
CS{1998{09

External Memory Algorithms with

Dynamically Changing Memory Allocations.

Rakesh Barve Je�rey S. Vitter

Department of Computer Science

Duke University

Durham, North Carolina 27708{0129

June 1998

External Memory Algorithms with Dynamically

Changing Memory Allocations.

Rakesh Barve1

Dept. of Computer Science
Duke University

Durham, N. C. 27708{0129

Je�rey Scott Vitter2

Dept. of Computer Science
Duke University

Durham, N. C. 27708{0129.

May 1998

1Support was provided in part by an IBM Graduate Fellowship.
2Support was provided in part by the National Science Foundation under grant

CCR{9522047 and by the U.S. Army Research O�ce under MURI grant DAAH04{

96{1{0013.

Abstract

We consider the problem of devising external memory algorithms whose

memory allocations can change dynamically and unpredictably at run-time.

The investigation of \memory-adaptive" algorithms, which are designed to

adapt to dynamically changing memory allocations, can be considered a

natural extension of the investigation of traditional, non-adaptive external

memory algorithms. Our study is motivated by high performance database

systems and operating systems in which applications are prioritized and

internal memory is dynamically allocated in accordance with the priorities.

In such situations, external memory applications are expected to perform as

well as possible for the current memory allocation. The computation must

be reorganized to adapt to the sequence of memory allocations in an online

manner.

In this paper we present a simple and natural dynamic memory alloca-

tion model. We de�ne memory-adaptive external memory algorithms and

specify what is needed for them to be dynamically optimal. Using novel

techniques, we design and analyze dynamically optimal memory-adaptive

algorithms for the problems of sorting, permuting, FFT, permutation net-

works, (standard) matrix multiplication and LU decomposition. We also

present a dynamically optimal (in an amortized sense) memory-adaptive

version of the bu�er tree, a generic external memory data structure for a

large number of batched dynamic applications. We show that a previously

devised approach to memory-adaptive external mergesort is provably nonop-

timal because of fundamental drawbacks. The lower bound proof techniques

for sorting and matrix multiplication are fundamentally distinct techniques,

and they are invoked by most other external memory lower bounds; hence

we anticipate that the techniques presented here will apply to many external

memory problems.

2 1 INTRODUCTION AND MOTIVATION

1 Introduction and Motivation

The disparity between the fast access time of main memory and the slow

access time of magnetic disk external memory is the bottleneck in many

large-scale applications and high performance systems. The I/O bottleneck

gets accentuated as processors become increasingly faster with respect to

disks, prompting ongoing research and development of external memory (

or out-of-core) algorithms [Vit98].

Previous work in the �eld assumes that a statically allocated internal

memory capable of holding M items is available throughout the execution

of the external memory algorithm. A natural extension is to consider the

performance of an external memory algorithm when the size of the available

internal memory varies dynamically because of other ongoing activity on

the computing machine. A common technique to attain high performance

in database systems and operating systems is to prioritize applications or

queries and to allocate available internal memory dynamically in accordance

with the priorities; see [PCL93] for further references and discussion. As a

result, external memory applications and queries are expected to e�ciently

adapt to situations in which portions of their internal memory are taken away

from them or are allocated to them unpredictably and dynamically , in course

of the execution of the computation. External memory algorithms that can

adapt to dynamically changing amounts of internal memory are said to be

memory-adaptive [PCL93]. Memory-adaptive algorithms should perform as

e�ciently as possible when memory is scarce and should take advantage of

extra memory when it becomes available. The computation must be reorga-

nized to adapt to the sequence of memory allocations in an online manner.

To the authors' knowledge the only previous work on memory-adaptive al-

gorithms is by Pang et al. [PCL93], who studied memory-adaptive sorting in

an empirical framework, ans subsequently by Zhang and Larson [ZL97], who

carried out further empirical studies of mergesorting in a model allowing a

limited form of dynamic memory allocation.

In the next section, we present a realistic model for the design and

analysis of memory-adaptive algorithms and we de�ne dynamically optimal

memory-adaptive algorithms. In Section 3, we present asymptotically tight

resource consumption bounds for key problems such as permuting, sorting,

FFT, permutation networks and matrix multiplication. Our lower bounds

provide a reinterpretation of the lower bounds of [AV88] and [HK81] in a

dynamic memory allocation context. In order to prove algorithms for the

above problems to be dynamically optimal, we de�ne natural, application-

speci�c measures for the resource-consumption at each I/O step. The

3

measures determine how e�ciently an algorithm adapts to memory
uc-

tuations. In the remaining sections, besides the above problems, we also

show how to design and analyze dynamically optimal algorithms for the

a memory-adaptive version of the bu�er tree [Arg94] and LU decomposi-

tion [WGWR93]. The lower bound proof techniques for sorting and re-

lated problems on the one hand, and the problem of matrix multiplication

on the other, are fundamentally distinct techniques, and they are invoked

by most other external memory lower bounds; hence we anticipate that

the techniques presented here will apply to many external memory prob-

lems [VS94, GTVV93, CGG+95, AV96, Arg94, VV95].

In Section 4 we discuss an approach to design memory-adaptive algo-

rithms using optimal static memory I/O algorithms and then provide intu-

ition on the nature of di�culties caused by dynamic memory allocation.

Sections 5 through Section 10 discuss various aspects of memory-

adaptive mergesorting. In Section 5, we present a natural framework to

design memory-adaptive mergesort algorithms. In Section 6, we de�ne the

fundamental notion of merge potential, which is meant to quantify the

\progress" made by a memory-adaptive merge algorithm up to any time

during its execution. In Section 7, we use an adversarial argument and

construct a \nemesis" sequence of memory allocations to prove that two

variants of a mergesort algorithm based on the memory-adaptive merging

techniques proposed by Pang et al. [PCL93] are not dynamically optimal.

The notion of merge potential helps us isolate the fundamental drawback

of the merging techniques of [PCL93]. In Section 8 we present an e�cient

and elegant memory-adaptive merging algorithm that forms the basis of our

dynamically optimal sorting algorithm. Our algorithm uses novel data struc-

tures and online techniques to reorganize merge computation in response to

dynamic
uctuations in memory. In Section 9, we analyze the resource con-

sumption of mergesort our algorithm and establish that it is dynamically

optimal. In Section 10, we discuss how, besides general insights into the

problem of memory-adaptive merging, the notion of merge potential also

gives interesting insights into the di�erence in the resource consumption

required of a memory-adaptive merging algorithm when it is used as a sub-

routine during a mergesort and when it is used in isolation as a dynamically

optimal algorithm for merging.

In Section 11, we show how the sorting algorithm can be used to ob-

tain memory-adaptive algorithms for permuting, FFT and permutation

networks. In Section 12, we show to apply our memory-adaptive sort-

ing technique to implement the bu�er emptying operation of the I/O

bu�er tree [Arg94], realizing a dynamically optimal (in an amortized sense)

memory-adaptive bu�er tree. This result is particularly signi�cant with re-

spect to the extendibility of our techniques to diverse applications since the

bu�er tree is an I/O optimal data structure for several several applications

involving batched dynamic problems [Arg96, Vit98], including such time

consuming operations as bulk-loading of B-trees and R-trees [AHVV98].

In Section 13, we present simple techniques resulting in a dynamically

optimal algorithm for memory-adaptive matrix multiplication and LU fac-

torization; our techniques can thus form a basis for memory-adaptive scien-

ti�c computing.

4 2 DYNAMIC MEMORY MODEL

2 Dynamic Memory Model

We wish to enable an external memory algorithm to perform e�ciently even

when the amount of allocated internal memory
uctuates unpredictably.

The amount of internal memory is dynamically determined by the resource

allocator, which is typically a database system or an operating system. In

this section we propose a model for how a resource allocator may dynamically

change the memory allocations of an algorithm during \run time", and, we

specify when memory-adaptive algorithms are dynamically optimal.

De�nition 1 We assume that the resource allocator allocates memory

blocks to the external memory algorithm in a sequence of allocation phases.

Each allocation phase is characterized by its size. Consider an external

memory algorithm A with an input of size n = N=B disk blocks. In the

dynamic memory model, the resource allocation to A consists of a sequence

of phases (called the allocation sequence) of sizes s1; s2; s3; : : :, where si is

the size of the ith phase. The following constraints are met by the allocation

phases:

1. In each I/O operation at most B contiguous items can be transferred

between internal memory and disk.

2. During the ith allocation phase, the external memory algorithm A is

allocated exactly si internal memory blocks by the resource allocator.

These si blocks are A's to use as it sees �t until it executes 2si I/O op-

erations. The external memory algorithm A can voluntarily terminate

an allocation phase of size si before completing 2si I/O operations

during that phase.

3. For each i, we have �model � si � mmax where �model � 4 is some

constant to be determined later and mmax = minfcn; phymaxg where
phymax is the maximum number of internal blocks the physical mem-

ory of the computer can accomodate and c is an application-speci�c

positive constant.

The maximum allocation is trivially bounded by cn. Assuming that

c is de�ned appropriately for the given application, the algorithm A can

complete all computation if the internal memory allocation is cn blocks.

De�nition 2 A memory-adaptive algorithm is an algorithm that adheres

to the dynamic memory model of De�nition 1. We assume that at any time

a memory-adaptive algorithm A has access to the following in-memory vari-

ables relevant to A that can be easily maintained by the resource allocator

in internal memory:

1. Variable mem, which contains the size of the ongoing allocation phase

of algorithm A.

2. Variable left , which contains the number of I/O operations remaining

in the ongoing allocation phase of algorithm A.

2.1 Dynamically Optimal Memory-Adaptive Algorithms 5

3. Variable next , which contains the size of the next allocation phase1 of

algorithm A.

The internal memory resource allocator (adversary) has tremendous
ex-

ibility since it can dynamically choose allocation phases of arbitrary sizes,

varying from �model blocks to the maximum possible memory allocation of

mmax blocks. The memory-adaptive algorithm has to adapt to sizes of al-

location phases in an online manner. Requirement 2 of De�nition 1, which

speci�es that each memory allocation of m blocks must last for 2m I/Os, is

a very natural assumption: The duration of allocation enables the memory-

adaptive algorithm to load up to m blocks into memory, carry out internal

memory computation, and then write up to m blocks back to disk so it is

long enough to allow all m internal memory blocks to be used. That re-

quirement is implicitly met in conventional virtual memory paging systems

designed for non-adaptive external memory algorithms. For example, in a

virtual memory system suppose at some point an application has m mem-

ory blocks. Now, if, for some reason the virtual memory system decides to

leave that application with only (say)
p
m memory blocks to create internal

memory space for some other higher-priority application, the virtual mem-

ory system would immediately have to write m � pm = �(m) blocks to

disk, thereby incurring �(m) I/O operations.

2.1 Dynamically Optimal Memory-Adaptive Algorithms

We now de�ne what it means for a memory-adaptive algorithm to be dy-

namically optimal.

De�nition 3 Consider a computational problem P and a memory-adaptive

algorithm A that solves P. Given any N -sized instance IN of P, we say that
algorithm A solves IN during allocation sequence � if A begins execution

with the �rst phase of � and completes execution by the end of �. We say

that A solves P during allocation sequence � if A can solve any instance IN
of P during �.

De�nition 4 Consider a memory-adaptive algorithm A for problem P. We

say that A is dynamically optimal for P if, for all minimal allocation se-

quences � such that A solves P during � (but A does not solve P during a

proper pre�x of �), no other memory-adaptive algorithm can solve P more

than a constant number of times during �.

For instance suppose that a memory-adaptive sorting algorithm AS can

sort a �le of N items during an allocation sequence � = s1; s2; : : : ; s`. Then

for AS to be dynamically optimal there must be no more than a constant

number c of non-overlapping contiguous subsequences �1; �2; : : : ; �c of � such

that some memory-adaptive sorting algorithm A�
S can sort an arbitrary N -

sized �le during each �i.

1
The variable next is relevant only in practice: our techniques (with minor modi�ca-

tions) and theoretical results hold even when the resource allocator cannot provide this

information about the next phase until that phase begins.

6 3 MEMORY-ADAPTIVE LOWER BOUNDS

3 Memory-Adaptive Lower Bounds

We now present asymptotically tight bounds for the memory and I/O re-

sources consumed by memory-adaptive algorithms for the fundamental prob-

lems of permuting, sorting, fast fourier transform (FFT), permutation net-

works, bu�er tree operations and matrix multiplication. The problem of

permuting a �le of N items is the same as sorting a �le of N items ex-

cept that the key values of the N items in the output are required to form

a permutation of f1; 2; : : : ; Ng. Bu�er tree operations refer to operations

on a memory-adaptive version of Arge's bu�er-tree [Arg94] data structure,

discussed in Section 12.

In this section, we prove only the pertinent lower bounds; the upper

bounds are proved in subsequent sections as indicated below. Based on the

lower bound on the resources that are needed to solve a problem, we can

de�ne the resource consumption at each I/O step of a memory-adaptive

algorithm for that problem.

In the following theorem, we use the notion of dynamically optimal al-

gorithms to present our resource consumption bounds.

Theorem 1 Suppose that A is a memory-adaptive algorithm that �nishes

its computation during an allocation sequence � of sizes m1;m2; : : : ;m`(A).

Let TA denote the total number
P`(A)

j=1 2mj of I/O operations incurred by A.

1. Suppose that A is a dynamically optimal algorithm for permuting, then

1

B
(TA lgN) +

`(A)X
j=1

2mj lgmj = �(n lgn): (1)

2. Suppose that A is a dynamically optimal algorithm for sorting or FFT

or permutation networks or executing a sequence of insert/delete op-

erations2 on our memory-adaptive bu�er tree. Then we have

`(A)X
j=1

2mj lgmj = �(n lgn): (2)

3. Suppose that A is a dynamically optimal algorithm for (standard) ma-

trix multiplication of two N̂ � N̂ matrices, or LU decomposition of an

N̂ � N̂ matrix3. Then

`(A)X
j=1

m
3=2
j = �(n3=2): (3)

The bu�er tree alluded to in the theorem is a memory-adaptive version

of the original bu�er tree [Arg94]. It is described in Section 12. The bounds

in Theorem 1 lead to natural notions of resource consumption of memory-

adaptive algorithms for the various problems discussed.

2
In the case of the bu�er tree, N denotes the number of insert/delete operations.

3
In the case of matric multiplication and LU decomposition, N denotes N̂2

.

3.1 Memory-Adaptive Lower Bounds for Permuting 7

De�nition 5 Consider the 2m I/O operations of a memory-adaptive algo-

rithm A during any allocation phase of size m.

1. If A is a permuting algorithm, the resource consumption of each I/O

operation is de�ned to be the quantity 1

B lgN + lgm.

2. If A is an algorithm for sorting, FFT, permutation networks, or for

executing a sequence of operations on a bu�er tree [Arg94], then the

resource consumption of each I/O operation is de�ned to be the quan-

tity lgm.

3. If A is an algorithm for matrix multiplication or LU decomposition,

then the resource consumption of each I/O operation is de�ned to be

the quantity
p
m=2.

The resource consumption of algorithm A is de�ned to be the sum of the

resource consumptions the I/O operations of A.

We can recast Theorem 1 in terms of resource consumption as follows:

Corollary 1 A memory-adaptive algorithm A is dynamically optimal if and

only if its resource consumption is �(n lgn) for permuting, �(n lgn) for

sorting, FFT, permutation networks, and bu�er tree operations, and �(n3=2)

for (standard) matrix multiplication and LU decomposition.

Below, we prove the lower bounds implicit in Theorem 1 for permuting,

sorting, FFT, permutation networks and matrix multiplication by reinter-

preting the original I/O lower bounds proved in [AV88] and [HK81, SV87]

in a dynamic memory context. The lower bound for bu�er tree operations

can be proved by adapting the arguments of [AKL93] relating comparison

tree lower bounds to I/O lower bounds to the dynamic memory model.

In Section 8 and Section 13, we present dynamically optimal algorithms

for sorting and matrix multiplication respectively. We demonstrate optimal-

ity in each case by showing that the resource consumption meets the bound

given above. In Section 11, we show how to apply our memory-adaptive

mergesort and related techniques to obtain dynamically optimal algorithms

for permuting, FFT and permutation networks. In Section 12, we show how

to use our sorting algorithm as a subroutine to devise a dynamically opti-

mal memory-adaptive bu�er tree. By observations made in [WGWR93], the

dynamically optimal algorithm developed for matrix multiplication can be

modi�ed to obtain a dynamically optimal algorithm for LU factorization.

3.1 Memory-Adaptive Lower Bounds for Permuting

Now we prove a lower bound on the resource consumption incurred by any

memory-adaptive algorithm to permute a �le of n blocks of items.

Theorem 2 Consider any memory-adaptive algorithm A that permutes

a �le containing N = nB items during the allocation sequence � =

m1;m2; : : : ;m`(A). Let TA denote the total number
P`(A)

i=1 2mi of I/O op-

erations incurred by A. Then we have

1

B
(TA lgN) +

`(A)X
i=1

2mi lgmi =
(n lgn); (4)

8 3 MEMORY-ADAPTIVE LOWER BOUNDS

where, by de�nition, the left hand side is the resource consumption of al-

gorithm A. In the case when 1

B (TA lgN) � P`(A)
i=1 2mi lgmi, the bound (4)

implies the lower bound

TA =
(N): (5)

Otherwise, the bound (4) implies the lower bound

`(A)X
i=1

(2mi lgmi) =
(n lgn): (6)

Proof : Without loss of generality, we make the following assumptions made

in [AV88]: I/O operations are \simple" and respect block boundaries. If

a block of B items is input into memory at any time and those B items

had been output to disk during an earlier output operation, then we assume

that the relative order of those B items was computed when they were last

together in internal memory. We also assume that if mB � B items reside

in memory at the time of initiating an input operation, then the relative

ordering of the mB in-memory items is determined on completion of the

input operation.

Consider any one of the 2mi I/O operations of the ith allocation phase

mi of algorithm A and suppose it is an input I/O operation. There are less

than n +
Pi

j=1 2mi � n + TA � N lgN blocks on disk of which A must

read one, so there are no more than N lgN choices available to A. Let us

consider how the number of realizable orderings changes when a given disk

block is read into internal memory. By de�nition, the maximum number

of in-memory items at the time of any I/O operation during the ith phase

is Mi �B, where Mi = miB. There are at most B items in the input block

and they can intersperse among the Mi items in internal memory in at most�Mi

B

�
ways, so the number of realizable orderings increases by a factor of�Mi

B

�
. If the input block has never before resided in internal memory, the

number of realizable orderings increases by a B! factor since the B items

can be permuted amongst themselves. (This extra contribution of B! can

happen only once for each of the n original blocks.) The increase in the

number of realizable orderings from writing a disk block is considerably less

than reading it. Thus the number of distinct orderings that can be realized

by algorithm A increases by a factor of at most

(B!)i
0 �

N(lgN)

Mi

B

!!2mi

during the ith allocation phase, where i0 is the number of previously unread
blocks read during the ith phase. The total number of distinct orderings

that can be realized by A during allocation sequence � is no more than

(B!)N=B
Y

1�i�`(A)

N(lgN)

Mi

B

!!2mi

: (7)

Setting the above expression to be at least N !=2, taking logarithms and

applying Stirling's formula [Knu97], we have

N lgB +

`(A)X
i=1

2mi

�
lgN +B lg

Mi

B

�
=
(N lgN)

3.1 Memory-Adaptive Lower Bounds for Permuting 9

=)
`(A)X
i=1

2mi

�
lgN +B lg

Mi

B

�
=

�
N lg

N

B

�
;

which can be simpli�ed further to

`(A)X
i=1

2mi (lgN +B lgmi) =
(N lgn)

=) TA lgN +

`(A)X
i=1

2miB lgmi =
(N lgn):

Dividing throughout by B and simplifying, we establish the lower bound (4).

We now have to consider two separate cases. First we consider the case
1

B
(TA lgN) �P`(A)

i=1 2mi lgmi, so that we have the lower bound

1

B
(TA lgN) =
(n lgn): (8)

Since 1

B (TA lgN) �P`(A)
i=1 2mi lgmi, we have

lgN � B

TA

TA lg(min

1�i�`(A)
fmig)

!
: (9)

Using the fact that

lg(min
1�i�`(A)

fmig) � lg �model ;

where �model is the constant de�ned in the dynamic memory model, we have

lg(min
1�i�`(A)

fmig) � c0 � 2:

By (9), we have lgN � c0B and so

N1=c0 = (2lgN)1=c
0

� (2c
0B)1=c

0

� 2B ;

which implies that B <
p
N . The bound (5) follows from (8) after some

simpli�cation.

In the case when 1

B
(TA lgN) <

P`(A)
i=1 lgmi, the lower bound (6) follows

trivially from (4). 2

The lower bound (1) on the resource consumption of dynamically optimal

permuting algorithms in Theorem 1 follows from (4).

Intuitively, Theorem 2 says that the resource consumption of permuting

is identical to the resource consumption of sorting (Theorem 1) except when

the allocation sequence is what we call a scanty allocation sequence. An

allocation sequence of ` phases m1;m2; : : : ;m` is said to be scanty if

(lgN)
X̀
i=1

2mi =
(N lgn)

10 3 MEMORY-ADAPTIVE LOWER BOUNDS

but X̀
i=1

2mi lgmi �
1

B
(lgN)

X̀
i=1

2mi:

It is unlikely for an allocation sequence to be scanty in practice, so, in the

most likely case when an allocation sequence is not scanty, the resource con-

sumption of permuting is identical to that of sorting. Interestingly, when the

allocation sequence is scanty, even the naive permuting algorithm incurring

T = �(N) I/O operations is a dynamically optimal permuting algorithm.

3.2 Memory-Adaptive Lower Bounds for Sorting, FFT and

Permutation Networks

Permuting is a special case of sorting, and hence the lower bound for per-

muting applies to sorting as well. However, in the case in which the naive

�(N)-I/O permuting algorithm is dynamically optimal for permuting, we

can prove a stronger lower bound for sorting using an adversarial argument

and the comparison model of computation. Using the same notation as in

Theorem 2 and arguments similar to the ones in [AV88] we can show that the

maximum number of total orders consistent with comparisons made during

the allocation sequence m1;m2; : : : ;m`(A) is no more than

(B!)N=B
Y

1�i�`(A)

Mi

B

!2mi

: (10)

Using arguments similar to the ones in [AV88] we can show that the

maximum number of realizable orderings for a memory-adaptive permuta-

tion network algorithm during `(A) allocation phases is no more than (10)

as well. In contrast to sorting, the proof of the above bound for permu-

tation networks does not involve any comparison model based arguments

arguments and follows directly from a counting argument.

As in [AV88], we can exploit the fact that any permutation network

can be constructed by stacking together at most three appropriate FFT

networks to conclude that the FFT and permutation network problems are

essentially equivalent. Thus the problem of FFT computation has the same

lower bound as that for permutation networks.

The theorem below follows by setting the expression (10) to be at least

N !, taking logarithms, applying Stirling's inequality [Knu97] and then sim-

plifying.

Theorem 3 Consider any memory-adaptive algorithm A for sorting a �le

containing N = nB items or for computing the N -input FFT digraph

or an N -input permutation network during the allocation sequence � =

m1;m2; : : : ;m`(A). Then we have

`AX
i=1

2mi lgmi =
(n lgn); (11)

where, by de�nition, the left hand side is the resource consumption of algo-

rithm A.

The lower bound (2) of Theorem 1 follows from Theorem 3.

3.3 Memory-Adaptive Lower Bounds for Matrix Multiplication 11

3.3 Memory-Adaptive Lower Bounds for Matrix Multiplica-

tion

We now derive lower bounds on the resources consumed by any memory-

adaptive algorithm to multiply two N̂ � N̂ matrices.

Consider the problem of multiplying two N̂ � N̂ matrices, consisting of

N = N̂2 elements in total. Hong and Kung [HK81] proved fundamental I/O

bounds for this problem using graph pebbling arguments. Based on their

arguments, Savage and Vitter [SV87] showed that if the amount of main

memory available to an external memory algorithm is �xed to beM then any

(standard) matrix multiplication algorithm takes at least
(N3=2=B
p
M) =

(n3=2=
p
m) I/O operations, where n = N=B and m = M=B. This bound

is easily realized by a simple external memory algorithm [VS94].

The problem of computing the product C = A � B of two N̂ � N̂ ma-

trices can be viewed as pebbling through a directed acyclic graph (DAG)

containing �(N̂3) constant degree nodes. For our purposes, it su�ces to

say that in order to compute C it is necessary to pebble through all �(N̂3)

nodes of the matrix multiplication DAG. We refer the reader to [SV87] for

a study of issues related to pebbling-based I/O complexity arguments.

In order to adapt the lower bound argument for matrix multiplication to

our memory-adaptive setting we consider the maximum number of nodes (of

the matrix multiplication DAG) that may be pebbled in a single allocation

phase of size s; that is, the maximum number of DAG nodes pebbled using

at most s internal memory blocks and no more than 2s I/O operations. We

state the following lemma whose proof follows from the arguments of [SV87]

which are based on ideas from [HK81].

Lemma 1 Let the pebbling operations of matrix multiplication be as de�ned

in [SV87]. The maximum number of matrix multiplication DAG nodes that

can be pebbled during an allocation phase of size m is O(M3=2), where M =

mB � N̂2.

The lower bound of Theorem 1 for matrix multiplication follows easily

from Lemma 1. The same lower bound applies to any standard LU factoriza-

tion algorithm as well: This is because the DAG corresponding to a standard

LU factorization algorithm on an N̂ � N̂ matrix also contains �(N̂3) nodes

that need to be pebbled and a version of Lemma 1 is applicable to an LU

factorization DAG.

4 Designing Memory-Adaptive Algorithms

We now consider how memory-adaptive algorithms can make \optimum uti-

lization" of the memory and I/O resources comprising an m-sized allocation

phase. In order to get an idea of how this may be achieved, we examine

external memory algorithms that are optimal for a �xed internal memory

allocation of m blocks.

4.1 Optimal non-adaptive external memory algorithms

Consider an optimal external mergesort algorithm. Given a �xed number

m of internal memory blocks an optimal mergesort algorithm consists of

12 4 DESIGNING MEMORY-ADAPTIVE ALGORITHMS

a run-formation stage followed by a sequence of u(m)-way external merge

operations, where u(m) = �(mc) for 0 < c � 1. During a typical sequence of

�(m) I/O operations, this algorithm's execution consists of generating �(m)

blocks output by an u(m)-way external merge. Now consider the design

of an external memory algorithm to carry out the matrix multiplication

AB = C. Given a �xed number m of internal memory blocks, an optimal

matrix multiplication algorithm consists of a sequence of \v(m)-operations"

each of which consists of carrying out an internal memory multiplication of

submatrices of A and B each consisting of v(m) blocks, where v(m) = �(m).

Clearly each such operation consists of �(m) I/O operations.

4.2 Mimicking Optimal Static Memory Algorithms

The computation carried out by an optimal external memory algorithm

over a sequence of �(m) I/O operations is determined by the number m of

internal memory blocks allocated to the algorithm. Optimality results from

the fact that the algorithm achieves \optimal resource utilization" during a

typical allocation phase of size m. By the above reasoning, for a memory-

adaptive algorithm to be e�cient, the computation it carries out over each

allocation phase should be determined by the size of that phase. In order

to attain dynamic optimality, a memory-adaptive algorithm's \progress"

during an allocation phase of size m should mimic be comparable to that of

its optimal, �xed-memory analog over �(m) I/O operations. Ideally, during

each allocation phase of size m, where 1 � m � mmax , a memory-adaptive

mergesort algorithm should write to disk �(m) blocks resulting from u(m)-

way merging and a memory-adaptive matrix multiplication algorithm should

execute a v(m)-operation.

4.3 Adaptive Organization of Computation

The challenge in designing dynamically optimal memory-adaptive algo-

rithms is to organize, in an e�cient and online manner, the external mem-

ory computation so as to attain optimal resource utilization during every

allocation phase as described above. The issue of e�ciency in this online

organization of external memory computation arises in two contexts.

Firstly, in order to cope with arbitrary variation in allocations, the com-

putation needs to be broken down in an online manner into a sequence

of \smaller granularity" computations such that executing that sequence

of computations is a resource-e�cient rendering of the original computa-

tion. For instance, an s-way merge of runs of the set U = fr0; r1; : : : ; rs�1g
can be reorganized as follows: First we can compute the h runs of the

set U 0 = fr00; r01; : : : ; r0h�1g such that run r0i, where 0 � i � h � 1, is a

merge of si runs of U and
Ph�1

i=0 si = s. For each i; j such that i 6= j and

0 � i; j � h� 1, the si runs merged to obtain r0i are all distinct from the s0j
runs merged to obtain r0j. Then we can merge together the runs of the set

U 0 to complete the original merge of runs of the set U . Each of h merge op-

erations producing r00; r01; : : : ; r0h�1 may or may not subsequently need to be

broken down further into smaller merge operations and so on, depending on

the allocation sequence. The dynamic optimality (or non-optimaility) of a

4.4 Allocation Levels 13

memory-adaptive mergesort depends on how it decides h, si and the si runs

chosen to produce run r0i. Similarly a computation consisting of mutliplying

matrices, each consisting of s blocks, can be achieved by carrying out a series

of appropriately chosen matrix multiplication operations each multiplying

matrices consisting of s0 < s blocks. Each s0-sized multiplication operation

may or may not need to be broken down into smaller operations, depending

on the allocation sequence. The dynamic optimality of a memory-adaptive

multiplication depends on how it determines the value of s0.
The second context in which e�ciency is important is while breaking

down a computation into subcomputation: Since such activity may also in-

volve external memory operations, the data structures and techniques cho-

sen to reorganize external memory computation in an online manner must

themselves be e�cient.

4.4 Allocation Levels

As observed in Section 4.2, a memory-adaptive algorithm's computation

in an allocation phase should be determined by the size of the phase.

While mimicking an optimal external memory algorithm, it is convenient

to clump together ranges of allocation phase sizes into single allocation

levels and thereby partition the whole range f�model ; : : : ;mmax g of alloca-
tion phase sizes into several allocation levels. Consider using the following

mimicking strategy in an attempt to devise a dynamically optimal merge-

sort algorithm: During an allocation phase of size m, we always try to

compute �(m) blocks corresponding to the output of a u(m)-way merge,

where u(m) = 2blg(m�1)c � m=2. In this case, any allocation phase of

size s such that s 2 f2` + 1; 2` + 2; : : : ; 2`+1g is said to be at alloca-

tion level ` with respect to our strategy since we always try to output

�(s) blocks of a 2`-way merge during that allocation phase. On the other

hand, suppose we set u(m) = 22
blg lg(m�1)c � pm, then any phase of size

s 2 f22` +1; 22
`
+2; : : : ; 22

`+1g can be said at allocation level ` with respect

to the modi�ed strategy. In this paper, we formally de�ne allocation levels

for each memory-adaptive algorithm we present.

5 A Framework for Memory-Adaptive Mergesort

In this section, we discuss a simple framework that can be used to construct

memory-adaptive mergesort algorithms. The memory-adaptive mergesort

based on techniques proposed by Pang et al. [PCL93] can be cast in terms

of our framwork. We prove, however, that the techniques of [PCL93] suf-

fer from fundamental drawbacks that make the resulting sorting algorithm

nonoptimal. In Section 8, we design a new memory-adaptive merging al-

gorithm that yields a dynamically optimal sorting algorithm when applied

using our framework.

External mergesorts [Knu98, AV88] consist of a run formation stage in

which sorted runs are formed (by reading in memoryloads of items, sorting

them and writing them out to disk) followed by a merging stage in which

the mergesort algorithm keeps merging (as large as possible) a number of

14 5 A FRAMEWORK FOR MEMORY-ADAPTIVE MERGESORT

runs together until there is only one run remaining. Thus we need to devise

memory-adaptive techniques for run formation and merging.

5.1 Memory-Adaptive Run Formation

The straightforward memory-adaptive run formation technique we propose

is as follows: In an allocation phase of size m, read in m blocks of items

from the input �le, sort them using an optimal in-place sorting technique,

and write them out using m write I/O operations.4 The number and the

lengths of the runs formed during run formation depends on the allocation

sequence.

The following lemma follows easily from the above de�nition.

Lemma 2 For a �le of n blocks, each run that is formed using the above

memory-adaptive run formation strategy, with the possible exception of one

run, is at least �model blocks long and the number of runs formed is at most

dn=�model e. The resource consumption of the above run formation strategy

is no more than 2n lgmmax , where mmax is de�ned in De�nition 1.

5.2 Memory-adaptive merging stage

The main di�culty of memory-adaptive mergesorting lies in merging. If

an external mergesort algorithm has a static number m of internal memory

blocks to use throughout the algorithm, an I/O-optimal strategy [AV88] is

to merge together the m� 1 shortest runs and to repeat the process until a

single sorted run remains.5 Thus if the input �le is n blocks long and there

are n0 sorted runs after run formation, dlogm�1 n0e = d(lg n0)= lg(m � 1)e
merge passes are required to complete the sort.

The merging stage we propose is a modi�cation of the above approach.

Let Q be the queue of (pointers to) runs that need to be merged during the

merging stage. We implement Q as a blocked list of pointers. Whenever a

run is formed suring the run-formation stage a pointer to that run is inserted

into Q. At the end of run formation Q can have up to dn=�model e pointers.
Let M be any memory-adaptive merge subroutine that can merge up to

�M runs, where �M � 2, to produce a single output run. In the merging

stage, the memory-adaptive merge subroutineM is used repeatedly in the

following manner until only a single run remains in Q:

1. Remove the leading minf�M; jQjg (pointers to) runs from Q.

2. Merge these runs together usingM in a memory-adaptive manner.

3. Append (the pointer to) the output run to the end of Q.

We have the following estimate of resource consumption over the merging

stage as a function of the resource consumption ofM.

4
In order to simplify discussions we neglect details regarding small amounts of addi-

tional memory space required by in-memory sorting.
5
If double bu�ering is used to overlap I/O and CPU time,then approximatelym=2 runs

are merged together.

5.3 Resource consumption of memory-adaptive external mergesort 15

Lemma 3 Suppose that the resource consumption of merge algorithm M
when merging �M runs totally containing n0 blocks is bounded by n0 � g(�M).

Suppose that the size of the �le to sort is n blocks and that the total number

of runs in Q immediately after the run formation stage is n0 � bn=�model c.
Then the resource consumption of the merging stage is no more than

n

��
lgn0

lg �M

�
+ 1

�
g(�M):

Proof : Each time an item x is in one of the runs being merged by M we

say that M touches item x. By assumption, each item touched by M is

charged a resource consumption of g(�M)=B for that execution of M. We

prove below that the maximum number of times any element can be touched

is dlg n0= lg �Me+ 1, thus proving the lemma.

Instead of using the listQ of runs throughout the merging stage, consider

the following modi�ed merging stage using several di�erent queues for the

sake of this analysis. Let Q0 be the list of n0 runs immediately after the

run formation stage. At merge level i, we merge runs from queue Qi and

insert each run output by such a merge into list Qi+1. At the beginning of

merge-level i, if the number of runs inQi is no greater than �M, we merge all

runs in Qi to terminate the merging stage. If this is not the case, then while

the number of runs in Qi is at least �M, we repeat the following operation:

We remove � runs from Qi, merge them together to form a new run r, and

insert run r into list Qi+1. When the number of runs in Qi becomes less

than �M, we append Qi to Qi+1.

The maximum number of times any item can be touched during our

original merging stage is no more than the number of merge levels in the

merging stage described above. Below we bound the total number of merge

levels, which we denote by #Passes. Consider an �M-ary representation

of the number jQij of runs in jQij just prior to beginning the ith merge-

level, for 0 � i � #Passes � 1. The number of digits in the �M-ary

representation of jQij is always one less than the number of digits in the

�M-ary representation of jQi�1j, for all except possibly one value of i in

the range 1 � i � #Passes � 1. If the number of �M-ary digits in the

representation of jQij is the same as that of jQi�1j, then the most signi�cant
digit in the �M-ary representation of jQij is 1 and all other digits are strictly
less than �M � 1. It follows that #Passes � d lg n0

lg �M
e+ 1. This proves the

lemma. 2

5.3 Resource consumption of memory-adaptive external

mergesort

We will now discuss the requirements that the memory-adaptive merging

subroutineM needs to satisfy in order for our approach to result in a dy-

namically optimal memory-adaptive sorting algorithm. First we note the

simple resource consumption bound of a sorting algorithm based on our

paradigm.

Lemma 4 The resource consumption of the sorting algorithm based on our

memory-adaptive mergesort (run formation and merging stage) framework

16 6 POTENTIAL OF A MERGE

is at most

2n lgmmax + n

��
lg n0

lg �M

�
+ 1

�
g(�M)

where n is the number of blocks in the input �le, M and �M are as de�ned

in Section 5.2 and g() and n0 � dn=�model e are as de�ned in Lemma 3.

If, for a given memory-adaptive subroutineM, g(�M) = O(lg �M), then

by Lemma 4, our framework results in a total resource consumption of

O(n lgn) and by Corollary 1 the sorting algorithm is dynamically optimal.

On the other hand if g(�M) = !(lg �M) then using M in our framework

results in a dynamically nonoptimal sorting algorithm.

Corollary 2 A memory-adaptive sorting algorithm cast in our mergesort

framework is dynamically optimal if and only if g(�M) = O(lg �M).

Thus as far as our framework is concerned the optimality of the memory-

adaptive sorting algorithm depends on the resource consumption of the

memory-adaptive merging subroutineM.

Let us consider the quantity �M, the number of runs merged by a sin-

gle application of the memory-adaptive merging subroutine M. If �M is

a constant, say 2, then the resource consumption of M can be as high as

(n0 lgmmax) = !(n0 lg �M) where n0 is the total number of blocks involved
in the binary merge carried out by M. This high resource consumption is

incurred by M if the allocation sequence consists of allocation phases of

mmax blocks throughout the duration ofM's execution, which spans
(n0)
I/O operations. Clearly, the strategy of restricting �M to 2 is in contrast

to the strategy (suggested in Section 4.2) of having memory-adaptive algo-

rithms mimic optimal static memory algorithms: When the memory size

is m blocks, an optimal static memory mergesort algorithm always merges

(mc) runs where c is a positive constant. However, as illustrated in Sec-

tion 7, the task of dynamically reorganizing merge computation in a manner

that ensures that the arity of merging computation is proportional to the

memory allocation is not a straightforward one.

6 Potential of a Merge

We now discuss the notion of the potential of a merge which applies to any

merging algorithm. The potential of a merge at any time is a quanti�cation

of the progress made by the merge up to that time.

We �rst de�ne the association of runs with sets and the notion of the

physical sequence of a run at any time during the execution of the merging

algorithm.

De�nition 6 Let U be a set of runs input to a merging routineM. Every

subset u of U has a run ru associated with it: If u is the singleton set then ru
is the run it contains otherwise ru is the run output by a merge of the runs

contained in u. The rank p(ru) of a run ru is de�ned to be the cardinality

juj of u. The physical sequence q(ru; t) corresponding to run ru at time t is

de�ned as follows:

17

1. At time t = 0, the physical sequence q(ru; 0) of any input run ru, with

juj = 1, is the entire sequence of elements of ru taken in order. The

physical sequence q(ru0 ; 0) of run ru0 at time t = 0, where u0 � U is

not a singleton set, is the empty sequence.

2. Suppose that at time t, algorithm M is in the process of executing

a merge operation. Let ru be the run corresponding to the output

run of that merge operation and runs ru1 ; ru2 ; : : : ; ruh are the input

runs of the merge operation, so we have u =
S
1�j�h uj . Suppose that

the physical sequences q(ru; t) and q(ruj ; t), where 1 � j � h, are

de�ned inductively. Then if, at time t, algorithm M removes the

leading item x of the physical sequence of run ruj and appends it to

the physical sequence of run ru, we have q(ru; t+ 1) = q(ru; t) � x and

q(ruj ; t) = x � q(ruj ; t+ 1), where \�" denotes concatenation.

We say the formation of the run ru associated with set u is logically complete

at time t if no append operation (as in Step 2 above) corresponding to

q(ru; t
0 + 1) = q(ru; t

0) � x for some x can be executed at any time t0 � t.

We illustrate this notion by means of an example: Suppose that the

merge of runs of the set S0 = fp0; p1; p2; p3; p4g is in progress and by some

point t of time, runs p2 and p4 have already been depleted by that merge.

Then at time t the formation of the run rs associated with the set s =

fp2; p4g is logically complete: Since all elements of p2 and p4 have already

been appended into the physical sequence q(rS0 ; t) of run rS0 by time t, no

element can ever be appended to the empty physical sequence q(rs; t) at any

time after time t.

De�nition 7 The rank p(x; t) of an item x at time t is the rank p(r) of

the run r such that x lies in the physical sequence q(r; t) of run r at time t.

Suppose that x1; x2; : : : ; xN 0 are the N 0 = n0B items of all the runs in the

set U being merged by the merging routineM. Then the potential 	(t) of

the merge at time t is de�ned to be

	(t) =
1

B

N 0X
i=1

lg p(xi; t):

Clearly, at the time t = 0 of the beginning of the merge, the potential

of the merge is 0. When algorithmM �nishes the merge of runs of set U ,

the potential of the merge (or rather, the progress made byM) is n0 lg jU j,
where n0B is the total number of items merged.

The manner in which the potential of a merge changes over an allocation

sequence depends on the merging algorithm. We are able to relate the

cumulative resource consumption of our algorithm MAMerge, presented

in Section 8, up to any time t to the potential 	(t) of the merge at time t;

thus we use potential of the merge to keep track of the resource consumption

of MAMerge.

187 NONOPTIMALITY OF A SIMPLE MEMORY-ADAPTIVE MERGESORT ALGORITHM

7 Nonoptimality of a simple memory-adaptive

mergesort algorithm

In this section, we discuss an elegant memory-adaptive mergesort based on

the techniques developed by Pang et al. [PCL93]. We prove that its resource

consumption is nonoptimal.

The memory-adaptive merging algorithm presented in [PCL93] is not

described completely. Below, we present an intuitively appealing algorithm

for memory-adaptive merging calledM0 which can reasonably be considered

to be an extension of the memory-adaptive merging techniques of [PCL93].

We present two variants ofM0: One variant, which we call the linear vari-

ant , tries to execute
(m)-way merges when the memory allocated is m

blocks and the other variant, which we call the sublinear variant , tries to

execute
(
p
m)-way merges when the memory allocated is m blocks. Using

an adversarial argument we show that sorting algorithms based on the linear

and sublinear variants of M0 respectively incur a resource consumption of

(n(lgn)2) and
(n(lg n)(lg lgn)) respectively and so, by Corollary 1, are

dynamically nonoptimal.

7.1 Sketch of the memory-adaptive external memory merge-

sort

The run formation stage remains the one we proposed in Section 5.6 During

the merging stage, a single application of the subroutineM0 of [PCL93] can

be considered to merge at most �M0 = mmax � 1 runs, where mmax is the

maximum number of disk blocks that can be �t in physical memory. We will

only sketch the memory-adaptive merging algorithmM0 in this section: Our

focus is on aspects of the algorithm that make the resource consumption of

M0 sub-optimal, so we skip several of the details of the algorithm [PCL93].

7.1.1 Memory-adaptive subroutine M0

We now describe the memory-adaptive merging subroutine M0 which at-

tempts to mimic an optimal (static) external memory mergesort as described

in Section 4.2. The two variants of M0 correspond to the two mimicking

strategies mentioned in Section 4.4 for memory-adaptive mergesort.

Suppose that M0 tries to execute a u(m)-way merge during alloca-

tion phases of size m. Then the linear variant of M0 corresponds to

u(m) = 2blg(m�1)c while the sublinear variant ofM0 corresponds to u(m) =

22
blg lg(m�1)c

. We now de�ne the level function f() that maps allocation

phases to allocation levels, as explained in Section 4.4.

De�nition 8 For the linear variant ofM0, we de�ne f(m) to be blg(m�1)c
and f�1(`) to be 2`. For the sublinear variant ofM0 we de�ne f(m) to be

blg lg(m�1)c and f�1(`) to be 22` . (Strictly speaking, the functions f() and
6
The paper [PCL93] considers quicksort and di�erent variants of replacement-selection

in the context of practical issues such as lengths of runs, response-time to
uctuations in

memory and disk-locality during the run-formation stage. Our approach can be extended

to address most of the practical issues they consider with respect to the run-formation

stage.

7.1 Sketch of the memory-adaptive external memory mergesort 19

f�1() are not mathematical inverses of each other.) An allocation phase

of size m is said to be at allocation level f(m); or alternatively, during an

allocation phase of size m, the allocation level is said to be f(m).

In the context of the memory-adaptive mergesort framework we in-

troduced in Section 5, we use M0 as a subroutine to memory-adaptively

merge �M0 = f�1(f(mmax)) runs at a time. This means that the lin-

ear variant of M0 has �M0 = �(mmax) whereas the sublinear variant has

�M0 =
(
p
mmax).

The basic idea ofM0 is to always associate each allocation level ` with

a set S` of runs such that the rank p(rS`) of the run rS` associated with S`
is f�1(`). The set S` of input runs associated with allocation level ` may

change over the course of the allocation sequence. The computation linked

to level ` at any time is the merge computation necessary to produce blocks

of the run rS` associated with S`. Whenever the level of allocation is `,

M0 executes a portion of the computation linked to level `. Whenever the

formation of the run rS` is logically complete, M0 is assigned a new set of

runs such that the condition p(rS`) = f�1(`) is satis�ed even with the new

value of S` and the process continues.

Member runs of the set S` may either be marked or unmarked . The sets

S` for ` 2 f1; 2; : : : ; f(mmax)g are maintained byM0 over time as follows:

1. Initialization: The set Sf(mmax)
is initialized to the �M0 runs that are

the runs to be merged. All runs in Sf(mmax)
are unmarked. The sets

S` corresponding to all other allocation levels are set to nil .

2. During the algorithm, as soon as the merge producing the run rS`
associated with a set S` becomes logically complete, the set S` is set

to an empty set.

3. During an allocation phase of size m, we check to see if set S`, where

` = f(m), is empty on account of points 1 or 2. If set S` is empty, we

execute procedure load (S`) de�ned in point 4 below. Supposing S` is

non-empty, then during that allocation phaseM0 computes blocks of

the run rS` associated with set S`.

4. Whenever a set S`, where ` 6= f(mmax), needs to be loaded we execute

the procedure load (S`). In this procedure, if set S`+1 is empty we

recursively load it by executing load (S`+1). Supposing S`+1 is not

empty, if it contains 0 unmarked runs, we unmark all runs of that set

and set S` to S`+1. On the other hand, if S`+1 contains unmarked

runs, we remove a subset s � S`+1 containing f
�1(`) unmarked runs7

from S`+1, set S` = s and add a marked run rs that is associated with

subset s into set S`+1.

The biggest drawback of the above scheme for memory-adaptive merging

is that merge computation producing blocks of run rS` associated with set

S` is carried out in allocation phases of size at least f�1(`) even if only

a 2-way (binary) merge is needed to produce run rS` , owing to previously

executed computations at lower levels: The �rst time set S` gets loaded

7
If set S`+1 contains even one unmarked run it contains at least f�1

(`) unmarked runs.

207 NONOPTIMALITY OF A SIMPLE MEMORY-ADAPTIVE MERGESORT ALGORITHM

it may have a large number f�1(`), of runs to merge. At such times, the

merge computation producing blocks of the run rS` makes very e�cient

use of m-sized allocation phases, where ` = f(m). However, in general,

allocation levels
uctuate. If the allocation levels remain smaller than ` for

long enough, it is possible that when the allocation level next becomes `, a

binary merge is what is required in order to produce blocks of the run rS` .

The transformation of what was originally an f�1(`)-way merge into a 2-way
merge can take place if the formation of both the runs rS0 and rS00 , where

S` = S0[S00, is logically completed when the allocation level is smaller than

`.

Even when the merge required to produce blocks of rS` is transformed

into a binary merge, the algorithmM0 will persist in using level ` allocation

phases to execute that binary merge. This is ine�cient because huge alloca-

tion phases of size m such that f(m) = ` can end up being used to execute

the binary merge: The increase in merge potential registered byM0 during

such an m sized phase is only O(m) whereas the resource consumption is

2m lgm. The fact that resource consumption is much greater than the in-

crease in merge potential registered byM0 during such phases turns out to

be a fundamental ine�ciency, as will be seen from our analysis below and

in the following two sections. This ine�ciency is precisely what we exploit

to produce a nemesis sequence of allocation phases resulting in sub-optimal

resource consumption for the algorithm.

We do not mention details regarding data structures used to maintain

the sets S` of runs associated with levels duringM0 since we assume, con-

servatively, that the sets of runs can be maintained without any cost.

7.2 Lower Bound on Resource Consumption

We will construct a sequence of allocation phases that forces sub-optimal

resource consumption for the memory-adaptive sorting algorithm obtained

by applying the previous section's memory-adaptive algorithm M0 to our

memory-adaptive mergesort framework. We will express the nemesis se-

quence construction in terms of f(m) and f�1(`) so that it is applicable to
both the linear and sublinear variants of the merging scheme.

For convenience, we assume that in case of the linear variant of M0,

mmax = 2`max+1 whereas in case of the sublinear variant ofM0, we assume

that mmax = 22
`max

+1. We use a simple technique to construct our nemesis

allocation sequence. We �rst introduce some terminology that is applicable

to the nemesis allocation sequence we construct for the algorithmM0.

De�nition 9 We use �(n0; r;m) to denote the allocation sequence

m1;m2; : : : ;mf satisfying the following conditions:

1. mi � m for 1 � i � f .

2. Beginning with the allocation phase m1, the algorithmM0 completes

the merge of r runs totally consisting of n0 blocks of items precisely at
the end of the allocation sequence �(n0; r;m).

We use �(n0; r;m) to denote the resource consumption corresponding to the

allocation sequence �(n0; r;m).

7.2 Lower Bound on Resource Consumption 21

Below we show how to recursively construct the nemesis sequence

�(n0;mmax �1;mmax). We prove a lower bound on �(n0;mmax �1;mmax) as-

suming that all the mmax �1 runs being merged are of length n0=(mmax �1)
blocks.

Recursive Formulation

We use the notation �1 � �2 to mean the concatenation of the two sequences

�1 and �2. We also use the notation �
p
1
to mean �1 � �p�11

. Our construction

only uses r's of the form 2` (respectively 22
k
) in the linear (respectively

sublinear) variant. In the de�nition below, we use r̂ to denote f�1(f(r)).
We have r̂ = r=2 in the linear variant and r̂ =

p
r in the sublinear variant,

for the r's we consider. Our recursive construction of the nemesis allocation

sequence �(n0;mmax � 1;mmax) is as follows:

1. Base Case We de�ne

�(n0; 2;m) = mn0=m

Thus �(n0; 2;m) = 2n0 logm, by de�nition.

2. Recursion We de�ne

�(n0; r;m) = �(
n0r̂
r
; r̂; r̂ + 1)

r
r̂ � �(n0; r

r̂
;m)

Thus we have

�(n0; r;m) =
r

r̂
�(

n0r̂
r
; r̂; r̂ + 1) + �(n0;

r

r̂
;m)

It is easy to prove inductively that �(n0; r;m) constructed as above meets

the requirements mentioned in the de�nition above. We will now prove

lower bounds on the resource consumption of the memory-adaptive merging

algorithm by solving for �(n0;mmax � 1;mmax).

Lemma 5 In the linear variant of the memory-adaptive external memory

algorithm,

�(n0;mmax � 1;mmax) =
(n0(lgmmax)
2)

whereas in case of the sublinear variant,

�(n0;mmax � 1;mmax) =
(n0(lgmmax)(lg lgmmax))

Proof : In case of the linear version of the algorithm, we have

�(n0; r; r + 1) = 2�(n0=2; r=2; r=2 + 1) + �(n0; 2; r + 1)

Using the base case and supposing inductively that �(n00; r0; r0 + 1) �
n00(lg(r0 + 1))2 for n00 � n0, r0 < r, we have

�(n0; r; r + 1) � 2(n0=2)(lg(r=2 + 1))2 + 2n0 lg(r + 1)

� n0(lg(r + 1)� 1)2 + 2n0 lg(r + 1)

� n0(lg(r + 1))2 � 2n0 lg(r + 1) + 2n0 lg(r + 1)

� n0(lg(r + 1))2

22 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

Thus �(n0;mmax � 1;mmax) � n0(lgmmax)
2 in case of the linear variant.

In case of the sublinear variant the recurrence for �(n0; r; r + 1) unfolds

as

�(n0; r; r + 1) =
p
r�(n0=

p
r;
p
r;
p
r + 1) + �(n0;

p
r; r + 1)

Recall that in the sublinear variant we assume that the r's are such

that lg lg r is integral. We tranform the second and third variables of

�(n0; r; r0 + 1) by de�ning the function �(n0; lg lg r; lg lg r0) to be identi-

cal to �(n0; r; r0 + 1), where lg lg r and lg lg r0 are both integral. Thus

�(n0; r; r + 1) = �(n0; k; k), where k = lg lg r and we bound �(n0; r; r + 1)

as follows.

�(n0; k; k) � 22
k�1

�(n0=22
k�1

; k � 1; k � 1) + �(n0; k � 1; k)

=
k�1X
i=1

22
i

�(n0=22
i

; i; i) + �(n0; 0; k)

Using the base case and inductively assuming that �(n00; k0; k0) � n00k02k0�1

for n00 � n0 and k0 � k, we have

�(n0; k; k) � n0=2
k�1X
i=1

i2i + 2n0 � 2k

� n0k2k�1

Thus we have �(n0;mmax � 1;mmax) � n0(lg lgmmax)(lgmmax)=2 with re-

spect to the sublinear variant. 2

Using the above lemma in conjunction with Lemma 4, we have the fol-

lowing theorem regarding resource consumption of the memory-adaptive

external memory sorting algorithm based on techniques of [PCL93].

Theorem 4 While sorting a �le of n blocks, the memory-adaptive external

memory sorting algorithms based on the linear and sublinear variants of the

memory-adaptive external memory merging subroutine M0 have resource

consumption of
(n(lgn)(lgmmax)) and
(n(lgn)(lg lgmmax)) respectively.

By Theorem 4 and Corollary 1, the above approach to memory-adaptive

sorting is dynamically nonoptimal.

8 Dynamically Optimal Memory-Adaptive Sort-

ing

In this section we present a new memory-adaptive merging subroutine

MAMerge that can be used as M in the framework of Section 5.2 to

obtain a dynamically optimal sorting algorithm.

Throughout this section, we use � to denote the number �MAMerge of

runs that each application of MAMerge merges together. The value of �

is appropriately chosen to be
(mmax) except possibly for the �nal appli-

cation in which case it can be as small as 2. The novelty of MAMerge

lies in the data structures and techniques it uses to reorganize the original

merge computation adaptively so as to ensure that in \typical" allocation

23

phases, the resource consumption of MAMerge is within a constant factor

of the increase in merge potential it registers, and, during all other allocation

phases, the total number of I/O operations it incurs is linear in the total

number of blocks output by MAMerge.

Theorem 5 Suppose that MAMerge is used to merge together a set of

� input runs totally comprising n0 blocks. Consider any time t during the

execution of MAMerge, up to and including the time MAMerge �nishes

execution. Then the resource consumption of MAMerge during the al-

location sequence up to time t is O((t) + n0 lgmmax), where 	(t) is the

potential of the merge at time t. In the case � =
(mmax), we have

O((t) + n0 lgmmax) = O(n0 lg �).

The �nal application of MAMerge may merge only a small number

o(mmax) of runs. This application of MAMerge may incur a resource

consumption of O(n0 lgmmax) as opposed to O(n0 lg �). However, we can

show that our sorting algorithm remains dynamically optimal.

A sketch of the above theorem gives a \high level" idea of the technique

used by MAMerge to tie its resource consumption at any time to the

potential of its merge at that time. In order to sketch the proof of Theorem 5,

we de�ne \optimal" and \nonoptimal phases".

De�nition 10 An allocation phase of size m, where �model � m � mmax ,

in which the potential of the merge being carried out by MAMerge in-

creases by an additive amount of �(m lgm) is an optimal phase. Every

other allocation phase is said to be a nonoptimal phase.

The novel aspects of MAMerge are the techniques and data structures

it employs to ensure that a typical allocation phase is an optimal phase. In

a typical allocation phase of size m, MAMerge can e�ciently access the

physical sequences of m0 =
(
p
m) appropriate runs ru; ru1 ; ru2 ; : : : ; rum0

such that

1. u =
S
1�i�m0 ui, and

2. For 1 � i � m0, we have p(ru) = juj = m0juij = m0p(rui).

Whenever these conditions are satis�ed,MAMerge can use the 2m I/O op-

erations of the phase to append �(mB) new items to the physical sequence of

run ru, where each appended item belongs to the physical sequence of one of

the runs ru1 ; ru2 ; : : : ; rum0 . By de�nition, the increase in the potential of the

merge during such an allocation phase is �(mB 1

B
lg(

p(ru)
p(rui)

)) = �(m lgm),

and thus the phase is optimal. The resource consumption 2m lgm incurred

during an optimal phase of size m can be charged to the potential increase

�(m lgm) registered by MAMerge during that phase. Since the potential

of the merge can never exceed n0 lg �, the net resource consumption during

all optimal phases is no more than O(n0 lg �).
On the other hand, the techniques used by MAMerge also ensure that

the total number of I/O operations obtained by summing the I/O operations

over all nonoptimal phases is O(n0). Since the maximum resource consump-

tion of an I/O operation is lgmmax , the resource consumption during all the

nonoptimal phases of MAMerge remains O(n0 lgmmax). This concludes

the sketch of the proof of Theorem 5.

24 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

8.1 Overview

Each application of MAMerge, except possibly the �nal application,

merges together � = 22
dlg lg(mmax=�level)e runs from Q as described in Sec-

tion 5.2, where �level is a constant to be determined later. MAMerge

partitions the set of possible sizes of allocation phases into \allocation lev-

els".

De�nition 11 An allocation phase of size s is said to be at allocation level

level(s) = dlg lg(s=�level)e; or alternatively, during allocation phases of size s,
the (ongoing) allocation level is said to be level(s). In our scheme, we require

that the integral constant �model de�ned in De�nition 1 be large enough for

level(�model) to be 1. We use `max
0 to denote the integer level(mmax).

By de�nition, each allocation phase is at one of the allocation levels `,

where ` 2 f1; 2; : : : ; `max
0g.

The basic strategy employed by MAMerge is to dynamically maintain

an association of a merge operation \appropriate for level `" with each allo-

cation level ` and to generate �(m) blocks output by that merge operation

during an allocation phase of sizem at level `. 8 In the case when the forma-

tion of the output run of that merge operation is logically completed before

�(m) blocks can be output, MAMerge ends up generating less than �(m)

blocks during that phase. Whenever the formation of the output run of the

merge operation associated with level ` gets logically completed,MAMerge

has to reorganize the global merge computation so as to �nd a new merge

operation \appropriate for level `".

De�nition 12 A merge operation is said to be appropriate for level ` if the

rank p(x; t) of an element x appended at time t to the physical sequence of

the output run of that merge operation is such that

p(x; t) � 22
`�1 � p(x; t� 1):

Put another way, if x lies in the physical sequence of run r0 at time t � 1

and in the physical sequence of the output run r of the merge operation at

time t, then we have p(r) � 22
`�1 � p(r0).

Every allocation phase in which MAMerge outputs �(m) blocks of a

merge operation appropriate for level ` is an optimal phase, by de�nition.

Allocation phases spent by MAMerge in reorganizing the global merge so

as to �nd merge operations for levels not currently associated with appropri-

ate merges may be nonoptimal. An allocation phase of size m at level ` can

also be nonoptimal if the formation of the output run of the merge operation

appropriate for level ` gets completed during that phase. Another source of

possibly nonoptimal phases are phases at any allocation level ` > maxlevel ,

where maxlevel is a special variable maintained by MAMerge. The num-

ber of nonoptimal phases is small enough that the number of I/O operations

summed over all nonoptimal phases isO(n0), where n0 is the number of blocks
output by MAMerge.

8
An exceptional case is when ` > maxlevel , where maxlevel is a variable maintained by

MAMerge as described below.

8.2 Run-Records 25

In Section 8.2 we present the recursively de�ned data structure of a \run-

record" that plays a central role in the manner in whichMAMerge dynam-

ically reorganizes its merge computation. In Section 8.3, we descibe the pre-

processing stage ofMAMerge and some other preliminaries ofMAMerge.

In Section 8.4, we present a data structure called level-record that stores,

for each level `, the merge operation appropriate for level `. In Section 8.5,

we mention the invariants pertaining to run-records and level-records that

MAMerge maintains. In Section 8.6, we describe the simple procedure ex-

ecuted by MAMerge during a phase at allocation level ` when there does

exist an appropriate merge operation for level `. In Section 8.7, we present

the download() operation used to �nd new appropriate merge operations

for levels that are currently not associated with any merge operation. In Sec-

tion 8.8, we sew together our data structures and techniques to obtain the

memory-adaptive merging algorithmMAMerge. We analyzeMAMerge's

resource consumption in Section 9.

8.2 Run-Records

We associate a \run-record", de�ned below, with every run formed in course

of our mergesort algorithm. Each run-record contains a pointer to the start

and end of its run's physical sequence on disk. The queue Q of runs de�ned

in Section 5.2 is, in fact, implemented as a queue of run-records.

At any time the \state" of MAMerge consists of a set of merge op-

erations that can collectively be viewed as an adaptive re-organization of

the original �-way merge that MAMerge sets out to compute. Linked

implicitly to each such merge operation in the state of MAMerge is a

run-record de�ned below: Consider, for example, merging a set P of runs

r0; r1; : : : ; rp�1, where p = jP j, into the run r and suppose that p = 22
`

for a non-negative integer `. In our scheme, we ensure that the number

of runs in all merge operations in MAMerge's state is always of the form

22
x
, where x is a non-negative integer. Algorithm MAMerge maintains

a run-record rr associated with the output run r. Run-record rr contains

pointers to the leading and trailing disk blocks of run r, if any, and to a list

of the run-records rr i associated with the runs ri 2 P . Thus whenever we

wish to work on the merge operation whose output is run r, we can do so

by using the run-records rr i to get pointers to blocks of the runs ri. We

append the merge output to the trailing disk block of run r pointed to by

rr . In general, the runs ri 2 P can themselves be runs that correspond to

the outputs of some other merge operations. More importantly, the design

of algorithm MAMerge easily handles situations in which the formation

of a run ri 2 P may not be logically complete, in the sense of De�nition 6.

Algorithm MAMerge has the
exibility of implementing the p-way merge

linked to rr by recursively splitting it into
p
p-way merge operations: The

run-record rr stores a pointer to a list of
p
p run-records rr 00; rr

0
1; : : : ; rr

0p
p�1

associated with the runs r00; r01; : : : ; r0pp�1 such that run r is logically the out-
put of the

p
p-way merge of runs r00; r01; : : : ; r0pp�1, and each run r

0
i is logically

the output of the
p
p-way merge of the runs ripp; ripp+1; : : : ; r(i+1)pp�1.

Below we give a precise de�nition of the �elds that form a run-record. It

is useful to separate the logical notion of a run from the way it may actually

26 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

exist on disk at any time.

De�nition 13 In our scheme, the physical sequence q(r; t) at any time t of

a run r is stored in a blocked manner on disk.

Before de�ning the recursive run-record data structure, we de�ne the

various �elds of a run-record.

De�nition 14 The �elds of a run-record associated with a run r0 are as

follows:

1. begin: At any time t, the begin �eld points to the leading element of

the physical sequence q(r0; t), assuming q(r0; t) is non-empty, on disk.

2. end : At any time t, the end �eld points to the trailing element of the

physical sequence q(r0; t), assuming q(r0; t) is non-empty, on disk.

3. Order : An integer �eld.

4. inputs : The inputs �eld points to the disk location of the leading run-

record of a list of Order run-records stored in a blocked manner on

disk. The inputs �eld implicitly represents this blocked list of Order

run-records so we sometimes refer to the pointer inputs as a list of

run-records. This list of run-records may actually exist as a sub-list of

a larger blocked list of run-records on disk.

5.
ag : The
ag �eld records whether or not the formation of run r0 is
logically complete, as in De�nition 6. Accordingly,
ag is set to Done

or NotDone respectively. The
ag �eld of the run-record associated

with any run input to MAMerge is initialized to Done.

6. splitters : The splitters �eld points to the disk location of the leading

run-record of a list of
p
Order run-records stored in a blocked manner

on disk. The splitters pointer implicitly represents the blocked list ofp
Order run-records.

Each run-record occupies only O(1) amount of space, which is propor-

tional to O(1=B) disk blocks.

De�nition 15 If run r is one of the � input runs of MAMerge, then in

the run-record rr associated with r, we have rr :Order = 1 and rr :inputs =

rr :splitters = nil . On the other hand suppose that run r is logically the run

corresponding to the output of the merge of the runs ri, where 0 � i � p�1
and p = 22

`
for a non-negative integer `, and rr i is the recursively de�ned

run-record associated with run ri. Then given a run-record rr at any time,

we say

rr =
_
frr 0; rr 1; : : : ; rr p�1g

if and only if the following conditions are satis�ed:

1. rr :Order = p.

2. The list rr :inputs contains precisely the p run-records rr0; rr1; : : : ; rr p�1.

8.2 Run-Records 27

3. The list rr :splitters contains
p
p run-records rr 0j , where 0 � j � pp�1,

such that rr 0j =
Wfrr jpp; rr jpp+1; : : : ; rr (j+1)pp�1g

We say that the computation associated with run-record rr is the computa-

tion involved in merging the runs associated with the rr :Order run-records

in rr :inputs to produce blocks appended to the physical sequence of run r

associated with rr .

Although the de�nition of a run-record is recursive, we do not employ

recursion to construct a run-record rr such that rr =
Wfrr 0; rr 1; : : : ; rr p�1g,

given the run-records rr i.

De�nition 16 Given a blocked list Lp of p = 22
`

run-records

rr0; rr 1; : : : ; rr p�1, where ` is a non-negative integer, the construction of

a run-record rr satisfying the condition rr =
Wfrr j j0 � j � p� 1g is called

a construct(rr ; Lp) operation.

The construct(rr ; Lp) operation can be implemented by successively

constructing a sequence of ` blocked lists Li of run-records, for 0 � i � `�1
and then setting rr :inputs to be the list Lp and rr :splitters to be the list

L`�1. In general, the blocked lists Li are constructed so as to satisfy the the

following conditions:

1. List Li is a blocked list containing p=22
i
run-records, which we denote

rr (i; j), where 0 � j � p=22
i � 1.

2. The jth run-record rr (i; j) in list Li, where 0 � i � ` � 1 and 0 �
j � p=22

i � 1, satis�es rr (i; j):Order = 22
i
and the list rr(i; j):inputs

consists of the 22
i
run-records rr jx; rr jx+1; : : : ; rr (j+1)x�1, of list Lp,

where x = 22
i
.

3. Consider a run-record rr (i; j), where 1 � i � ` � 1 and 0 � j �
p=22

i�1, from any list other than list L0. Let x denote 22
i
. Then, thep

x = 22
i�1

run-records in the list rr (i; j):splitters are precisely the

run-records rr (i� 1; j
p
x), rr(i� 1; j

p
x+1), : : :, rr (j + 1)

p
x� 1, of

list Li�1. Each run-record in list L0 has its splitters �eld set to nil .

4. The �elds rr :inputs and rr :splitters are set so that rr :inputs represents

list Lp and rr :splitters represents list L`�1.

5. The
ag �elds of all run-records of the lists L0; L1; : : : ; L`�1 and the

run-record rr are said to NotDone; the begin and end �elds of these

run-records are set to nil indicating that their respective physical se-

quences at that time are all empty.

It can be inductively shown that the above conditions imply for 0 � i �
`� 1 and 0 � j � x� 1 that

rr (i; j) =
_
frr jx; rr jx+1; : : : ; rr (j+1)x�1g

where x = 22
i
. This means that rr =

Wfrr j j0 � k � p� 1g, as desired.
If the lists Li are constructed in ascending order of i, then all the run-

records of the blocked list Li can be constructed in a single traversal of

28 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

list Li�1 for i > 0 and list Lp for i = 0: For i > 0, Step 2 above is

implemented by setting rr(i; j):inputs to be equal to the (value of) the �eld

rr(i� 1; j22
i�1

):inputs and rr(i; j):splitters to store the disk location of the

run-record rr(i� 1; j22
i�1

). The following lemma follows from the fact that

the total number of run-records summed over all the lists Li and list Lp is

O(p) and that constructing each list Li requires no more than O(1) blocks

of internal memory.

Lemma 6 The total number of I/O operations incurred by a construct(rr ; Lp)

operation, where Lp is a blocked list of p run-records, is O(p=B +

lg lg p) = O(p). The total number of memory blocks required to implement

construct(rr ; Lp) is O(1).

Another useful observation is expressed by the following lemma.

Lemma 7 The total number of new run-records created by construct(rr ; Lp),

where Lp contains p run-records is O(p).

During the preprocessing stage of MAMerge, we execute a

construct(rr ; Lp0) operation in which the number p0 of run-records in Lp0

is not of the form 22
`
but rather of the form w22

`
, where w is a non-negative

integer less than 22
`
. In this case the above procedure can be modi�ed so

that the number of run-records in list L`�1 is w, instead of
p
p0. However,

the condition that rr =
Wfrr 0jrr 0 2 Lp0g remains satis�ed.

Corollary 3 The total number of I/O operations incurred by the

construct(rr ; Lp0) operation described in the above paragraph, in which Lp0

is a blocked list of p0 = w22
`
run-records and w is a positive integer less than

22
`
, is no more than O(p0=B + lg lg p0), which is O(p0). The total number of

memory blocks required in the implementation is O(1).

8.3 Preprocessing

Having de�ned run-records and the construct() operation, we now describe

the preprocessing carried out by MAMerge before it starts merging. First

we introduce some terminology that we will be using throughout the next

two sections.

De�nition 17 The number of runs merged by an application ofMAMerge

is given by

� = minf22dlg lg(mmax=�level)e

; jQjg;
where jQj is the number of runs in list Q at the beginning of that application

of MAMerge. We use `max to denote the integer dlg lg �e, and � to denote

the integer 22
`max

.

The value of � for each application of MAMerge, in our framework is

such that, except perhaps in the �nal application of MAMerge, we have

`max = `max
0 = dlg lg(mmax=�level)e and � = �.

During the �nal application of MAMerge, it is possible that � < �,

in which case, it is convenient to introduce some dummy9 run-records to

9
We de�ne the run associated with a dummy run-record in Section 9.

8.3 Preprocessing 29

the list of run-records corresponding to runs being merged. Adding dummy

run-records enables us to make the convenient assumption that that the

number of run-records in the list rr 0:inputs of any run-record rr 0 is always
of the form 22

`
for integral `. If � < �, one possibility is to add � � �

dummy run-records, but this can be extremely ine�cient since � can be as

high as �(�2). So we �rst add enough dummy run-records to obtain a total

of w�1=2 run-records, where w is an integer no larger than �1=2. Then after

running the modi�ed version of the construct() operation alluded to in

Corollary 3, we add some more dummy run-records appropriately to ensure

that, after preprocessing, the number of run-records in the list rr 0:inputs of
any run-record rr 0 is of the form 22

`
while maintaining the condition that

the number of dummy run-records added is O(�).

We execute the following steps during the preprocessing stage of

MAMerge in our framework.

1. Copy the � leading run-records from jQj into a new blocked list L of

run-records and remove these run-records from Q.

2. Append at most �1=2 � 1 dummy run-records to the end of L so that

the number of run-records in L is w�1=2 for a non-negative integer w.

3. Execute a modi�ed version of the construct(rr 0; L) operation (alluded
to in Corollary 3) on the blocked list L containing w�1=2 run-records.

The blocked list rr 0:splitters , denoted L0, contains w run-records.

4. Discard run-record rr 0 and append less than �1=2 dummy run-records

to L0 so that L0 now contains w0 run-records, where w0 is the smallest
integer such that w0 � w and w0 = 22

x � �1=2 for an integral x.

5. Execute a construct(rr ; L0) operation on the blocked list L0 contain-
ing w0 run-records.

The run-record rr contructed in Step 5 has rr :inputs pointing to a

blocked list of w0 run-records rr j, where 0 � j � w0 � 1. With one pos-

sible exception, the blocked list rr j :inputs of each non-dummy run-record

rr j of list rr :inputs contains a unique set of �1=2 run-records from the set

of � run-records associated with runs MAMerge sets out to merge; one

non-dummy run-record of list rr :inputs may possibly contain the dummy

run-records introduced in Step 2. The union of the sets represented by the

lists rr j :inputs includes the � run-records corresponding to runs input to

MAMerge and thus, the run associated run-record rr is logically the run

corresponding to a merge of the � input runs.

Lemma 6 and Corollary 3 above imply the following lemma.

Lemma 8 The total number of I/O operations incurred during the prepro-

cessing stage is no more than O(�=B + `max), which is O(�). The total

number of memory blocks required to implement the preprocessing is O(1).

The total number of new run-records created during the preprocessing stage,

including dummy run-records is O(�1=2) = O(�).

The following de�nitions refer to variables maintained and used by

MAMerge.

30 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

De�nition 18 The algorithmMAMergemaintains a variable rr global stor-

ing a special run-record. At the end of Step 5 above, we initialize rr global
to the run-record rr resulting from the execution of the construct(rr ; L0)
operation. We use Wtop to denote the number of non-dummy run-records

in the list rr global :inputs immediately after Step 5 of the preprocessing com-

pletes.

ThroughoutMAMerge's execution, the variable rr global stores the run-

record whose run is logically the merge of all the � runs input toMAMerge.

8.4 Level-record Data Structure

We now describe the \level-record" data structure that associates with each

level `, where 1 � ` � `max , a merge operation appropriate for level `. A

level-record stores a pointer to a run-record together with some supplemen-

tary information.

De�nition 19 Every allocation level `, where 1 � ` � `max , is associated

with its level-record, denoted lr [`]. Level-record lr [`] is either nil or it com-

prises of the following three �elds:

1. rr : The rr �eld stores the location of a run-record which can be viewed

as a repository of computation that may carried out at level `.

2. current : The current �eld stores a non-negative integer.

3. active: The active �eld is a pointer to a run-record which we call the

active run-record of level ` and denote by rr `, in short. The merge

operation associated with run-record rr ` is always a merge operation

appropriate for level `.

Level-records lr [1] through lr [`max] are stored in a blocked list so they occupy

O(`max=B+1) disk blocks in total. By \computation associated with level `"

we refer to the merge operation associated with run-record rr `.

Initialization of level-records

Immediately on completion of the preprocessing ofMAMerge, all level-

records except lr [`max] are initialized to nil . Level record lr [`max] is initial-

ized as follows: Its rr �eld is set to run-record rr global , its current �eld is

set to 0 and its active �eld is set to the same value as rr global :inputs (which

points to the �rst run-record in the blocked list implicitly represented by

rr global :inputs .)

The following de�nition refers to a variable maintained and used by

MAMerge.

De�nition 20 Throughout its operation, MAMerge maintains a special

variable maxlevel initialized to `max .

The value of maxlevel is always such that lr [maxlevel]:rr = rr global .

8.5 Invariants for run-records and level-records 31

8.5 Invariants for run-records and level-records

We now present the invariants pertaining to run-records and level-records

maintained by MAMerge. The invariants hold immediately after prepro-

cessing is completed and after each llmerge() and download() operation

during MAMerge's execution.

In the invariants speci�ed below, we use the following variables and

shortened names.

De�nition 21 By `, we denote an integer such that 1 � ` � `max . We use

current to denote the �eld lr [`]:current of level-record lr [`], rr to denote

lr [`]:rr , m to denote lr [`]:rr :Order , and active to denote lr [`]:active . By

rr i, where 0 � i � m� 1, we denote the ith run-record in the list rr :inputs

of m run-records.

In case of the invariants below that refer to level-record lr [`], it is obviously

assumed that lr [`] is not nil .

Invariants

1. 1 � maxlevel � `max .

2. The run associated with run-record rr global is always the run corre-

sponding to the output of the merge of � runs input to MAMerge.

3. If maxlevel < ` � `max , then level-record lr [`] = nil .

4. lr [maxlevel]:rr stores the location of run-record rr global .

5. rr :
ag is set to NotDone .

6. We have 0 � current � m. For the case ` = `max , current 62
fWtop ;Wtop + 1; : : : ;m� 1g.

7. If current < m then the run-record rr ` pointed to by active is the

current -th run-record rr current in the list rr :inputs , otherwise run-

record rr ` is the run-record rr itself.

8. If ` = maxlevel , then m = 22
x
, where x is an integer no larger than

`� 1.

9. If ` < maxlevel , then m = 22
`�1

.

10. Each one of them�current run-records rr i, where current � i � m�1,
has rr i:
ag set to NotDone and rr i:Order set to 22

`�1

. In the speci�c

case of ` = maxlevel = `max , this invariant holds for the non-dummy

run-records rr i, where current � i �Wtop � 1 of the list rr :inputs .

11. Consider the ordered list S` of run-records obtained as follows: First

concatenate together the lists rr i:inputs of the run-records rr i, where

current � i � m�1, in increasing order of i to obtain the list S0. Then
list S` is obtained by appending the ordered list rr

0; rr 1; : : : ; rr current�1

of run-records to the tail of list S0. Let the elements, in order, of list

S` be s0; s1; : : : ; sjS`j, where jS`j denotes the number of run-records in
S`.

32 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

(a) At most `� 1 run-records of S` either have their
ag �eld set to

NotDone.

(b) Consider a run-record s 2 S`, with s:
ag = NotDone. Then

there is precisely one level `0, where 0 < `0 < `, such that lr [`0]:rr
points to s.

(c) Consider any pair si1 and si2 of elements of list S` such that

si1 :
ag = si2 :
ag = NotDone and i1 < i2 with lr [`1]:rr pointing

to si1 and lr [`2]:rr pointing to si2 . Then `1 < `2.

We present a couple of useful observations as lemmas based on the above

invariants, using the same notation.

Lemma 9 Unless ` = maxlevel and current = m, given level-record lr [`],

we can obtain a run-record rr 0 using a single I/O operation, where rr 0 is
such that rr 0:
ag = NotDone and the merge operation associated with rr 0 is
appropriate for level `.

Proof : The invariants 5, 6, 7, 10 and 9 together imply that the active

run-record rr ` of level ` has rr `:Order = 22
`�1

, unless ` = maxlevel and

current = m. By de�nition of run-records and De�nition 12, the merge

operation a�liated with rr ` is appropriate for level `, unless ` = maxlevel

and current = m. Since level-record lr [`]:active is a pointer to rr `, the

lemma is true. 2

When the allocation level is `, MAMerge carries out computation pro-

ducing blocks belonging to the run associated with the active run-record

rr ` of level ` by merging the runs associated with the run-records in the

list rr `:inputs : Lemma 9 ensures us that this amounts to making optimal

utilization of resources. However, as will be seen later, it is possible for a

run-record rr 0 in the list rr `:inputs to have its
ag �eld set to NotDone ,

meaning that the formation of the run associated with rr 0 is not logically
complete: This is a potential problem since it means that in order to produce

blocks of the run associated with rr `, MAMerge would inherently have to

also carry out the merge linked to each such run-record rr 0 and so producing
blocks of the run associated to rr ` may require MAMerge to have more

memory than originally expected. However the invariants 11a and 11b avert

this potential problem. Invariant 11a implies that there are at most ` � 1

run-records in list rr `:inputs with their
ag �eld set to NotDone and in-

variant 11b implies that the total number of extra run-records necessitated

by these run-records is no more than O(22
`�1

). This number is within a

constant factor of the number 22
`�1

of run-records originally expected to be

involved in the merge producing blocks of the run associated with rr `, thus

averting the potential problem.

It is easy to prove that the above invariants are all true immediately af-

ter the preprocessing computation and initialization of level-records is com-

pleted.

8.6 Low-level Merge Computation

We now describe the procedure llmerge(rr) used by MAMerge to carry

out the merge computation a�liated to run-record rr . Whenever the allo-

8.6 Low-level Merge Computation 33

cation level is ` � maxlevel , and level-record lr [`] is not nil , MAMerge

executes the procedure llmerge(rr `) described below, producing blocks of

the run associated with the active run-record rr ` of level `. Lemma 9 ensures

us that rr ` is a�liated to a merge operation appropriate for level ` and so

level ` allocation phases are optimal, unless possibly when ` = maxlevel and

lr [`]:current = lr [`]:rr :Order .

Whenever the allocation level ` is greater than maxlevel or when ` =

maxlevel and lr [`]:current = 22
`�1

, MAMerge executes the procedure

llmerge(rr global): By invariants 4 and 8, such a phase can be nonopti-

mal even if �(mB) elements are appended to the physical sequence of the

run associated with rr global during that phase. However, we argue in Sec-

tion 9 that the total amount of resource consumption over all executions of

llmerge(rr global) is O(n
00 lgmmax), where n00 is the sum of the number of

disk blocks of all the � runs merged by MAMerge.

8.6.1 Invariants for llmerge()

In our description of the procedure llmerge(), we use rr to denote the

run-record passed as an argument to llmerge(). We ensure that the follow-

ing invariants are always satis�ed wheneverMAMerge executes procedure

llmerge(rr) and the allocation level is `:

1. rr :
ag = NotDone.

2. If ` � maxlevel , then

(a) rr = rr `, the active run-record of level `.

(b) During the level ` allocation phase at the instant when

MAMerge makes the call to execute procedure llmerge(rr),

the following condition is satis�ed: Either the number left of

I/O operations in the ongoing allocation phase is such that

left � �llm � 22
`�1

, where �llm is a positive constant de�ned be-

low, or, the immediately following allocation phase10 of size next

is at level level(next) = `.

(c) The level-records lr [1] through lr [`] are already in memory at the

time the call to execute llmerge(rr) is made.

3. If ` > maxlevel , then

(a) rr = rr global .

(b) During the level ` allocation phase, at the instant when

MAMerge makes the call to execute procedure llmerge(rr),

the following condition is satis�ed: Either the number left of

I/O operations in the ongoing allocation phase is such that

left � �llm � 22
maxlevel

, where �llm is a positive constant de�ned

below, or the immediately following allocation phase of size next

is at allocation level level(next) > maxlevel .

10
As mentioned before, it is possible to modify our strategy to make do without the

information corresponding to next with no loss of e�ciency, asymptotically.

34 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

(c) The level-records lr [1] through lr [maxlevel] are already in mem-

ory at the time the call to execute llmerge(rr) is made.

4. When the execution of llmerge(rr) is completed, the
ag �eld of

run-record rr is set to Done if and only if the formation of the run

associated with rr is logically complete, as in De�nition 6.

The following de�nition is used during our discussion on llmerge().

De�nition 22 We de�ne k to be the quantity minf`;maxlevel + 1g and m

to be the quantity 22
k�1

.

The execution of procedure llmerge(rr), producing blocks of the run as-

sociated to run-record rr , is split into two parts, called the merging part and

the state-saving part respectively. During the merging part, llmerge(rr)

performs I/O related to the merging process whereas, during the state-saving

part, llmerge(rr) performs I/O in which relevant data structures, updated

so as to maintain invariants (of Section 8.5), and partially full bu�ers of runs

are committed to disk before the allocation level changes. Invariants 2b and

3b above ensure that llmerge(rr) is executed only when the ongoing al-

location level is guaranteed to last for a number of I/Os large enough to

accomodate both the merging part and the state-saving part, as the invari-

ants 2b and 3b above indicates.

During the merging part, llmerge(rr) loads into memory the run-records

in the list rr :inputs and then starts merging the physical sequences of the

runs associated with these run-records, appending the merge output to the

physical sequence of the run associated with rr . If the physical sequence

of any run associated with a run-record rr 0 of rr :inputs becomes empty

during the merge and rr 0:
ag = NotDone, llmerge(rr) now has to include

the physical sequences of the runs associated with run-records in the list

rr 0:inputs in the merge operation. In order to do this, llmerge(rr) �rst has

to loads run-records of the list rr 0:inputs into memory. Similar steps result

if some other run-record has a
ag �eld value of NotDone when the physical

sequence of the associated run becomes empty. The algorithm executed

during the merging part of llmerge(rr) is therefore as follows:

1. The set T is initialized to contain all run-records in rr :inputs .

2. Ensure that each run-record of T is allocated one internal memory

block to bu�er the leading block of the physical sequence of the run it

is associated to.

3. While the physical sequence of the run associated with every run-

record in set T is non-empty, merge the physical sequences correspond-

ing to run-records of T into the physical sequence of the run associated

with rr .

4. If the physical sequence of the run associated to run-record rr 0 2 T

becomes empty, then T = T � frr 0g. If rr 0:
ag = NotDone, then add

all run-records of list rr 0:inputs to T . Go to Step 2.

8.6 Low-level Merge Computation 35

De�nition 23 Any run-record that becomes an element of set T at some

point during the merging part is said to have been touched by llmerge(rr).

Let y(k) and z(k) respectively denote the minimum and maximum number

of run-records touched during the merging part of llmerge(rr).

The number of I/Os required to load data blocks and data structures

necessary to begin the merging part of llmerge(rr) is proportional to the

number of run-records it touches. So we �rst obtain a handle on this quantity

by means of the following two lemmas.

Lemma 10 The maximum number z(k) of run-records touched during the

execution of llmerge(rr) is no more than O(22
k�1

).

Proof : We �rst consider the case when k = ` � maxlevel and rr = rr `. In

this case, by invariants 8 and 10 of Section 8.5, we know that the number of

run-records in list rr :inputs is 22
k�1

and all these are touched. Now we will

consider run-records other than those in list rr :inputs that get touched. For

a given touched run-record to cause more run-records to be touched, that

run-record necessarily must have a
ag �eld value of NotDone.

We say that a run-record rr 0 belongs to level `0 if rr 0 is either in the

inputs list of the run-record lr [`0]:rr or in the inputs list of some run-record

in the inputs list of the run-record lr [`0]:rr .
As a result of invariant 11 of Section 8.5 and the fact that any run-record

not included in list rr :inputs is touched only if it lies in a depleted run-

record's inputs list, each run-record touched by llmerge(rr) must belong

to a level `0 < k = `. By invariants 10 and 9 of Section 8.5, the maximum

number of run-records belonging to to level `0 is 22
`0

. Hence the maximum

number z(k) of run-records touched by llmerge(rr) when k = ` is

22
k�1

+
k�1X
`0=1

22
`0

= O(22
k�1

)

In the case when k = maxlevel + 1 and rr is rr global , every touched run-

record belongs to a level `0 < k so the maximum number z(k) of touched

run-records is no more than

k�1X
`0=1

22
`0

= O(22
k�1

)

Hence the lemma is proved. 2

The following lemma can be easily proved.

Lemma 11 If the run-record rr is not the run-record rr global , then we have

y(k) � 22
k�1

, where y(k) is the smallest possible number of run-records that

llmerge(rr) touches.

If the runs being merged during llmerge(rr) are long enough, the merg-

ing part of llmerge(rr) can proceed for an inde�nitely long time, unless we

preempt llmerge(rr). The need to preempt stems from the fact that if the

allocation level changes to `0 � maxlevel , MAMerge would then execute

36 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

llmerge(rr `0), where rr `0 is the active run-record of level `0. In order to be

able to resume a merge operation at some later stage, during the state-saving

part of llmerge(rr) we commit partially empty bu�er blocks of physical se-

quences being merged, updated touched run-records and pertinent updated

level-records back to disk: Transferring these to disk obviously requires I/O

operations so llmerge(rr) reserves a certain number of I/O operations from

its total number, �llm �22
k�1

, of I/O operations, speci�cally for this purpose.

We now describe the state-saving part of llmerge(rr) and determine how

many I/O operations it requires.

During its state-saving part, llmerge(rr) executes the following steps:

1. The
ag �eld of any run-record rr 0 such that rr 0 is either rr or a

touched run-record, is set to Done if it was previously NotDone and

the formation of the run associated with rr 0 is logically complete, as in
De�nition 6. (By virtue of invariant 4 of Section 8.6.1, it is enough to

set rr 0:
ag = Done whenever, after recursively determining the values

of the
ag �elds of all the run-records in list rr 0:inputs , it is found that
they all have their
ag �elds set to Done.11)

2. If a touched run-record whose
ag �eld changes value from NotDone

to Done is the run-record whose location is stored in lr [`0]:rr or

lr [`0]:active, for some `0 such that 1 � `0 � minf`;maxlevelg, we need
to accordingly update the level-record lr [`0] in order to ensure that the
invariants of Section 8.5 remain true: It is not hard to see that these

invariants can be maintained easily for all relevant `0s.

3. Write out to disk the internal memory blocks that bu�er the physical

sequences being merged. Write out all touched run-records and the

run-record rr back to disk. Write out the level-records lr [1] through

lr [minf`;maxlevelg] back to disk.

The state-saving part basically ensures that the following lemma is true.

Lemma 12 The invariants of Section 8.5 and the invariant 4 of Sec-

tion 8.6.1 remains true after the execution of llmerge(rr) is completed.

By Lemma 10, since llmerge(rr) has at most one internal memory block

corresponding to each touched run-record, we have the following lemma.

Lemma 13 There exists a constant �save such that the total number of I/O

operations required to implement llmerge(rr)'s state-saving part, in which

touched run-records, pertinent level-records and partially �lled blocks of phys-

ical sequences are written to disk, is no more than �save � 22
k�1

.

In order to complete the description of llmerge(rr), we need to de�ne

the constant �llm used in invariants 2b and 3b. As mentioned above �llm �
22

k�1

should take into account the �save � 22
k�1

required to complete the

state-saving part of llmerge(rr). Additionally, �llm should also be large

enough for a useful amount of \work" to get done during the merging part

of llmerge(rr). Below we quantify the notion of useful amount of work.

11
Dummy run-records introduced in the preprocessing stage are all to be treated as

run-records with their
ag �elds set to Done.

8.6 Low-level Merge Computation 37

De�nition 24 Consider the physical sequence q(r; t) of the run r associated

with run-record rr at time t just before the execution of llmerge(rr) begins.

We call a particular execution of llmerge(rr) a good call if at least 22
k�1 �B

items are appended to the physical sequence q(r; t) during that execution of

llmerge(rr). Any execution of llmerge(rr) that is not a good call is a bad

call.

We consider the work involved in appending 22
k�1 �B items to the physical

sequence of the run associated with llmerge(rr) a useful amount of work

during the merging part of llmerge(rr). The following lemma bounds the

total number of I/O operations incurred in carrying out this useful amount

of work.

Lemma 14 Let qmax be the total number of items that need to be appended

to the physical sequence of the run r associated with run-record rr for the

formation of r to be logically complete. Then the total number of I/O oper-

ations incurred by the the merging part of llmerge(rr) to carry out enough

merging computation to append minf22k�1 � B; qmaxg items to the physical

sequence of run r is no more than �load �22
k�1

, where �load is a small positive

constant.

Sketch of Proof : Suppose that the merging technique used during the merg-

ing part is the \standard" external memory jT j-way merge technique, where
T is the set de�ned in the description of the merging part. The lemma then

follows from the fact that there are at most O(22
k�1

) touched run-records

during llmerge(rr) and after incurring O(1) I/O operations corresponding

to each touched run-record as \start-up overhead", the merging process re-

sults in 1 block of items being appended to the physical sequence of run r

every O(1) I/O operations. 2

The execution of llmerge(rr) requires one internal memory block to

bu�er the physical sequence corresponding to each touched run-record and

O(1=B) internal memory blocks to store each touched run-record or each

level-record loaded by llmerge(rr). Thus by Lemma 14, we have the fol-

lowing lemma.

Lemma 15 The total number of internal memory blocks required by

llmerge(rr) is no more than �load
2
� 22k�1

.

We now de�ne the constant �llm used in invariants 2b and 3b.

De�nition 25 We de�ne the constant �llm to be �load + �save , where �load
and �save are respectively de�ned in Lemma 13 and Lemma 14. We de�ne

the constant �0
llm

to be �llm+� such that for 1 � ` � `max , the total number

of I/O operations required to load the level-records lr [1] through lr [`] is no

more than � � 22`�1

and � is as small as possible.

The de�nition of �0
llm

is for minor technical reasons. Suppose that the

invariants mentioned earlier are satis�ed at the time MAMerge makes

the call to execute llmerge(rr) at allocation level `. Then the complete

description of llmerge(rr), based on the merging and state-saving parts,

described above is as follows.

38 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

1. Execute the merging part until a time t such that at least one of the

following conditions is violated:

(a) If k = ` < maxlevel + 1, then either the number left of

I/O operations in the ongoing allocation phase is such that

left � �save � 22
`�1

or the immediately following allocation phase

of size next is at level level(next) = `. If k = maxlevel + 1, then

either the number left of I/O operations in the ongoing allocation

phase is such that left � �save � 22
k�1

or the immediately following

allocation phase of size next is at level level(next) > maxlevel .

(b) The formation of the run associated with run-record rr is not

logically complete at time t.

2. Execute the state-saving part described above.

The merging part can actually extend for many I/O operations more

than O(22
k�1

), so long as the conditions in step 1a and 1b above are satis�ed.

Thus the number of blocks appended to the physical sequence of the run

associated with rr can also exceed O(22
k�1

). The only situation that causes

the execution of llmerge(rr) to be a bad call is when the condition in step 1b

is violated during the execution of llmerge(rr): Due to invariants 2b and 3b

of Section 8.6.1 and the de�nition of �llm , the execution of llmerge(rr) can

never end up being a bad call on account of violation condition 1a during

the execution of llmerge(rr). We have the following lemmas regarding good

and bad llmerge(rr) calls relating the number of I/O operations incurred

by llmerge(rr) and the number of blocks appended to the physical sequence

of the run associated with run-record rr .

Lemma 16 Suppose that the execution of llmerge(rr) is a good call in

which g items are appended to the physical sequence of the run associated

with rr . Then the total number of I/O operations incurred by the execution

of llmerge(rr) is O(g=B).

Sketch of Proof : After the merging process has loaded into memory the

leading B items of the runs being merged, roughly speaking, each time a

block is brought into memory there is a corresponding block being written

to the output run. The total number of touched run-records is O(22
k�1

).

The total number of I/O operations required to append 22
k�1 � B items

to the concerned physical sequence is O(22
k�1

), by Lemma 14. Since the

llmerge(rr) in question is a good call, we have g � 22
k�1 � B. Hence the

lemma follows. 2

The following lemma follows directly from Lemma 14.

Lemma 17 Suppose that the execution of llmerge(rr) is a bad call. Then

the total number of I/O operations incurred by the execution of llmerge(rr)

is O(22
k�1

)

In order to test that the condition of step 1b above remains true, at any

time during its execution, llmerge(rr) needs to maintain the invariant that

8.7 Downloading Work for Adaptivity 39

the
ag �eld of rr is Done if and only if the formation of the run associated

with rr is logically complete: By virtue of Step 1 of the state-saving part and

the fact that all touched run-records reside in internal memory at the time

the formation of the run associated with rr does become logically complete,

this invariant can be achieved easily by llmerge(rr).

8.7 Downloading Work for Adaptivity

If lr [`] is not nil , whenever the allocation level is `, MAMerge executes

the merging operation a�liated with rr `. If MAMerge's allocation level

remains ` or smaller for extended periods of time, MAMerge runs out of

all the
(22
`�1

)-way merging work associated with lr [`] and level-record lr [`]

becomes nil . When the level-record lr [`] becomes nil , we need to associate

level ` with \fresh" appropriate merging work. We refer to the process of

establishing such an association a \downloading" process since it requires

\stealing" some of the merging work associated with a higher allocation level

`0 > `. Once the new association of level ` with such a merge operation is

made, the run-record rr ` is once more a�liated to a merge operation which

is appropriate for level `, and which can be executed when the allocation

level next becomes `.

8.7.1 Loading Work Down One Level

We now consider what exactly constitutes downloading work from level `+1

to level `, assuming lr [`] is nil but lr [`+ 1] is not. If m = 22
`
, downloading

work from level `+1 to level ` involves reorganizing the m-way merge a�li-

ated with the active run-record rr `+1 of level `+1 into a
p
m-way merge ofp

m-way runs each the output of a
p
m-way merge. We use the procedure

construct() in order to bring about such a reorganization.

Assuming that level-record lr [`+1] is not nil and level-record lr [`] is nil ,

we use the procedure loadlevel(`), described below, to download the active

run-record rr `+1 from lr [` + 1] to lr [`], appropriately updating lr [` + 1] in

the process.

1. Let rrnew be a new run-record.

2. If ` + 1 = maxlevel and lr [` + 1]:current = lr [` + 1]:rr :Order < 22
`
,

then

(a) Set rrnew to be the run-record lr [`+ 1]:rr .

3. Else

(a) Let m = 22
`
and let Lpm be the blocked list containing

p
m run-

records, implicitly represented by the �eld rr `+1:splitters of the

active run-record rr `+1 of level `+ 1.

(b) Discard the run-record rr `+1, execute construct(rrnew ; Lpm) to
appropriately initialize run-record rrnew and let rrnew now take

the place of the old run-record rr `+1 on disk.

40 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

4. Set lr [`]:rr to store the disk location of run-record rrnew , set

lr [`]:current = 0 and set lr [`]:active = rrnew :inputs so it points to

the �rst run-record of the list represented by rrnew :inputs .

5. If lr [`+ 1]:current � lr [`+ 1]:rr :Order � 1 then

(a) If `+ 1 = `max and lr [`+ 1]:current = Wtop � 1, then

i. Set lr [`+ 1]:current to the value lr [`+ 1]:rr :Order .

ii. Set lr [`+ 1]:active to store the location of run-record lr [`+

1]:rr .

(b) Otherwise, increment the value of lr [` + 1]:current by 1. Then,

if lr [` + 1]:current < lr [` + 1]:rr :Order � 1, set lr [` + 1]:active

to store the location of the lr [`+ 1]:current -th run-record of list

lr [`+1]:rr :inputs ; else set lr [`+1]:active to store the location of

run-record lr [`+ 1]:rr .

6. Else (that is, lr [`+ 1]:current = lr [`+ 1]:rr :Order)

(a) Set lr [`+ 1] to nil .

(b) If maxlevel = ` + 1, set maxlevel to ` and set rr global to be the

run-record pointed by lr [maxlevel]:rr .

The following lemma follows from Lemma 9, Lemma 6 and the observa-

tion that the list involved in the construct() operation of Step 3b containsp
m run-records.

Lemma 18 Suppose that m = 22
`
, lr [`] = nil and lr [` + 1] 6= nil , where

1 � ` < maxlevel , at some time during our algorithm. Then the execution

of procedure loadlevel(`) described above takes no more than O(
p
m) I/O

operations and can be implemented using O(1) blocks of internal memory.

The signi�cance of the upper bound on internal memory above is that

procedure loadlevel(`) can be executed over O(
p
m=B+1) I/O operations

possibly spanning several arbitrary allocation phases, since the constant

�model will be set to a value larger than the number of blocks required in

loadlevel(`) for any `.

In MAMerge, the only time new run-records are created is during

loadlevel() operations. Using Lemma 7 and the fact that the list Lpm
passed as argument to construct() during loadlevel() contains

p
m run-

records, we have the following lemma.

Lemma 19 Suppose that m = 22
`
, lr [`] = nil and lr [` + 1] 6= nil , where

1 � ` < maxlevel , at some time during our algorithm. Then the total number

of new run-records created during loadlevel(`) is no more than O(
p
m).

We also make the crucial observation that loadlevel(`) maintains the

invariants proposed in Section 8.5.

Lemma 20 The invariants of Section 8.5 remain true after the execution

of loadlevel(`).

8.7 Downloading Work for Adaptivity 41

Proof : Since lr [`] = nil and since lr [` + 1] satis�es invariant 11a prior to

loadlevel(`), the list S`+1 de�ned in invariant 11 contains at most ` � 1

run-records with
ag �elds set to NotDone.

First we will prove that lr [`] satis�es all the invariants after the execution

of loadlevel(`). Consider the active run-record rr `+1 of level ` + 1 just

before loadlevel(`) is executed. In the case when ` + 1 = maxlevel and

lr [` + 1]:current = lr [` + 1]:rr :Order < 22
`
, rr `+1 happens to be the run-

record pointed by lr [`+1]:rr . Invariant 8 implies that rr `+1:Order = 22
x
for

an integer x such that x � `�1. Thus, the assignment making lr [`]:rr store
the location of the run-record rr `+1, the other assignments in Step 4, and

the fact that maxlevel decreases to `, ensure that lr [`] satis�es the invariants

after the execution of loadlevel(`). When any one of the conditions `+1 =

maxlevel and lr [`+1]:current = lr [`+1]:rr :Order < 22
`
are not satis�ed, the

run-record rr `+1 necessarily has rr `+1:Order = 22
`
. In Step 3b, we replace

this run-record on disk with an appropriately constructed new run-record

rrnew with rrnew :Order = 22
`�1

. Thus, the assignment making lr [`]:rr store

the location of this newly constructed run-record and the other assignments

in Step 4 ensure that lr [`] satis�es the invariants after the execution of

loadlevel(`).

Now we will prove that lr [`+1] satis�es the invariants after the execution

of loadlevel(`). If lr [`+1]:current was lr [`+1]:Order prior to loadlevel(`),

then lr [` + 1] becomes nil trivially satisfying all invariants. Step 5 ensures

that invariants 6 and 7 remain true even after loadlevel(`). In the case when

lr [`+ 1] is not nil after the execution of loadlevel(), we now consider the

parts of invariant 11. After the execution of loadlevel(`), the set of run-

records in list S`+1 has at most one run-record with
ag set to NotDone

more than just before loadlevel(`). But since the maximum number of

run-records in S`+1 prior to loadlevel(`) is ` � 1, invariant 11a remains

true even after loadlevel(`). The invariant 11b remains true of S`+1 even

after loadlevel(`) because the only change among level-records of levels

lower than ` + 1 is that lr [`]:rr now stores the location of the run-record

rrnew which lies in the list lr [`+1]:inputs . The invariant 11c remains true of

ordered list S`+1 after loadlevel(`) since the last element of S`+1 is the run-

record pointed by lr [`]:rr , which is at the highest level lower than level `+1.

In case maxlevel decreases during loadlevel(), the run associated to

the run-record pointed by lr [maxlevel]:rr is logically the same as the one

associated with the run-record pointed by the lr [maxlevel]:rr with the old

value of maxlevel , so invariant 4 remains true.

It can be easily veri�ed that the other invariants remain true after the

execution of loadlevel(`) as well. Thus the lemma is proved. 2

8.7.2 Loading Work Down Several Levels

Consider the problem of downloading work to level k when several levels

k; k+1; � � � ; ` have level-records set to nil and only the level-record lr [`+1]

of level `+1 is not nil . In such a situation,MAMerge has to download work

to level k from level `+ 1 and it does so using the procedure download(k)

described below.

1. Traverse the (blocked) list of level-records beginning with lr [k+1] until

42 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

a level-record lr [`+ 1] such that lr [`+ 1] 6= nil is found.

2. Execute loadlevel(i) for i going from ` down to k.

Thus, during the execution of download(k), MAMerge ends up down-

loading work to the other levels k + 1; � � � ; ` that had their level-records set

to nil as well.

De�nition 26 We say that the execution of download(k) loads levels

k through `, where ` is as de�ned above. The highest level loaded by

download(k) is level `.

Using Lemma 18 and the invariants of Section 8.5, we have the fol-

lowing lemma regarding resource consumption during the execution of

download(k).

Lemma 21 Suppose m = 22
`
where ` is the highest level that is loaded

by download(k). The total number of I/O operations involved in �rst

traversing the list of level-records lr [1] through lr [k] and then executing

download(k) is O(
p
m). The download(k) operation can be implemented

such that it requires no more than O(1) internal memory blocks.

Proof : The total number of I/O operations required to traverse the list lr [1]

through lr [k] of pointers before executing download(k) and then traversing

level-records lr [k] through lr [`+ 1] during the initial part of download(k)

requires no more than O((lg lgm)=B +1) I/O operations. Using Lemma 18

and the invariants of Section 8.5, the `� k + 1 calls to loadlevel() totally

incur

O(
`�kX
i=0

p
m1=2i) = O(

`�kX
i=0

(
p
m)1=2

i

) = O(
p
m)

I/O operations. Thus the total number of I/O operations is O(
p
m). As in

the case of loadlevel() we require only O(1) memory blocks to complete

the operation. 2

In the above lemma we also counted the I/O operations required to load

level-record lr [k] into memory assuming we have to follow the blocked list

of pointers beginning with lr [1] to do so.

The following lemma follows from Lemma 21 and is used later, among

other things, in setting the constant �level to an appropriate value.

Lemma 22 Consider a sequence of d operations such that:

1. In the ith operation, where 0 � i � d�1, we traverse the blocked linked

list of level-records to access lr [`i] and then execute download(`i).

2. Over the entire sequence of d operations, for no level `0, where 1 �
`0 � `max � 1, is loadlevel(`0) executed more than once. Moreover,

let ` be the highest level such that loadlevel(`) is executed during the

sequence of d operations and let m = 22
`
.

Then there exists a small positive constant �dl such that the number of I/O

operations over the entire sequence of d actions is no more than �dl
p
m.

8.8 Putting download() and llmerge() Together 43

Using Lemma 19, we can easily prove the following lemma.

Lemma 23 The total number of new run-records during the sequence of d

download() operations described in Lemma 22 is no more than O(
p
m).

We also make the following simple observation regarding the invariants

of Section 8.5.

Lemma 24 The invariants of Section 8.5 remain true after the execution

of download(k).

Proof : During download(k), run-records and level-records are manipulated

only during calls to loadlevel(). The lemma here follows from Lemma 20

and the fact that any download() execution calls loadlevel(`0) only when
lr [`0] is nil and lr [`0 + 1] 6= nil . 2

8.8 Putting download() and llmerge() Together

We describe how to combine the download() procedure, used to dy-

namically reorganize merging computation, and the llmerge() procedure,

used to merge physical sequences in appropriate merge operations, together

with the run-record and level-record data structures to realize the memory-

adaptive merging routineMAMerge that merges together � runs. By using

MAMerge in our framework of Section 5.2 as described at the beginning

of Section 8, we obtain a memory-adaptive mergesort.

In order to complete the description of our memory-adaptive sorting

algorithm we need to de�ne the constant �level used in our de�nition of

allocation levels, and the constant �model in the context of our memory-

adaptive mergesort.

De�nition 27 The constant �level is de�ned to be �level = (�0
llm

+ �dl)=2.

The constant �model is de�ned to be �model = d2�levele.

If m is of the form 22
`
, where 1 � ` � `max , then the number 2�level

p
m

of I/O operations in a level ` allocation phase of size �level
p
m is large enough

to �rst accomodate �dl
p
m I/O operations (corresponding to the sequence of

download() operations in Lemma 22) \loading" level ` and then permit the

smallest number �llmm of I/O operations involved in a good llmerge(rr)

call, where rr = rr `, the active run-record of level `. The smallest size �model

of an allocation phase is such as to permit a binary merge during a phase

of that size.

Next we de�ne some useful abbreviations used in our description of

MAMerge.

De�nition 28 We use the symbol clevel to mean the current allocation

level level(mem). If ` � maxlevel , we de�ne the predicate enough(`) to

be true whenever the invariant 2b of Section 8.6.1 is satis�ed and false

otherwise. If ` > maxlevel , we de�ne the predicate enough(`) to be true

whenever the invariant 3b of Section 8.6.1 is satis�ed and false otherwise.

44 8 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE SORTING

Algorithm MAMerge

The algorithm MAMerge can be summarized as follows:

1. If the allocation level is ` � maxlevel and there is work associated

with level ` (meaning lr [`] 6= nil), then execute llmerge(rr). If ` >

maxlevel , execute llmerge(rr global).

2. If the allocation level is ` and lr [`] = nil , then download some work to

level ` by executing download(`).

A more precise description is as follows:

1. Execute the preprocessing stage of Section 8.3 and then the initializa-

tion of level-records as indicated in Section 8.4.

2. Until rr global :
ag 6= Done, do:

(a) Let ^̀= minfclevel ;maxlevelg.
(b) Load level-records in a blocked manner beginning with lr [1] until

lr [^̀] into memory. .

(c) If clevel > maxlevel then

i. Execute llmerge(rr global).

ii. When the call llmerge(rr global) returns control, if rr global :
ag =

Done, then MAMerge is completed.

iii. If the call llmerge(rr global) returns control at a time when

the allocation level level(next) of the following phase is

maxlevel or smaller, then reliniquish the remaining portion

of the current phase, whose allocation level must necessarily

be greater than maxlevel . Otherwise proceed immediately to

the following step

iv. GoTo Step 2a.

(d) (Invariant: clevel � maxlevel .)

(e) If (lr [clevel] = nil), then

i. If clevel = maxlevel , then MAMerge is completed; other-

wise execute download(clevel).

ii. When the call download() returns control, the level of al-

location clevel may have changed since the time the call is

made. If enough(clevel) is false for the new value of clevel ,

then relinquish the remaining portion of the allocation phase

ongoing when download() returns. If enough(clevel) is

true, then proceed immediately to the following step.

iii. GoTo Step 2a.

(f) (Invariant: lr [clevel] 6= nil and clevel � maxlevel .)

(g) Else

i. While enough(clevel)ANDlr [clevel] 6= NIL, execute llmerge(rr clevel),

where rr clevel is the active run-record of level clevel .

8.8 Putting download() and llmerge() Together 45

ii. When the last call llmerge(rr clevel) of the while loop returns,

if enough(clevel) is false, then relinquish the remaining por-

tion of the ongoing allocation phase; otherwise proceed im-

mediately to the following step.

iii. GoTo Step 2a.

8.8.1 Relinquished I/O Operations

Since invariant 2b (respectively invariant 3b) has to be met at the time the

call to llmerge(rr `) (respectively llmerge(rr global)) is made, MAMerge

sometimes relinquishes a portion of an allocation phase. We count the relin-

quished I/O operations among I/O operations incurred by MAMerge by

using the following charging scheme.

De�nition 29 WheneverMAMerge relinquishes part of an allocation im-

mediately after executing a download() operation, we charge the relin-

quished I/O operations to that particular download() operation. When-

ever MAMerge relinquishes part of an allocation immediately after exe-

cuting an llmerge() operation, we charge the relinquished I/O operations

to that particular llmerge() operation.

First we account for I/O operations charged to download() operations

by using the notion of `; d-sequences, which are sequences of d consecutive

download() operations, possibly followed by a relinquish operation.

De�nition 30 Consider a sequence of d consecutive download(`i) oper-

ations, where 0 � i � d � 1 and d � 1, that satisfy the conditions men-

tioned in Lemma 22. and let ` be as de�ned in Lemma 22. We call the

above sequence of d download() operations an `; d-sequence if the �rst

time MAMerge either relinquishes I/O operations (in Step 2(e)ii above)

or executes an llmerge() operation after it executes download(`0) is only

immediately after it executes download(`d�1).

We make a crucial observation regarding `; d-sequences.

Lemma 25 Consider any `; d-sequence download(`0); : : : ;download(`d�1)
and let m = 22

`
. If, at any time after download(`0) begins and before

download(`d�1) ends, MAMerge is subjected to an allocation phase of

size mh such that level(mh) � `, then the execution of download(`d�1) is
immediately followed (that is, without relinquishing any I/Os) by the execu-

tion of llmerge(rr), where `h = level(mh) and rr is the active run-record

rr `h of level `h if `h � maxlevel and the run-record rr global otherwise.

Proof : From Lemma 22, we know that the total number of I/O operations

required over the entire `; d-sequence is no more than �dl
p
m. Suppose that

after download(`0) begins execution and before download(`d�1) completes
execution,MAMultiply gets an allocation phase of size mh where mh is as

de�ned above. Then even if all �dl
p
m I/O operations corresponding to the

`; d-sequence occurred during the phase of size mh, that phase is still left

with �llm �
p
mh pending I/O operations that would cause enough(level(mh))

to evaluate to true: This follows from the de�nition of �level above. Fur-

thermore, by de�nition of `; d-sequence, the dth download() operation

46 9 ANALYSIS OF RESOURCE CONSUMPTION

download(`d�1) of the `; d-sequence cannot be immediately followed by an-
other download() operation so llmerge(rr) is the next operation executed

by MAMerge. Thus the lemma is proved. 2

If I/O operations corresponding to a portion of an allocation are relin-

quished byMAMerge after an `; d-sequence, then the level of the allocation

is necessarily smaller than `, by virtue of the above lemms. This also means

that the maximum number of I/O operations relinquished by MAMerge,

that can be charged to an `; d-sequence is no more than O(22
`�1

).

We state now a simple consequence of the above lemma, Lemma 22 and

de�nition 29 to bound the number of I/O operations that can be charged to

an `; d-sequence.

Lemma 26 The number of I/O operations that can be charged to an `; d-

sequence is no more than O(
p
m), where m = 22

`
.

When MAMerge relinquishes I/O operations of a portion of a level `

allocation phase immediately after executing an llmerge() call (Step 2(g)ii

or Step 2(c)iii), the number of I/O operations charged to that llmerge()

call remains within a constant factor of the I/O operations incurred by that

llmerge() call, as per Lemma 16 or Lemma 17.

Lemma 27 The total number of I/O operations charged to an llmerge()

operation, including I/Os relinquished byMAMerge, is given by Lemma 16

if llmerge() is a good call and Lemma 17 if it is a bad call.

9 Analysis of resource consumption

In this section we show that in merging together � runs, totally consisting of

n0 blocks, our MA algorithm consumes only O(n0 lg �+n0 lgmmax) resources

and results in an optimal sorting algorithm.

We already showed that the total number of I/O operations incurred

while preprocessing is no more than O(�) I/O operations, which means a

resource consumption of no more than O(� lgmmax). Next we show that the

resource consumption incurred by the downloading activity, which makes

MAMerge memory-adaptive, is only O(� lgmmax). Then by charging the

I/O operations incurred by a bad llmerge() call to the run-records touched

by that call, we argue that the total number of I/O operations incurred by

bad llmerge() calls throughout the execution of MAMerge is no more

than O(�). Then we argue that the total number of I/O operations incurred

by llmerge(rr global) calls is no more than O(n0). Finally, we employ the

notion of merge potential to show thatMAMergemakes optimal utilization

of available resources during good llmerge() calls. We do so by showing

that the resource consumption of each good llmerge() call is always within

a constant factor of the increase in merge potential it registers. A corollary

of the above fact is that the net resource consumption charged to all good

llmerge() calls cannot exceed O(n0 lg �).

9.1 Resource Consumption of download() calls, bad llmerge() calls and llmerge(rr global) calls47

9.1 Resource Consumption of download() calls, bad

llmerge() calls and llmerge(rr global) calls

By de�nition, allocation phases utilized by MAMerge for the execution of

download() calls, bad llmerge() calls, and llmerge(rr global) calls, can be

nonoptimal phases. Here we show that the net resource consumption over

all such activity duringMAMerge is no more than O(n0 lgmmax), where n
0

is the total number of blocks in the the � runs being merged byMAMerge.

9.1.1 Resource consumption during download() computation

As we noted earlier, download() computation is memory-oblivious: Since it

never requires more than �model blocks it can be carried out during allocation

phase(s) at arbitrary levels. Every `; d-sequence involves a loadlevel(`)

operation. We bound the resource consumption of all the download()

operations that occur in course of the algorithm by bounding the maximum

possible number of loadlevel(`) operations in course of the algorithm, for

1 � ` � `max � 1, and then using Lemma 26.

First we make an observation that bounds the maximum number of times

level ` can be involved in a loadlevel(`� 1) operation at a stretch, without

the occurrence of a loadlevel(`) operation.

Lemma 28 Suppose that 1 � ` < `max . Then, if `+1 < `max , the maximum

number of loadlevel(`) operations the level-record lr [`+1] can be involved in

before it becomes nil is lr [`+1]:rr :Order +1 if `+1 < `max ; if `+1 = `max ,

the maximum number of loadlevel(`) operations the level-record lr [` + 1]

can be involved in before it becomes nil is Wtop + 1.

Since each `; d-sequence necessarily includes a loadlevel(`) operation,

we have the following lemma.

Lemma 29 Consider any level `max � j, where 1 � j � `max � 1. The total
number of `max � j; d-sequences possible in course of MAMerge is no more

than �
d �

22
`max�1

e+ 1

� jY
i=2

(�1=2
i

+ 1)

where � = 22
`max

and the product
Q

above is de�ned to be 1 when j = 1.

Moreover, the above quantity is always O(�=�1=2
j
).

Proof : Firstly, by Lemma 28, the number of times loadlevel(`max � 1) can

be called is d�=22`max�1e+1, by the de�nition of the loadlevel() procedure,

from invariant 6 of Section 8.5 and the fact that the number Wtop of non-

dummy run-records immediately after the preprocessing stage is no more

than d�=22`max�1e.
By invariant 9 of Section 8.5, for all ` such that 1 � ` � `max � 1, we

have lr [`]:Order = 22
`�1

.

We prove the lemma by induction on j. From Lemma 28 and the ob-

servation above, we know that that loadlevel(`max � (J +1)) can be called

at most 22
`max�(J+1)

+ 1 = �1=2
J+1

times each time a loadlevel(`max � J)

operation completes. The fact that the above expression is O(�=�1=2
j
) also

48 9 ANALYSIS OF RESOURCE CONSUMPTION

follows by induction on j. In fact we can show that the above expression is

no more than
1 +

2

�1=2
j

!
2�

�1=2
j

The lemma follows from the observation that each `max �j; d-sequence must
involve a loadlevel(`max � j) operation. 2

Lemma 30 Suppose that allocation level `max � j, where 1 � j � `max � 1,

is charged all the I/O operations that charged to any `max � j; d-sequence.

Then the total number of I/O operations charged to level `max � j, where

1 � j � `max � 1, is no more than O(�=�1=2
j+1

).

Proof : Consider any `max � j; d-sequence, where j � 1. By Lemma 29,

the maximum number of `max � j; d-sequences is no more than O(�=�1=2
j
).

Since Lemma 26 proves that the maximum number of I/O operations that

can be charged to any `max�j; d-sequence is O(22
`max�j�1

) = O(�1=2
j+1

), the

maximum number of I/O operations that can be charged to level `max � j is

O(�=�1=2
j

) � O(�1=2j+1

)

which is O(�=�1=2
j+1

). Hence the lemma is proved. 2

We �nally bound the total number of I/O operations and the total

amount of resource consumption charged to any download() call.

Theorem 6 The total number of I/O operations charged to all download()

calls operation is O(�). The total resource consumption over all these I/O

operations is O(� lgmmax).

Proof : Each download() is, by de�nition, part of an `; d-sequence. So

it is enough to bound the I/O operations charged to `; d-sequences. The

total number of I/O operations to be bounded is the sum of the number of

I/O operations charged to any level, over all levels. Using Lemma 30, this

number is

O(
`max�1X
j=0

�

�1=2
j+1)

which can be simpli�ed as

O(�(1 +
1

2
+
1

4
+

1

16
+

1

256
+ � � �+ 1

�1=4
+

1

�1=2
)):

The above expression is O(�) .

The bound on the total resource consumption is obtained by assuming

that the amount of memory available during all the O(�) I/O operations

counted above is mmax and using the de�nition of resource consumption for

memory-adaptive sorting. 2

9.1 Resource Consumption of download() calls, bad llmerge() calls and llmerge(rr global) calls49

9.1.2 Resource Consumption during bad llmerge() calls

A bad llmerge() call can consume a whole lot of resources while doing very

little \work". Such a situation occurs when an llmerge(rr `) execution is

preempted at a time when very few items remain to be added to the physical

sequence of the run associated with rr `: If the level of allocation becomes `

once more soon after this preemption, just setting up the merge operation

llmerge(rr `) can incur O(22
`�1

) I/O operations belonging to an allocation

phase of size O(22
`
).

We now bound the total resource consumption of all bad llmerge() calls

over the execution of MAMerge by proving that the total number of I/O

operations charged to bad llmerge() calls over the execution ofMAMerge

is O(�). We do so by charging the O(22
`�1

) I/O operations incurred by a

bad llmerge(rr `) call to the run-records it touches, and then observing on

the one hand that no run-record can ever be touched by more than one

bad llmerge() call and on the other that the total number of run-records

created during MAMerge is O(�).

By invariant 4 of Section 8.6.1 and invariants 8 and 9 of Section 8.5, we

have the following lemma.

Lemma 31 If an execution of llmerge(rr global) is a bad call, then the al-

gorithm MAMerge terminates after that call. The total number of I/O

operations that can be charged to that llmerge(rr global) call is O(�).

Due to the above lemma we now consider only bad llmerge(rr `) calls

executed when the allocation level is `. We use the following charging scheme

to count the total number of I/O operations over all such bad llmerge()

calls.

De�nition 31 We charge the total number O(22
`�1

) of I/O operations

charged to a bad llmerge(rr `) call (see Lemma 27 and Lemma 17) to the

(22
`�1

) run-records touched (see Lemma 11) by that llmerge(rr `) call.

We now make a useful observation regarding bad llmerge(rr `) calls.

Lemma 32 When the execution of a bad llmerge(rr `) call completes, we

have rr `:
ag = Done.

Proof : This follows from the de�nition of the constant �llm in De�nition 25,

constant �load in Lemma 14, invariants 2b and 4 of Section 8.6.1, and the

fact that the only reason for llmerge(rr `) to end up being a bad call is that

the formation of the run associated with rr ` is logically complete. 2

Based on Lemma 32, we make the following useful observation.

Lemma 33 Any run-record can be touched by at most one bad llmerge()

call.

Proof : Consider any run-record rr 0 other than run-record rr global . Con-

sider the �rst bad llmerge(rr `) call that touches run-record rr 0 and let

t denote the time at which that llmerge(rr `) call completes its execu-

tion. By Lemma 32, we have rr `:
ag = Done, when the execution of

50 9 ANALYSIS OF RESOURCE CONSUMPTION

llmerge(rr `) completes. Since rr 0 is touched by llmerge(rr `), by de�-

nition of the merging part of llmerge(), there must exist a \path" rr ` =

rr(0); rr (1); rr (2); : : : ; rr (d) = rr 0 such that rr(i) is in list rr (i� 1):inputs .

It can be e proved via induction on the length of the path that no llmerge()

call after time t can touch run-record rr 0. This proves the lemma. 2

From the charging scheme of De�nition 31, it is clear that we can charge

each run-record touched by a bad llmerge() call at most O(1) I/O opera-

tions of that llmerge() call and so, by Lemma 33 above, the total number

of I/O operations incurred by bad llmerge() calls throughout the execu-

tion of MAMerge is bounded by the total number of run-records created

during MAMerge. Below we prove that the total number of run-records

created during MAMerge is O(�).

Lemma 34 The total number of run-records created during MAMerge is

O(�).

Proof : The proof follows by observing that the total number O(
p
m) of run-

records created during an `; d-sequence (Lemma 23) is roughly the same as

the number of I/O operations incurred by the `; d-sequence (Lemma 22),

where m = 22
`
. Hence, using the same techniques as in Lemma 29, Lemma

30 and Theorem 6, we can argue that the total number of run-records created

during MAMerge is no more than O(�). 2

Thus we have proved the following theorem.

Theorem 7 The total number of I/O operations that can be charged to bad

llmerge() calls made during the execution of MAMerge is O(�). The

total resource consumption that can be charged to bad llmerge() calls made

throughout MAMerge is no more than O(� lgmmax).

9.1.3 Resource Consumption of llmerge(rr global) calls

Each llmerge(rr global) call appends blocks of items to the physical sequence

of the run associated with the \global" run-record. By de�nition, when

MAMerge merges � run totally consisting of n0 blocks, the number of

blocks in the run associated with rr global is no more than n0. Blocks are

appended to the physical sequence corresponding to rr global in an e�cient

manner such that the total number of I/Os charged to llmerge(rr global)

calls is no more than O(n0).
We have the following theorem regarding the I/O operations incurred by

llmerge(rr global) calls.

Theorem 8 Suppose that the � runs input to MAMerge totally consist

of n0 blocks. The total number of I/O operations that can be charged to

llmerge(rr global) calls made during the execution of MAMerge is O(n0).
The total resource consumption that can be charged to llmerge(rr global) calls

made during the execution of MAMerge is O(n0 lgmmax).

Proof : By Lemma 31, we know that there can be at most one bad

llmerge(rr global) call during MAMerge and it incurs no more than O(�)

I/O operations. By Lemma 27 and Lemma 16, we know that if a good

9.2 Potential Function Argument 51

llmerge(rr global) call appends g
0 blocks of items to the run associated with

rr global , then that llmerge(rr global) call can be charged at most O(g0) I/O
operations. From invariant 2 of Section 8.5, we know that the total number

of blocks that can get appended to the run associated with rr global is no

more than n0. The theorem follows. 2

9.2 Potential Function Argument

We have shown that the number of I/O operations charged to download()

operations and bad llmerge() calls is O(�) = O(n0) whereas the number
of I/O operations charged to llmerge(rr global) calls is O(n

0). Since the net
number of I/O operations in these activities is small, even if we assume

conservatively that throughout these O(n0) I/O operations the allocation

level was at its maximum value `max , the net resource consumption of these

activities remains O(n0 lgmmax).

On the other hand the number of I/O operations charged to good

llmerge() calls in general may be superlinear in the number of blocks

n0 output by MAMerge. The number of I/O operations charged to good

llmerge() calls in general may be as high as O(n0 lg �), which means we

cannot adopt the counting strategy mentioned in the above paragraph: As-

suming that the allocation level throughout these O(n0 lg �) I/O operations

is `max would lead to an O(n0(lg �)(lgmmax)) bound on resource consump-

tion of good llmerge() calls, which is clearly not acceptable.

In order to demonstrate that the resource consumption of good

llmerge() calls is bounded by O(n0 lgmmax) as well, we use the notion

of merge potential de�ned in Section 6. Informally speaking, when a good

llmerge(rr `) call is charged g0 I/O operations, its resource consumption is

O(g0 � 2`); but the good llmerge(rr `) call also raises the rank of each one of

the
(g0B) items it appends to the physical sequence of the run associated

with rr ` by an additive value of
(2`), so that the potential of the merge

increases by an amount of
(g0 � 2`). Since the maximum value the poten-

tial of the merge assumes is O(n0 lgmmax), it follows that the net resource

consumption is O(n0 lgmmax).

We now formally prove our claims. Each of the run-records of the � runs

input toMAMerge have a unique run assigned to them. It is convenient to

logically assign sets containing \dummy input runs" to dummy run-records

that may possibly be introduced in course of our preprocessing. The assign-

ment of sets containing dummy input runs to dummy run-records is only

performed for the sake of analysis and does not alter the computation in

any way.

De�nition 32 Let U denote the set of � runs being merged byMAMerge.

For the sake of convenience in analysis, we assign a dummy set to each

dummy run-record created during MAMerge's preprocessing stage. Each

dummy set is a a set of one or more dummy input runs. Each dummy input

run is a run distinct from any of the � runs of U and is de�ned to satisfy

the following conditions:

1. Each dummy input run is contained in at most one dummy set.

2. The physical sequence of each dummy input run ej(y) is always empty.

52 9 ANALYSIS OF RESOURCE CONSUMPTION

3. The rank of each dummy input run is 1.

We assign appropriately sized dummy sets to each of the dummy run-

records introduced in Step 2 and Step 4 of the preprocessing stage.

De�nition 33 Consider the D1 dummy run-records d0; d1; : : : ; dD1�1 intro-
duced in Step 2 of the preprocessing stage. Each dummy run-record dj is as-

signed a dummy-set containing a single dummy input run, for 0 � j � D1�1.
Consider the D2 dummy run-records d00; d01; : : : ; d0D2�1 introduced in Step 4

of the preprocessing stage. Each dummy run-record d0j is assigned a dummy
set containing 22

`max�1

dummy input runs, for 0 � j � D2 � 1.

Just as there is a run associated with a non-dummy run-record, we can

now associate runs with dummy run-records.

De�nition 34 The run associated with a dummy run-record assigned a set

s of dummy input runs is de�ned to be the (vacuous) merge of the dummy

input runs of s. The rank of this run is jsj.

A simple lemma that can be proved by induction is the following.

Lemma 35 Consider a run-record rr which is neither the run-record asso-

ciated with an input run nor a dummy run-record. Let rr 0 and rr 00 be any

two run-records in the list rr :inputs. Let r, r0 and r00 respectively be the runs
associated with run-records rr , rr 0 and rr 00 respectively. Then we have

p(r0) = p(r00) =
p(r)

rr :Order

The following lemma follows easily from the de�nition of the potential

assigned to a run-record and the potential of the state of the merge.

Lemma 36 The rank of the run rglobal associated with run-record rr global
does not change with time and is larger than the rank of the run associated

with any other run-record in MAMerge. Moreover, we have p(rglobal) <

2 lg � = O(lgmmax). The potential of the merge when MAMerge completes

execution is no more than 2n0 lg �, where n0 is the total number of blocks

merged by MAMerge.

Now we consider any good llmerge(rr `) operation, where rr ` is the

active run-record of level ` and such that rr ` 6= rr global , executed when the

allocation level is `. The following lemma proves that the total resource

consumption charged to the llmerge(rr `) is within a constant factor of

the increase in the potential of the state of the merge brought about by

llmerge(rr `).

Lemma 37 Suppose that an llmerge() call's resource consumption is de-

�ned to be the resource consumption over all the I/O operations charged that

llmerge() call. Consider a good llmerge(rr `) call in which G0 items are

added to the run associated with the active run-record rr ` of level `, where

rr ` 6= rr global . Then

1. The resource consumption charged to llmerge(rr `) is O(G
02`=B).

9.3 Optimality of Resource Consumption for Sorting 53

2. The increase in the potential of the state of the merge is at least

G02`=2B

Proof : By invariant 2b and the description of the llmerge() procedure

we know that all I/O operations charged to llmerge(rr `) are ones in

which the allocation phase is of size at most O(22
`
). By Lemma 27 and

Lemma 16 we know that the total number of I/O operations charged to the

llmerge(rr `) call is O(G
0=B). Thus the net resource consumption charged

to llmerge(rr `) is O((G
0=B) lg 22`) = O((G02`)=B), by de�nition of resource

consumption.

Consider any item x appended to the physical sequence of the run r`,

associated with rr `, by llmerge(rr `). From the procedure llmerge() and

the de�nition of the potential assigned to an item at any time, we know

that the maximum possible rank x could have had prior to llmerge(rr `) is

p(r0), where r0 is the run associated with a run-record in the list rr :inputs .

By invariant 10, 9 and the de�nition of the active run-record rr ` of level

`, we know that rr `:Order = 22
`�1

. Thus by Lemma 35, the rank of ele-

ment x increases by a factor of at least 22
`�1

during llmerge(rr `). Since

llmerge(rr `) adds G
0 items to the physical sequence of the run associated

with rr `, the net increase in merge potential is at least

G0 � 1

B
� lg(22

`�1

) = G02`=2B:

Thus the lemma is proved. 2

Lemma 37 and Lemma 36 can now be used to prove the following theo-

rem.

Theorem 9 The total resource consumption charged to all good llmerge(rr)

calls during MAMerge in which rr is not the run-record rr global is

O(n0 lg �), where n0 is the total number of blocks of items among the � runs

input to MAMerge.

Proof : By Lemma 37, we have the condition that whenever any of the

good llmerge() calls in question are charged a resource consumption of

R, the increase in the potential of the state of the merge is
(R): Thus at

any time the total amount of resource consumption charged to all all good

llmerge(rr) calls in which rr 6= rr global is within a constant factor of the

potential of the state of the merge. Since, by Lemma 36, the maximum

value for the potential of the state of the merge is 2n0 lg �, the theorem is

proved. 2

9.3 Optimality of Resource Consumption for Sorting

From Lemma 8, Theorem 6, Theorem 7, Theorem 9 and the de�nition of �,

the number of runs input to MAMerge, we have the following theorem.

Theorem 10 Consider our algorithm MAMerge used to merge � runs

each of length at least �model blocks, totally comprising n0 blocks. The total

amount of resource consumption incurred by MAMerge is O(n0 lgmmax).

54 10 SOME NOTES ON THE POTENTIAL FUNCTION

Applying Theorem 10 to Lemma 4 and Corollary 1, we have the following

theorem.

Theorem 11 Consider the memory-adaptive sorting algorithm based on

our mergesort framework of Section 5.2 and using MAMerge as the the

memory-adaptive merging routine, as indicated at the beginning of Section 8.

When used to sort an input �le of n blocks, the resource consumption of our

sorting algorithm is O(n lgn) and the algorithm is dynamically optimal.

10 Some notes on the potential function

Our potential argument implies that in order to attain dynamic optimality

it is necessary for the memory-adaptive mergesort to pump up the merge

potential by at least
(m lgm) during a typical allocation phase of size

m. In this context, consider a memory-adaptive merge M0 that tries to

attain e�cient memory utilization by using the following technique during

allocation phases of size m: AlgorithmM0 carries out �(m) binary merge

operations \in parallel" by dividing the I/Os and the memory blocks of the

allocation phase among the �(m) binary merges. This way M0 makes use
of all the m memory blocks of the allocation. However, in terms of our

potential function, the increase in potential during an allocation phase of

size m using algorithmM0 is only 1=B for each one of �(mB) items (that

is; one block of items for each one of �(m) binary merges), resulting in a net

potential increase of �(m), in contrast to a desired increase of
(m lgm). In

fact, the trivial memory-adaptive merging algorithm that consists of always

executing a single binary merge merge oblivious of the allocation level also

attains the same increase �(m) in merge potential during an allocation phase

of size m even though it uses only O(1) blocks of the m blocks allocated to

it. This indicates that the strategyM0 is as bad as simple binary merging,

notwithstanding the fact that it uses all blocks of the allocation phase.

A much more subtle issue related to our particular potential function is

that it allows for the maximum potential and hence the resource consump-

tion to be up to O(n lg jSj) when the runs of set S totally consist of n blocks.

Now this resource consumption is optimal for memory-adaptive merging in

the case when all input runs are equal in length; however, it is nonoptimal for

memory-adaptive merging when the input runs can be of arbitrary lengths:

To see this point, consider a set S of runs such that one run is n�jSj�1 blocks
long and all other runs are one block long each. Suppose that n > jSj lg jSj.
This set of runs can be merged by �rst merging together the jSj � 1 one-

block runs using O(jSj lg jSj) I/O operations in a binary merging process

and then merging the jSj� 1-block run with the n�jSj� 1-block run to get

the n block output run. The net number of I/O operations is O(n). Since all

merges here were binary, they can all be performed over a sequence of arbi-

trary allocation phases. When the allocation sequence consists of O(1) sized

allocation phases, the net resource consumption of this strategy is O(n).

The O(n lg jSj) resource consumption permitted by our potential function

is rendered nonoptimal in the above example. The question of obtaining a

dynamically optimal general purpose algorithm for merging is an interesting

open question. In case of our mergesort, although the runs being merged by

55

algorithm MAMerge are, in general, unequal in length and so its resource

consumption O(n lgmmax) is nonoptimal with respect to the general prob-

lem of memory-adaptive merging. Yet our MAMerge-based framework is

dynamically optimal for sorting : Even though MAMerge is not dynami-

cally optimal for the general problem of memory-adaptive merging, it does

yield a dynamically optimal sorting algorithm.

Yet another question pertains to the manner in which MAMerge reor-

ganizes merge computation. AlgorithmMAMerge splits anm = 22
`�1

-way

merge into
p
m-way merges when it needs to reorganize the merge to assign

to allocation levels smaller than `. The potential increase registered by

MAMerge during a typical phase of size m is optimal (with respect to

sorting) because this potential increase corresponds to that attained by 2m

I/O operations of a \traditional" mergesort algorithm A0 that repeatedly
merges together the �xed number

p
m runs, which is optimal for a static

memory allocation of m blocks. However, for a static memory of m blocks,

the mergesort algorithm A00 that repeatedly merges together �(m) runs is

more e�cient by a constant factor. One interesting question is whether or

not there exists a memory-adaptive mergesort which registers a potential

increase comparable to that of A00 during a phase of size m.

11 Dynamically Optimal Permuting, FFT, and

Permutation Networks

We now consider dynamically optimal algorithms for problems related to

sorting. We use the memory-adaptive merging and sorting algorithms

as subroutines for developing memory-adaptive permuting and FFT algo-

rithms: The memory-adaptive permutation network follows from the FFT

algorithm since a series of at most three approprialtely designed FFT circuits

can simulate any permutation network [AV88].

11.1 Permuting

A permuting problem can be solved by �rst attaching with each item to be

permuted its destination address and then sorting the items to be permuted

using the address �eld as key. Our sorting algorithm can be used for this

purpose. However, as pointed out in Theorem 2, there are certain circum-

stances under which the sorting lower bound does not hold for the permuting

problem. In the text immediately following Theorem 2 in Section 3.1, we

argued that when the sorting lower bound does not hold for permuting, a

naive internal memory algorithm using O(N) I/Os and O(1) blocks of inter-

nal memory to permute a �le of N items is dynamically optimal. Based on

this observation we can develop a dynamically optimal permuting algorithm.

Theorem 12 There exists a simple dynamically optimal permuting algo-

rithm.

Sketch of Proof : We can run \in parallel", the naive permuting algorithm,

which at any time takes only O(1) memory blocks, and the dynamically opti-

mal sorting algorithm. The sorting algorithm gets to use all but O(1) blocks

56 11 DYNAMICALLY OPTIMAL PERMUTING, FFT, AND PERMUTATION NETWORKS

of memory in each allocation phase and the naive permuting algorithm gets

to use one I/O operation for every O(1) I/O operations the sorting algo-

rithm gets so that the number of I/Os spent in total is within a constant

factor of I/Os spent on permuting. It can be veri�ed that if we terminate the

above algorithm as soon as one of the two algorithms running \in parallel"

completes execution, the resource consumption is within a constant factor

of optimal. Thus our algorithm is dynamically optimal. 2

11.2 Dynamically Optimal FFT and Permutation Networks

We now develop a memory-adaptive version of the FFT algorithm of Vitter

and Shriver [VS94], which is based on a series of shu�e-merge operations.

A shu�e-merge is a merge in which all input runs are equal in length and

the output run consists of a perfect item-wise interleaving of the input runs.

We de�ne a shu�e merge as follows.

De�nition 35 An f -way shu�e merge is a merge of f runs each consisting

of an equal number, say, p blocks of items such that if the sequence of items

of the ith run are denoted by

xi;0; xi;1; xi;2; : : : ; xi;pB�1;

for each i satisfying 0 � i � f � 1, then the output of the merge is

x0;0; x1;0; x2;0; : : : ; xf�1;0; x0;1; x1;1; : : : ; xf�1;1; : : : : : : ; x0;pB�1; x1;pB�1; : : : ; xf�1;pB�1:

The following lemma follows from the de�nition above and Theorem 5.

Lemma 38 An mmax -way shu�e merge such that each run consists of

n0=mmax blocks of items can be performed in a memory-adaptive manner

by algorithm MAMerge with a resource consumption of O(n0 lgmmax).

In our memory-adaptive simulation of the FFT algorithm of Vitter and

Shriver, we chop up theN -input lgN -level FFT digraph into (lgN)= lgM 0
max

\layers", where each layer consists of lgM 0
max

levels and M 0
max

= 22
`max�1

B.

Below we describe how to process each layer. In order to route the out-

puts of one layer to appropriate input destinations of the next layer we

need to perform a series of maxf1; logmmax
(minfM 0

max ; N=M
0
maxg)g mmax -

way shu�e-merge operations each involving n blocks of items [VS94]. By

Lemma 38, we can useMAMerge to implement all the shu�e-merge oper-

ations required to route the outputs of one layer to the inputs of the next.

The net resource consumption of all such mmax -way shu�e-merge opera-

tions, summed over all (lgN)= lgM 0
max layers is

O

�
n(lgmmax)

lgN

lgM 0
max

�
1 + logmmax

�
min

�
M 0

max ;
N

M 0
max

����
; (12)

which can be simpli�ed to O(n lgn) [VS94].

Each layer consists of lgM 0
max levels and a total of N input items. We

can split each layer into N=M 0
max \groups" such that each group itself is

an independent M 0
max

= 22
`max�1

B input FFT graph. While processing

a particular layer, whenever our algorithm has an allocation phase of size

57

y � 22`max�1

for y � 1, we compute the outputs of byc groups during that

phase. In order to function e�ciently during smaller allocation phases,

we make the crucial observation that pebbling through an an FFT graph

with M 0
max

= 22
`max�1

inputs is equivalent to �rst pebbling through 22
`max�2

independent FFT graphs each with 22
`max�2

B input nodes, then execut-

ing a 22
`max�2

-way shu�e-merge totally involving 22
`max�2

blocks, and then

pebbling through 22
`max�2

independent FFT graphs each with 22
`max�2

B

input nodes once more. This decomposition of an m = 22
`max�1

block

FFT digraph into
p
m = 22

`max�2

equally sized, independent FFT digraphs

is analogous to the splitting of an m-way merge into
p
m merges, each

one itself a
p
m-way merge. Each of these steps can be implemented in

a memory-adaptive manner by using modi�cations of the data structures

and online reorganization techniques that we developed for MAMerge so

that the net resource consumption incurred in processing a single group is

O((M 0
max=B) lg(M

0
max=B)) = O((M 0

max=B) lgmmax). As a result each layer

can be processed with a resource consumption of O(n lgmmax).

Thus the net resource consumption of our FFT algorithm isO(n lgn) and

we have a dynamically optimal FFT algorithm. It follows that we also have

a dynamically optimal algorithm for arbitrary permutation networks since

it is well known that any N input permutation network can be simulated

by at most three appropriate N input FFT digraphs placed one after the

other; see [AV88] for references.

12 Extending adaptability to other applications

In this section we present a memory-adaptive version of the bu�er tree data

structure introduced by Arge [Arg94]. The bu�er tree is a general technique

to e�ciently externalize many internal memory data structures. The most

appealing aspect of the bu�er tree is that it isolates the I/O speci�c parts of

data structures so that a speci�c set of I/O e�cient techniques can be applied

to several di�erent internal memory data structures that have a \bu�er

tree wrapper", resulting in I/O optimal (in an amortized sense [Arg94])

algorithms for several applications consisting of batched dynamic problems.

These include improved graph algorithms, ordered binary decision disgrams,

external heaps and string sorting, among other applications. (See [Arg96]

and [Vit98] for details.) More recent applications for the bu�er tree include

\bulk loading" operations on R-trees and B-trees [AHVV98].

In order to present a concise description of our memory-adaptive bu�er

tree, it is convenient to informally di�erentiate between two types of external

memory problems: External memory problems that are memory-oblivious

and external memory problems that are memory-intensive. Memory-

oblivious problems include operations such as scanning a �le, partition-

ing a �le into a constant number of buckets, merging together a constant

number of runs: Assuming that the input size consists of n blocks, all the

above problems can be solved in an optimal, linear number O(n) number of

I/O operations regardless of internal memory size and are una�ected posi-

tively or negatively, by memory
uctuations. The download() operation of

MAMerge is an example of a memory-oblivious operation. On the other

58 12 EXTENDING ADAPTABILITY TO OTHER APPLICATIONS

hand, memory-intensive problems include sorting a �le, merging a set of

!(1) runs together, distributing an unsorted �le into !(1) buckets. In such

applications it is essential to mimic an optimal algorithm designed for the

static, m-block memory version of the problem during allocation phases of

size m; not doing so results in nonoptimal utilization of allocations and ac-

companying overhead. Memory-adaptive algorithms for such applications

are a�ected by memory
uctuations and changes in the allocation level:

When such allocation levels drop they have to do more I/O to do the same

amount of work and when allocation levels rise they can do the same work

with a small number of I/O operations.

We identify the bu�er-emptying operation to be the only memory-

intensive operation involved in implementing bu�er trees and use our dy-

namically optimal sorting technique to render an optimal, memory-adaptive

version of the bu�er emptying operation. Since all other operations involved

in the bu�er tree technique are memory-oblivious, this is enough to guaran-

tee a dynamically optimal bu�er tree (in an amortized sense) by invoking

the same arguments as in [Arg94].

De�nition 36 A bu�er tree of fanout parameterm0 consists of an (a; b)-tree
extended with m0 bu�er blocks per internal node where a = m0=4; b = m0,
as de�ned in [Arg94]. A memory-adaptive bu�er tree is a bu�er tree of

fanout parameter m 0
max

, wherem 0
max

is a polynomial inmmax , with memory-

adaptive performance; that is, the bu�er tree operations have to be per-

formed over an allocation sequence as per our dynamic memory model.

Insert and Delete operations on the bu�er tree may involve the execution

of bu�er emptying computations and splitting and merging nodes in course

of rebalancing operations. We refer the reader to [Arg94] for details on

the bu�er tree. An examination of bu�er tree operations and the techniques

used to implement them reveal that the bu�er emptying operation is the only

memory-intensive bu�er tree operation, all other operations being memory-

oblivious.

12.1 Memory-adaptive bu�er emptying of internal nodes

In the original bu�er tree [Arg94], the bu�er emptying process at internal

node v consists of using �(m0) blocks of memory to empty the contents

associated with node v as follows:

1. Load into internal memory and sort at mostm0B=2 timestamped items
of the bu�er associated with node v.

2. Distribute these sorted items, after cancelling out \annihilating pairs",

into at most O(m0) nodes corresponding to the children of node v using
the �(m0) partitioning elements associated with v.

The above procedure takes O(m0) I/O operations using �(m0) internal mem-
ory blocks. We show how to implement the above bu�er emptying process in

our dynamic memory model using no more than O(m 0
max

lgmmax) resource

consumption in our memory-adaptive bu�er tree.

12.2 Memory-adaptive bu�er emptying of other nodes 59

1. The m 0
max

B=2 or fewer timestamped items of node v are sorting using

our memory-sorting algorithm using no more than O(m 0
max

lgmmax)

resource consumption. This implements Step 1 of the above bu�er

emptying operation.

2. Since the set ofm 0
max

B=2 or fewer items have been sorted, we can carry

out the distribution of these items to the children of v in a memory-

oblivious manner: stream through these records and the sorted list

of partitioning elements of node v: this takes no more than O(m 0
max

)

I/O operations. The net resource consumption over this implemen-

tation of Step 2 of the bu�er emptying process cannot be more than

O(m 0
max

lgmmax).

Hence we have the following lemma.

Lemma 39 The total amount of resource consumption during a bu�er emp-

tying operation on an internal node of our bu�er tree with fanout parameter

m 0
max

is O(m 0
max

lgmmax).

12.2 Memory-adaptive bu�er emptying of other nodes

We use the bu�er emptying process of Section 12.1 even in the case of

tree nodes just above the level of leaf nodes, which are not considered in-

ternal nodes [Arg94]. However, while the bu�er tree guarantees that the

bu�er emptying computation at each internal node never involves more than

O(m 0
max) blocks of records to be emptied, there is no such guarantee while

emptying the bu�er of a tree node just above the level of leaf nodes. So,

as far as nodes just above the level of leaf nodes are concerned, the bu�er

emptying process described above can involve more than m 0
max

B=2 items.

If the bu�er tree is being used to carry out a sequence of N = nB arbitrary

insert/delete operations, the number of items involved in a bu�er emptying

operation at a node just above the tree node could be as high as O(nB).

Fortunately, it can be shown [Arg94] that each item12 can be involved at

most once in a bu�er-emptying computation at any node on the level just

above the leaf level. This means that the number of items involved in bu�er

emptying operations summed over all the nodes on the level just above leaf

nodes is O(nB).

Using the same technique used to implement the bu�er emptying com-

putation for internal nodes we have the following lemma.

Lemma 40 Consider an initially empty bu�er tree with fanout parameter

mmax that evolves over an arbitrary sequence of nB insert/delete operations.

Consider all the bu�er emptying operations that occur at nodes on the level

just above the leaf nodes of the tree. Let the ith such bu�er emptying opera-

tion occur at node vi. Let the total number of blocks of the items associated

with node vi's bu�er be ni. Then

1.
P

i ni � n.

12
Each item here has a unique timestamp. The ith insert/delete operation on the bu�er

tree generates a record with timestamp i.

60 13 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE MATRIX ARITHMETIC

2. The total amount of resource consumption Ri of the bu�er emptying

operation on node vi is no more than O(ni lgni).

3. The total amount
P

iRi of resource consumption over all bu�er emp-

tying operations at nodes at the level just above the leaf nodes over the

entire sequence of nB insert/delete operations is
P

iRi = O(n lgni).

12.2.1 Main result on bu�er tree

Based on Lemma 39 and 40 and the amortization arguments of Theorem 1

of [Arg94], we have the following theorem regarding resource consumption

of our memory-adaptive bu�er tree.

Theorem 13 The total resource consumption over an arbitrary sequence of

nB insert and delete operation on an initially empty memory-adaptive bu�er

tree is O(n lgn); the amortized resource consumption of each operation is

O((1=B) lg n). Our memory-adaptive bu�er tree is dynamically optimal.

Proof : The total number of times each of the N items can be

involved in bu�er empting operations at \full" internal nodes is

O(lgn= lgm 0
max

) [Arg94]. Since each such bu�er emptying process involves

�(m 0
max

B) items and incurs a resource consumption of O(m 0
max

lgm 0
max

) re-

source consumption (by Lemma 39) , the total resource consumption for all

bu�er emptying operations involving \full" internal nodes is

N � lgn

lgm 0
max

� m 0
max lgm

0
max

m 0
maxB

= O(n lg n)

Each rebalance operation13 can incur no more than O(m 0
max lgm

0
max) re-

source consumption (by Lemma 39), and there are no more than O(n=m 0
max)

rebalancing operations over the entire sequence of nB insert/delete opera-

tions [Arg94]. Thus rebalancing cannot cost more than O(n lgmmax) =

O(n lgn) resource consumption. Lemma 40 accounts for the resource con-

sumption during bu�er emptying operations at non-internal nodes just above

the level of leaves. This proves the theorem. 2

13 Dynamically Optimal Memory-adaptive Ma-

trix Arithmetic

In this section we consider the problem of multiplying two N̂�N̂ matrices in

a dynamically optimal manner. It turns out that the techniques developed

here for matrix multiplication also apply to the problem of LU factorization

of an n block matrix, as implied by results in [WGWR93]. We �rst consider

issues related to disk block layout of matrices that arise during the algorithm.

13
In each rebalance operation, either a node is split into two or two nodes are fused into

one; the latter operation may require emptying some \non-full" bu�er containing O(m 0
max)

blocks. See [Arg94] for details.

13.1 Transformation between di�erent blocking orders 61

13.1 Transformation between di�erent blocking orders

Consider the multiplication of two N̂ � N̂ matrices A and B each consisting

of N = N̂2 elements spread over n = N=B14 elements disk blocks. The

product matrix C = AB also consists of N elements. For convenience, we

assume in this section that n is a power of 4: If this condition is not met

each matrix can be padded without changing the asymptotic running time

of our algorithm.

Very often, matrices are stored in row-major order, de�ned below, on

disk. However, in many external memory matrix algorithms it is more con-

venient to store matrices in two-dimensional blocked order, de�ned below,

on disk.

De�nition 37 An N = N̂ � N̂ sized matrix A is said to be stored in row-

major order on disk if its elements are on n blocks bi;j, where 0 � j �p
N=B � 1 and 0 � i �

p
N � 1, such that block bi;j contains elements

A[i; jB] through A[i; jB +B � 1].

An N = N̂ � N̂ sized matrix A is said to be stored in two-dimensional

blocked order on disk if its elements are on n blocks bi;j, where 0 � i; j � j,

such that bi;j contains the
p
B elements A[i0; j

p
B] throughA[i0; j

p
B+
p
B�

1] of row i0, for each i0 such that i
p
B � i0 � i

p
B +

p
B � 1. We assume

that each block bi;j of the two-dimensional blocked order has pointers to the

(at most two) blocks adjacent to it in the row i of blocks and the (at most

two) blocks adjacent to it in the column j of blocks.

We can transform an N̂ � N̂ matrix's storage format from row-major

order to two-dimensional blocked order as follows: If N̂ �
p
B, the matrix

is already in two-dimensional blocked order. Assuming N̂ >
p
B, in a linear

pass over the matrix we add dummy elements if necessary to ensure that

the number of rows and columns in the matrix is a multiple of
p
B. With

some abuse of notation, we use the same symbol N̂ to denote the resulting

number of rows and columns. If r = minf
p
B; N̂=

p
Bg, we can perform the

desired transformation by performing a series of r-way merges. Each of the

r runs are one block long and the (implicit) keys of the merged items are

determined by their position in the row-major order.

During allocation phases of size xr, where bxc � 1, bxcr row-major order
blocks can be trivially transformed into bxcr two-dimensional order blocks:
The resource consumption of the transformation algorithm during any such

allocation phase is O((xr)3=2).

On the other hand, during allocation phases smaller than r, we can

employ the memory-adaptive merging algorithm MAMerge to appropri-

ately implement r-way merges realizing the required transformation. If

m1;m2; : : : ;mt are the sizes of the allocation phases involved in a single such

r-way memory-adaptive merge computation, we know from Theorem 10 that

tX
i=1

mi lgmi � cr lg r

14
In contrast to previous discussions, in this Section we use N to denote the size of the

output, as opposed to the input, which here is of size 2N .

62 13 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE MATRIX ARITHMETIC

where c is a positive constant. It follows that

tX
i=1

(mi lgmi)

�p
mi

lgmi

�
� (cr lg r) max

1�i�t

�p
mi

lgmi

�

which implies that the net resource consumption over the phases

m1;m2; : : : ;mt is no more than O(r
3=2), since max1�i�tf

p
mi= lgmig �

p
r= lg r.

Thus we have the following lemma.

Lemma 41 Any N̂ � N̂ matrix consisting of N = nB = N̂2 elements can

be transformed from row-major order to two-dimensional blocked order and

vice-versa without incurring a resource consumption of more than O(n3=2).

Since we are interested in an O(n3=2) bound on the resource consumption

of our memory-adaptive matrix multiplication algorithm, by Lemma 41, we

can assume without loss of generality that all matrices are stored in two-

dimensional blocked order on disk.

13.2 Memory-adaptive Matrix Multiplication

The in-memory matrix multiplication AB = C, where each of A,B and C

consist n blocks, can be executed using approximately 3n blocks of internal

memory and �(n) I/O operations. Thus we set the parameter mmax of the

dynamic memory model to be mmax = minf3n; phymaxg.
The multiplication of large matrices can be carried out by a series of

multiplications of smaller matrices as explained below. We �rst chop the

matrices A,B and C into submatrices each consisting of an appropriate

number m̂max = �(mmax) of disk blocks. We organize the computation

AB = C to proceed in (n=m̂max)
3=2 steps such that each step is guaranteed

to incur resource consumption of O(m̂
3=2
max), thus obtaining a dynamically

optimal memory-adaptive algorithm.

Suppose that matrix A is partitioned into (n=m̂max) square submatrices

Ai;j, where 0 � i; j �
p
n=m̂max � 1, such that each square submatrix

consists of
p
m̂max �

p
m̂max = m̂max blocks. Suppose that B and C are

similarly partitioned into square submatrices each consisting of m̂max blocks.

Then, we organize out computation of AB = C to proceed as follows:

1. For 0 � i; j �
p
n=m̂max � 1, Ci;j := 0. (Set each submatrix Ci;j of

matrix C to zero.)

2. For 0 � i; j; k �
p
n=m̂max � 1, Ci;j := Ci;j + Ai;kBk;j. (Compute

Ai;kBk;j and add the resulting m̂maxB elements to the corresponding

existing m̂maxB elements of Ci;j.)

The following lemma can be proved easily.

Lemma 42 The computation indicated above in Steps 1 and 2 correctly

outputs the product matrix C = AB.

The computation indicated in Step 1 above can easily be carried out

implicitly. In the remainder of this Section we show how to carry out the

13.3 Mop Records and Level-Records 63

computation Ci;j := Ci;j +Ai;kBk;j indicated in Step 2 above in a memory-

adaptive manner incurring only O(m̂
3=2
max) resource consumption, thus yield-

ing a dynamically optimal matrix multiplication algorithm. In order to

mimic the standard, I/O-optimal matrix multiplication algorithm for static

m-block internal memory, we need to carry out a matrix multiplication op-

eration involving �(m) blocks during an allocation phase of size m: Due to

the nature of the resource consumption, we need to \pebble" �((mB)3=2) in

a \typical" allocation phase of size m, in order to achieve optimality. This

suggests that the matrix multiplication computation should be organized in

such a manner that whenever the allocation phase size m0 is in the range

[m; cm], for a constant c > 1, we should carry out a a multiplication of two

square sub-matrices each containing �(clogcm) disk blocks: This ensures

that the number of DAG nodes pebbled is �((clogcmB)3=2) = �((m0B)3=2).

De�nition 38 In our memory-adaptive matrix multiplication algorithm

an allocation phase of size m is said to be at allocation level level(m),

where level(m) is de�ned (for our matrix multiplication algorithm) to

be dlog4 m
clevel
e, where clevel is an appropriately chosen positive constant.

Thus each allocation phase is at some level ` where 1 � ` � `max and

`max = level(mmax). We de�ne m̂max to be the number 4`max�1.

13.3 Mop Records and Level-Records

We focus now on the problem of implementing the computation of Step 2

in a memory-adaptive manner. In our scheme we have to deal with square

submatrices consisting of 2` � 2` blocks, where 1 � ` � `max . Recall that

we assume that matrices are stored in two-dimensional blocked order on

disk. Thus, given a pointer to any one block of a submatrix, we can easily

access all other blocks of the submatrix in order to to load the disk blocks

submatrix into memory. Without loss of generality, we choose the pointer

p(Â) to a speci�c block of a matrix Â to act as the handle for matrix Â.

De�nition 39 Given a square matrix Â stored in two-dimensional blocked

order on disk, the lt-ptr p(Â) of matrix Â is the pointer to that block of

Â that is the intersection of Â's �rst row of blocks with its �rst column of

blocks.

We are now in a position to describe mop (matrix operation) records,

each of which corresponds to a multiplication of submatrices consisting of

2` � 2` blocks, for some ` such that 1 � ` � `max .

De�nition 40 Consider the mop record mr corresponding to the matrix-

multiplication Ĉ := Ĉ+ÂB̂, where each one of Â; B̂ and Ĉ consist of 2`�2`
blocks. We denote by Âi;j, where 0 � i; j � 1, the four 2`�1�2`�1-block non-
overlapping square submatrices, that Â can be decomposed into. Similarly,

we denote by B̂i;j and Ĉi;j, where 0 � i; j � 1, respectively the square

submatrices resulting from a similar decomposition of B and C respectively.

The mop record mr then consists of the following �elds:

1. ltptrs : This �eld is assigned the triple p(Â); p(B̂); and p(Ĉ) of lt-ptrs

of matrices Â; B̂ and Ĉ respectively.

64 13 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE MATRIX ARITHMETIC

2. lsize: This �eld assigned the number `.

3. split : This �eld is assigned the twelve pointers p(Âi;j); p(B̂i;j); p(Ĉi;j)

where 0 � i; j � 1, which are respectively the lt-ptrs of the twelve

submatrices Âi;j; B̂i;j; and Ĉi;j de�ned above.

The twelve pointers assigned to the �eld split of a mop record are used

to further split the matrix multiplication operation if needed, as follows: If

matrix Â (respectively B̂ and Ĉ) is broken down into four square submatrices

Âi;j (respectively B̂i;j and Ĉi;j) where 0 � i; j � 1, then the product Ĉ :=

Ĉ + ÂB̂ can be computed by computing the eight products, Ĉi;j := Ĉi;j +

Âi;kB̂k;j, where 0 � i; j; k � 1.

De�nition 41 Consider the mop record mr corresponding to the operation

Ĉ := Ĉ + ÂB̂, with Âi;j ; B̂i;j; and Ĉi;j for 0 � i; j � 1 as de�ned above.

Suppose q is an integer such that 0 � q � 7. Then by \ the qth 0 � 1

triple", we refer to the triple (i0; j0; k0) that is the qth triple in a lexicographic
ordering of the eight triples f(i; j; k) : 0 � i; j; k � 1g. And by \the qth

subproduct of mop record mr", we refer to the product Ĉi0;j0 := Ĉi0;j0 +

Âi0;k0B̂k0;j0 , where (i
0; j0; k0) is the qth 0� 1 triple.

We are now in a position to describe level-records for matrix-

multiplication, which perform the same role here that they played in our

memory-adaptive sorting algorithm: That is, given an allocation phase at

level `, we can simply look up lr [`], the level-record corresponding to level `,

to decide what computation to carry out during that phase.

De�nition 42 Consider ` such that 1 � ` � `max . The level-record lr [`]

corresponding to allocation level ` is either set to nil or consists of the

following �elds:

1. mr : This is assigned a mop-record mr such that mr :lsize = `.

2. The integer ctriple such that 0 � ctriple � 7.

All level-records lr [`], where 1 � ` � `max , are stored as as blocked linked

list.

When our algorithm is subjected to a phase at level `, our algorithm looks

up lr [`] and then executes computation corresponding to the lr [`]:ctriple-th

subproduct of mop record lr [`]:mr , incrementing lr [`]:ctriple .

13.4 The loadlevel(), download(), and llmult() Subroutines

We now describe the loadlevel() and download() functions that provide

the same functionality they did during memory-adaptive sorting.

The algorithm maintains a variable called maxlevel such that 1 �
maxlevel � `max is always true. Intuitively, maxlevel is such that any time

our algorithm is subjected to an allocation phase at level maxlevel + 1 or

higher, it completes the entire computation involved in an instance of Step 2

of Section 13.2: If, on any given instance, some computation pertaining to

13.4 The loadlevel(), download(), and llmult() Subroutines 65

that instance has already been completed before receiving the phase at allo-

cation level greater than maxlevel , we simply execute the remaining compu-

tation required to �nish processing that instance, during that phase. Even

if the allocation level is never maxlevel + 1, our algorithm completes the

computation of each instance of Step 2 of Section 13.2 e�ciently. Until the

processing of a given instance of Step 2 of Section 13.2 is not completed, we

have lr [maxlevel] 6= nil . Thus the variable maxlevel is updated appropri-

ately during the functions loadlevel() and download().

The subroutine loadlevel(`)

As mentioned earlier, our goal is to execute a subproduct of lr [`]:mr when

the allocation level is `. When all such subproducts of a given mop record

lr [`]:mr are completed, lr [`] is set to nil . When this happens, we need to

assign computation work to lr [`] appropriately in a dynamic manner in order

to use future phases at level ` e�ectively. The procedure loadlevel(`), where

1 � ` � `max � 1, given below, is executed to assign work from lr [` + 1] to

lr [`] and is executed only when lr [`+ 1] 6= nil :

1. Suppose that lr [` + 1]:mr corresponds to the matrix operation Ĉ :=

Ĉ+ ÂB̂. Let q = lr [`+1]:ctriple and let (i; j; k) be such that Ĉi;j+
Âi;kB̂k;j is the qth subproduct of lr [`+1]:mr . Suppose x is a new mop

record to be appropriately initialized.

2. Set x:ltptrs to the triple p(Âi;k); p(B̂k;j); p(Ĉi;j) of lt-ptrs.

3. Set x:lsize to `.

4. If ` � 1, then compute the four lt-ptrs p(Xi0;j0), where 0 � i0; j0 � 1,

corresponding to the four 2`�1 � 2`�1 block submatrices Xi0;j0 , for

each one of X = Âi;k;X = B̂k;j; and X = Ĉi;j. These pointers can be

computed by traversing appropriately the boundary blocks of X, for

a given value of X. Set x:split to the twelve pointers so obtained.

5. Set lr [`]:mr to x and lr [`]:ctriple = 0.

6. If lr [`+1]:ctriple < 7, increment lr [`+1]:ctriple . Otherwise, set lr [`+1]

to nil and If maxlevel = `+ 1 set maxlevel to `.

The following lemma bounds the total number of I/Os and the total

number of internal memory blocks required to execute loadlevel(`).

Lemma 43 The total number of internal memory blocks required during

the execution of loadlevel(`) is O(1). The total number of I/O operations

incurred during loadlevel(`) is O(2`�1).

Proof : It is easy to see that no more than a constant amount of internal

memory is required during loadlevel(`). As regards the number of I/O

operations, it can be seen that for each one of the three instances of X,

obtaining the lt-ptrs of Xi0;j0 , where 0 � i0; j0 � 1, takes no more than

O(2`�1) I/O operations. No other activity during loadlevel(`) incurs any

I/O. Thus the lemma is proved. 2

66 13 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE MATRIX ARITHMETIC

The subroutine download(`0)

Whenever lr [`0] is nil we may need to assign some new work to lr [`0] from
some level-record at a higher level `+1, where `0 � `, via a series of applica-

tions of loadlevel(`00) for `0 � `00 � `. We present below the steps involved

in download(`0), which is only executed when `0 < maxlevel :

1. Set `00 = `0.

2. While lr [`00] = nil , `00 = `00 + 1.

3. Set ` = `00 � 1.

4. For `00 going from ` down to `0, execute loadlevel(`00).

De�nition 43 The levels `0 through ` are said to have been loaded by the

download(`0) call described above. Level ` is said to be the highest level

to be loaded.

The following lemma bounds the total memory and I/O requirement of

download(`0). The proof follows easily from Lemma 43.

Lemma 44 Suppose ` is as de�ned above; that is, ` is the highest level to

get loaded during download(`0). Then the total number of I/Os incurred

in �rst accessing lr [`0] by following the blocked linked list of level-records

and then executing download(`0) is O(2`�1). The total number of internal

memory blocks required is O(1).

The following lemma is useful while accounting for the resource consumption

during download() operations.

Lemma 45 Consider a sequence of d operations such that:

1. In the ith operation, where 0 � i � d�1, we traverse the blocked linked

list of level-records to access lr [`i] and then execute download(`i).

2. Over the entire sequence of d operations, for no level `0, where 1 �
`0 � `max � 1, is loadlevel(`0) executed more than once. Moreover,

let ` denoted the highest level `0 for which loadlevel(`0) was executed
over the sequence of d operations.

Then there exists a small positive constant cdl such that the number of I/O

operations over the entire sequence of d operations is no more than cdl �2`�1.

llmult()

We now describe the simple matrix multiplication routine llmult(`) exe-

cuted when the allocation level is ` and lr [`] is not nil . Basically this routine

simply reads in the blocks of the submatrices involved in the qth subprod-

uct of lr [`]:mr , where q = lr [`]:ctriple , carries out the multiplication and

addition, and then writes the blocks back to disk.

1. Suppose lr [`]:ltptrs contains the lt-ptrs of submatrices Â; B̂; and Ĉ

respectively, each consisting of 2` � 2` blocks. Suppose lr [`]:ctriple is

q and that (i; j; k) is the qth 0� 1 triple.

13.5 Algorithm MAMultiply 67

2. Use the lt-ptrs p(Âi;k); p(B̂j;k) and p(Ĉi;j) stored in the �eld

lr [`]:mr :split to respectively read in blocks of the three 2`�1 � 2`�1-
block submatrices Âi;k; B̂j;k; and Ĉi;j.

3. Perform the internal memory computation Ĉi;j := Ĉi;j + Âi;kB̂k;j.

4. Write the disk blocks of Ĉi;j back to disk. 15

5. If lr [`]:ctriple < 7, it is incremented. Otherwise lr [`] is set to nil .

Level-record lr [`] is written to disk.

We will now bound the toal number of I/Os and the total memory re-

quirement of llmult(`).

Lemma 46 The number of I/O operations incurred in accessing lr [`] using

the blocked linked list of level-records is no more than `=B+1. The number of

I/O operations incurred during llmult(`) is no more than 4�4`�1. The total
number of internal memory blocks required is no more than 4� 4`�1. There
exists a small constant c0

llm
such that the total number of I/O operations

incurred in �rst accessing lr [`] and then executing llmult(`) is bounded by

c0
llm
� 4`�1 and the total number of memory blocks required is bounded by

c0
llm
� 4`�1=2.

Proof : The proof is trivial since the number of level-records in the accessed

portion of the blocked list of level-records is ` and the number of blocks of

Âi;k; B̂k;j; and Ĉi;j each is 4`�1; blocks of Âi;k and B̂k;j are only read in

whereas blocks of Ĉi;j are input and then output after computation. 2

We present a useful lemma that will come in handy while accounting for

resource consumption.

Lemma 47 Suppose c0
llm

is as de�ned in Lemma 46. Then there exists a

small positive constant cllm such that
P`

`0=1 c
0
llm
� 4`0�1 � cllm � 4`�1.

13.5 Algorithm MAMultiply

The procedure download() described above is memory oblivious in the

sense it can function with some constant number c of internal memory blocks

and since we ensure that the smallest allocation phase has size c, it can

execute in any allocation phase. The procedure llmult(`) on the other

hand requires O(4`�1) internal memory blocks over a sequence of O(4`�1)
I/O operations, so it is executed when the allocation level is `. Now we

show how to sew these two procedures together to obtain a memory-adaptive

matrix multiplication algorithm.

Consider some point of time at which the allocation level is ` and we

could start execution on llmult(`): It is appropriate to actually go through

with the call to llmult(`) only when either the current allocation phase, say

of size m, has O(4`�1) I/O operations remaining in it or if we know that

15
In practice the level ` matrix multiplication operations can be ordered such that the

next level ` operation is Ĉi;j + Âi;k+1B̂k+1;j so that disk blocks of Ĉi;j would not be

written back to disk if if the allocation level remains ` long enough for this next operation

to immediately follow the just completed operation.

68 13 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE MATRIX ARITHMETIC

the next allocation phase is also a level ` allocation phase. We de�ne the

following predicate enough(m) to guide this decision of the memory-adaptive

algorithm

De�nition 44 During an ongoing allocation phase of size m such that

level(m) = `, the boolean predicate enough(m) is true if and only if

left � cllm � 4`�1 or level(next) = `.

Now we de�ne the constant clevel appropriately, which is instrumental in the

classi�castion of allocation phase sizes into di�erent allocation levels.

De�nition 45 We de�ne the constant clevel to be the smallest constant

such that 2clevel � cllm + cdl .

We now present the memory-adaptive matrix multiplication that carries

out the computation Ĉ+ Â � B̂, where each of Â; B̂; and Ĉ consist ofp
m̂max �

p
m̂max blocks, thus yielding a memory-adaptive implementation

of Step 2. We use clevel to mean level(mem) in the following description.

1. Initialize all �elds of a new mop record x corresponding to the matrix-

multiplication operation Ĉ+ Â � B̂. Then set lr [`max]:mr to x and

lr [`max]:ctriple to 0. Set maxlevel to `max .

2. While (lr [maxlevel] 6= nil) execute the following:

(a) Walk through level-records until lr [minfclevel ;maxlevelg] is in

memory.

(b) If (clevel > maxlevel), complete the operation loading in appro-

priate blocks into internal memory, performing required opera-

tions and then writing them out to disk. Set lr [`] to nil for all

`.

(c) Otherwise; that is, if (clevel � maxlevel), then

(d) If (lr [clevel] = nil), then

i. Execute download(clevel).

ii. (Here, mem may have changed from its value at the begin-

ning of Step 2(d)i.) If enough(mem) is false then relinquish

what's left of the ongoing allocation phase.

iii. GoTo Step 2a.

(e) Otherwise; that is, if (lr [clevel] 6= nil), then

i. While (enough(mem)ANDlr [clevel] 6= nil , execute llmult(clevel).

ii. If enough(mem) is false then relinquish what's left of the

ongoing allocation phase.

iii. GoTo Step 2a.

For analysis, it is convenient to de�ne the call llmult(maxlevel + 1),

although llmult(`) is only de�ne for the case ` � maxlevel .

De�nition 46 We de�ne the computation involved in the execution of

Step 2b above to be the computation corresponding to llmult(maxlevel+1).

Thus, llmult(maxlevel + 1) is said to be executed when (and if) Step 2b

above is executed.

Abusing notation, we call this procedure llmult(maxlevel + 1).

13.6 Resource Consumption Analysis of MAMultiply 69

13.6 Resource Consumption Analysis of MAMultiply

We will now prove that the algorithm MAMultiply computes the matrix

multiplication operation Ĉ+ ÂB̂, where each of the three submatrices

consist of
p
m̂max �

p
m̂max blocks each, incurring a resource consumption

of no more than O(m̂
3=2
max). We �rst prove that the resource consumption in

the download() expense account is O(m̂
3=2
max) by combining bounds on the

number of download() operations with bounds on the amount of resource

consumption of individual download() operations. The fact that the re-

source consumption of all llmult() operations is O(m̂
3=2
max) follows from the

observation that the O(43`=2) resource consumption during the execution

of llmult(`) is charged to the
((4`B)3=2) pebbling operations performed

during llmult(`).

13.6.1 Resource consumption of download() operations

We begin with the de�nition of a certain type of download() operation

sequence followed by a couple of key lemmas about such sequences.

De�nition 47 Consider a sequence of d consecutive download(`i) opera-

tions, where 0 � i � d� 1 and d � 1, that satisfy the conditions mentioned

in Lemma 45 and let ` be as de�ned in Lemma 45. We call the above

sequence of d download() operations an `; d-sequence if the �rst time

MAMultiply either relinquishes I/O operations (in Step 2(d)ii above) or

executes an llmult() operation after it executes download(`0) is only im-

mediately after it executes download(`d�1).

Lemma 48 Consider any `; d-sequence download(`0); : : : ;download(`d�1).
If, at any time after download(`0) begins and before download(`d�1) ends,
MAMultiply is subjected to an allocation phase of size mh such that

level(mh) � `=2 + 1, then the execution of download(`d�1) is immedi-

ately followed (that is, without relinquishing any I/Os) by the execution of

llmult(`h), where `h = minflevel(mh);maxlevel + 1g.

Proof : From Lemma 45, we know that the total number of I/O operations

required over the entire `; d-sequence is no more than cdl �2`�1. Suppose that
after download(`0) begins execution and before download(`d�1) completes
execution, MAMultiply gets an allocation phase of size mh where mh is

as de�ned above. Then even if all the cdl � 2`�1 � cdl � 4`=2 I/O operations

incurred during the `; d-sequence occurred during the phase of size mh, that

allocation phase is still left with cllm � 4level(mh)�1 pending I/O operations.

Hence on completion of the `; d-sequence, enough(level(mh)) evaluates to

true: This follows from the de�nition of clevel above. Furthermore, by de�-

nition of `; d-sequence, the dth download() operation download(`d�1) of
the `; d-sequence cannot be immediately followed by another download()

operation so llmult(`h) is the next operation executed by MAMultiply.

Thus the lemma is proved. 2

We state now a simple corollary of the above lemma.

Corollary 4 If an `; d-sequence is followed by the execution of Step 2(d)ii,

the total number of I/O operations relinquished is no more than O(4l=2).

70 13 DYNAMICALLY OPTIMAL MEMORY-ADAPTIVE MATRIX ARITHMETIC

13.6.2 Charging Scheme for download() Operations

Each `; d-sequence incurs a certain amount of resource consumption. We use

the following charging scheme to account for the of resource consumption of

`; d-sequences:

1. In the event that the `; d-sequence is followed by llmult(`h), where

`h > l=2, we charge the resource consumption of the `; d-sequence to

the llmult(`h) operation.

2. In the event that the `; d-sequence is followed by the execution of

Step 2(d)ii or by the execution of an llmult(`0h) operation, where `
0
h �

`=2, we account for its resource consumption using Lemma 48 and

Corollary 4.

We �rst count the maximum number of `; d-sequences that can occur

during MAMultiply.

Lemma 49 The total number of times an `; d-sequence can occur during

the entire execution of MAMultiply is 8`max�`, where 1 � ` � `max � 1.

Proof : This follows from the fact that each time lr [`+1] is set to a non-nil

value, the maximum number of `; d-sequences that can occur before lr [`+1]

becomes nil is 8. 2

We will now bound the total resource consumption of all download()

operations, barring those involved in `; d-sequences whose resource consump-

tion is charged to llmult() operations.

Theorem 14 Suppose that the resource consumption of an an `; d-sequence

is the resource consumption during I/O operations incurred during the `; d-

sequence and the resource consumption corresponding to the I/O operations

relinquished by the (possible) execution of Step 2(d)ii immediately following

the `; d-sequence. The total resource consumption of all `; d-sequences, ex-

cept any `; d-sequence whose resource consumption we charge in Step 1 of

Section 13.6.2 to an llmult(`h) operation with `h > l=2, is no more than

O(m̂
3=2
max).

Proof : By Lemma 49, the total number of `; d-sequences that can occur

is 8`max�`. Including the I/O operations that are possibly relinquished on

account of executing Step 2(d)ii immediately after the `; d-sequence, the

total number of I/O operations charged to the `; d-sequence is no more than

O(4`=2), by Lemma 45 and Corollary 4. Also, by Lemma 48, the maximum

allocation level during any of these O(4l=2) I/O operations is no more than

`=2, implying that the maximum resource consumption of each `; d-sequence

relevant to this theorem is no more than O((4`=2)3=2).

Hence the total amount of resource consumption that can be charged to

all `; d-sequences is

`max�1X
l=1

8`max�` �O((2`)3=2) = O(8`max

`max�1X
l=1

23`=2=23`)

= O(8`max

`max�1X
l=1

1=23`=2)

= O(8`max);

13.6 Resource Consumption Analysis of MAMultiply 71

which is O(m̂max) since 8
`max = (43=2)`max = (4`max)3=2 = m̂

3=2
max . 2

13.6.3 Resource Consumption of llmult() Operations

We argue here that the total amount of resource consumption that can be

charged to an llmult(`) operation is no more than O((4`)3=2) while the

number of pebbling operations accomplished is at least
((4`B)3=2).

We �rst have the following lemma implying that our reorganization of

the operation Ĉ 0 := Ĉ 0+ Â0B̂0, where each of Â0; B̂0; and Ĉ 0 are submatrices
consisting of 2` � 2` blocks, into 8 subproduct operations Ĉ 0

i;j := Ĉ 0
i;j +

Â0
i;kB̂

0
j;k corresponding to the 8 0� 1-triples is correct.

Lemma 50 The matrix operation Ĉ 0+ Â0B̂0 is correctly implemented

by the 8 operations Ĉ 0
i;j := Ĉ 0

i;j + Â0
i;kB̂

0
j;k corresponding to the 8 (i; j; k)

0� 1-triples.

It can be inductively proved that the number of pebbling operations

performed by MAMultiply using the above approach is no more than

(m̂maxB)
3=2. Now we consider the maximum resource consumption that

can be charged to a single llmult(`) operation.

Lemma 51 The maximum resource consumption that can be charged to a

single llmult(`) operation, where 1 � ` � maxlevel , is O((4`)3=2).

Proof : By Lemmas 46 and 47, the total number of I/O operations incurred

by an llmult(`) operation is O(4`) for any `, including ` = maxlevel + 1.

The total number of I/O operations relinquished due to possibly executing

Step 2(e)ii immediately after the llmult(`) operation is O(4`). If 1 � ` �
maxlevel the allocation level throughout the above I/O operations is ` so

that the resource consumption is O((4`)3=2). On the other hand, the total

number of I/O operations incurred by the `0; d-sequence, where `0 � 2`� 2,

whose resource consumption we possibly charge in Step 1 of Section 13.6.2

to llmult(`) is no more than O(4`), by Lemma 45. The maximum allocation

level during these O(4`) I/O operations is `, so their resource consumption

is O((4`)3=2). This proves the lemma. 2

We now bound the total resource consumption charged to all the llmult()

operations incurred during mamultiply by O(m̂
3=2
max).

Theorem 15 The total resource consumption charged to all the llmult()

operations incurred during mamultiply by O(m̂
3=2
max).

Proof : First we consider all llmult(`) operations with ` < maxlevel +1. By

Lemma 51, we know that each llmult(`) operation can be charged a resource

consumption of no more than O((4`)3=2). By de�nition, each llmult(`) op-

eration performs
((4`B)3=2) pebbling operations. Thus at any time dur-

ing MAMultiply, B3=2 times the total resource consumption charged to

llmult() operations up to that point of time is always of the order of the

total number of pebbling operations performed byMAMultiply up to that

point. SinceMAMultiply performs no more than (m̂maxB)
3=2 pebbling op-

erations, the lemma holds for all llmult(`) operations with ` < maxlevel+1.

72 14 CONCLUSIONS AND FUTURE WORK

There can be at most one llmult(`) operations with ` � maxlevel and such

an operation incurs O(m̂max) I/O operations so its resource consumption is

also O(m̂
3=2
max). This proves the lemma. 2

13.7 Proving Optimality

Theorem 14 and Theorem15 together imply the following lemma bounding

the total resource consumption of MAMultiply.

Theorem 16 The total resource consumption of MAMultiply is no more

than O(m̂
3=2
max).

Since the total number of MAMultiply operations involved is the same as

the number of times Step 2, which is (n=m̂max)
3=2, Theorem 16, Corollary 1

and the de�nition of dynamic optimality implies the following theorem.

Theorem 17 The total amount of resource consumption of our memory-

adaptive matrix multiplication algorithm when used to multply two n block

matrices is O(n3=2). Our memory-adaptive matrix multiplication algorithm

is dynamically optimal.

14 Conclusions and Future Work

In this paper we have presented a simple and reasonable dynamic memory

allocation model that enables database and operating systems to dynami-

cally change the amount of memory that external memory algorithms are

allocated. We have de�ned what it means for memory-adaptive external

memory algorithms designed to work in this model to be dynamically opti-

mal. We have presented dynamically optimal memory-adaptive algorithms

for fundamental problems such as sorting, problems related to sorting, per-

muting, other problems related to sorting and matrix multiplication. We

have also presented a dynamically optimal (in an amortized sense) version

of the bu�er tree, which has a large number of batched dynamic applications

and applications such as \bulk-loading" of external memory data structures.

We have shown that a previously devised approach to memory-adaptive ex-

ternal mergesort is provably nonoptimal due to funadmental drawbacks. The

lower bound proof techniques for sorting and matrix multiplication are the

two fundamentally distinct proof techniques invoked by most other external

memory lower bounds and hence we anticipate that the techniques presented

here will apply to many external memory problems.

In the case of mergesorting and matrix multiplication, we have shown

how to sow together a conventional external memory algorithm with an

appropriate \memory-adaptivity" data structure that balances work across

\levels of allocation " to obtain a memory-adaptive external memory al-

gorithm. Our proof techniques deal with the interesting constraints faced

while proving optimality of resource consumption in our dynamic memory

model.

We believe that our techniques for memory-adaptive merging apply to

memory-adaptive distribution and thus to a dynamically optimal distribu-

tion sort. Since the BatchMergeK() operation used in [BK98] can be per-

formed using a modi�cation of our memory-adaptive merging technique, we

73

conjecture that we can design a dynamically optimal memory-adaptive ver-

sion of the worst-case optimal external priority queue of [BK98]. It would

be fruitful to extend our approach to other domains and applications. An

interesting question is whether or not we can devise a general technique that

takes any external memory algorithm that is optimal for static memory and

convert it into a dynamically optimal memory-adaptive algorithm.

References

[AHVV98] Lars Arge, Klaus Hinrichs, Jan Vahrenhold, and Je�rey S. Vit-

ter. E�cient bulk operations on dynamic r-trees. Submitted,

1998.

[AKL93] L. Arge, M. Knudsen, and K. Larsen. A general lower bound

on the I/O-complexity of comparison-based algorithms. In Pro-

ceedings of the 3rd Workshop on Algorithms and Data Struc-

tures, volume 709, pages 83{94. Lecture Notes in Computer

Science, Springer-Verlag, 1993.

[Arg94] Lars Arge. The bu�er tree: A new technique for optimal

I/O-algorithms. Technical Report RS-94-16, BRICS, Univ. of

Aarhus, Denmark, 1994.

[Arg96] Lars Arge. E�cient External-Memory Data Structures and Ap-

plications. PhD thesis, Department of Computer Science, Uni-

versity of Aarhus, 1996.

[AV88] Alok Aggarwal and Je�rey S. Vitter. The input/output com-

plexity of sorting and related problems. Communications of the

ACM, 31(9):1116{1127, 1988.

[AV96] L. Arge and J. S. Vitter. Optimal interval management in ex-

ternal memory. Proc. of the 37th Annual IEEE Symposium on

Foundations of computer Science (FOCS '96), pages 560{569,

October 1996. Also appeared in Abstracts of the First CGC

Workshop on Computational Geometry, Center for Geometric

Computing, Johns Hopkins university, Baltimore, MD, October

1996.

[BK98] G. S. Brodal and J. Katajainen. Worst-case e�cient external-

memory priority queues. Scandinavian Workshop on Algorith-

mic Theory, 1998.

[CGG+95] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E.

Vengro�, and J. S. Vitter. External-memory graph algorithms.

In Proceedings of the Sixth Annual ACM-SIAM Symposium on

Discrete Algorithms, January 1995.

[GTVV93] M. T. Goodrich, J.-J. Tsay, D. E. Vengro�, and J. S. Vitter.

External-memory computational geometry. In IEEE Founda-

tions of Computer Science, pages 714{723, 1993.

74 14 CONCLUSIONS AND FUTURE WORK

[HK81] J. W. Hong and H. T. Kung. I/O complexity: The red-blue

pebble game. Proc. 13th Annual ACM Symp. on Theory of

Computation, pages 326{333, may 1981.

[Knu97] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of

Computer Programming. Addison-Wesley, Reading Ma., third

edition, 1997.

[Knu98] D. E. Knuth. Sorting and Searching, volume 3 of The Art of

Computer Programming. Addison-Wesley, Reading MA, second

edition, 1998.

[PCL93] H. Pang, M. Carey, and M. Livny. Memory-adaptive external

sorts. Proc. Nineteenth International Conf. on Very Large Data

Bases, 1993.

[SV87] J. E. Savage and J. S. Vitter. Parallelism in space-time trade-

o�s. In F. P. Preparata, editor, Advances in Computing Re-

search, Volume 4, pages 117{146. JAI Press, 1987.

[Vit98] Je�rey S. Vitter. External memory algorithms. Proceedings of

the 17th Annual ACM Symposium on Principles of Database

Systems (PODS '98), pages 119{178, 1998.

[VS94] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel

memory I: Two-level memories. Algorithmica, 12(2{3):110{147,

1994.

[VV95] Darren Erik Vengro� and Je�rey Scott Vitter. I/O-e�cient

scienti�c computation using TPIE. Technical Report CS{1995{

18, Duke University Dept. of Computer Science, 1995.

[WGWR93] D. Womble, D. Greenberg, S. Wheat, and R. Riesen. Mak-

ing parallel computer i/o practical. Proceedings of the 1993

DAGS/PC Symposium, pages 56{63, June 1993.

[ZL97] W. Zhang and P.-A. Larson. Dynamic memory adjustment for

external mergesort. Proc. Twenty-third International Conf. on

Very Large Data Bases, 1997.

