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ABSTRACT Many real-world applications, such as bioinformatics, data mining, pattern recognition, and
social network analysis, benefit from efficient solutions for the graph similarity search problem. Existing
methods have limited scalability when they handle the large graph databases, for example, thosewithmillions
or billions of graphs that cannot fit in main memory. In this paper, we study the problem of graph similarity
search under the graph edit distance constraint in external memory. We present an efficient framework for
arbitrary q-gram-based representations of a graph. Specifically, we propose a q-grammatrix index stored in
hybrid layout in external memory to achieve efficient query processing, by converting the q-gram counting
filter into a sparse matrix-vector multiplication problem. Furthermore, we also boost the query performance
by transforming the global filter to a 2-D query rectangle, which allows us to perform a query in a reduced
region, significantly reducing the number of query I/Os in practice. Extensive experiments on real data
sets confirm that 1) our method can compete with the state-of-the-art in-memory methods in index size
and filtering ability, and outperform them on scalability of coping with the PubChem data set including
25million chemical structure graphs and 2) comparedwith the popular q-gram-based external inverted index,
our external index structure needs much fewer number of query I/Os on the PubChem data set.

INDEX TERMS Graph similarity search, matrix index, external memory.

I. INTRODUCTION
Graph search plays a central role in data mining, pattern
recognition, databases, machine learning, and big data pre-
dictive analytics. Attributed graphs capture the structure of
data points and the attribution of nodes and edges. Similarity
search of attributed graphs is a core operation of graph data
and has applications in many disciplines such as bioinfor-
matics, social network analysis, semantic web, and pattern
recognition [8].

The core problem of graph similarity search is well
defined [5], [13], [14], [21]: Given a graph database G and
a query graph h, the problem is to identify all the graphs in G
that are similar to h. There are at least four metrics being
investigated [14]: graph edit distance [11], [21], maximal
common subgraph distance [3], graph alignment [4], and
graph kernel functions [14]. In this paper, we focus upon the
graph edit distance (GED) between graphs g and h, denoted
by ged(g, h), which is the minimal number of operations
that we use to transform g to h (or vice versa). A user or a

query index systemmay specify the set of operations. Typical
choices are node label change, edge label change, adding a
node, adding an edge, removing a node, removing an edge,
or any subset of the operations.

There are a large number of algorithms supporting graph
similarity search based upon GED [5], [11], [12], [21].
The critical limitation of existing GED-based approaches is
that they do not work well when dealing with very large
databases that do not fit in internal memory, such as Pub-
Chem, which stores information about roughly 50 million
chemical structures. We empirically tested some of the pre-
vious state-of-the-art methods and found that they do not
scale well, detailed in Section VI. For such large transaction
databases, we argue that external memory based methods are
important.

We present an efficient framework for graph similarity
search in external memory for arbitrary q-gram based rep-
resentations of a graph. Our contributions in this paper are
summarized below.
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• We propose a q-gram-based matrix index for a graph
database G. It can scale well to the I/O model by con-
verting the q-gram counting filter into a SpMV problem,
to achieve efficient query processing.

• We transform the global filter derived based upon the
differences of the number of vertices and edges of com-
paring graphs to a two-dimensional query rectangle,
which helps us perform graph similarity search in a
reduced region, greatly reducing the number of query
I/Os in practice.

• We develop a hybrid q-gram filter combining both the
label-based q-gram and branch-based q-gram counting
filters, which has a better performance than the tree-
based q-gram and path-based q-gram counting filters.

• We have conducted comprehensive experimental studies
to evaluate the filtering capability, number of query I/Os,
occupied space, and construction time. The result shows
that our method can easily scale to the PubChem dataset
contains 25 million chemical structure graphs.

The rest of this paper is organized as follows: In Section II,
we introduce the problem definition and related work.
In Section III, we present our framework and give an
approach to reduce the query region. In Section IV, we
introduce the hybrid q-gram filter and the q-gram matrix
index. In Section V, we give an external query method for
the q-gram matrix stored in hybrid layout. Comprehensive
experimental studies appear in Section VI, and we make
concluding remarks in Section VII.

II. PROBLEM DEFINITION AND RELATED WORK
A. PROBLEM DEFINITION
In this section, we first provide formal definitions of graph
edit distance and graph similarity search and then briefly
overview related work. For simplicity, we only focus on
simple undirected graphs where they do not have multi-
edge or self-loop. Specifically, a graph is a four tuple g =
(Vg,Eg, λ,6g) where Vg is the set of vertices, Eg ⊆ Vg × Vg
is the set of edges, 6g is the set of vertex and edge labels, λ
is the function that maps vertices and edges to their labels.
Clearly λ(u) is the label of the vertex u and λ(e(u, v)) is the
label of the edge e(u, v). λVg and λEg denote the multi-sets
of vertex and edge labels, respectively. |Vg| is the number of
vertices in g and |Eg| is the number of edges in g, and the
graph size refers to |Vg| in this paper.
Definition 1 (Graph Isomorphism [16]): We say that a

graph g is isomorphic to another graph h if there exists a
bijection f : Vg → Vh, such that (1) for all v ∈ Vg, we have
f (v) ∈ Vh and λ(v) = λ(f (v)), (2) for all e(u, v) ∈ Eg, we
have e(f (u), f (v)) ∈ Eh and λ(e(u, v)) = λ(e(f (u), f (v))). If g
is isomorphic to h, we denote g ∼= h.
In this paper we consider six edit operations in transform-

ing one graph to another [11], including that insert/delete an
isolated vertex, insert/delete an edge between two vertices,
and substitute the label of a vertex or an edge. Given two
graphs g and h there always exists at least one edit operation

list L that transforms one graph to another, such as, g =
g0 → g1 → . . . → gd ∼= h. We call such a list a
transforming operation list between g and h. For any graphs
g and h, the number of possible transforming operation lists
is infinite. A transformation operation list is optimal if it has
the shortest length among all possible transforming operation
lists.
Definition 2 (Graph Edit Distance, GED): Given two

graphs g and h, the edit distance between g and h, denoted by
ged(g, h), is the length of an optimal transforming operation
list between g and h, or the minimal number of operations to
transform one graph to another.
Definition 3 (Graph Similarity Search, GSS): Given a

graph database G = {g1, g2, . . . , gn}, a query graph h, and
a distance upper-limit τ ≥ 0, by the graph similarity search
we identify the set of graphs in G such that ged(g, h) ≤ τ ,
where ged(g, h) is defined in Definition 2.
Figure 1 shows two data graphs g1 and g2 and a

query graph h. We can obtain that ged(g1, h) = 4 and
ged(g2, h) = 10. If the edit distance threshold τ = 4, only g1
is the answer.

FIGURE 1. Graphs g1 and g2, and query graph h.

B. RELATED WORK
1) EXISTING FILTERS

Computing the graph edit distance is an NP-hard
problem [18], and hence it is not a trivial task to seek for an
efficient algorithm. Most of the existing methods adopt the
filter-and-verify schema to speed up the search. With such a
schema, we first filter data graphs that are not possible results
to generate a candidate set, and then validate the candidate
graphs with the expensive graph edit distance computations.

In general, the existing filters can be divided into
four categories: global filter, q-gram counting filter, map-
ping distance-based filter and disjoint partition-based
filter. Specifically, number count filter [18] and label count
filter [20] are two global filters. The former is derived based
upon the differences of the number of vertices and edges of
comparing graphs. The later takes labels as well as struc-
tures into account, further improving the former. κ-AT [11]
and GSimJoin [20] are two major q-gram counting filters.
In κ-AT, a q-gram is defined as a tree consisting of a vertex v
and the paths whose length no longer than κ starting from v.
However,GSimJoin considered the simple path whose length
is p as a q-gram.C-Star [18] andMixed [21] are twomapping
distance-based filters. The lower bounds are derived based
on the minimum weighted bipartite graphs between the star
and branch structures of g and h, respectively. SEGOS [12]
introduced a two-level index structure to speed up the
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filtering process, which has the same filter ability withC-star.
Pars [19] divided each data graph g into τ+1 non-overlapping
substructures, and pruned the graph g if there exists no
substructure that is subgraph isomorphic to h. The above
methods show different performance on different databases
and we can hardly prove the merits of them theoretically [5].

2) EXTERNAL MEMORY MODEL
The external memorymodel was introduced byAggarwal and
Vitter [1], which is also called the I/O model [10]. In this
model, the CPU is connected directly to an internal memory
of size M , which is in turn connected to a much larger and
slower disk. The CPU can only operate on data inside the
internal memory. So, when we need to operate the data stored
in disk, we have to transfer data between internal memory
and disk through I/O operations. Compared with the cost
of the transfer, the cost of operations in internal memory
can be negligible. Thus the performance of an algorithm
in the external memory model is measured by the number
of I/O operations used. Han et al. [6] made full disk-based
implementations on representative indexing methods for the
subgraph isomorphism problem on a common framework.
Tian and Patel [9] presented a disk-based hybrid index,
which uses existing common disk-based index structures.
Bender et al. [2] presented several optimal algorithms for the
variants of the sparse matrix dense vector multiplication in
the combination of the I/Omodels of Aggarwal and Vitter [1],
and of Hong and Kung [7].

III. A GENERAL FRAMEWORK
A. FRAMEWORK
Given a graph databaseG, a query graph h and an edit distance
threshold τ , we propose a general framework for the graph
similarity search problem in external memory detailed in the
following three steps:
Step 1: Transform. We map each graph g in the graph

database G to a two-dimensional point (|Vg|, |Eg|). These
points can form a rectangle region R. Similarly, the num-
ber count filter [18] can also form a query rectangle Rh.
By partitioning R into subregions, we can reduce the query
region from R to a reduced region Qh. Both Rh and Qh are
defined in Section III-B.
Step 2: Index construction. For each subregion, we build

the q-gram matrix between the q-grams and the graphs
mapped into this subregion, and then store the q-grammatrix
in hybrid layout in external memory.
Step 3: Query processing. For each subregion in Qh, we

calculate the common q-grams between data graph g and
query graph h using the q-gram matrix, and then filter the
graphs that do not satisfy the q-gram counting filter to obtain
the candidate set Cand .

B. TRANSFORM
Given a graph database G, we consider each graph g in G as
a point (|Vg|, |Eg|) in the two-dimensional plane where the

x-axis and y-axis denote the respective number of vertices
and edges in g. Thus the graph database G can be considered
as a set of points S = {(|Vgj |, |Egj |) : 1 ≤ j ≤ n},
where n is the number of graphs in G. These points form
a rectangle region R = [xmin, xmax] × [ymin, ymax], where
xmin = minj{|Vgj |}, xmax = maxj{|Vgj |}, ymin = minj{|Egj |}
and ymax = maxj{|Egj |} for 1 ≤ j ≤ n. By partitioning R
into subregions, we can perform a query in a reduced query
region.

Given an initial division point (x0, y0) and a length l,
we partition R into disjoint subregions as follows. First, we
construct the initial subregion R0,0 = [x0 − l/2, x0 + l/2] ×
[y0 − l/2, y0 + l/2] of size l × l. Then, we extend along the
surrounding R0,0 to obtain subregions Ri,j of the same size
l×l, where i and j are the relative offsets with respect toR0,0 in
x-axis and y-axis, respectively. Finally, we repeat this process
until all points in R are exhausted. Then R is partitioned
into some disjoint subregions such that R = ∪i,jRi,j and
Ri,j ∩ Ri′,j′ = ∅ for all i 6= i′ and j 6= j′. Note that i and j
can be negative.
Definition 4 (Query Rectangle and Region): Given a

query graph h and an edit distance threshold τ , query rect-
angle Rh of h is defined as the rectangle [|Vh|−τ, |Vh|+τ ]×
[|Eh| − τ, |Eh| + τ ]. The query region Qh of h is the union
of all subregions intersecting with Rh, i.e., Qh = ∪i,jRi,j such
that Ri,j ∩ Rh 6= ∅.

Given two graphs g and h, if ged(g, h) ≤ τ , we know
that ||Vg| − |Vh|| + ||Eg| − |Eh|| ≤ τ , then we have |Vh| −
τ ≤ |Vg| ≤ |Vh| + τ and |Eh| − τ ≤ |Eg| ≤ |Eh| + τ .
According to the definition of Rh, we have (|Vg|, |Eg|) ∈ Rh.
As Rh ⊆ Qh, thus we have (|Vg|, |Eg|) ∈ Qh and hence only
need to perform the query in the reduced region Qh. Figure 2
gives an example to illustrate the concepts of region R, query
rectangleRh, and query regionQh. In the example of Figure 2,
we have Qh = {R0,0,R1,0,R0,−1,R1,−1}. Thus we only need
to perform the query on the subregions R0,0, R1,0, R0,−1,
and R1,−1.
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R0,0 R1,0

R0,-1 R1,-1
(|Vh|, |Eh|)

 Q

 R
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FIGURE 2. Illustration of R, Rh, and Qh.

For a given query graph h, since the subregions in Qh are
adjacent, we just need to find the boundaries of subregions
intersecting with Rh using the following formula:

Qh = ∪i,jRi,j for all i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2. (1)

where i1 = b(|Vh| − τ − (x0 − l/2))/lc and j1 = b(|Eh| −
τ − (y0 − l/2))/lc are the relative positions of the subregion
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in the lower left corner of Qh with respect to R0,0 in x-axis
and y-axis, respectively. i2 = b(|Vh| + τ − (x0− l/2))/lc and
j2 = b(|Eh| + τ − (y0 − l/2))/lc are the relative positions
of the subregions in the top right corner of Qh with respect
to R0,0 in x-axis and y-axis, respectively.

IV. MATRIX INDEX
In this section, we give two q-gram-based counting filters and
an index structure: q-gram matrix index, which is a matrix
index that has been used to similarity search [17].

A. HYBRID q-gram FILTERS
Definition 5 (Branch-Based q-gram): Given a graph g

and a vertex v in Vg, the branch structure [21] of v, denoted
by bv, is a tuple bv = (λ(v), adj(v)), where λ(v) is the label
of v and adj(v) is the multi-set of labels for edges adjacent
to v. The branch-based q-gram of v is the branch structure
of v. The branch-based q-gram set of graph g is defined as
B(g) = {bv : v ∈ Vg}.
It is trivial to see that (1) vertex insertion/deletion/

substitution will affect one branch-based q-gram, (2) edge
insertion/deletion/substitution will affect two branch-based
q-grams. Thus, one operation changes at most two branch-
based q-grams. Therefore, for any two graphs g and h when
we transform one graph to another after ged(g, h) edit opera-
tions, theymust share at least max{|Vg|−2·ged(g, h), |Vh|−2·
ged(g, h)} common q-grams. So, we can obtain the branch-
based q-gram counting filter as follows: if ged(g, h) ≤ τ ,
then we have |B(g) ∩ B(h)| ≥ max{|Vg| − 2τ, |Vh| − 2τ }.
Definition 6 (Label-Based q-gram): Given a graph g,

a label-based q-gram is the label of a vertex or an edge
of g. For the graph g, the set of its label-based q-gram is
L(g) = {λ(u) : u ∈ Vg or u ∈ Eg}, where λ(u) is the label
of u.

For the label-based q-gram, each edit operation affects
one label-based q-gram, thus we can obtain the label-based
q-gram counting filter as follows: if ged(g, h) ≤ τ , then we
have |L(g) ∩ L(h)| ≥ max{|Vg|, |Vh|} +max{|Eg|, |Eh|} − τ .

FIGURE 3. Branch-based q-gram (left) and label-based q-gram (right) sets.

In Figure 3, we show the branch-based q-gram and the
label-based q-gram sets of the graphs shown in Figure 1. The
number on the left of each subgraph is the times of the q-gram
occurring in the graph.

B. q-gram MATRIX INDEX
In this subsection, we give a matrix index structure, referred
to as q-gram matrix index, which is able to efficiently imple-
ment q-gram-based counting filters, including the branch-
based and the label-based q-gram counting filters used in this
paper.

Let U be the set of all distinct q-grams occurring in G and
Q(g) be the q-gram multi-set of a graph g. For the graph g,
we use a q-gram vector w(g) to represent its q-gram set Q(g),
where wj(g) is the number of occurrences of the q-gram Uj
in Q(g). The q-gram matrix W built on the graph database
G is an n × |U | matrix, where Wij = wj(gi). A schematic
representation of W is given below:

W =


w1(g1) w2(g1) . . . w|U |(g1)
w1(g2) w2(g2) . . . w|U |(g2)
...

...
...

...

w1(gn) w2(gn) . . . w|U |(gn)


Given a graph g, a query graph h and a q-gram Uj, only

when Uj ∈ Q(g) ∩ Q(h), the shared q-grams between g
and h increases by the amount of min{wj(g),wj(h)}. Thus
the number of common q-grams between graphs g and h is
|Q(g) ∩ Q(h)| =

∑|U |
j=1min{wj(g),wj(h)}.

In the following sections, we useWB andWL to denote the
branch-based and the label-based q-gram matrices, respec-
tively, wB(h) and wL(h) to denote the branch-based and the
label-based q-gram query vectors of h, respectively. Table 1
shows the branch-based q-gram matrix WB and the label-
based q-grammatrixWL built on the graphs g1 and g2 shown
in Figure 1, where 1 and 2 in the first row of Table 1 represent
the label of fine and thick edges in the graphs shown in
Figure 1, respectively.

TABLE 1. WB(left) and WL(right).

V. QUERY PROCESSING
In this section, we give the query method of q-gram matrix
index stored in hybrid layout in external memory.

Let w(h) be the q-gram query vector of h and yi be the
number of common q-grams between gi and h, thus we have
yi =

∑|U |
j=1min{wj(gi),wj(h)} = w(gi) ⊗ w(h), where ⊗ is a

generalized min operator, defined as follows:

a⊗ b =


min{a, b} if a and b are integers;∑

j aj ⊗ b if b is an integer and

a is a vector;∑
j aj ⊗ bj if both a and b are vectors.

Let Yi = max{|Q(gi)|−γgi ·τ, |Q(h)|−γh ·τ }, whereQ(gi)
andQ(h) denote the multi-sets of q-grams in gi and h, respec-
tively, γgi and γh are the respective maximum number of
q-grams that can be affected by an edit operation. According
to the principle of the q-gram counting filter [5], [20]: if
ged(gi, h) ≤ τ , graphs gi and hmust share at least Yi common
q-grams. Thus, it must satisfy yi ≥ Yi when ged(gi, h) ≤ τ .
So, the matrix representation of the q-gram counting filter is
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given as follows:

W ⊗ w(h) ≥ Y (2)

where W ⊗ w(h) = [y1, y2, · · · , yn] and Y =

[Y1,Y2, · · · ,Yn]. Applying formula (2) to the branch-based
q-gram counting filter and the label-based q-gram count-
ing filter, respectively, we obtain their corresponding matrix
representation as follows:

WL ⊗ wL(h) ≥ YL
WB ⊗ wB(h) ≥ YB

where YL[i] = max{|Vgi |, |Vh|} + max{|Egi |, |Eh|} − τ and
YB[i] = max{|Vgi | − 2τ, |Vh| − 2τ }. wL(h) and wB(h) are
the label-based and the branch-based q-gram query vectors
of h, respectively. For the graphs g1 and g2 shown in Figure 1,

WB =

(
4 1 1 1
6 1 2 1

)
and wB(h) = [3 1 0 1] by Table 1, we

have WB ⊗ wB(h) = [5, 5]. If τ = 2, we can get YB = [3, 6]
and then filter g2 out. Similarly, WL ⊗ wL(h) = [9, 9] and
YL = [11, 17], then we can filter g1 out. Thus none of graphs
pass the hybrid q-gram filter in this example.

We generally assume graphs to be sparse and so is the
corresponding matrixW . For instance, we sample 10 million
graphs at random from PubChem, and count the number of
zero entries in each row ofWB andWL . The result shows that
more than 90% entries in each row of both WB and WL are
zeros. The sparsity can be also observed from other studies
such as those from NCI/NIH whose graph databases include
millions of molecular structures with tens of nodes in each
graph [13]. Therefore, with a sparseW , the q-gram counting
filter that computes the number of common q-grams can be
converted into a sparse matrix-vector multiplication (SpMV)
problem: W ⊗ w(h) ≥ Y .

We use a list of triples (i, j,Wij) to store the nonzero
entries Wij at position (row i, column j). The order of this
list corresponds to the layout of the matrix in main memory.
Comparedwith the transaction graph database and the q-gram
matrixW , w(h) and Y are typically small, thus we store them
in main memory.

A. QUERY WITH COLUMN-MAJOR LAYOUT
Let x = w(h) be the q-gram query vector of the query
graph h. When we store W in column-major layout, only the
nonzero entries in the jth (xj 6= 0) column of W are needed
in computation, since when xj = 0, Wij ⊗ xj equals to zero
that has no contribution to yi (y = W ⊗ x). For instance, the
branch-based q-gram vector wB(h) 6= 0 for j = 1, 2, and 4,
namely only the nonzero entries of the columns 1, 2, and 4
of WB are needed in computation.

Let I = {j : xj 6= 0} be the set of nonzero entries of x,
we maintain an array y of size n in main memory to compute
W ⊗ x, where yr stores the sum of all nonzero entries Wrc
such that c ∈ I . The query algorithm is shown in Algorithm 1,
where W is the q-gram matrix stored in external memory in
column-major layout and x is the q-gram query vector resided
in main memory. Y is the q-gram vector that stores the least

number of common q-grams between graph gi and h, resided
in main memory.

Algorithm 1 QMatrix-C(W , x,Y )
Input: W , x,Y
Output: Cand = {gi : W (i, .)⊗ x ≥ Yi}

1 Cand ← ∅, I ← {j : xj 6= 0}
2 y[1..n]← 0
3 for j← 1 to |I | do
4 left ← NIj
5 while left > 0 do
6 Read min{B, left} triples (r, c,Wrc)

into main memory, s.t, c = Ij
7 yr ← yr +min{Wrc, x[Ij]}
8 left ← left −min{B, left}

9 for i← 1 to n do
10 if yi ≥ Yi then
11 Cand ← Cand ∪ {gi}

12 return Cand

In Algorithm 1, NIj denotes the total number of nonzero
triples in column Ij and left denotes the number of nonzero
triples have not been read into main memory in column Ij.
We first read the triples (r, c,Wrc) in column Ij (i.e., c = Ij)
into main memory to update the sum yr in lines 3–8, and then
determine whether a graph gi is a candidate or not by yi ≥ Yi
in lines 9–11.

B. QUERY WITH HYBRID LAYOUT
We can also store W in row-major layout and sequentially
read all nonzero entries to directly perform an update yi =
yi +Wij ⊗ xj. Compared with row-major layout, the column-
major layout can skip many columns of W , avoiding all
triples to participate in computation. However, the column-
major layout cannot properly support the random access of
the triples of a given graph, since these triples are scattered on
different disk blocks. In order to reduce the number of query
I/Os, we have the following two key observations: (i) not
all the triples in W are necessary in computation, especially
for those of graphs do not meet the edit distance constraint.
(ii) the distribution of nonzero entries in W may not be
uniform, such as the occurrence of c-c structure in most
of chemical structure makes the corresponding column very
dense. This will lead to the number of nonzero entries in the
dense part occupies the vast majority of the total number of
nonzero entries. For the first case, we store the sparse partWS
ofW in column-major layout and filter the graphs that do not
meet the edit distance constraint to obtain a temporary graph
candidateCs. For the second case, we store the dense partWD
in row-major layout and filter the graphs in Cs to obtain the
final candidate set Cand .

We divide the q-gram universal set U into two disjoint
subsets D and S. If Ui ∈ D, the entries in the column i of W
are in the dense part. Otherwise, they are in the sparse part.
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Correspondingly, we divide W into two parts: the dense part
WD and the sparse part WS such that W = [WD,WS ] and
so as the query vector x = [xD, xS ]. Therefore, W ⊗ x =
[WD,WS ]⊗[xD, xS ] = WD⊗xD+WS⊗xS . By the definition
of ⊗, WD(i, .) ⊗ xD =

∑
Uj∈Dmin{Wij, xj} ≤

∑
Uj∈D xj,

namely, WD ⊗ xD ≤ ID, where ID[i] =
∑

Uj∈D xj. If we
compute WS ⊗ xS ≥ Y − ID to obtain the temporary graph
candidate Cs, then we have Cand ⊆ Cs. The reason is as
follows: for any graph g ∈ Cand , it must satisfy yi =
W (i, .) ⊗ x = WD(i, .) ⊗ xD + WS (i, .) ⊗ xS ≥ Yi, thus
WS (i, .) ⊗ xS ≥ Yi −WD(i, .) ⊗ xD ≥ Yi − ID[i], and hence
we have gi ∈ Cs. So we can filter the graphs in Cs to obtain
the final candidate set Cand without pruning those graphs
satisfying the graph edit distance constraint.

There exists 2|U | ways to divide U into two disjoint
subsetsD and S. We use a simple partition here. First, we sort
W by the number of nonzero entries of each column, such
that δ(i1) ≤ δ(i2) ≤ . . . ≤ δ(i|U |), where δ(ij) denotes the
number of nonzero entries in column ij of W , 1 ≤ ij ≤ |U |
and i1, i2, . . . , i|U | is a permutation of 1, 2, . . . , |U |. ThenU is
divided by columns into two parts:D = {Uik : k ≥ α|U |+1},
and S = U − D, where α is referred to as dense factor.
The query algorithm on hybrid layout is shown in

Algorithm 2, where WS is the sparse part of W stored in
column-major layout, and WD is the dense part of W stored
in row-major layout, x is the query vector and Y is the vector
that stores the least number of common q-grams resided in
main memory.

Algorithm 2 QMatrix-SR(WS ,WD, x,Y )
Input: WS ,WD, x,Y
Output: Cand = {gi : W (i, .)⊗ x ≥ Yi}

1 Cand ← ∅
2 [xD, xS ]← x
3 ID[1..n]←

∑
Uj∈D xj

4 [yS ,CS ]← QMatrix-C(WS , xS ,Y − ID)
5 for gi ∈ CS do
6 Read nonzero entries of gi in WD into memory
7 yD[i]← WD(i, .)⊗ xD
8 if yD[i]+ yS [i] ≥ Yi then
9 Cand ← Cand ∪ {gi}

10 return Cand

In Algorithm 2, we first divide the query vector x into two
parts xD and xS in line 2, and then use Algorithm 1 to obtain
the temporary candidate set Cs in line 4. Finally, we read the
nonzero entries of graphs in Cs to obtain Cand in lines 5–9.
When bothWB andWL are used to filter, the naive method

is to use WB and WL to obtain the branch-based candidate
set CB and the label-based candidate set CL by Algorithm 2,
respectively, thus the candidate setCand =CB∩CL . However,
we can use the obtained temporary candidate set to reduce
the number of query I/Os as follows. First, we obtain the
temporary candidate sets CS

B and CS
L by the sparse parts

W S
B of WB and W S

L of WL , respectively. Then, we read the
nonzero entries of graphs in CS

B ∩ C
S
L in WD

L to obtain the

label-based candidate set CL . Finally, we read the nonzero
entries of graphs in CL in WD

B to obtain Cand , where WD
B

and WD
L are the dense parts of WB and WL , respectively.

C. QUERY ALGORITHM
Algorithm 3 (QMatrix-MSR) gives the whole query algo-
rithm, where W i,j

D is the dense part of the q-gram matrix
index W i,j corresponding to subregion Ri,j, and W

i,j
S is the

sparse part of W i,j. x i,j is the q-gram query vector of h, and
Y i,j stores the least number of common q-grams.

Algorithm 3 QMatrix-MSR(h, τ, l, x0, y0)
Input: h, τ, l, x0, y0
Output: Cand

1 Cand ← ∅
2 Qh← ∪i,jRi,j for all i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2
3 foreach Ri,j ⊆ Qh do
4 Ci,j← QMatrix-SR(W i,j

S ,W
i,j
D , x

i,j,Y i,j)
5 Cand ← Cand ∪ Ci,j

6 return Cand

For a query graph h, we first compute the query region Qh
in line 2 using formula 1, where i1 = b(|Vh| − τ − (x0 −
l/2))/lc, j1 = b(|Eh| − τ − (y0 − l/2))/lc, i2 = b(|Vh| + τ −
(x0− l/2))/lc and j2 = b(|Eh|+ τ − (y0− l/2))/lc. Then, we
only need to use the matrices corresponding to the subregions
Ri,j such that Ri,j ⊆ Qh, to obtain the candidate set Cand in
lines 3–5.

Query I/O Complexity. Given a q-gram matrix
W with N nonzero entries storing in hybrid layout,
the query region Qh might contain all points in R,
namely, in the worst case all graphs are needed in the
query. Thus, the query I/O complexity of QMatrix-MSR
is O(N/B).

VI. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our proposed
method and compare it with κ-AT [11], GSimJoin [20],
C-Star [18], and Mixed [12] on two real datasets. The effi-
ciency of our method in external memory is evaluated on the
large PubChem dataset. We randomly select 50 graphs from
each dataset as its query graphs.

A. DATA SETS AND SETTINGS
We choose two publicly available real datasets in our experi-
ment, described as follows.

(1) AIDS.1 It is an antivirus screen compound dataset from
the Development and Therapeutics Program in NCI/NIH to
discover compounds capable of inhibiting the HIV virus,
which contains 42,687 chemical compounds. We generate
the labeled graphs from these chemical compounds and omit

1http://dtp.nci.nih.gov/docs/aids/aidsdata.html
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Hydrogen atoms as did in [15]. It has an average number of
25 vertices and 27 edges.

(2) PubChem.2 It is a National Institute of Health (NIH)
funded project to record experimental data of chemical inter-
actions with biological systems in NIH. It contains more than
50 million chemical compounds and records their biological
activities until today. We also follow the same procedure as
did in [15] to transform the chemical compounds to labeled
graphs. The average number of vertices and edges
are 23 and 25, respectively.

We conducted all experiments on a HP Z800 PC with
a 2.67 GHz CPU and 24GB memory, running Ubuntu
12.04 operating system. We implemented our algorithm
in C++, with −O3 to compile and run. To ensure our
index being maintained in external memory during query,
we ran the shell command: ‘‘sh −c sync && echo 3 >

/proc/sys/vm/drop_caches’’ to clear the in-memory cache
data before each query. We set the simple path p = 4 in
GSimJoin and κ = 1 in κ-AT, which are the recommended
values [21]. We set disk block size B = 4KB, subregion length
l = 2, and dense factor α = 0.06. In the following sections,
we refer LBMatrix to our index structure.

B. EVALUATING TRANSFORMATION
In this section, we randomly select 25 million data graphs
from PubChem, and vary τ from 1 to 5 to evaluate our
proposed transformation in Section III-B. We use Basic
LBMatrix to denote the basic implementation of the branch-
based and the label-based q-gram matrices, both of which
are built on the whole region. Figure 4 presents the average
number of query I/Os and total filtering time for the fifty
query graphs.

FIGURE 4. Average query I/Os and total filtering time on PubChem.

Compared with Basic LBMatrix, the number of query I/Os
required for +Transformation reduces by more than 80%.
Regarding the filtering time, +Transformation can achieve
6.5x speedup on the average. Thus, the transformation can
greatly reduce the number of query I/Os.

In addition, we fix τ = 3 and vary the subregion length l
from 1 to 5, to evaluate the effect of l on the query perfor-
mance. Figure 5 shows the average number of query I/Os and
total filtering time. We know for sure that the average number
of I/Os first decreases and then increases. This is because
that: (1) Small l will produce too many subregions, making
each of them only contains few graphs, thus most of disk

2http://pubchem.ncbi.nlm.nih.gov/

FIGURE 5. Average number of query I/Os and total filtering time on
PubChem.

blocks storing the triples are not full. This will lead to more
query I/Os. (2) Large l will produce a large query region Qh,
and hence also needs more query I/Os.

C. EVALUATING HYBRID LAYOUT
To evaluate the effectiveness of our proposed hybrid layout,
we randomly select 25 million data graphs from PubChem
and compare it with the other two matrix layouts, i.e., row-
major and column-major layout.

FIGURE 6. Average number query I/Os and total filtering time on PubChem.

Figure 6 shows the average number of query I/Os and total
filtering time. By Figure 6, we can see that the column-major
layout needs the most I/Os. This is because that the column-
major layout do not support random access of triples, making
the temporary candidate set CL obtained by computingWL⊗

wL(h) ≥ YL cannot be used to reduce the number of query
I/Os in computation of WB ⊗ wB(h) ≥ YB. Hybrid layout
achieves a reduction of I/Os over column-major layout by
15% and 1.2x speedup in filtering time on the average.

FIGURE 7. Average number query I/Os and total filtering time on PubChem.

In addition, we fix τ = 3 and vary the dense factor α from
0 to 0.1, to evaluate the effect of α on the query performance.
Figure 7 plots the average number of query I/Os and total
filtering time. The average number of I/Os required by hybrid
layout first decreases and then increases, and achieves the
minimum when α = 0.06. There are several factors contribut-
ing to this trend: (1) Small α indicates that more columns
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FIGURE 8. Building time and index size on AIDS.

are stored in column-major layout. This will lead to more
query I/Os involved in computation of the temporary can-
didate set Cs by using WS . (2) Large α indicates that more
columns are stored in row-major layout. This will produce
more temporary candidates, thus more query I/Os are needed
in computation of the final candidate set Cand by usingWD.

D. COMPARING WITH IN-MEMORY METHODS
In this subsection, we compare LBMatrix with the state-of-
the-art in-memory graph similarity searchmethods, including
κ-AT, C-Star, GSimJoin and Mixed.

FIGURE 9. Building time and index size on PubChem.

1) EVALUATING INDEX CONSTRUCTION
We vary the size of datasets to evaluate the index construction
performance of the above methods on the small dataset AIDS
and large dataset PubChem, and show the results in Figure 8
and Figure 9.

Regarding the index size, κ-AT has the least storage cost.
Mixed does not perform well, since it builds a U-tree where
the internal nodes contain the information of the leaf nodes.
Since we only need to store the nonzero entries ofWB andWL ,
the index size of LBMatrix is smaller than GSimJoin, C-Star
andMixed. For the large dataset PubChem, all testedmethods
that maintain the index structure in main memory cannot
properly run when the database size is more than 15M, while
LBMatrix resided in the external memory can easily scale to
such large dataset. Note that, although κ-AT has a smaller
index size than LBMatrix, its main memory consumption is
larger than LBMatrix during index building. This is because
that the index structure of κ-AT has been residing in main
memory during index building, while LBMatrix continually
write the nonzero entries into disk blocks to reduce the main
memory consumption.

Among all methods,C-Star performs best in index building
time for it only needs to enumerate all star structures in
each data graph without any complex index. LBMatrix has

the longest index building time since it is an external index
structure, which needs I/Os during index building.

2) EVALUATING FILTERS
For the small dataset AIDS, we vary threshold τ from 1 to 5
to evaluate the filter efficiency and ability. Figure 10 shows
the average candidate size and total response time (i.e., the
filtering time plus the verification time) for the fifty query
graphs of κ-AT(denoted by ‘‘T’’), C-Star(denoted by ‘‘C’’),
GSimJoin(denoted by ‘‘P’’), Mixed(denoted by ‘‘M’’) and
LBMatrix(denoted by ‘‘L’’), where the line labeled with tri-
angle gives the known empirical lower bound.

FIGURE 10. Average candidate size and total response time on AIDS.

Regarding the candidate size, Mixed has the smallest can-
didate size and shows the best filtering ability among all
tested methods. κ-AT does not perform well for large τ ,
because there exists much more overlapping structures
among its q-grams. LBMatrix has a close candidate size
with Mixed, and performs better than GSimJoin, κ-AT, and
C-Star. For the response time, Mixed has the shortest time in
most case. C-Star performs occasionally worst because of its
cost to construct the bipartite graph between each data graph
and the query graph. Although LBMatrix is an external index
structure, it performs better thanGSimJoin, κ-AT, and C-Star
in most case.

FIGURE 11. Average candidate size and total response time on PubChem.

For the large dataset PubChem, we fix τ = 3 and vary the
size of PubChem from 500K to 25M to evaluate the query
performance of all tested methods, and show the results in
Figure 11. Among all tested methods, Mixed has the small-
est candidate size and the shortest response time when the
database size is less than 5M. However, when the database
size is 10M, both Mixed and GSimJoin cannot properly run
for thememory error, and both the filtering time ofC-Star and
the verification time of κ-AT are longer than 24 hours, making
all of them be unsuitable for such large dataset. LBMatrix can
easily scale to it and obtain the required graphs in 1 hour.
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FIGURE 12. The average query I/Os and total filtering time on PubChem.

E. COMPARING WITH EXTERNAL MEMORY METHODS
In this section, we compare LBMatrix with κ-AT-E and
LB-Inverted on the large PubChem dataset, where
κ-AT-E and LB-Inverted are the q-gram-based external
inverted indexes.

We first give a brief description of the implementation
of the q-gram-based external inverted index as follows. For
each q-gram uj, we store a inverted list containing the tuples
(i,wj(gi)), where wj(gi) is the number of occurrence of
q-gram uj in gi. The tuples in a inverted list are stored in
continuous disk blocks. For κ-AT-E, we use the 1-adjacent
subtrees as q-grams recommended in practice in [21] to
construct the tree-based q-gram external inverted index. For
LB-Inverted, we construct the branch-based q-gram exter-
nal inverted index and label-based q-gram external inverted
index, respectively.

For κ-AT-E, we query the tree-based q-gram inverted index
to obtain the candidate set Cand . For LB-Inverted, we first
query the branch-based q-gram inverted index to obtain the
candidate set CB, and then query the label-based q-gram
inverted index to obtain the candidate set CL , thus the final
candidate set Cand = CB ∩ CL . The query method on
the q-gram-based external inverted index is similar with
Algorithm 1 in Section V-A.

We randomly select 25 million data graphs from Pub-
Chem, and vary τ from 1 to 5 to evaluate the performance
of the above three external index structures, i.e., LBMatrix,
κ-AT-E and LB-Inverted. Figure 12 shows the average num-
ber of query I/Os and total filtering time for the fifty query
graphs.

Among all methods, LBMatrix needs the least number
of query I/Os and shortest filtering time. Compared with
LB-Inverted, the number of query I/Os can be reduced by
85% on the average. Both κ-AT-E and LB-Inverted have a
worse performance possibly for the following two reasons:
(1) The query graph may contain most of the ‘‘dense’’
q-grams, leading to most of tuples (i,wj(gi)) involved in
the computation. (2) All graphs are involved in the query.
In addition, we also observe that the number of query I/Os
required for LB-Inverted is greater than that for κ-AT-E.
This is because that both the branch-based and label-based
q-gram inverted indexes are used to obtain the candidate set in
LB-Inverted, making the number of tuples involved in the
query of LB-Inverted are greater than that needed in the
query of κ-AT-E. The difference of the number of query I/Os
between LBMatrix and κ-AT-E gets smaller under large τ

setting, because the query region Qh grows larger.
Regarding the filtering time, LBMatrix can achieve 3.5x
speedup compared with κ-AT-E and 6.5x speedup compared
with LB-Inverted on the average.

VII. CONCLUSIONS
In the paper, we study the problem of graph similarity search
under edit distance constraints in the I/O model. Unlike
previous methods, our index structure works well with big
data applications in an external memory setting. We build the
q-gram matrix and convert the q-gram counting filter into a
sparse matrix-vector multiplication problem to seek for an
efficient query method. In addition, the transformation of the
global filter into a two-dimensional query rectangle allows us
to preform the query in a reduced region, which significantly
reduces the number of query I/Os in practice. Comprehensive
experiments on real data sets demonstrate that our method
outperforms the state-of-the-art methods.
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