
Chapter 1

External-Memory Graph Algorithms

Yi-Jen Chiang�y Michael T. Goodrichzx Edward F. Grove{k Roberto Tamassia�y

Darren Erik Vengro��yy Je�rey Scott Vitter{zz

Abstract

We present a collection of new techniques for designing
and analyzing e�cient external-memory algorithms for
graph problems and illustrate how these techniques can
be applied to a wide variety of speci�c problems. Our
results include:
� Proximate-neighboring. We present a simple
method for deriving external-memory lower bounds
via reductions from a problem we call the \proxi-
mate neighbors" problem. We use this technique to
derive non-trivial lower bounds for such problems
as list ranking, expression tree evaluation, and con-
nected components.

� PRAM simulation. We give methods for e�ciently
simulating PRAM computations in external mem-
ory, even for some cases in which the PRAM algo-
rithm is not work-optimal. We apply this to derive
a number of optimal (and simple) external-memory
graph algorithms.

� Time-forward processing. We present a general
technique for evaluating circuits (or \circuit-like"
computations) in external memory. We also use
this in a deterministic list ranking algorithm.

�
Department of Computer Science, Box 1910, Brown Univer-

sity, Providence, RI 02912{1910.

y
Supported in part by the National Science Foundation, by

the U.S. Army Research O�ce, and by the Advanced Research

Projects Agency.

z
Department of Computer Science, The Johns Hopkins Uni-

versity, Baltimore, MD 21218{2694

x
Supported in part by the National Science Foundation under

grants CCR{9003299, IRI{9116843, and CCR{9300079.

{
Department of Computer Science, Box 90129, Duke Univer-

sity, Durham, NC 27708{0129.

k
Supported in part by the U.S. Army Research O�ce under

grant DAAH04{93{G{0076.

yy
Supported in part by the U.S. Army Research O�ce under

grant DAAL03{91{G{0035 and by the National Science Founda-

tion under grant DMR{9217290.

zz
Supported in part by the National Science Foundation under

grant CCR{9007851 and by the U.S. Army Research O�ce under

grants DAAL03{91{G{0035 and DAAH04{93{G{0076.

� Deterministic 3-coloring of a cycle. We give
several optimal methods for 3-coloring a cycle,
which can be used as a subroutine for �nding large
independent sets for list ranking. Our ideas go
beyond a straightforward PRAM simulation, and
may be of independent interest.

� External depth-�rst search. We discuss a method
for performing depth �rst search and solving re-
lated problems e�ciently in external memory. Our
technique can be used in conjunction with ideas
due to Ullman and Yannakakis in order to solve
graph problems involving closed semi-ring compu-
tations even when their assumption that vertices �t
in main memory does not hold.
Our techniques apply to a number of problems, in-

cluding list ranking, which we discuss in detail, �nding
Euler tours, expression-tree evaluation, centroid decom-
position of a tree, least-common ancestors, minimum
spanning tree veri�cation, connected and biconnected
components, minimum spanning forest, ear decompo-
sition, topological sorting, reachability, graph drawing,
and visibility representation.

1 Introduction

Graph-theoretic problems arise in many large-scale com-
putations, including those common in object-oriented
and deductive databases, VLSI design and simulation
programs, and geographic information systems. Often,
these problems are too large to �t into main memory,
so the input/output (I/O) between main memory and
external memory (such as disks) becomes a signi�cant
bottleneck. In coming years we can expect the signif-
icance of the I/O bottleneck to increase to the point
that we can ill a�ord to ignore it, since technological
advances are increasing CPU speeds at an annual rate
of 40{60% while disk transfer rates are only increasing
by 7{10% annually [20].

Unfortunately, the overwhelming majority of the
vast literature on graph algorithms ignores this bottle-
neck and simply assumes that data completely �ts in
main memory (as in the usual RAM model). Direct
applications of the techniques used in these algorithms

1



2 CHIANG, GOODRICH, GROVE, TAMASSIA, VENGROFF, AND VITTER

often do not yield e�cient external-memory algorithms.
Our goal is to present a collection of new techniques that
take the I/O bottleneck into account and lead to the de-
sign and analysis of I/O-e�cient graph algorithms.

1.1 The Computational Model. In contrast to
solid state random-access memory, disks have extremely
long access times. In order to amortize this access time
over a large amount of data, typical disks read or write
large blocks of contiguous data at once. An increasingly
popular approach to further increase the throughput of
I/O systems is to use a number of independent devices in
parallel. In order to model the behavior of I/O systems,
we use the following parameters:

N = # of items in the problem instance

M = # of items that can �t into main memory

B = # of items per disk block

D = # of disks in the system

where M < N and 1 � DB � M=2. In this paper we
deal with problems de�ned on graphs, so we also de�ne

V = # of vertices in the input graph

E = # of edges in the input graph:

Note that N = V +E. We assume that E � V . Typical
values for workstations and �le servers in production
today are on the order of 106 �M � 108, B � 103, and
1 � D < 100. Problem instances can be in the range
1010 � N � 1012.

Our measure of performance for external-memory
algorithms is the standard notion of I/O complexity
for parallel disks [26]. We de�ne an input/output

operation (or simply I/O for short) to be the process
of simultaneously reading or writing D blocks of data,
one to or from each of the D disks. The total amount of
data transferred in an I/O is thus DB items. The I/O
complexity of an algorithm is simply the number of I/Os
it performs. For example, reading all of the input data
will take at least N=DB I/Os, since we can read at most
DB items in a single I/O. We assume that our input is
initially stored in the �rst N=DB blocks of each of the
D disks. Whenever data is stored in sorted order, we
assume that it is striped, meaning that the data blocks
are ordered across the disks rather than within them.
Formally, this means that if we number from zero, the
ith block of the jth disk contains the (iDB + jB)th
through the (iDB + (j + 1)B � 1)st items.

Our algorithms make extensive use of two funda-
mental primitives, scanning and sorting. We therefore
introduce the following shorthand notation to represent

the I/O complexity of each of these primitives:

scan(x) =
x

DB
;

which represents the number of I/Os needed to read x
items striped across the disks, and

sort(x) =
x

DB
logM=B

x

B
;

which is proportional to the optimal number of I/Os
needed to sort x items striped across the disk [19].

1.2 Previous Work. Early work in external-
memory algorithms for parallel disk systems concen-
trated largely on fundamental problems such as sorting,
matrix multiplication, and FFT [1, 19, 26]. The main
focus of this early work was therefore directed at prob-
lems that involved permutation at a basic level. Indeed,
just the problem of implementing various classes of per-
mutation has been a central theme in external-memory
I/O research [1, 6, 7, 8, 26].

More recently, external-memory research has moved
towards solving problems that are not as directly related
to the permutation problem. For example Goodrich,
Tsay, Vengro�, and Vitter study a number of problems
in computational geometry [12]. Further results in this
area have recently been obtained in [10, 27]. There has
also been some work on selected graph problems, includ-
ing the investigations by Ullman and Yannakakis [23]
on problems involving transitive closure computations.
This work, however, restricts its attention to problem
instances where the set of vertices �ts into main memory
but the set of edges does not. Vishkin [25] uses PRAM
simulation to facilitate prefetching for various problems,
but without taking blocking issues into account. Also
worth noting is recent work [11] on some graph traver-
sal problems; this work primarily addresses the problem
of storing graphs, however, not in performing speci�c
computations on them. Related work [9] proposes a
framework for studying memory management problems
for maintaining connectivity information and paths on
graphs. Other than these papers, we do not know of
any previous work on I/O-e�cient graph algorithms.

1.3 Our Results. In this paper we give a number of
general techniques for solving a host of graph problems
in external memory:
� Proximate-neighboring. We derive a non-trivial
lower bound for a problem we call the \proxi-
mate neighbors" problem, which is a signi�cantly-
restricted form of permutation. We use this prob-
lem to derive non-trivial lower bounds for such
problems as list ranking, expression tree evaluation,
and connected components.



EXTERNAL-MEMORY GRAPH ALGORITHMS 3

� PRAM simulation. We give methods for e�ciently
simulating PRAM computations in external mem-
ory. We also show by example that simulating
certain non-optimal parallel algorithms can yield
very simple, yet I/O-optimal, external-memory al-
gorithms.

� Time-forward processing|a general technique for
evaluating circuits (or \circuit-like" computations)
in external memory. Our method involves the use
of a number of interesting external-memory data
structures, and yields an e�cient external-memory
algorithm for deterministic list ranking.

� Deterministic 3-coloring of a cycle|a problem cen-
tral to list ranking and symmetry breaking in graph
problems. Our methods for solving it go beyond
simple PRAM simulation, and may be of indepen-
dent interest. In particular, we give techniques to
update scattered successor and predecessor colors
as needed after re-coloring a group of nodes without
sorting or scanning the entire list.

� External depth-�rst search. We discuss a method
for performing depth �rst search and solving re-
lated problems e�ciently in external memory and
how it can be used, in conjunction with techniques
due to Ullman and Yannakakis, to solve graph
problems involving closed semi-ring computations
even when their assumption that vertices �t in main
memory does not hold.
We apply these techniques to some fundamental

problems on lists, trees, and graphs, including list rank-
ing, �nding Euler tours, expression-tree evaluation, cen-
troid decomposition of a tree, lowest-common ancestors,
minimum spanning tree veri�cation, connected and bi-
connected components, minimum spanning forest, ear
decomposition, topological sorting, reachability, graph
drawing, and visibility representation.

2 Lower Bounds: Linear Time vs. Permutation

Time

In order to derive lower bounds for the number of I/Os
required to solve a given problem it is often useful to
look at the complexity of the problem in terms of the
permutations that may have to be performed to solve
it. In an ordinary RAM, any known permutation of N
items can be produced in O(N) time. In an N processor
PRAM, it can be done in constant time. In both cases,
the work is O(N), which is no more than it would
take us to examine all the input. In external memory,
however, it is not generally possible to perform arbitrary
permutations in a linear number (O(scan(N))) of I/Os.
Instead, it is well-known that �(perm(N)) I/Os are

required in the worst case [1, 26] where

perm(N) = min

�
N

D
; sort(N)

�
:

When M or B is extremely small, N=D = O(B �
scan(N)) may be smaller than sort(N). In the case
where B and D are constants, the model is reduced to
an ordinary RAM, and, as expected, permutation can
be performed in linear time. However, for typical values
in real I/O systems, the sort(N) term is smaller than
the N=D term. If we consider a machine with block size
B = 104 and main memory size M = 108, for example,
then sort(N) < N=D as long as N < 1040;004, which is
so absurdly large that even the estimated number of
protons in the universe is insigni�cant by comparison.

We can show that the lower bound 
(perm(N))
holds even in some important cases when we are not
required to perform all N ! possible permutations:

Lemma 2.1. Let A be an algorithm capable of per-

forming (N !)�Nc di�erent permutations on an in-

put of size N , where 0 < � � 1 and c are con-

stants. Then at least one of these permutations requires

�(perm(N)) I/Os.

Proof Sketch. The proof is an adaptation and gen-
eralization of that given by Aggarwal and Vitter [1] for
the special case � = 1 and c = 0. 2

In order to apply the lower bound of Lemma 2.1 to
graph problems, we will �rst use it to prove a lower
bound on the proximate neighbors problem. In later
sections, we will show how to reduce the proximate
neighbors problem to a number of graph problems.
The proximate neighbors problem is de�ned as follows:
Initially, we have N items in external memory, each
with a key that is a positive integer k � N=2. Exactly
two items have each possible key value k. The problem
is to permute the items such that, for every k, both
items with key value k are in the same block. We can
now lower bound the number of permutations that an
algorithm that solves the proximate neighbors problems
is capable of producing.

Lemma 2.2. Solving the proximate neighbors prob-

lem requires 
(perm(N)) I/Os in the worst case.

Proof Sketch. We de�ne a block permutation to be
an assignment of items to blocks. The order within
blocks is unimportant. There are thus N !=(B!)N=B

block permutations of N items. We show that to solve
the proximate neighbors problem an algorithm must be
capable of generating

N !

2N=2(B!)N=B(N=2)!
= 


 p
N !

(B!)N=BN1=4

!



4 CHIANG, GOODRICH, GROVE, TAMASSIA, VENGROFF, AND VITTER

block permutations. Thus, using an additional scan(N)
I/Os to rearrange the items within each block, it could
produce

p
N !=(N1=4) permutations. The claim than

follows from Lemma 2.1. 2

Given the lower bound for the proximate neighbors
problem, we immediately have lower bounds for a
number of problems it can be reduced to.

Corollary 2.1. The following problems all have

an I/O lower bound of 
(perm(N)): list ranking, Eu-

ler tours, expression tree evaluation, centroid decompo-

sition of a tree, and connected components in sparse

graphs (E = O(V )).

Proof Sketch. All these bounds are proven using in-
put graphs with long chains of vertices. The ability to
recognize the topology of these graphs to the extent re-
quired to solve the problems mentioned requires solving
the proximate neighbors problem on pairs of consecutive
vertices in these chains. 2

Upper bounds of O(sort(N)) for these problems
are shown in Sections 5 and 6, giving optimal results
whenever perm(N) = �(sort(N)). As was mentioned
above, this covers all practical I/O systems. The key
to designing algorithms to match the lower bound of
Lemma 2.2 is the fact that comparison-based sorting can
also be performed in �(sort(N)) I/Os. This suggests
that in order to optimally solve a problem covered by
Lemma 2.1 we can use sorting as a subroutine. Note
that this strategy does not work in the ordinary RAM
model, where the sorting takes 
(n logn) time, while
many problems requiring arbitrary permutations can be
solved in linear time.

3 PRAM Simulation

In this section, we present some simple techniques for
designing I/O e�cient algorithms based on the simula-
tion of parallel algorithms. The most interesting result
appears in Section 3.2: In order to generate I/O-optimal
algorithms we resort in most cases to simulating PRAM
algorithms that are not work-optimal. The PRAM algo-
rithms we simulate typically have geometrically decreas-
ing numbers of active processors and very small constant
factors in their running times. This makes them ideal
for our purposes, since the I/O simulations do not need
to simulate the inactive processors, and thus we get op-
timal and practical I/O algorithms.

We show in subsequent sections how to combine
these techniques with more sophisticated strategies to
design e�cient external-memory algorithms for a num-
ber of graph problems. Related work on simulating
PRAM computations in external memory was done by
Cormen [6]. The use of PRAM simulation for prefetch-
ing, without the important consideration of blocking, is

explored by Vishkin [25].

3.1 Generic Simulation of an O(N) Space

PRAM Algorithm. We begin by considering how
to simulate a PRAM algorithm that uses N processors
and O(N) space. In order to simulate such a PRAM al-
gorithm, we �rst consider how to simulate a single step.
This is a simple process that can be done by sorting and
scanning, as shown in the following lemma.

Lemma 3.1. Let A be a PRAM algorithm that uses

N processors and O(N) space. Then a single step of A
can be simulated in O(sort(N)) I/Os.

Proof Sketch. Without loss of generality, we assume
that each PRAM step does not have indirect memory
references, since they can be removed by expanding
the step into O(1) steps. To simulate the PRAM
memory, we keep a task array of O(N) on disk in
O(scan(N)) blocks. In a single step, each PRAM
processor reads O(1) operands from memory, performs
some computation, and then writes O(1) results to
memory. To provide the operands for the simulation,
we sort a copy of the contents of the PRAM memory
based on the indices of the processors for which they
will be operands in this step. We then scan this copy
and perform the computation for each processor being
simulated, and write the results to the disk as we do so.
Finally, we sort the results of the computation based on
the memory addresses to which the PRAM processors
would store them and then scan the list and a reserved
copy of memory to merge the stored values back into
the memory. The whole process uses O(1) scans and
O(1) sorts, and thus takes O(sort(N)) I/Os. 2

To simulate an entire algorithm, we merely have to
simulate all of its steps.

Theorem 3.1. Let A be a PRAM algorithm that

uses N processors and O(N) space and runs in time T .
Then A can be simulated in O(T � sort(N)) I/Os.

It is fairly straightforward to generalize this theo-
rem to super-linear space algorithms. There are some
important special cases when we can do much better
than what would be implied by Theorem 3.1, however.

3.2 Reduced Work Simulation for Geometri-

cally Decreasing Computations. Many simple
PRAM algorithms can be designed so as to have a \geo-
metrically decreasing size" property, in that after a con-
stant number of steps, the number of active processors
has decreased by a constant factor. Such algorithms are
typically not work-optimal in the PRAM sense, since all
processors, active or inactive, are counted when evalu-
ating work complexity. When simulating a PRAM with
I/O, however, inactive processors do not have to be sim-
ulated. This fact can be formalized as follows:



EXTERNAL-MEMORY GRAPH ALGORITHMS 5

Theorem 3.2. Let A be a PRAM algorithm that

solves a problem of size N by using N processors and

O(N) space, and that after each of O(logN) stages,

each of time T , both the number of active processors

and the number of memory cells that will ever be used

again are reduced by a constant factor. Then A can be

simulated in external memory in O(T � sort(N)) I/O

operations.

Proof. The �rst stage consists of T steps, each of
which can, by Lemma 3.1, be simulated inO(T �sort(N))
I/Os. Thus, the recurrence

I(N) = O(T � sort(N)) + I(�N)

characterizes the number of I/Os needed to simulate the
algorithm, which is O(T � sort(N)). 2

4 Time-Forward Processing

In this section we discuss a technique for evaluating the
function computed by a bounded fan-in boolean circuit
whose description is stored in external memory. We
assume that the labels of the nodes come from a total
order <, such that for every edge (v; w) we have v < w.
We call a circuit in such a representation topologically

sorted.
Thinking of vertex v as being evaluated at \time" v

motivates our calling such an evaluation time-forward

processing of the circuit. The main issue in such
an evaluation, of course, is to insure that when one
evaluates a particular vertex one has the values of its
inputs currently in main memory.

In Section 4.1 we introduce the concept of buck-
eting, which will prove to be of central importance in
time-forward processing. In Section 4.2 we describe the
construction of a tree on time. Finally, in Section 4.3

we demonstrate how bucketing can be used to navigate
a tree on time in order to solve the circuit evaluation
problem. Later, in Section 5.4, we demonstrate the use
of time forward processing to �nd large independent sets
for list ranking.

4.1 Bucketing. Divide and conquer is a classic
technique that is useful in the design of I/O-e�cient
algorithms. When trying to minimize I/O, it is usually
best to try to divide into as many subproblems as
possible. The maximum number of subproblems is
typically M=B because you want to use at least one
block for each subproblem. It often turns out thatp
M=B subproblems works better when you are trying

to use parallel disks. If the subproblems are of equal
size, a recursion depth of O(logM=B(N=S)) reduces to
problems of size S. For example, to sort N numbers,
it su�ces to O(

p
M=B ) splitters, partition the input

according to the splitters, recurse and concatenate the
recursively sorted lists.

In order to divide up a problem, we maintain a set
of buckets which support the following operations:
1. Allocate a new bucket.

2. Add one record to a bucket.

3. Empty a bucket, placing the records in a sequential
list.

The order of the the records in the list from emptying
a bucket is not required to be the order in which the
records were added to the bucket. Once the input is
divided into buckets, each bucket is a subproblem to be
solved recursively.

Of course, the bucketing problem is easy if there
is only one disk: we just allocate one block of memory
to each bucket and ush it to disk when it gets full.
In the presence of multiple disks, however, we must be
sure to guarantee that each bucket is stored roughly
evenly across the parallel disks; this is the fundamental
problem addressed in [19].

An overview of a possible approach is to keep one
block of main memory allocated to each bucket. When
that block is �lled up, we ush the contents to a bu�er
of D blocks, and when the bu�er is full, we write at least
half the blocks to disk in a single I/O. Let median(b) be
the median value of the number of blocks from bucket b
stored on each of the D disks. We keep the buckets
balanced across disks by maintaining the invariant that
for every bucket b the most blocks from b on any one disk
is at most one more than median(b). For each bucket b,
by de�nition of median, at least half the disks can be
written to without violating theinvariant. Thus, any set
of dD=2e blocks can be written to a set of dD=2e disks
in a single I/O, maintaining the invariant. The most
out-of-balance any bucket b can become is to have its
blocks evenly distributed on about half the disks, with
no blocks on the other half of the disks. Bucket b can
then be read with at most about double the optimal
number of I/Os. A bucket containing g items may
thus be emptied using O(maxf1; scan(g)g) I/Os. All
of the reads and writes e�ectively use at least half the
bandwidth, except when emptying a bucket containing
less than DB=2 items. The writes are striped for error
correction purposes, but the reads are not, which is
needed for optimality.

Theorem 4.1. A series of i insertions and e empty

operations on O(M=B) buckets can be be performed with

O(e+ scan(i)) I/Os.

4.2 Building a Tree on Time. Let us return, then,
to the circuit-evaluation problem. Recall that we are
given a topologically ordered circuit with V vertices,



6 CHIANG, GOODRICH, GROVE, TAMASSIA, VENGROFF, AND VITTER

and we wish to compute the values of the vertices
in order. Intuitively, after calculating the value of a
vertex v, we send the value \forward in time" to each
future time step at which it will be needed.

We split memory into two pieces of size M=2,
one for bucketing and one for holding values needed
for an interval of time. We then break up time
into intervals needing a total of at most M=2 inputs
each. For example, for a fan-in 2 circuit, each interval
is of the form [1 + jM=4; (j + 1)M=4]. We make
these intervals the leaves of a balanced tree T , which
we call the \time tree," so that T has branching
factor f and height h, where f is a parameter of
our method and h = O((log# intervals)=(log(M=2B))),
say 2 logM=2B(4V=M). It will turn out that about
fh buckets are required, yielding constraints fh �
M=2B and fh � # intervals. For example, if we
choose f =

p
M=2B, then we require that

p
M=2B �

2 logM=B(4V=M), which is satis�ed assuming

(
p
M=2B)

p
M=2B � 4V=M :(4.1)

This assumption does not depend on the number D of
parallel disks. For typical machines, M=B is in the
thousands, so this is not a restrictive assumption.

4.3 Moving into the Future. We can use the time
tree constructed in the previous subsection to partition
time. Let us say that vertex v lies in interval s. If we
remove the path from s to the root of the time tree,
the tree breaks up into (f � 1)h subtrees, whose leaves
are all of the intervals except for s. We maintain a
bucket for each of these subtrees. When the value of v
is computed, for each edge (v; w), we send the value of
v to a bucket representing the subtree containing w, or
just keep it in memory if w lies in interval s.

When the current time crosses a interval boundary,
the current interval s changes, and the path up to the
root changes too. As a result, the subtrees induced by
removing the path from s to the root change. Each
vertex that is on the new path, but was not on the old
path, corresponds to a subtree that is split. The bucket
corresponding to the old subtree is emptied, and the
values are added to the new buckets where they belong.
Any particular value is involved in at most h splits. The
total number of I/O operations is O(h � scan(E)).

This approach works for a general class of problems.
The main requirement is to specify, in advance, a
partition of time into O(N=M) intervals, each of which
uses at most M=2 inputs. The internal nodes can be
arbitrary functions. It is not necessary to know the
exact time a value will be needed. It is su�cient be able
to specify the destination interval. By keeping c = O(1)
intervals in memory simultaneously, it su�ces to send

a value to within c � 1 intervals before the time it is
needed. Summing up, then, we have the following:

Theorem 4.2. A topologically ordered circuit with

N edges can be evaluated with O(sort(N)) I/Os ifp
M=2B log(M=2B) � 2 log(2N=M).

5 List Ranking

In this section, we demonstrate how the lower bound
techniques of Section 2 and the PRAM simulation
techniques of Section 3 can be put together to produce
an optimal external-memory algorithm.

The problem we consider is that of list ranking. We
are given an N -node linked list L stored in external
memory as an (unordered) sequence of nodes, each with
a pointer next to the successor node in the list. Our goal
is to determine, for each node v of L, the rank of v, which
we denote rank(v) and de�ne as the number of links
from v to the end of the list. We assume that there is a
dummy node1 at the end of the list, and thus the rank
of the last node in the list is 1. We present algorithms
that use an optimal �(sort(N)) I/O operations. The
lower bound for the problem comes from Corollary 2.1.

5.1 An Algorithmic Framework for List Rank-

ing. Our algorithmic framework is adapted from the
work of Anderson and Miller [2]. It has also been used
by Cole and Vishkin [5], who developed a deterministic
version of Anderson and Miller's randomized algorithm.

Initially, we assign rank(v) = 1 for each node v in
list L. This can be done in O(scan(N)) I/Os. We then
proceed recursively. First, we produce an independent
set of �(N) nodes. The details of how this independent
set is produced are what separate our algorithms from
one another. Once we have a large independent set S,
we use O(1) sorts and scans to bridge each node v in the
set, as described in [2]. We then recursively solve the
problem on the remaining nodes. Finally, we use O(1)
sorts and scans to re-integrate the nodes in S into the
�nal solution.

In order to analyze the I/O-complexity of an algo-
rithm of the type just described, we �rst note that once
the independent set has been produced, the algorithm
uses O(sort(N)) I/Os and solves a single recursive in-
stance of the problem. If the independent set can also
be found in O(sort(N)) I/Os, then the total number of
I/Os done in the nonrecursive parts of the algorithm is
also O(sort(N)).

Since �(N) nodes are bridged out before recursion,
the size of the recursive problem we are left with is
at most a constant fraction of the size of our original
problem. Thus, according to Theorem 3.2, the I/O-
complexity of our overall algorithm is O(sort(N)). All
that remains is to demonstrate how an independent set



EXTERNAL-MEMORY GRAPH ALGORITHMS 7

of size �(N) can be produced in O(sort(N)) I/Os.

5.2 Randomized Independent Set Construc-

tion. The simplest way to produce a large indepen-
dent set is a randomized approach based on that �rst
proposed by Anderson and Miller [2]. We scan along
the input, ipping a fair coin for each vertex v. We then
make two copies of the input, sorting one by vertex and
the other by successor. Scanning down these two sorted
lists in step, we produce an independent set consisting
of those vertices whose coins turned up heads but whose
successors coins turned up tails. The expected size of
the independent set generated this way is (N � 1)=4.

5.3 Deterministic Independent Set Construc-

tion via 3-Coloring. Our �rst deterministic approach
relies on the fact that the problem of �nding an inde-
pendent set of size 
(N) in an N -node list L can be re-
duced to the problem of �nding a 3-coloring of the list.
We equate the independent set with the 
(N) nodes
colored by the most popular of the three colors.

In this section, we describe an external-memory
algorithm for 3-coloring L that performs O(sort(N))
I/O operations. We make the simplifying assumption
here (and also in the next section) that the block size B

satis�es B = O(N= log(t)N) for some �xed integer
t > 0.1 This assumption is clearly non-restrictive in
practice. Furthermore, for simplicity, we restrict the
discussion to the D = 1 case of one disk. The
load balancing issues that arise with multiple disks are
handled with balancing techniques akin to [18, 26].

The 3-coloring algorithm consists of three phases.
Colors and node IDs are represented by integers.
1. In this phase we construct an initial N -coloring

of L by assigning a distinct color in the range
[0; � � � ; N � 1] to each node. This phase takes
O(scan(N)) I/Os.

2. Recall that B = O(N= log(t)N) for some �xed
integer t > 0. In this phase we produce a
(log(t+1)N)-coloring. We omit the details in this
extended abstract. The method is based upon
a non-trivial adaptation of the deterministic coin
tossing technique of Cole and Vishkin [5]. The
total number of I/Os performed in this phase is

O(t � sort(N) + (log(t+1)N)2).

3. In the �nal phase, for each i = 3; ::; log(t+1)N � 1,
we re-color the nodes with color i by assigning them
a new color in the range [0; 1; 2]. This phase is

performed iteratively in O(log(t+1)N + sort(Ni))

1
The notation log

(k)
N is de�ned recursively as follows:

log
(1)

N = logN , and log
(i+1)

N = log log
(i)

N , for i � 1.

I/Os per iteration, where Ni is the number of
vertices with color i (from the previous phase). We
omit the details in this extended abstract. The
total number of I/Os performed in this phase is

log
(t+1) N�1X
i=0

O(log(t+1)N + sort(Ni))

= O(sort(N) + (log(t+1)N)2):

The overall time complexity of the 3-coloring algo-
rithms is thus O(t �sort(N)+(log(t+1)N)2). Since t is a

constant and B = O(N= log(t)N), we get the following
time bound:

Lemma 5.1. The N nodes of a list L can be 3-

colored with O(sort(N)) I/O operations.

Recalling the algorithmic framework for list ranking
of Section 5.1, we obtain the following result:

Theorem 5.1. The N nodes of a list L can be

ranked with optimal O(sort(N)) I/O operations.

5.4 Deterministic Independent Set Computa-

tion via Time-Forward Processing. We can use
time-forward processing to construct an alternate proof
of Lemma 5.1 for the case when M=B is not too small
(which provides an alternate condition to the constraint
on B not being too large). In this case we separate the
edges of the cycle into forward edges f(a; b) j a < bg
and backward edges f(a; b) j a > bg. Each of these is
a set of chains. We then color the forward edges with
colors 0 and 1, coloring the �rst vertex on a chain 0, and
then alternating. We color the backward edges with 2
and 1, starting each chain with 2. If a vertex is given
two di�erent colors (because it is the beginning or end
of a chain in both sets) we color it 0 unless the two col-
ors are 1 and 2, in which case we color it 2. This gives
a 3-coloring of a N -vertex cycle in O(sort(N)) I/Os.

We can also use time-forward traversal to compute
list ranking more directly than by removing independent
sets|just calculate the ranks of the vertices along the
chains in the forward and backward sets, and then
instead of bridging over an independent set, bridge over
entire chains. We give the details in the full version.

6 Additional Applications

In this section we show that the techniques presented
in Sections 2{5 can be used to solve a variety of
fundamental tree and graph problems. These results
are summarized in Tables 1-3. We believe that many
more problems are amenable to these techniques.

Now we briey sketch our algorithms to the prob-
lems listed. Lower bounds are similar to Corollary 2.1.



8 CHIANG, GOODRICH, GROVE, TAMASSIA, VENGROFF, AND VITTER

For expression tree evaluation, we compute the depth
of each vertex by Euler Tour and list ranking, and sort
the vertices �rst by depth and then by key such that (i)
deeper nodes precede higher nodes, and (ii) the children
of each node are contiguous, and (iii) the order of the
nodes on each level is consistent with the ordering of
their parents. We then keep pointers to the next node
to be computed and to the next input value needed.
The two pointers move sequentially through the list of
nodes, so all of the nodes in the tree can be computed
with O(scan(N)) additional I/Os. Centroid decompo-
sition of a tree can be performed similarly.

The least common ancestor problem can be reduced
to the range minima problem using Euler Tour and list
ranking [3]. We construct a search tree S with O(N=B)
leaves, each a block storing B data items. Tree S is a
complete (M=B)-ary tree with O(logM=B(N=B)) levels,
where each internal node v of S corresponds to the items
in the subtree Sv rooted at v. Each internal node v
stores two lists maintaining pre�x and su�x minima of
the items in the leaves of Sv, respectively, and a third
list maintaining M=B items, each a minimum of the
leaf items of the subtree rooted at a child of v. The K
batched queries are performed by sorting them �rst, so
that all queries can be performed by scanning S O(1)
times. If K > N we process the queries in batches of N
at a time.

For the minimum spanning tree (MST) veri�cation
problem, our technique is based on that of King [14].
We verify that a given tree T is an MST of a graph G
by verifying that each edge (u; v) in G has weight at
least as large as that of the heaviest edge on the path
from u to v in T . First, using O(sort(V )) I/Os, we
convert T into a balanced tree T 0 of size O(V ) such
that the weight of the heaviest edge on the path from
u to v in T 0 is equal to the weight of the heaviest
edge on the path from u to v in T . We then compute
the lowest common ancestor in T 0 of the endpoints
of each edge of G. Using the technique described
above to process the pairs V at a time, this takes
O((E=V )sort(V )) I/Os. Finally, we construct tuples
consisting of the edges of G, their weights and the lowest
common ancestors of their endpoints, and, using the
batch �ltering technique of [12], we �lter these tuples
through T 0, V at a time. This batch �ltering takes
O((E=V )sort(V )) I/Os. When a tuple hits the lowest
common ancestor of the endpoints of its edge, it splits
into two queries, one continuing on towards each of
its endpoints. If, during subsequent �ltering, a query
passes through an edge whose weight is less than its
own, the algorithm can stop immediately and report
that T is not an MST of G. If this never happens, then
T is an MST.

For connected components and minimum spanning
forest, our algorithm is based on that of Chin et al. [4].
Each iteration performs a constant number of sorts on
current edges and one list ranking to reduce the num-
ber of vertices by a constant factor. After O(log(V=M))
iterations we �t the remaining M vertices to the main
memory and solve the problem easily. For biconnected
components, we adapt the PRAM algorithm of Tarjan
and Vishkin [22], which requires generating an arbi-
trary spanning tree, evaluating an expression tree, and
computing connected components of a newly created
graph. For ear decomposition, we modify the PRAM
algorithm of Maon et al. [17], which requires generating
an arbitrary spanning tree, performing batched lowest
common ancestor queries, and evaluating an expression
tree. Note that all these problems can be solved within
the bound of computing minimum spanning forest. Our
randomized algorithm reduces this latter bound by de-
creasing in each iteration the numbers of both edges and
vertices by a constant factor, using an external-memory
variation of the random sampling technique by [13, 15]
and the previously mentioned minimum spanning tree
veri�cation method.

Planar st-graphs were �rst introduced by Lempel,
Even, and Cederbaum [16], and have a variety of appli-
cations in Computational Geometry, motion planning,
and VLSI layout. We obtain the given upper bounds by
modifying the PRAM algorithms of Tamassia and Vit-
ter [21], and applying the list ranking and the PRAM
simulation techniques.

7 Depth First Search and Closed Semi-Ring

Computation

Many algorithms for problems on directed graphs are
easily solved in main memory by depth �rst search
(DFS). We analyze the performance of sequential DFS,
modifying the algorithm to reprocess the graph when
the number of visited vertices exceeds �(M). We
present a graph with V vertices and E edges by three
arrays. There is a size-E array A containing the edges,
sorted by source. Size V arrays Start[i] and Stop[i]
denote the range of the adjacency list of i. Vertex i
points to vertices fA[j] j Start[i] � j � Stop[i]g.

DFS maintains a stack of vertices corresponding to
the path from the root to the current vertex in the
DFS tree. The pop and push operations needed for
a stack are easily implemented optimally in I/Os. For
each current vertex, examine the incident edges in the
order given on the adjacency list. When a vertex is �rst
encountered, it is added to a search structure, put on
the stack, and made the current vertex. Each edge read
is discarded. When an adjacency list is exhausted, pop
the stack and retreat the path one vertex.



EXTERNAL-MEMORY GRAPH ALGORITHMS 9

Problem Notes Lower Bound Upper Bound

Euler Tour 
(sort(N)) O(sort(N))

Expression Tree Evaluation Bounded Degree Operators 
(sort(N)) O(sort(N))

Centroid Decomposition 
(sort(N)) O(sort(N))

Least Common Ancestor K Queries O((1 +K=N)sort(N))

Table 1: I/O-e�cient algorithms for problems on trees. The problem size is N = V = E + 1.

Problem Notes Lower Bound Upper Bound

Minimum Spanning Tree
Veri�cation

O((E=V )sort(V ))

Connected Components, O(minfsort(V 2);
Biconnected Components, log(V=M) � sort(E)g)
Minimum Spanning Forest,
and Ear Decomposition

Sparse graphs (E = O(V ))
closed under edge contraction


(sort(V )) O(sort(V ))

Randomized, with probability O((E=V )sort(V ))

1� exp(�E= logO(1)E)

Table 2: I/O-e�cient algorithms for problems on undirected graphs.

The only problem arises when the search structure
holding visited vertices exceeds the memory available.
When that happens, we make a pass through all of the
edges, discarding all edges that point to vertices already
visited, and compacting so that all of the edges in each
adjacency list are consecutive. Then we empty out the
search structure and continue.

The algorithm must perform O(1) I/Os every time
a vertex is made the current vertex. This can only
happen 2V times, since each such I/O is due to a pop
or to a push. The total additional number of I/Os due
to reading edge lists is O(scan(E) + V ). The search
structure �lls up memory at most O(V=M) times. Each
time the search structure is emptied, O(scan(E)) I/Os
are performed.

Theorem 7.1. Let G be a directed graph contain-

ing V vertices and E edges in which the edges are given

in a list that is sorted by source. DFS can be performed

on G with O((1 + V=M)scan(E) + V ) I/Os.

Corollary 7.1. Let G be a directed graph con-

taining V vertices and E edges in which the edges are

given in a list that is sorted by source. Then one can

compute the strongly connected components of G and

perform a topological sorting on the strongly connected

components using O((1 + V=M)scan(E) + V ) I/Os.

Ullman and Yannakakis have recently presented
external-memory techniques for computing the transi-
tive closure of a directed graph [23]. They solve this
problem using O(dfs(V;E) + scan(V 2

p
E=M )) I/Os,

where dfs(V;E) is the number of I/Os needed to per-
form DFS on the input graph in order to �nd strongly

connected components and topologically sort it. They
assume that V < M , and under that assumption, they
give an O(scan(E) + V ) algorithm for DFS. In their
other routines, small modi�cations to the algorithms
allow for full blocking even when V > M . Our DFS al-
gorithm works for the general case when V > M , and its
I/O complexity is always less than the scan(V 2

p
E=M )

term in complexity of transitive closure. Thus, we get
the following corollary to Corollary 7.1 and the work of
Ullman and Yannakakis:

Corollary 7.2. The transitive closure of a graph

can be computed in O(scan(V 2
p
E=M )) I/Os.

8 Conclusions

We have presented a number of techniques for designing
and analyzing external-memory algorithms for graph
theoretic problems and showed a number of applications
for them. Our techniques, particularly proximate neigh-
bors problem lower bounding, derivation of I/O-optimal
algorithms from non-optimal PRAM algorithms, and
time-forward processing, are general enough that they
are likely to be of value in other domains as well. Ap-
plications to memory hierarchies and parallel memory
hierarchies will be discussed in the full paper.

Although we did not speci�cally discuss them, the
constants hidden in the big-oh notation tend to be small
for algorithms based on our techniques. For example,
randomized list ranking can be done using 3 sorts per
recursive level, which leads to an overall I/O complexity
roughly 12 times that required to sort the original
input a single time. An implementation along these



10 CHIANG, GOODRICH, GROVE, TAMASSIA, VENGROFF, AND VITTER

Problem Notes Lower Bound Upper Bound

Reachability K queries O((1 +K=V )sort(V ))

Topological Sorting 
(sort(V )) O(sort(V ))

Drawing and, 2V � 5 bends 
(sort(V )) O(sort(V ))
Visibility Representation O(V 2) area

Table 3: I/O-e�cient algorithms for problems on planar st-graphs. Note that E = O(V ) for these graphs.

lines has been written using an alpha version of TPIE,
a transparent parallel I/O environment designed to
facilitate the implementation of I/O e�cient algorithms
from a variety of domains [24]. We expect to implement
additional algorithms using TPIE and publish empirical
results regarding their e�ciency in the near future.

References

[1] A. Aggarwal and J. S. Vitter. The input/output com-

plexity of sorting and related problems. Communica-

tions of the ACM, 31(9):1116{1127, 1988.

[2] R. J. Anderson and G. L. Miller. A simple randomized

parallel algorithm for list-ranking. Info. Proc. Letters,

33(5):269{273, 1990.

[3] O. Berkman and U. Vishkin. Recursive star-tree

parallel data structure. Technical report, Institue

for Advanced Computer Studies, Univ. of Maryland,

College Park, 1990.

[4] F. Y. Chin, J. Lam, and I. Chen. E�cient parallel

algorithms for some graph problems. Comm. of the

ACM, 25(9):659{665, 1982.

[5] R. Cole and U. Vishkin. Deterministic coin tossing

with applications to optimal list-ranking. Information

and Control, 70(1):32{53, 1986.

[6] T. H. Cormen. Virtual Memory for Data Parallel Com-

puting. PhD thesis, Department of Electrical Engineer-

ing and Computer Science, Massachusetts Institute of

Technology, 1992.

[7] T. H. Cormen. Fast permuting in disk arrays. Journal

of Parallel and Distributed Computing, 17(1{2):41{57,

Jan./Feb. 1993.

[8] T. H. Cormen, T. Sundquist, and L. F. Wisniewski.

Asymptotically tight bounds for performing BMMC

permutations on parallel disk systems. Technical

Report PCS-TR94-223, Dartmouth College Dept. of

Computer Science, July 1994.

[9] E. Feuerstein and A. Marchetti-Spaccamela. Memory

paging for connectivity and path problems in graphs.

In Proc. Int. Symp. on Algorithms and Comp., 1993.

[10] P. G. Franciosa and M. Talamo. Orders, implicit k-sets

representation and fast halfplane searching. In Proc.

Workshop on Orders, Algorithms and Applications

(ORDAL'94), pages 117{127, 1994.

[11] M. T. Goodrich, M. H. Nodine, and J. S. Vitter.

Blocking for external graph searching. In Proc. ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of

Database Sys., pages 222{232, 1993.

[12] M. T. Goodrich, J.-J. Tsay, D. E. Vengro�, and J. S.

Vitter. External-memory computational geometry. In

IEEE Foundations of Comp. Sci., pages 714{723, 1993.

[13] D. R. Karger. Global min-cuts in RNC and other

rami�cations of a simple mincut algorithm. In Proc.

4th ACM-SIAM Symp. on Discrete Algorithms, pages

21{30, 1993.

[14] V. King. A simpler minimum spanning tree veri�cation

algorithm, 1994.

[15] P. Klein and R. Tarjan. A randomized linear-time

algorithm for �nding minimum spanning trees. In

Proc. ACM Symp. on Theory of Computing, 1994.

[16] A. Lempel, S. Even, and I. Cederbaum. An algorithm

for planarity testing of graphs. In Theory of Graphs,

Int. Symp. (Rome, 1966), pages 215{232. Gordon and

Breach, New York, 1967.

[17] Y. Maon, B. Schieber, and U. Vishkin. Parallel

ear decomposition search and st-numbering in graphs.

Theoretical Computer Science, 47(3):277{296, 1986.

[18] M. H. Nodine and J. S. Vitter. Deterministic distri-

bution sort in shared and distributed memory multi-

processors. In Proc. 5th ACM Symp. on Parallel Algo-

rithms and Architectures, June 1993.

[19] M. H. Nodine and J. S. Vitter. Paradigms for optimal

sorting with multiple disks. In Proc. of the 26th Hawaii

Int. Conf. on Systems Sciences, Jan. 1993.

[20] C. Ruemmler and J. Wilkes. An introduction to disk

drive modeling. IEEE Comp., 27(3):17{28, Mar. 1994.

[21] R. Tamassia and J. S. Vitter. Optimal cooperative

search in fractional cascaded data structures. In

Proc. 2nd ACM Symosium on Parallel Algorithms and

Architectures, pages 307{316, 1990.

[22] R. Tarjan and U. Vishkin. Finding biconnected compo-

nents and computing tree functions in logarithmic par-

allel time. SIAM J. Computing, 14(4):862{874, 1985.

[23] J. D. Ullman and M. Yannakakis. The input/output

complexity of transitive closure. Annals of Mathemat-

ics and Arti�cial Intellegence, 3:331{360, 1991.

[24] D. E. Vengro�. A transparent parallel I/O environ-

ment. In Proc. 1994 DAGS Symposium on Parallel

Computation, July 1994.

[25] U. Vishkin. Personal communication, 1992.

[26] J. S. Vitter and E. A. M. Shriver. Algorithms for

parallel memory I: Two-level memories. Algorithmica,

12(2), 1994.

[27] B. Zhu. Further computational geometry in secondary

memory. In Proc. Int. Symp. on Algorithms and

Computation, 1994.


