which different logical blocks may be accessed on each disk;
this access mode is therefore fundamentally different from striped I/O. In order to sort
optimally using parallel disks, a mergesort needs to merge optimally a large number7

R= 2(M/B) of runs striped acrossD disks in each merge operation.
Fundamental difficulties arise from the fact that very often during the merge there

are times when the set of theR next participating blocks all reside on a small subset of
the D disks, thereby causing “hotspots.” Such hotspots are caused by the unpredictable,
nonuniform rates at which runs get consumed by the merge. When there are hotspots,
reading the set of the nextR participating blocks can take many more parallel I/Os than
the optimal numberdR/De parallel I/Os. We refer the reader to [VS] and [BGV] for
more intuition regarding the difficulty merging with parallel independent disks. Vitter and
Nodine [VN] overcame this difficulty by performing external merging by firstapproxi-
matelymerging the runs followed by additional passes to refine the merge. Aggarwal and
Plaxton’s Sharesort [AP] technique does repeated merging and has accompanying over-
heads. Each of these approaches involves extra overheads and is not ideal for practical
implementation.

3. SRM Algorithm

The SRM algorithm of Barve et al. [BGV] overcomes the difficulties involved in par-
allel disk merging by using a generalization of the forecasting technique in an elegant
prefetching and buffer management scheme. In single disk systems, forecasting refers to
the technique of using the last key of an in-memory block of a run to predict when the next
block of that run will begin participating in the merge. In SRM, whenever intermediate
runs are written to disk (during run formation or as the output of a merge operation),
they are striped blockwise in a round-robin manner across theD disks. While writing
the blocks of ther th run to disk, SRM implants the following forecasting information in
each block of that run: in thei th block of ther th run, it stores thekey valueof the last

5 As D −→ M/cB wherec > 1 is a constant, we havePdsm/Popt −→ 1+ logc D.
6 In the NOWSort parameters for the Minutesort record, the size of the local internal memory and the

size of the file that needs to be sorted locally at each workstation is such that the number of runs merged during
the merging phase is very small, so their application of disk-striped mergesort involves only a single merge
pass.

7 It is enough to mergeR = 2((M/B)c) runs, for any constant 0< c ≤ 1, in each merge operation in
order to attain optimality (within constant factors) in the number of passes.

A Simple and Efficient Parallel Disk Mergesort 197

item in the(i + D − 1)st block8 of that run.SRM uses the forecasting information in
the ith block of a run to predict the time at which the(i + D)th block of that run begins
participating in the merge. If the i th block of a run is from diskd, then the(i + D)th
block of that run is thenext block of that run on disk d.

The round-robin blockwise striping employed by SRM while writing out runs to
disk differs from the usual striping technique in the following sense: The first block
of a run is written on a diskd0 chosen uniformly at random from among theD disks;
thereafter, blocks of the run are placed in the usual round-robin fashion on disks
(d0 + 1) mod D, (d0 + 2) mod D, . . ., and so on. This is the only application of
randomization in SRM. The randomization helps SRM avoid poor merging performance
for any particular ordering of items in the input file. The probabilistic analysis in [BGV]
and [K] of SRM’s I/O performance is with respect to the randomization mentioned
here; there are no assumptions whatsoever regarding the input file to be sorted.

3.1. The Forecast and Flush Scheme

We now present the simple prefetching and buffer management scheme employed by
SRM. The total number of internal memory blocks used by SRM as presented in [BGV]
is D blocks for blocks actively being read into memory,R blocks to hold theR leading
blocks of theR runs,R blocks for holding prefetched data, and an additional 2D blocks
for output run data.9 Thefloating bufferstechnique is used to implement internal memory
management. The internal merge process works on theR leading blocks corresponding
to theR input runs to produce blocks of the output run. As soon as an in-memory block
becomes a leading block, it is pinned in internal memory until it gets depleted. The same
holds for a block that becomes a leading block while still on disk, as soon as it is read
into internal memory. Whenever each one of a set ofD blocks of the output run has its
forecasting information, that set of blocks is written out with fullD-disk parallelism.
The forecast and flush scheme for prefetching and buffer management in order to “feed”
the internal computation works as follows:

1. Until there are no more input blocks to be read into internal memory:
(a) Find out, for each disk, the smallest block (with respect to the participation

order) among all blocks on that disk. Suppose that of theseD smallest blocks
(one per disk),̀ of them are leading blocks of their respective runs, where
0 ≤ ` ≤ D. (Invariants ensure [BGV] that the number of free blocks in
memory is at least̀.)

(b) If the number of free blocks available to hold prefetched data isD − `− f ,
for some f > 0, thenflushout f of the largest blocks (with respect to the
participation order) among all the prefetched blocks. This merely involves
tracking down thef largest blocks among the prefetched blocks in internal
memory and then simply marking them as free blocks; so there is no I/O

8 In the original presentation of SRM, the forecasting information in thei th block of a run is the key
value of the first item in the(i + D)th block of that run. However, the approach here, taken from [K], is a little
simpler.

9 Knuth [K] points out that SRM can be configured to work with any numberR+ m′ of blocks for
prefetched data as long asm′ ≥ D − 1; so there is some flexibility here.

198 R. D. Barve and J. S. Vitter

involved in flushing. If at least one block is flushed, update the information
about the smallest blocks on theD disks (since we now pretend as though
the flushed blocks are on disk.)

(c) In parallel, read in the smallest block from each one of theD disks.

3.2. Provable Performance Guarantees

As stated above, SRM merges approximatelyM/2B runs in each merge operation and so
the number of merge passes it requires is∼ Popt = dlogM/B(N/M)e, which is optimal.
Write operations during SRM proceed at full disk parallelism as indicated above. A
rigorous analysis of the expected number of parallel reads (Step 1(c)) required in SRM
is presented in [BGV]; here, the expectation is with respect to the randomization used
by SRM to choose the starting disk for each intermediate output run, and the analysis is
worst-case and so holds for any arbitrary inputs.

The flushing10 of blocks in Step 1(b) above may lead to extra parallel read operations;
so the expected number of parallel read operations required in an SRM merging pass
can, in general, exceedN/DB. This brings us to the following definition.

Definition 2. Theparallel I/O overheadν ≥ 1 of an SRM merging pass is defined as
the ratio between the number of parallel read operations incurred during that merging
pass and the optimal quantityN/DB.

The analysis of SRM in [BGV] implies that for most values ofM , D, andB which
together determine, in SRM, the expected value ofν is 1 or a small constant greater than
1. Although the upper bound analysis indicates that there are someR, D pairs for which
the expected number of parallel read operations in an SRM merging pass is nonoptimal
by small factors, simulations suggest that the upper bound analysis is pessimistic [BGV],
and SRM’s performance in practice is optimal, withν close to 1. Knuth [K] recently
identified SRM as the method of choice for sorting on parallel disks.

3.3. Data Structures Required in the Straightforward Implementation

In a direct implementation of SRM as stated, oneforecasting heap[BGV] would be
required for each one of theD disks in order to keep track of the smallest block (with
respect to the participation order) on each disk at any time. Each forecasting heap is
basically a priority queue [CLR]. In general, at any time, the forecasting heap for diskd
would containR elements, each one corresponding to the smallest block of a unique
input run on diskd at that time. Whenever a parallel read operation is completed, all the
D forecasting heaps would have to be updated. Flush operations also require updating
one or more forecasting heaps.

10 The algorithm, as stated, may flush out some blocks that will be read in immediately in the next parallel
read operation. Such blocks need not be flushed and in practice a check can easily be enforced to prevent such
blocks being flushed and then ensuring that no block is read from the disk(s) corresponding to these blocks in
the ensuing parallel read operation. For reasons of brevity, we do not delve into this detail in the rest of the
paper.

A Simple and Efficient Parallel Disk Mergesort 199

Additionally, SRM needs to maintain order among the prefetched blocks, since,
from time to time, the algorithm may need to flush out of internal memory up toD − 1
of the largest prefetched blocks. There is also a need to ensure that I/O and computation
are overlapped as far as possible.

4. Implementation Techniques and Data Structures for SRM

In this section we present an implementation of the forecast and flush scheme using novel
data structures and techniques. Our approach greatly simplifies the task of implementing
SRM. We require only one priority queue in conjunction withD ordinary queues, as
opposed to theD priority queues required by a naive implementation. Maintenance of
order among prefetched blocks falls out as a natural consequence of our technique. We
also propose a simple technique to overlap I/O and computation.

For the moment, we assume that we have access to an appropriate high-level interface
to specify I/O. In the next section we show how such an interface was implemented
in the TPIE [TPI] programming environment for external memory programming. In
Section 4.1 we describe a novel approach based on aforecasting heapdata structure
which provides a method to process forecasting data to track the smallest block on each
disk in our merge implementation: Section 4.1.1 considers the practical situation in which
the forecasting heap can be implemented completely in main memory using only a small
fraction of available main memory whereas Section 4.1.2 considers exceptional situations
in which the forecasting heap implementation involves external memory operations. In
Section 4.2 we describe how the forecasting heap is used to maintain the core data
structures in our implementation: Thelookahead queue, which helps maintain blocks in
memory in participation order, and theD occupancy queues(one per disk), which track
the participation order of blocks on each disk. Thef blocks to be flushed (Step 1(b) in
Section 3.1) correspond to thef trailing in-memory blocks in the lookahead queue. The
D blocks read in a parallel read operation (Step 1(c) in Section 3.1) are the disk blocks at
the head of theD occupancy queues. Section 4.2 also describes certain basic operations at
the core of our implementation. Section 4.3 illustrates the use of the above data structures
and the basic operations, and finally Section 4.4 describes the implementation in detail.

4.1. Managing Forecasting Data

In single disk merging, the key of the last item of a block in a run is the forecaster for
the next block of that run, so there is no inherent need to store forecasting information
explicitly in blocks. However, in SRM, given thei th block of a run, we need to be able
to forecast when the(i + D)th block of that run will begin participating, so forecasting
information has to be stored explicitly. While the original implementation of SRM pro-
posed implanting one forecasting key (the key of the last item in the blockD− 1 blocks
farther in the run) in each block of a run, here we propose that forecasting information
be managed altogether separately.

Our proposal is motivated by the observation that in most applications in practice
(and in particular in database applications), the size of the forecasting data involved in a
merge operation ismuch smallerthan the size of the runs participating in the merge. If the

200 R. D. Barve and J. S. Vitter

size of an item isI bytes and the size of its key isK bytes, then while the size (in bytes) of
the runs input to a merging pass isN · I bytes, the size of the corresponding forecasting
data is onlyNK/B bytes, so the forecasting data is smaller by a factor ofBI/K , which is
large in practice. For instance, database benchmarks typically haveI = 100 bytes and
K = 10 bytes. IfB = 1000 items,11 then the forecasting data is 10,000 times smaller
than the files being merged. Thus while merging files totally involving 1 GB of data,
the total amount of forecasting data is only≈ 100 KB, which is typically a very small
fraction of the main memory.

Given the importance of the role of forecasting in SRM and the size of internal
memory likely to be used,in most situations all the forecasting data relevant to a merge
operation can be kept resident in the internal memory. One way to implement this would
be first to read in the small file(s) containing all the forecasting data related to the input
runs at the beginning of the merge operation. The forecasting data corresponding to the
output run can either be written out at once at the end of the merge operation or written
out in a blocked manner from time to time during the merge. The forecasting data
corresponding to the input runs can be disposed of after the merge operation. Using this
approach the number of parallel I/O operations for reading and writing forecasting data
over a merging pass would bed2NK/DB2I e, which is a small fraction of the minimum
numberd2N/DBe of parallel I/O operations required for transferring the run data blocks
during the merging pass. An alternative implementation that is much easier and likely
to be feasible most of the time, is never have forecasting data go to disk at any time
throughout the entire mergesort. Forecasting data is intermediate data generated during
SRM, so there is no fear of it being lost on account of system failures. In internal memory,
two forecasting buffers can be used over all merging passes; the two buffers flip-flop in
their role as buffers for input run forecasting data and output run forecasting data from
each merge pass to the next.

However, as we point out in Section 4.1.3, there may be exceptional situations in
which having the forecasting data resident in internal memory may not reasonable. For
instance, this can happen while merging terabytes of data; in such cases, forecasting
data may consume either a significant fraction of available internal memory or (in really
extreme situations) may even exceed internal memory. For such cases, we propose yet
another technique to process forecasting data that will consume only a small fraction of
internal memory (only a small portion of the forecasting data corresponding to a merge
operation will be in memory at a time) and will incur only a small I/O overhead relative
to the I/O required for transferring the run data blocks.

In the remainder of this section we describe the the precise operations on forecasting
data in our implementation, followed by a discussion of how to handle the forecasting
data when it cannot be kept in internal memory.

4.1.1. The Forecasting Heap. Consider an SRM merge operation involvingR input
runs. Since we propose to manage the forecasting data separately from the runs them-
selves, for each run there is aforecasting data runthat contains the forecasting keys of
that run in sorted order. In all situations other than the exceptional situation discussed in

11 In our implementation and in [ADAD+], B is even larger.

A Simple and Efficient Parallel Disk Mergesort 201

Section 4.1.2, theR forecasting data runs remain resident in internal memory during the
course of the merge. The only operation that needs to be supported on the forecasting
data runs in order to facilitate our implementation of SRM’s forecast and flush scheme is
an incremental merge of the R forecasting data runs that outputs one forecasting key at
a time. Such an incremental merge can be implemented by having a priority queue that
contains, at any time, the leading forecasting key of each of theR forecasting runs. The
smallest key in the priority queue is output at each step; if that key belongs to ther th
forecasting data run, then the next key from that run is inserted into the priority queue.
The process can thus continue one step at a time. We use the termforecasting heapto
refer to the priority queue on the forecasting data runs.

The forecasting key output at each step predicts the time at which some block from
some run begins participating in the merge. The order of the forecasting keys output by
the forecasting heap is precisely the participation order of their corresponding run blocks.
By maintainingR counters, one per run, each initialized to 0 at the start of the merge, we
can keep track of the index of the first block in ther th run whose participation time has
not yet been predicted; we simply increment ther th counter whenever the forecasting
heap outputs a key from ther th run. The forecasting heap can thus be used to perform a
“lookahead” as we discuss below.

4.1.2. When Forecasting Data Is Too Large. In the exceptional situations when the
forecasting data involved in a merge operation is so large that it would consume a
significant portion of or may even exceed available internal memory, we propose the
following implementation for the forecasting heap. In such situations we choose a special
block sizeBf (in bytes) for processing files containing forecasting data runs. The size
of Bf is chosen such thatBf = BI/bf , wherebf is a small constant reasonably greater
than 1 that is chosen for a desired performance. The idea is that a portion of sizeR · Bf

bytes of internal memory is dedicated to the forecasting heap; a buffer ofBf bytes is
used to buffer each forecasting data run. Whenever the buffer of a forecasting data run
gets depleted, we read in (using a sequential I/O operation from a single disk) the next
Bf bytes from the forecasting data run. In this manner the forecasting heap can be easily
implemented.

The R · Bf bytes occupied by the forecasting heap can be made small by choosing
a large value ofbf , but since the total number of extra I/O operations required over a
merging pass on account of the forecasting heap would bedNKbf /B2I e, the parameter
bf should not be made too large. As a fraction of the minimum numberdN/DBe of
(parallel) I/O operations required during a merge, the I/O overhead of the forecasting
heap isDKbf /BI, which is extremely small in most practical situations. For example,
with K = 10 bytes,I = 100 bytes,B = 1000, andbf = 8, the fractional I/O overhead
is D/1250 which is small in practice. The memory usage for the forecasting heap in this
case would be less than116 of the internal memory usage of SRM, assuming that at least
2R+ D blocks of internal memory are used by SRM to process the main merge. The
memory and I/O overhead of the forecasting data corresponding to the output run of a
merge operation can be somewhat smaller, but are in the same ballpark.

4.1.3. Determining When Forecasting Data Can Be Kept in Memory. The main advan-
tage of SRM [BGV] is the fact that it requires no more passes than the optimal number

202 R. D. Barve and J. S. Vitter

required in external sorting, and the overhead in the execution of each pass is very small.
The SRM implementation proposed in this paper differs from [BGV] in terms of the spe-
cial treatment proposed here in order to handle forecasting data in practical situations.
In order to determine when forecasting data can be kept entirely in memory, we consider
how to determine the best merge order for the SRM implementation proposed in this
paper: We find the smallest positive integerR′ such thatdlogR′ ne = logM/B n and then
decrement the value ofR′ until M ≥ M(R′), where

M(R′) = R′B+ 2DB+ (R′ + 1) · Bf .

The right-hand side of the above inequality is the sum of the memory requirements
(including input, output, and prefetch buffers) for an SRM merge of orderR′, including
the buffers required by the external memory forecasting merge described in Section 4.1.2.
Next, we find the smallest positive integerR′′ such thatdlogR′ ne = dlogR′′ ne and assign
the value so obtained toR, the merge order we can use in our implementation.

Forecasting data can be kept entirely in memory if and only if

M ≥ RB+ DB+ 2NK/B.

4.2. Other Data Structures and Primitive Operations

Let m denote the total number of internal memory blocks used for input run blocks,
including leading blocks, prefetched blocks, and active blocks into which read operations
are currently reading data. We maintain pointers to starting blocks of all the runs produced
in a pass in a standard I/O-optimal external memory queue and at the start of each merge
operation of orderR, we load theRpointers corresponding to the runs being merged into
memory. Our implementation maintains the set ofR internal memory pointers, denoted
Leading0,Leading1, . . . ,LeadingR−1, pointing to the leading blocks of theR runs. The
implementation also maintains amain merge heapthat is continuously merging leading
blocks to produce items of the output run. All ofR runs’ data blocks in internal memory
other than theR leading blocks are maintained in a queue ofplaceholders, called the
lookahead queue LQfor reasons that will soon be clear. Each placeholder is a structure
with a fieldblock ptr to store a pointer to a block in internal memory, a fieldrun id to
store the identity of a run, and a fieldblock num to store the index of a block within
a run. We useLQ.headandLQ.tail to denote the placeholders at the head and the tail
of the queueLQ. For each disk 0≤ d < D, we maintain anoccupancy queue OQd
of elements. Each element is a pointer to some placeholder stored in the lookahead
queueLQ. Elements inOQd always point to placeholders of blocks on diskd that are
not yet in internal memory. We useOQd.headandOQd.tail to denote the elements at the
head and tail of the queueOQd. By appending (resp., prepending) an element toOQd,
we refer to the act of adding an element behind (resp., in front of) the elementOQd.tail
(resp.,OQd.head.) The lookahead queue as well as all the occupancy queues must be
traversable in both directions. We uses0, s1, . . . , sR−1 to denote the starting disks of the
R input runs. Each starting disk is chosen randomly when the run is begun and is known
to the merging algorithm.

The purpose of the lookahead queueLQ is to maintain prefetched input run blocks
in participation order. The purpose of each occupancy queueOQd, where 0≤ d < D,
is to maintain (pointers to) placeholders corresponding to blocks from diskd in their

A Simple and Efficient Parallel Disk Mergesort 203

participation order, so that blocks from diskd can be read byParallel Readoperations
in proper sequence.

Our implementation and SRM’s properties ensure that the number12 of elements in
the lookahead queueLQ is never more than max{m, RD} + R+ D, and the number
of elements in any occupancy queue cannot exceedR+ D. Since elements of theLQ
or any of theOQd’s areO(1) bytes in size, we can very simply implementLQ and all
the OQd queues using statically allocated circular arrays in the obvious manner, with
insignificant space overhead in practice.

Next we define some primitive operations in order to facilitate the presentation of
our implementation:

1. Lookahead(). The operationLookahead() gets the next forecasting key from
the forecasting heap and updates the forecasting heap appropriately, as discussed
earlier. If the key so obtained predicts the participation time of thei th block in
the r th run, then a new placeholderp with p.block num := i , p.run id := r ,
andp.block ptr := nil, is appended toLQ which makesLQ.tail = p. Finally, an
element pointing to placefolderp is appended toOQd, whered = (sr+i) mod D
is the disk on which thei th block of runr resides.

2. Parallel Read. The operationParallel Readissues read requests13 for a set of at
mostD blocks, one per disk. The reads are carried out inparallel. Parallel Read
is nonblockingin the sense that it returns control immediately without waiting
for the reads to complete. The precise block of diskd for which a read is issued
is determined as follows: If the occupancy queueOQd is empty, no block is read
from diskd. Otherwise, ifOQd.headpoints to placeholderp in LQ, the following
is done:
(a) Blockp.block numof run p.run id is read from diskd into internal memory.
(b) The field p.block ptr is set to point to the newly read block in internal

memory.
(c) ElementOQd.headis removed fromOQd.

4.3. Basic Ideas of Our Implementation

Figure 1 shows a schematic of our SRM implementation. Placeholders inLQ appear in
the participation order of their respective blocks. In general,LQmay contain placeholders
whose corresponding blocks remain to be fetched into memory; every such placeholder
p hasp.block ptr = nil. Blocks are “fed” to the main merge usingLQ. Whenever the
Bth item of leading blockLeadingr , for somer such that 0≤ r ≤ R− 1, gets con-
sumed by the main merge process, by definition the block corresponding to placeholder
p′ = LQ.headbecomes the new leading block, and we removep′ from LQ. Our imple-
mentation guarantees the followingprefetching invariant: Before the timet at which any

12 Although the lookahead queueLQ can haveR entries for each of theD disks, the number of blocks
of internal memory actually in use can never exceedm.

13 Our implementation uses memory-mapped I/O. The memory-mapped I/O calls we use are an enhanced
version [ACG+] of the original memory-mapped calls provided by Digital Unix. The enhanced version sends
off an asynchronous I/O request under the hood as soon as the call is made. We implement aD-disk parallel
I/O operation by issuingD such calls for blocks on different disks.

204 R. D. Barve and J. S. Vitter

������ ������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���

���
���
�����

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Lookahead Queue of placeholders

Queues

Prefetch Block

Main MergeForecasting

Occupancy

Disk 3Disk 2Disk 1Disk 0

Buffer

Merge

������

���
���
���
���

����
����
����

����
����
����
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
���

����������

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���

���
���
���

�
�
�

�
�
�

�
�
�
�

��
��
��
��

����

���
���
���
���
���
���

���
���
���
���
���
���

��

�
�
�
�

�
�
�
�

����
����
����
����

Fig. 1. Implementation scheme for SRM. The lookahead queue contains placeholders for blocks in partici-
pation order. A placeholder corresponding to an already prefetched blocks has a pointer to its block (shown
in solid black are the two such placeholders); a placeholder corresponding to an unprefetched block of disk
d appears in occupancy queueOQd. Placeholders in theOQs are in participation order. EachParallel Read
operation reads in the block corresponding to placeholderOQd.headfor eachd such that 0≤ d ≤ D − 1.
Before aParallel Readoperation, if anyOQd is empty (e.g.,OQ0 here), we execute as manyLookahead()
operations as are necessary, generating more placeholders, untilOQd is nonempty.

block b begins participating in the main merge, aParallel Readoperation prefetching
(amongD−1 other blocks) blockb will already have been issued by our algorithm, and,
moreover, at timet the field p′.block ptr of placeholderp′ = LQ.headpoints precisely
to blockb in memory. To accomplish this invariant, eachParallel Readoperation needs
to read in, from each disk, the smallest unread block from that disk. The above invariant
corresponds to Step 1(c) of the forecast and flush scheme of Section 3.1.

We use theD occupancy queues andLookahead() operations (and hence the auxil-
iary merge being carried incrementally by the forecasting heap) in this context. Entries
in occupancy queueOQd, for eachd such that 0≤ d ≤ D − 1, correspond to unread
blocks on diskd and are ordered according to the participation order of their blocks.
EachParallel Readoperation reads in the block corresponding toOQd.head, for each
0 ≤ d ≤ D − 1, thus reading in the smallest block from each disk. To guarantee that
one block is indeed read from each disk, we must ensure that eachOQ is nonempty
before theParallel Readoperation: this is accomplished by simply performing as many
Lookahead() operations as necessary14 until eachOQd has at least one entry.

In order to maintain the prefetching invariant, we maintain a special variable,
marked, that remembers the placeholder of the smallest block for which a read was issued

14 The precise number ofLookahead() operations needed to do so is unpredictable and dependent on
the disk distribution of the relevant blocks and their participation order.

A Simple and Efficient Parallel Disk Mergesort 205

in the most recentParallel Readoperation. Whenever the placeholdermarkedbegins
participating in the merge, we temporarily interrupt the main merge computation and
employ the mechanism of the previous paragraph to ensure full parallelism for the
Parallel Readoperation. Then we execute theParallel Readoperation, update the value
of marked, and resume the merging computation. SinceParallel Readis nonblocking,
our implementation performs I/O overlapped with computation. Sometimes, in the above
process, a few blocks may need to be flushed but this too is easy to implement using our
data structures: to flushf blocks, we simply traverseLQ from tail to head, find the first
f placeholdersp0, p1, . . . , pf−1 so found withpj .block ptr 6= nil, and among other
things setpj .block ptr := nil.

4.4. Algorithmic Description

We are now in a position to give an algorithmic description of our implementation.
For simplicity, we do not mention the I/O operations in the context of the forecasting
heap, with the understanding that the implementor will choose an appropriate technique
and perform the corresponding operations related to the auxiliary merge based upon the
discussion in Section 4.1.

We use two variablesmarkedandnext markedto record appropriate placeholders
in the lookahead queueLQ. As mentioned earlier, the total number of blocks available
at the start of the merge operation for input run blocks (including leading blocks, blocks
currently being read into internal memory, and prefetched blocks) is assumed to be a
numberm ≥ 2R+ D. The output run has twoDB item sized buffers that are used in
the usual double-buffered fashion, with writes at fullD-disk parallelism. Whenever an
input run block gets depleted by the merge or when an input run block gets flushed, the
number of free blocks increases by 1. Ifp is a placeholder inLQ, then we follow the
convention thatp.block ptr is nil whenever the blockp.block numof run p.run id is
not in internal memory and is still on disk.

1. For each run 0≤ r < R, read into internal memory its first block (on starting
disk sr). The pointersLeading0,Leading1, . . . ,LeadingR−1 are made to point
to the corresponding first blocks. The total number of parallel I/O operations
required to implement this step is equal to the maximum number of first blocks
on any one disk.

2. Insert the first key from each one of theR forecasting data runs into the forecasting
heap. Insert the first item from each run into the main merge heap.

3. Initialize the lookahead queueLQ and theD occupancy queuesOQd, for 0 ≤
d < D, to be empty queues.

4. While there exists at least one empty occupancy queueOQd and the forecasting
heap is not empty, execute aLookahead() operation.

5. Setmarked:= LQ.head.
6. [Get ready for the next parallel read in the merge by flushing blocks if necessary.]

If there are at leastD free blocks in internal memory, then proceed to Step 7.
Otherwise let the number of free blocks in internal memory beD − f , where
f ≥ 1. Beginning with the tail ofLQ, traverseLQ toward its head untilf
placeholdersp0, p1, . . . , pf−1 are found such thatpj .block ptr 6= nil, for 0 ≤

206 R. D. Barve and J. S. Vitter

j < f . Suppose that diskdj is the disk from which the blockpj .block numof
run pj .run id originates. Then, for each 0≤ j < f ,
(a) Setpj .block ptr := nil.
(b) If the occupancy queueOQdj

is empty, insert an element pointing to the place-
holder pj into OQdj

; otherwise prepend an element pointing to placeholder
pj to the head of queueOQdj

.
(c) If placeholderpj is ahead of the placeholdermarkedin queueLQ, then set

marked:= pj .
7. Execute aParallel Readoperation.15

8. While there exists at least one empty occupancy queueOQd and the forecasting
heap is not empty, execute aLookahead() operation.

9. Setnext marked:= p′, wherep′ is the placeholder inLQ closest toLQ.head
among the placeholders pointed to by elementsOQd.head, for 0≤ d < D.

10. flag := 0.
11. While(flag= 0)

(a) Generate the next itemx from the main merge heap. Letr be the run con-
tainingx.

(b) If run r has no more items to be merged, free the leading blockLeadingr
and proceed to Step 11(d). Otherwise, if the leading blockLeadingr of run
r has just been depleted, free that block, setLeadingr to point to the block
p.block ptr, for placeholderp = LQ.head, and remove placeholderp from
the lookahead queueLQ. If p = marked, setflag := 1.

(c) Insert the next item from runr into the main merge priority queue. (If the
leading blockLeadingr just changed in Step 11(b) above, the next item from
run r is the first item of blockLeadingr .)

(d) Add itemx to the output run buffer.
(e) If addingx completes the block of an output run, add the key ofx to the

forecasting data run of the output run.
(f) If the current output run buffer now hasDB items, then switch output buffers

and issue a non-blocking request to write outDB items to disk with full
D-disk parallelism.

(g) If the main merge heap is empty, setflag := 2.
12. If flag= 1, setmarked:= next markedand loop back to Step 6.
13. If flag= 2, write to disk the remaining items from the output run buffer and the

merge is completed.

5. Performance Results

In this section we present the performance of SRM in practical scenarios and, in par-
ticular, compare its performance with that of an efficient implementation of DSM and
demonstrate that SRM significantly outperforms DSM. We begin with a description of
the computer system and programming environment of our implementations.

15 This operation may read into memory one or more blocks flushed in Step 6.

A Simple and Efficient Parallel Disk Mergesort 207

5.1. Computer System and Environment

Our experiments were carried out on a Digital Personal Workstation with a 500 Mhz
EV5.6 (21164A) CPU. We used six (i.e.,D = 6) ST34501W Cheetah [Se] disks for
our experiments, two disks on each one of three Ultra-Wide SCSI buses attached to the
system. The operating system was Digital Unix Version 4.0. In our experiments inputs
varied in size from 100 MB to 1 GB and we use main memory in the range 15 MB to
24 MB. While the main memory we used in our experiments is small compared with
main memory available on some computers today, our experiments are representative of
the relative performances of the SRM and DSM techniques for larger inputs and main
memories: in general since the SRM technique enables efficiently merging more runs at
a time (with some caveats) thereby incurring a smaller number of passes than DSM, the
advantage of SRM relative to DSM increases with increasing values ofN/M andD.

Both the algorithms were implemented using theTransparent Parallel I/O En-
vironment(TPIE) [TPI] programming environment, which was originally developed
by Vengroff [Ve] for his Ph.D. and is currently being extended as part of an ongoing
project at Duke University’s Center for Geometric and Biological Computing. TPIE is a
stream-oriented environment written in C++ designed to enable the implementation of
efficient external memory algorithms on single and multiple disk systems. It provides
basic building blocks for programmers to use while writing external memory programs.
TPIE has built-in features such as a memory manager that manages buffers; it also keeps
track of the amount of internal memory used by a program, which is very useful to
control memory utilization during experiments as well as in memory management in
general.

We implemented an interface for parallel disk streams striped in the usual round-
robin manner in units of logical blocks across the six disks. Each striped stream consists
of one Unix file on each disk; each disk is a separately mounted filesystem. In order
to facilitate randomized striping, our interface allows an application to begin striping
on any disk of its choice. The I/O operations of TPIE used in our experiments were
implemented using an enhanced version [ACG+] of memory-mapped I/O calls. A par-
allel I/O operation is simulated by six memory-mapped I/O calls, one to each disk.
Each memory-mapped I/O call is a nonblocking call that instantaneously dispatches off
an asynchronous I/O operation under the hood. In all our experiments, the size of the
unified buffer cache was small enough (relative to the amount of data involved while
sorting) so that effects from the buffering in the unified buffer cache were negligible.

5.1.1. Block Size. In our experiments we used a logical block size of 256 KB; thus, all
the memory-mapped I/O calls mapped regions of size 256 KB. It would be interesting to
explore use of a smaller logical block size if we had control over disk block allocation,
disk scheduling, and so on, because we could use techniques as in [ZL1] and [ZL2] to
achieve good I/O performance. Since we use filesystems and do not have such control,
we can still ensure that the disk block allocation, readahead, and disk scheduling will be
done efficiently by use of large block sizes in memory-mapped calls (hence our choice of
the 256 KB size) and by making sure that each Unix file is accessed sequentially (so that
filesystem readahead is triggered wherever possible). We set the block size to 256 KB
for both DSM and SRM to allow proper comparisons in performance.

208 R. D. Barve and J. S. Vitter

5.2. Input Characteristics

For all our experiments, we considered items of sizeI = 104 bytes, with keys of size
K = 8 bytes and a block sizeB = 2520 items. The block size in bytes is therefore 104×
2520= 262,080 bytes, which is for all practical purposes 256 KB= 262,144 bytes. The
unsorted input stream for each run of the two sorting algorithms was always a uniformly
randomly generated sequence of items.Both SRM and DSM, in our implementation,
use the same run formation algorithm and so, for a given internal memory size, both
algorithms have to merge an identical number of runs during their merging phase.

In general, the merging phase of an external mergesort takes time given by

number of merge passes× time per merge pass.

While the first quantity above is known to be≈ dlogR(N/M)e, the second quantity
is a complicated function of various parameters and components of the I/O system
(including block size) and the merge orderR. The greater the merge orderR, the greater
is the number of logically distinct streams accessed on each disk at any time, and the
greater is the time per merge pass. In our experiments, SRM outperforms DSM although
it requires more time per merge pass.

Because of the randomization used by SRM, it is hard to construct a particular
sequence of input records that brings out bad I/O performance in SRM’s merging phase;
indeed, the whole point of randomization is to ensure that no pathologically ordered input
file can hinder the performance of SRM. Moreover, the very nature of SRM ensures that
its performance cannot degrade if some run suddenly gets consumed at higher rates
relative to others; this is because all runs are striped and because eachParallel Read
operation always reads into internal memory the smallest block from each disk. We
believe that skewed and nonuniformly randomly generated inputs cannot significantly
change the performance characteristics of SRM (because of randomization) and DSM
(because of striped reads.)

5.3. DSM and SRM Configurations

Each buffer of a striped-I/O parallel disk stream containsDB items. Since each striped-
I/O stream uses double buffering, the amount of internal memory used by each striped-
I/O parallel disk stream is 3.2 MB, which is slightly larger than 2DBI bytes owing to
some other implementation related overheads.

5.3.1. Run Formation and the Number of Runs Formed. The run formation stage of
both SRM and DSM involves at most two striped-I/O parallel disk streams active at
any time. Thus, the number of runs generated during run formation is determined by
the amount of internal memory the algorithm is allowed to use, the amount of internal
memory consumed by the buffers of a striped-I/O stream, and the amount of internal
memory that TPIE reserves for program variables. In the rest of this section we use the
symbolU to denote the number of runs formed during the run formation stage of any
given experiment.

5.3.2. Determining the Merge Order. During the merging pass, SRM and DSM use
internal memory in very different ways. Given the same amounts of memory, the maxi-

A Simple and Efficient Parallel Disk Mergesort 209

mum merge order of an SRM merge operation is significantly larger than the maximum
merge order of a DSM merge operation. During a merge of orderR, DSM requires
enough internal memory to have 3.2 MB sized buffers for each one ofR+ 1 streams.
Thus the merge order for DSM is determined in a straightforward manner.

On the other hand, in order to carry out anR-way merge, SRM requires only one
buffer of size 3.2 MB (corresponding to two buffers of sizeDB for its output run),
2R+ D buffers of size 256 KB (corresponding toB), space for forecasting data, and
some other small per-run memory overheads. In all our experiments, all the forecasting
data consumed a very small fraction of the total amount of internal memory available:
it was always smaller than 100 KB, whereas the internal memory available in our two
sets of experiments were≈ 15 MB and≈ 24 MB, respectively. It is very often the
case in SRM that there is a wide range of feasible values forR in which the resulting
numberdlogR Ue of merging passes required to merge the initialU runs is the same
optimal value. In such caseswe set SRM’s merge order R to be equal to the smallest
possible feasible value resulting in an optimal numberdlogR Ue of merging passes,
but for practical reasons16 we never set R higher than19. The advantage of using the
smallest possible merge order is that the number of files involved in the merge is the
smallest possible, which tends to keep the amount of disk latency incurred while merging
as small as possible. Another advantage is that the average amount of internal memory
space available per input run during a merge operation is increased, which has the effect
of minimizing the I/O overheadν (defined in Section 3) incurred in every merging
pass.

Even though we try to keep the merge order of SRM as small as is possible,the merge
order of SRM merging operations is significantly greater than DSM merging operations.
Hence one expects that DSM merging passes will have higher disk locality and that SRM
merging passes will incur more overhead relative to DSM merging passes on account of
disk latency.

5.4. Performance Numbers and Graphs

In this section we report on two sets of experiments to compare the performance of
SRM and DSM. In both cases the input file size was varied in units of 1 million items
(≈ 100 MB) in the range from 1 million items (≈ 100 MB) to 10 million items (≈ 1 GB).
In the first set of experiments, the amount of internal memory available to the sorting
algorithm was 15 MB, whereas in the second set of experiments it was 24 MB.

In Figure 2 and Tables 1 and 2 we present the performance numbers for the merging
phases of both algorithms for the two sets of experiments. Table 1 is the table correspond-
ing to experiments for internal memory size 15 MB, and Table 2 is the table corresponding
to experiments for internal memory size 24 MB. Each data point in Tables 1 and 2 is
based upon the average value obtained by conducting the same experiment five times
with a different random input on each run. The graph in Figure 2 plots the average time
in seconds required to complete the merging phase of SRM or DSM at a given data point.
The tables provide additional insightful information. Of particular interest is theaverage

16 We observed a system-specific threshold that causes a noticeable discontinuity in I/O performance
characteristics of the file system whenR exceeded 19.

210 R. D. Barve and J. S. Vitter

0.0

50.0

100.0

150.0

200.0

250.0

300.0

 1 2 3 4 5 6 7 8 9 10

T
im

e
in

 s
ec

on
ds

Input Size N in millions of items

"DSM,15"
"SRM,15"
"DSM,24"
"SRM,24"

Fig. 2. Merging phase timings of SRM and DSM.

data streaming rateduring a merging phase, which is defined as the total amount of I/O
(reads as well as writes) in bytes during the merging phase, divided by the time required
to complete the merging phase.

Each table lists the total numberU of runs formed during run formation, which
is identical for both SRM and DSM. For DSM, the table lists the merge orderRDSM

(each merge operation except possibly the last merge operation of a DSM merging phase
has this merge order), the numberPassesDSM of passes, the timeTimeDSM required to
complete the merging phase, and the data streaming rateRateDSM attained by DSM during
its merging phase. For SRM, for each data point, the table lists the numberPassesSRM

of passes, the merge orderRSRM (of each SRM merging operation in the merging phase
except possibly the last one), the timeTimeSRM required to complete the merging phase,
SRM’s data streaming rateRateSRM, and the I/O overheadν corresponding to extra
parallel read operations.

Table 1. Comparing SRM and DSM when internal memory is 15 MB and there areD = 6 disks. The input
sizeN is in units of 1 million items, each of size 104 bytes.

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

U 12 24 36 47 59 71 82 94 106 117
PassesDSM 3 3 4 4 4 4 5 5 5 5
RDSM 3 3 3 3 3 3 3 3 3 3
TimeDSM (sec) 18.3 35.7 70.8 95.8 122 141.2 198.4 226.2 254.8 284.2
RateDSM (MB/sec) 32.5 33.3 33.6 33.1 32.5 33.7 35.0 35.1 35.0 34.9
PassesSRM 1 2 2 2 2 2 2 2 2 2
RSRM 12 5 6 7 8 9 10 10 11 11
TimeSRM (sec) 6.3 26.6 39.2 52.0 65.8 79.2 91.0 104.8 119.2 138.4
RateSRM (MB/sec) 31.5 29.8 30.4 30.5 30.2 30.1 30.5 30.3 30.0 28.7
ν 1.04 1.03 1.04 1.03 1.03 1.04 1.03 1.03 1.03 1.03

A Simple and Efficient Parallel Disk Mergesort 211

Table 2. Comparing SRM and DSM when memory is 24 MB and there areD = 6 disks. The input sizeN
is in units of 1 millions items, each of size 104 bytes.

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

U 7 14 20 27 33 40 46 53 60 66
PassesDSM 2 2 2 3 3 3 3 3 3 3
RDSM 5 5 5 5 5 5 5 5 5 5
TimeDSM (sec) 11.5 21.2 32.4 63.0 79.6 95.0 110.6 127.2 143.2 158.2
RateDSM (MB/sec) 34.5 37.4 36.7 37.8 37.4 37.6 37.7 37.4 37.4 37.6
PassesSRM 1 1 2 2 2 2 2 2 2 2
RSRM 7 14 5 6 6 7 7 8 8 9
TimeSRM (sec) 6.0 20.0 36.0 48.8 62.4 75.4 89.2 100.4 114.6 126.0
RateSRM (MB/sec) 33.1 19.8 33.1 32.5 31.8 31.6 31.1 31.6 31.2 31.5
ν 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01

5.5. Relative Performance Comparisons

SRM significantly outperforms DSM in the experiments. For the experiments with in-
ternal memory size 15 MB, SRM’s performance is better by a margin of almost 50%.
SRM’s margin of improvement is less impressive with internal memory size 24 MB; but
the improvement is still in the 25% ballpark for input sizes larger thanN = 4 million
items. There is one data point (N = 3 million items, with memory size of 24 MB) at
which DSM is actually marginally better than SRM; this happens to be the only point
in all our experiments in which DSM and SRM require the same number of passes. The
main advantage of SRM over DSM is that SRM allows efficient external merging of
Ä(m) runs irrespective of the number of disks in the I/O system. Our observations are
consistent with theory in that they indicate that when the number of disks is fixed, asm
increases, the relative performance gain of SRM over DSM diminishes.

The average data streaming rate of DSM is consistently better than that of SRM,
as anticipated, but SRM outperforms DSM because of its smaller number of passes.
When we compare SRM’s streaming rate for 15 MB with its streaming rate for 24 MB,
we see an overall improvement in streaming rate for the larger internal memory size,
since the number of runs is reduced and SRM’s merge order tends to be smaller. We are
not able to explain the improvement in the streaming rate of DSM’s performance in the
experiments with 24 MB relative to its performance in the experiments with 15 MB; the
improvement is somewhat surprising because DSM’s merge order increases from 3 to 5
when the internal memory is increased.

The I/O overheadν in the total number ofParallel Readoperations required by
SRM is small, very close to 1, as expected on the basis of previous analysis [BGV]. This
suggests to us that the elapsed time performance is not hindered by the flush operations
incurred by SRM; if the implementation of theParallel Readcan be improved, which
we think possible, we can get further improvement of SRM’s elapsed time performance.
We briefly mention possible approaches to improve the performance of each parallel I/O
operation in Section 5.6.

One interesting observation regarding our data points is the sudden drop in streaming
rate when the merge order becomes 14, as in the case withN = 2 million items and an
internal memory size of 24 MB. In this case, the streaming rate is 22 MB/sec, although

212 R. D. Barve and J. S. Vitter

a streaming rate of almost 30 MB/sec is possible forR = 11, N = 9 million items
and N = 10 million items, and internal memory size of 15 MB. We were not able to
account for the sudden drop in streaming rate; some preliminary experiments indicate
that the most important reason for the sudden drop in streaming rate may not be the
increased seeking but some other effects perhaps related to the number of files opened
by the application at any time.

5.6. Improving I/O Performance

SRM can be made to perform even better if the implementation of the parallel I/O is im-
proved. The hardware being used (the CPU and the I/O system) and our experience with
parallel I/O systems [BSG+] suggest that there is scope for improving the performance
of parallel I/O operations in our implementation, thereby improving the streaming data
rates. Possible techniques to improve performance when we have control over disk block
allocation, disk scheduling, etc. (as discussed in Section 5.1.1) include controlling the
layout of blocks of runs and carefully planning the sequence in which blocks from each
disk can be read into memory [ZL1], [ZL2]. Another approach that may help in improv-
ing I/O performance is to use techniques such as the one in [BSG+] which exploit the
readahead mechanism used by disk drive controllers to load data into their track buffers.
A simple high-level approach that may result in improved performance is if we split the
set of disks into two sets and then used one set to store input runs and the other for output
runs, swapping their role after each merge pass; this approach ensures that writes and
reads do not interfere during the external merging process.

6. Other Applications

In this section we briefly mention other situations in which the data structures and
techniques we developed to implement SRM can be used fruitfully.

6.1. Distribution Sort and Multiway Partitioning

Consider a distribution sort or the partitioning of a stream into several other streams on
an I/O system withD disks. Such a distribution/partitioning type of computation may
be required as part of some other database operation, for example in a hash join. We
could envisage using striped I/O to ensure perfect parallelism on allD disks. However,
use of striped I/O would mean that the number of streams into which an input stream
can be distributed using internal memory sizeM would beO(M/DB); when the number
of partitions or buckets desired is large, many distribution passes would be required.
In this situation, just like it was desirable to mergeO(M/B) runs at a time during
external mergesort, it is desirable to be able to partition an input stream intoO(M/B)
streams. A randomized striping of theR output streams and 2R internal memory blocks
will help in implementing anR-way distribution. In such a scheme, data structures and
mechanisms similar to the ones we developed in this paper can be used: for instance,
blocks destined to go to diskd can be queued up in queueOQd, and aParallel Write
analogous toParallel Readcan write the block corresponding to the head of theOQd

queue appropriately to diskd.

A Simple and Efficient Parallel Disk Mergesort 213

6.2. Streaming through Multimedia Files

The problem of external merging of streams that are striped across disks is similar in terms
of access patterns to a video server that has to stream through multiple streams that are
striped across disks. The nonuniformity of the rates at which runs get depleted is similar
to the nonuniformity of streaming rates owing to different compression rates for different
frames in the stream. In both cases though, the rates of streaming required are partially
predictable, albeit to a limited extent. While merging, the forecasting keys predict the
participation order of blocks of a merge. Consider using a file of timestamps, where
each timestamp corresponds to the time at which a block from that stream must be in
internal memory. A file of such timestamps corresponding to a video stream is analogous
to the forecasting data run corresponding to a run. Hence, the techniques we developed
to implement the lookahead mechanism and the forecast and flush buffer management
and prefetching scheme can now be analogously implemented using the timestamps to
predict the time at which a block must be in memory. Our data structures and techniques
may thus have applications to video servers, although substantial modifications may be
needed to implement the real time aspect of video servers.

7. Conclusions and Future Work

In this paper we considered the important problem of external sorting in a synchronous
parallel disk setting. We have proposed simple and elegant data structures and tech-
niques to implement the SRM mergesort algorithm for parallel disks. To our knowl-
edge, this is the first practical implementation of a parallel disk sorting algorithm that
performs a provably optimal number of passes. Our simplified implementation of SRM
includes a novel technique to implement a lookahead mechanism using forecasting keys.
Our implementation significantly outperforms the popular double-buffered DSM tech-
nique. Although each merging pass of DSM occurs a little faster than that of SRM, the
smaller number of passes required by SRM makes SRM’s overall performance better
than that of DSM. Our techniques are also applicable to other streaming operations in
databases.

In future work we hope to improve the implementation of parallel I/O operations
in TPIE and allow asynchronous I/O, thus getting an improvement in the elapsed time
performance of SRM. We also plan to implement a parallel disk distribution sort in
which the distribution is done by the approach of Section 6.1, analogous to the merge
process of SRM executed in “reverse.” In the envisioned parallel external distribution
operation, the input stream is implemented using striped I/O, whereas the output stream
requires parallel independent disk accesses. Comparing the performance of such a sort
with SRM should be particularly interesting because disk drives may be somewhat better
at performing the kind of I/O needed for distribution compared with merging.

Acknowledgments

The authors wish to thank Lars Arge and the anonymous referees for helpful discussions and suggestions.

214 R. D. Barve and J. S. Vitter

References

[ACG+] D. Anderson, J. S. Chase, S. Gadde, A. J. Gallatin, K .G. Yocum, and M. J. Feeley. Cheating the
I/O bottleneck: network storage with Trapeze/Myrinet.Proceedings of the1998Usenix Technical
Conference, pages 143–154, June 1998.

[ADAD+] A. C. Arpaci-Dussea, R. H. Arpaci-Dusseau, D. E. Culler, J. M. Hellerstein, and D. A. Patterson.
High-performance sorting on networks of workstations. InProceedings of the ACM SIGMOD
International Conference on Management of Data, pages 243–254, 1997.

[AP] A. Aggarwal and C. G. Plaxton. Optimal parallel sorting in multi-level storage. InProceedings
of the ACM–SIAM Symposium on Discrete Algorithms, volume 5, pages 659–668, 1994.

[AV] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

[BGV] R. D. Barve, E. F. Grove, and J. S. Vitter. Simple randomized mergesort on parallel disks.Parallel
Computing, 23(4):601–631, 1997.

[BSG+] R. D. Barve, E. A. M. Shriver, P. B. Gibbons, B. K. Hillyer, Y. Matias, and J. S. Vitter. Modeling and
optimizing I/O throughput of multiple disks on a bus. InProcedings of ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer Systems, pages 83–92,
Atlanta, GA, May 1999.

[CGG+] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter. External-
memory graph algorithms. InProceedings of the ACM–SIAM Symposium on Discrete Algorithms,
volume 6, pages 139–149, January 1995.

[CH] T. H. Cormen and M. Hirschl. Early experiences in evaluating the parallel disk model with the
vic* implementation. Technical Report PCS-TR96-293, Dept. of Computer Science, Dartmouth
College, August 1996.

[CLR] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. The MIT Press,
Cambridge, MA, 1990.

[ECW] V. Estivill-Castro and D. Wood. Foundations of external merging. InFoundations of Software
Technology and Theoretical Computer Science, volume 14, pages 414–425, 1994.

[G] G. Graefe. Query evaluation techniques for large databases.ACM Computing Surveys, 25(2):73–
170, 1993.

[GTVV] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational ge-
ometry. InProceedings of the IEEE Symposium on Foundations of Computer Science, volume 34,
pages 714–723, Palo Alto, CA, November 1993.

[GVW] G. A. Gibson, J. S. Vitter, and J. Wilkes. Report of the working group on storage I/O issues in
large-scale computing.ACM Computing Surveys, 28(4):779–793, December 1996.

[IBM] IBM. Database 2, administration guide for common servers, June 1990.
[K] D. E. Knuth. The Art of Computer Programming, volume 3:Sorting and Searching, 2nd edition.

Addison-Wesley, Reading, MA, 1998.
[PSV] V. S. Pai, A. A. Schaffer, and P. J. Varman. Markov analysis of multiple-disk prefetching strategies

for external merging.Theoretical Computer Science, 128(1–2):211–239, June 1994.
[Sa] B. Salzberg. Merging sorted runs using large main memory.Acta Informatica, 27:195–215, 1989.
[Se] Seagate Technology. st-34501w/wc ultra-SCSI wide (Cheetah 4lp) data sheet. ftp://ftp.seagate.

com/techsuppt/scsi/st34501w.txt.
[TPI] TPIE. User manual and reference, 1999. The manual and software distribution are available on

the web athttp://www.cs.duke.edu/TPIE/ .
[Ve] D. E. Vengroff. A transparent parallel I/O environment. InProceedings of the DAGS Symposium

on Parallel Computation, volume 3, pages 117–134, July 1994.
[Vi] J. S. Vitter. External memory algorithms and data structures: dealing with massive data.ACM

Computing Surveys, 33(2):209–271, June 2001.
[VN] J. S. Vitter and M. H. Nodine. Large-scale sorting in uniform memory hierarchies.Journal of

Parallel and Distributed Computing, 17:107–114, 1993.
[VS] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I: Two-level memories.Algo-

rithmica, 12(2–3):110–147, 1994.

A Simple and Efficient Parallel Disk Mergesort 215

[ZL1] L. Q. Zheng and P.-A. Larson. Speeding up external mergesort.IEEE Transactions on Knowledge
and Data Engineering, 8(2):322–332, 1996.

[ZL2] W. Zhang and P.-A. Larson. Buffering and read-ahead strategies for external mergesort.Pro-
ceedings of the International Conference on Very Large Databases, volume 24, pages 523–532,
1998.

Received June28, 2000,and in revised form June5, 2001.Online publication April8, 2002.

