
1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

MSQ-Index: A Succinct Index for Fast Graph
Similarity Search

Xiaoyang Chen, Hongwei Huo, Senior Member, IEEE, Jun Huan, Senior Member, IEEE,
Jeffrey Scott Vitter, Fellow, IEEE, Weiguo Zheng and Lei Zou

Abstract—Graph similarity search under the graph edit distance constraint has received considerable attention in many applications,
such as bioinformatics, data mining, pattern recognition and social networks. Existing methods for this problem have limited scalability
because of the huge amount of memory they consume when handling very large graph databases with tens of millions of graphs. In
this paper, we present a succinct index that incorporates succinct data structures and hybrid encoding to achieve improved query time
performance with minimal space usage. Specifically, the space usage of our index requires only 5%–15% of the previous
state-of-the-art indexing size while at the same time achieving several times acceleration in query time on the tested data. We also
improve the query performance by augmenting the global filter with range searching, which allows us to perform similarity search in a
reduced region. In addition, we propose two effective lower bounds together with a boosting technique to obtain the possible smallest
candidate set. Extensive experiments demonstrate that our proposed approach is superior both in space and filtering to the
state-of-the-art approaches. To the best of our knowledge, our index is the first in-memory index for this problem that successfully
scales to cope with the large dataset of 25 million chemical structure graphs from the PubChem dataset. The source code is available
online.

Index Terms—Graph indexing, similarity search, filter boosting, succinct index, hybrid encoding

F

1 INTRODUCTION

G RAPHS are widely used to model complicated data
objects in many disciplines, such as bioinformatics [24],

social networks [25], software and data engineering [35].
Effective analysis and management of graph data become
increasingly important. Many graph-based queries have
been investigated, which can be roughly divided into two
broad categories: graph exact search [2], [34] and graph
similarity search [19], [28], [39]. Compared with exact
search, similarity search can provide a robust solution
that permits error-tolerant and supports for searching not
precisely defined patterns.

Similarity computation between two labeled graphs is a
core operation of graph similarity search. There are at least
four similarity metrics being well investigated: graph edit
distance [12], [32], [36], [39], maximal common subgraph
distance [4], [10], graph alignment [1], [33], and graph kernel
function [29], [31]. In this paper, we focus on the graph
edit distance (GED) because it is applicable to virtually all
types of data graphs and can also capture structural differ-
ences. GED has been widely used in various applications,
including pattern recognition [9], graph classification [23]

• Xiaoyang Chen and Hongwei Huo are with Xidian University, Xi’an
710071, Shaanxi, China. E-mail: xychen1991@stu.xidian.edu.cn and
hwhuo@mail.xidian.edu.cn

• Jun Huan is with Baidu Research, Baidu Technology Park, No. 10
Xibeiwang East Road, Haidian District, Beijing 100094, China. E-mail:
huanjun@baidu.com

• Jeffrey Scott Vitter is with the University of Mississippi, University, MS
38677-1848, USA. E-mail: jsv@OleMiss.edu

• Weiguo Zheng is with School of Data Science, Fudan University,
Shanghai 200433, China. E-mail: zhengweiguo@fudan.edu.cn

• Lei Zou is with Peking University, Beijing 100080, China. E-mail:
zoulei@pku.edu.cn

Manuscript received XX XX, 2017; revised XX XX, 201X

and chemistry analysis [22].
The graph edit distance between two graphs h and g,

denoted by ged(h, g), is the minimum length of an edit path
between h and g, where an edit path is a sequence of edit
operations that transforms one graph to another. Typical
edit operations [18] are inserting and deleting a vertex or
an edge, and relabeling a vertex or an edge.

Based on the metric, GED, we study the following graph
similarity search problem: Given a graph database G, a
query graph h and a threshold τ , this problem aims to find
all graphs g in G such that ged(h, g) ≤ τ . Unfortunately,
computing GED is known to be an NP-hard problem [36].
Thus, the basic solution for this problem that computes GED
for all pairs of h and data graphs g ∈ G may be lead to
unsatisfactory computational efficiency.

Most of existing methods [6], [32], [37], [38], [39] adopt
the filtering-and-verification framework to speed up graph
similarity search. In the filtering phase, GED lower bounds
are employed to prune as many false-positive graphs
from G; this phase can be efficiently accomplished with
specified index structures. The remaining unpruned graphs
constitute a candidate set, C, and are validated with expen-
sive GED computations in the verification phase.

1.1 Limitations

Lots of graph similarity search methods have been pro-
posed [32], [36], [37], [38], [39] and gained promising results.
However, these methods still suffer from huge storage and
expensive query cost when dealing with large transaction
graph databases [4].

Some methods have to build an index structure to
efficiently prune graphs in the filtering phase. For instance,

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

GSimJoin [37] built an inverted index for all path-based q-
grams, and Mixed [39] proposed an index structure, u-tree,
storing all branch and disjoint substructures. These index
structures usually store each entry in an int type. This may
yield an unaffordable storage cost for large graph databases.

On the other hand, some may produce expensive query
cost owing to loose GED lower bounds and inefficient
filtering. For the former, they would produce a large
candidate set, leading to unacceptable verification cost. For
the later, they filter data graphs from the whole database
while usually only a small proportion of data graphs are
similar to the query graph.

1.2 Contributions

To solve the above issues, we propose a space-efficient
index structure, called MSQ-Index, by incorporating succinct
data structures and hybrid encoding. MSQ-Index consists of
multiple succinct q-gram trees, where each tree is compressed
through a hybrid encoding schema. Meanwhile, several
auxiliary succinct data structures with a little storage cost
are proposed to ensure that each compressed entry can be
accessed in constant time.

MSQ-Index can also provide efficient query processing,
which benefits from the following two aspects: (1) two
GED lower bounds together with a boosting technique are
proposed to obtain the smallest possible candidate set; (2)
a preprocessing method is provided to help MSQ-Index
perform similarity search only on a small percentage of data
graphs in the database.

In summary, our contributions are summarized below.

• We propose a succinct index structure, called succinct
q-gram tree, which combines succinct data structures
and hybrid encoding to achieve efficient similarity
search with minimal space usage. Each entry in this
tree is compressed and needs only several bits to
store, which takes much fewer bits than that used
to store an int type in existing indexing methods.

• We propose two effective GED lower bounds,
called degree-based q-gram counting lower bound
and degree-sequence lower bound, to prune data
graphs. Moreover, we provide a boosting technique
to improve these lower bounds.

• We propose a preprocessing method, which helps us
perform similarity search only on a small percentage
of data graphs in the database.

• We have conducted extensive experiments on both
small and large datasets to evaluate the index size,
construction time, filtering ability, and response time.
The results confirm the effectiveness and efficiency of
our proposed method and show that it can scale well
to cope with the large dataset consisting of 25 million
chemical compounds from the PubChem dataset.

• The source code is available online [5].

The rest of this paper is organized as follows: In
Section 2, we investigate research works related to this
paper. In Section 3, we introduce the problem definition
and the filtering principle. In Section 4, we present our
indexing method MSQ-Index. In Section 5, we give the
theoretical analysis of MSQ-Index. In Section 6, we report the

experimental results. Finally, we make concluding remarks
in Section 7.

2 RELATED WORK

Recently, the graph similarity search problem has received
considerable attentions, and existing methods to this prob-
lem can be found in the literatures [6], [11], [12], [21], [30],
[32], [36], [37], [38], [39].
Filters. Inspired by the q-gram concept in string similarity
queries, Wang et al. firstly proposed a tree-based q-gram
counting filter in κ-AT [32], where a tree-based q-gram is
defined as a κ-adjacent subtree consisting of a vertex and
paths whose length is less than κ starting from this vertex.
While, Zhao et al. considered a simple path as a path-
based q-gram in GSimJoin [37]. The principle of the q-
gram counting filter is stated as follows: If ged(h, g) ≤ τ ,
then the number of common q-grams between two graphs
h and g satisfies |Q(h) ∩ Q(g)| ≥ max{|Q(h)| − Ds(h) ·
τ, |Q(g)| − Ds(g) · τ}, where Q(·) is the q-gram multiset
and Ds(·) is the maximum number of q-grams that can be
affected by an edit operation. Clearly, the q-gram counting
filter can be efficiently finished in O(max{|Q(h)|, |Q(g)|})
time. Nevertheless, this counting filter may suffer from poor
filtering ability when Ds(h) and Ds(g) are large.

Another class of filter is the mapping distance-based
filter, which derives GED lower bound by computing the
mapping distance between two graphs. In C-Star [36], Zeng
et al. decomposed a graph into star structures (i.e., 1-
adjacent subtrees) and then computed the mapping distance
of star structures of h and g through the bipartite matching.
While, Zheng et al. employed the branch structures (i.e.,
star structures without end vertices) in Mixed [39]. The
Hungarian algorithm [20] is employed to compute the
bipartite matching, whose time complexity is O(|V |3),
where |V | = max{|Vh|, |Vg|}. This class of filter may be
inefficient when it is performed pairwise computations
between h and all data graphs g in the database [30].

The substructures in the aforementioned filters are fixed-
size, whereas Zhao et al. introduced a partition-based
filter in Pars [38], which divided each data graph g into
τ + 1 non-overlapping substructures and pruned g if there
exists no substructure that is subgraph isomorphic to h.
Later, Liang et al. proposed a parameterized, partition-
based lower bound that can be instantiated into a series
of tight lower bounds in ML-Index [21]. Whether it is Pars
or ML-Index, it needs to perform subgraph isomorphism test
during similarity search. However, subgraph isomorphism
test is an NP-hard problem [34] and may consume a large
amount of time. Therefore, both Pars and ML-Index may
suffer from inefficient filtering for large graph databases.

It is worth to mention that the above filters show
different performance on different datasets and one can
hardly prove the merits of them in theory [11].
Indexing Techniques. Several indexing techniques have
been proposed to speed up the computation of the above
filters through maximizing computation sharing. In κ-AT,
GSimJoin, and Pars, they employed an inverted index
to store the tree-based q-grams, path-based q-grams, and
disjoint substructures, respectively. For Mixed, it used an
R-tree [14] like index structure u-tree to store all branch

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1: Notations

Symbol Description
| · | size of a set, or an array.
G graph database
τ threshold of graph edit distance
g (or h) data (or query) graph
ged(h, g) graph edit distance between h and g
D(g) (orL(g)) degree-based (or label-based) q-gram multiset
σg degree-sequence of g
δ the boosting parameter
λD(h, g) degree-based q-gram counting lower bound
λL(h, g) label-based q-gram counting lower bound
λS(h, g) degree-sequence lower bound
ξDi (h, g) the i-th boosted lower bound of λD(h, g)
ξLi (h, g) the i-th boosted lower bound of λL(h, g)
ξSi (h, g) the i-th boosted lower bound of λS(h, g)
A the whole region formed by G
Qh the query region formed by h

and disjoint substructures. SEGOS [30] introduced a two-
level index structure to speed up C-Star. In ML-Index,
they designed a multi-layered index structure, where each
layer employed an inverted index to store the partitioned
substructures. The above index structures all employ an int
type to store each entry. This may yield their index sizes too
large to fit into the main memory when dealing with large
graph databases.
GED Computation. A widely used method to compute
GED is based on the A? algorithm [15], [27]. Zhao et al. [37],
[38] designed several heuristic functions to improve A?. Re-
cently, Gouda et al. proposed a novel edge-based mapping
method for exact GED computation, called CSI GED [12],
based on common substructure isomorphism. CSI GED em-
ploys the backtracking search combined with three specific
heuristics, gaining an excellent performance. Later, Chen et
al. [7] introduced a beam-stack search based method for
GED computation.

3 PROBLEM DEFINITION AND FILTERING PRINCIPLE

In this section, we first provide formal definitions of graph
edit distance and graph similarity search in section 3.1 and
then introduce the filtering principle in section 3.2. Table 1
lists some notations used in the paper.

3.1 Problem Definition
For ease of presentation, we only focus on simple, undi-
rected graphs without multi-edges or self-loops. Let Σ be
a set of discrete-valued labels. We define a labeled graph
as a triplet g = (Vg, Eg, lg), where Vg is the set of vertices,
Eg ⊆ Vg × Vg is the set of edges, lg : Vg ∪ Eg → Σ is the
labeling function that assigns a label to a vertex or an edge.
For a vertex u, we use lg(u) to denote its label. Similarly,
lg(e(u, v)) is the label of edge e(u, v). ΣVg = {lg(u) : u ∈
Vg} and ΣEg = {lg(e(u, v)) : e(u, v) ∈ Eg} are the label
multisets of Vg and Eg , respectively. The graph size refers to
|Vg| in this paper.

Definition 1 (Subgraph Isomorphism [34]). Given graphs g
and h, g is subgraph isomorphic to h, denoted by g ⊆ h, if
there exists an injective function f : Vg → Vh, such that (1)
∀v ∈ Vg , f(v) ∈ Vh and lg(v) = lh(f(v)); (2) ∀e(u, v) ∈ Eg ,
e(f(u), f(v)) ∈ Eh and lg(e(u, v)) = lh(e(f(u), f(v))). If
g ⊆ h and h ⊆ g, then g is graph isomorphic to h (or vice versa),
denoted by g ∼= h.

Six edit operations [3] can be used to transform one
graph to another, including inserting/deleting a vertex or
an edge, and substituting the label of a vertex or an edge.
An edit path P = 〈p1, p2, . . . , pk〉 is a sequence of edit
operations that transforms graph h to graph g (or vice
versa), denoted as h = h0 p1−→ . . .

pk−→ hk ∼= g, where edit
operation pi is applied to graph hi−1 to obtain the graph hi,
for 1 ≤ i ≤ k. We define the number of edit operations in P
as the length of the edit path and call P optimal only when
it has the minimum length among all possible edit paths.

Definition 2 (Graph Edit Distance). Given two graphs h and g,
the graph edit distance between them, denoted by ged(h, g), is the
length of an optimal edit path between them, or the minimum
number of edit operations needed to transform one graph to
another.

Problem statement: Given a graph database G = {g1, g2,
. . ., g|G|}, a query graph h and a threshold τ , the problem is
to find all data graphs g in G such that ged(h, g) ≤ τ .
Example 1. Fig. 1 shows a query graph h and three data
graphs g1, g2 and g3. We can compute ged(h, g1) = 5,
ged(h, g2) = 4, and ged(h, g3) = 3. If τ = 3, then g3 is
the required graph.

A A

C B

C

A C

A

CA A

C

A

C

B

h g1 g2 g3

Fig. 1: Query graph h and data graphs g1, g2, and g3.

3.2 Filtering Principle

In this section, we first propose two effective GED lower
bounds and then provide a technique to boost them.

3.2.1 Q-Gram Counting Lower Bounds

Definition 3 (Degree-based q-gram). Let Dv = (lg(v),N (v),
d(v)) be the degree structure (also called branch structure [39])
of a vertex v, where lg(v) is the label of v, N(v) is the multiset
of edge labels for those edges adjacent to v, and d(v) is the degree
of v. The degree-based q-gram of v is defined as Dv , and the
degree-based q-gram multiset of g is D(g) = {Dv : v ∈ Vg}.

As discussed in [39], a vertex edit operation (i.e., insert-
ing, deleting or substituting a vertex) affects one degree-
based q-gram, and an edge edit operation (i.e., inserting,
deleting or substituting an edge) affects two degree-based q-
grams. Based on the principle of q-gram counting filter [32],
[37], we then establish the following degree-based q-gram
counting lower bound.

Theorem 1 (Degree-based q-gram counting lower bound).
Given two graphs h and g, then we have ged(h, g) ≥ λD(h, g),
where λD(h, g) = max{|Vh|, |Vg|}− 1

2 (|ΣVh ∩ΣVg |+ |D(h)∩
D(g)|).

Proof. See Appendix A in supplementary materials.

On the other hand, considering the label of a vertex or an
edge as a label-based q-gram, we then obtain the label-based
q-gram counting lower bound: ged(h, g) ≥ λL(h, g), where
λL(h, g) = max{|Vh|, |Vg|}+max{|Eh|, |Eg|}−|L(h)∩L(g)|,

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

L(h) = ΣVh∪ΣEh , and L(g) = ΣVg∪ΣEg . This lower bound
is a rewritten form of the label counting filter [37].

Fig. 2 shows the degree-based and label-based q-gram
multisets of graphs shown in Fig. 1, where the vertex degree
in each degree-based q-gram is omitted. The number on the
left of each q-gram is the times of this q-gram occurring in
the graph.

A1

C2

A3

C1

C1

B1

C1

A1

A2

B1

C1
g1 g2 g3 h

A1

C2

3

A3

C1

3

A1

B1

C2

4

A2

B1

C1

4

g1 g2 g3 h

Fig. 2: Degree-based(left) and label-based(right) q-gram multisets.

Example 2. Let τ = 2. Considering the graphs shown in
Fig. 1, we compute λD(h, g2) = 2.5 and λL(h, g2) = 2.
Clearly, λD(h, g2) > τ , thus we can filter g2 out. Similarly,
we obtain λD(h, g1) = 2 and λL(h, g1) = 3, thus we also can
filter g1 out since λL(h, g1) > τ . However, for g3 we have
λD(h, g3) = 2 ≤ τ and λL(h, g3) = 1 ≤ τ , which means
that g3 passes these two q-gram counting lower bounds.

3.2.2 Degree-sequence Lower Bound

In this section, we propose a degree-sequence lower bound,
which is capable of filtering g3 out. The idea behind is that
if h is isomorphic to g, then they must have the same degree
sequence; thus, the distance between the degree sequences
of h and g is a lower bound of ged(h, g).

Definition 4 (Degree sequence). The degree sequence of
graph g, denoted by σg , is defined as a monotonic non-increasing
sequence consisting of the degree of vertices of g.

Definition 5 (Degree-sequence distance). Given two de-
gree sequences σh and σg , the distance between them is de-
fined as dis(σh, σg) = d 1

2

∑
σg[i]>σh[i](σg[i] − σh[i])e +

d 1
2

∑
σg [i]≤σh[i](σh[i]− σg[i])e.

The distance dis(σh, σg) is the lower bound of the sum
of the number of edge insertion and deletion operations in
an optimal edit path between h and g. We multiply by 1

2
in dis(σh, σg) since one edge insertion/deletion operation
changes degrees of two vertices. Combining with the lower
bound of vertex edit operations, we then establish the
following degree-sequence lower bound.

Theorem 2 (Degree-sequence lower bound). Given two
graphs h and g, then we have ged(h, g) ≥ λS(h, g), where
λS(h, g) = max{|Vh|, |Vg|}−|ΣVh∩ΣVg |+dis(σ′h, σ′g), σ′h =
[σh[1], . . . , σh[|Vh|], 01, . . . , 0|V |−|Vh|] and σ′g = [σg[1], . . . ,
σg[|Vg|], 01, . . . , 0|V |−|Vg|].

Proof. See Appendix B in supplementary materials

Example 3. For graphs h and g3 shown in Fig. 1, we have
σh = [2 2 2 2] and σg3 = [3 2 2 1], and then compute
dis(σ′h, σ

′
g) = d 1

2 (3−2)e+d 1
2 (2−1)e = 2. Finally, we obtain

λS(h, g) = 3 > τ = 2, and thus can filter g3 out.

3.2.3 Boosting
In this section, we provide a technique to boost these
three lower bounds λD(h, g), λL(h, g), and λS(h, g) above.
Without loss of generality, we assume that |Vh| ≥ |Vg| and
use λ(,) to denote any one of these three lower bounds (i.e.,
λ ∈ {λD, λL, λS}) to explain the boosting technique.

Let P be the optimal edit path that transforms h to g.
It is trivial that ∆ vertex deletions exist in P , where ∆ =
|Vh| − |Vg|. Accordingly, there is a sequence of graphs h =
h0 → h1 → · · · → h∆ → · · · → hk ∼= g, where hi ⊆ hi−1

is an induced subgraph of hi−1 and obtained by deleting a
vertex in hi−1 and edges adjacent to this vertex, for 1 ≤ i ≤
∆; clearly, hi contains |Vh| − i vertices.

Let Ψ(h, i) be the set of h’s induced subgraphs contain-
ing |Vh|−i vertices, for 1 ≤ i ≤ ∆. We have hi ∈ Ψ(h, i). Let
ξi(h, g) = mino∈Ψ(h,i){ged(h, o) + λ(o, g)}. Then ξi(h, g) is
a lower bound of ged(h, g), which boosts the original lower
bound λ(h, g).

Theorem 3. Given two graphs g and h, then we have λ(h, g) =
ξ0(h, g) ≤ ξ1(h, g) ≤ · · · ≤ ξ∆(h, g) ≤ ged(h, g), where
λ ∈ {λD, λL, λS}, ∆ = |Vh| − |Vg|, and ξi(h, g) =
mino∈Ψ(h,i){ged(h, o) + λ(o, g)}.

Proof. see Appendix C in supplementary materials.

Theorem 3 states that we can obtain a sequence of
boosting lower bounds. Hereafter, we use ξDi (h, g), ξLi (h, g)
and ξSi (h, g) to denote the ith boosted lower bounds when
taking λ(,) as λD(,), λL(,) and λS(,), respectively.
Example 4. For the graphs h and g1 shown in Fig. 1, we
compute λD(h, g1) = 2, λL(h, g1) = 3 and λS(h, g1) = 3.
Using the boosting technique, we compute that the first
boosted lower bounds are ξD1 (h, g1) = 4.5, ξL1 (h, g1) = 5
and λS1 (h, g1) = 5. Clearly, all of the boosted lower bounds
are tighter than the original ones.

Based on Theorem 3, we propose the filtering method
filterGraph in Alg. 1 to determine whether pruning a data
graph g, where δ ≤ τ is a user-given boosting parameter, k
(line 1) is the maximum layer that the boosted lower bounds
can be applied.

Algorithm 1: filterGraph(h, g, τ, δ)
1 k ← max{0,min{δ, |Vh| − |Vg|}};
2 pruned ← flase;
3 for i← 0 to k do
4 compute ξDi (h, g) and ξLi (h, g) ;
5 if ξDi (h, g) > τ or ξLi (h, g) > τ then
6 pruned ← true ;
7 else
8 compute ξSi (h, g);
9 if ξSi (h, g) > τ then

10 pruned ← true ;
11 if pruned = true then
12 return true ;
13 return false ;

Complexity Analysis. For an induced subgraph o ∈ Ψ(h, i),
for 0 ≤ i ≤ k, we can compute λD(o, g), λL(o, g), and
λS(o, g) inO(|Vo|),O(|Vo|+ |Eo|), andO(|Vo| log |Vo|) time,
respectively. Since Ψ(h, i) contains

(i
|Vh|
)
≤ |Vh|i induced

subgraphs, we can compute ξDi (h, g), ξLi (h, g), and ξSi (h, g)

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

in O(|Vh|i+1), O((|Vh|+ |Eh|)|Vh|i), and O(|Vh|i+1 log |Vh|)
time, respectively. Thus, the time complexity of Alg. 1 is
O(
∑k
i=0 |Vh|i(2|Vh|+ |Eh|+ |Vh| log |Vh|)) = O(|Vh|δ+2),

for |Eh| ≤ |Vh|2 and k ≤ δ.

4 MSQ-INDEX

In this section, we propose a succinct index structure, called
MSQ-Index (Multiple Succinct Q-Gram Tree Index), which
supports for fast similarity search on a large database G.
MSQ-Index consists of the following three steps:

(1) Preprocessing. For each graph g in G, we map it
to a vertex-edge-based 2D point, (|Vg|, |Eg|). Clearly, these
points can form a rectangle region. Meanwhile, we convert
the number counting filter [36] to a query rectangle. By
dividing the whole region into non-overlapping subregions,
we can perform similarity search in a reduced query region
rather than the whole region.

(2) Succinct index construction. We build a q-gram
tree over each subregion in which leaf nodes store q-gram
information of data graphs and internal nodes summary
its child nodes, and then compress each q-gram tree to
minimize the space usage. Meanwhile, we create auxiliary
succinct data structures to support fast query.

(3) Query processing. We perform similarity search over
succinct q-gram trees built only in the reduced query region.
The remaining unpruned graphs constitute a candidate set C
and we can employ existing GED computation methods [7],
[12], [27] to verify graphs in C.

4.1 Preprocessing
Existing indexing methods such as [30], [32], [37], [38],
[39] perform similarity search on the whole database G.
However, this may be inefficient since typically only a small
part of data graphs in G are similar to a given query graph h.
Here we propose a preprocessing method, which helps us
search only on some data graphs.
Transformation. For each data graph g, we map it to
a vertex-edge-based 2D point, (|Vg|, |Eg|), where the x-
coordinate and y-coordinate denote the number of vertices
and edges in g, respectively. Then, we obtain a set of points
{(|Vg|, |Eg|) : g ∈ G}, and these points can form a rectangle
region A = [xmin, xmax] × [ymin, ymax], where xmin/ymin

and xmax/ymax are the smallest and largest numbers of
vertices/edges in G, respectively.
Division. Given a division point (x0, y0) and a length ` > 0,
we divide A into non-overlapping subregions as follows:
First, we compute an initial square subregion A0,0 formed
by the point set {(x, y) : |x− x0|+ |y − y0| ≤ `}. Then, we
make extensions along the surrounding of A0,0 to obtain
subregions Ai,j of the same size as A0,0, where i and j
denote the relative offsets of the extensional subregion w.r.t.
A0,0 in lines y = x and y = −x , respectively. Finally, we
repeat the above extension process until all points in A are
exhausted.
Reduced Query Region. Once we have partitioned A into
non-overlapping subregions such that A =

⋃
i,j Ai,j and

Ai,j ∩ Ai′,j′ = ∅ for all i 6= i′ and j 6= j′, we can reduce
the query region from the whole region A to a reduced
region Qh below.

|V|

|E|

0

A1,0

A0,0

A0,-1

A1,-1

 Q

A

h

h

A

(|Vh|, |Eh|)

Fig. 3: Illustration ofAh,Qh andA.

Definition 6 (Query rectangle and region). Given a query
graph h and a threshold τ , the query rectangle Ah is defined as
the rectangle formed by the point set {(x, y) : |x − |Vh|| + |y −
|Eh|| ≤ τ}. The query region Qh is the union of all subregions
intersecting withAh, that is,Qh =

⋃
i,j Ai,j , s.t.Ai,j∩Ah 6= ∅.

For a data graph g, if ged(h, g) ≤ τ , then we have ||Vg|−
|Vh|| + ||Eg| − |Eh|| ≤ τ [36]; consequently, (|Vg|, |Eg|) ∈
Ah. Since Ah ⊆ Qh, we have (|Vg|, |Eg|) ∈ Qh. Therefore,
searching only in Qh will not produce false positives. In the
example of Fig. 3, Qh = {A0,0,A1,0,A0,−1,A1,−1} is the
region in which we need to perform similarity search.

Given a point (x, y), its coordinates in lines y = x and
y = −x are 1√

2
(x + y, y − x). Thus, the relative offsets

of point (x, y) w.r.t. the division point (x0, y0) are dx =
1√
2
((x+y)− (x0 +y0)) in line y = x and dy = 1√

2
((y−x)−

(y0−x0)) in line y = −x , respectively. As the side length of
a subregion is

√
2`, the point (x, y) belongs to the subregion

Ai,j satisfying i = b dx√
2`
c and j = b dy√

2`
c. By Definition 6,

we know that subregions inQh are adjacent and can use the
following formula to compute Qh.

Qh =
⋃

i,j
Ai,j for all i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2, (1)

where i1 = b(|Eh| − τ + |Vh| − (x0 + y0))/2`c and j1 =
b(|Eh| − τ − |Vh| − (y0 − x0))/2`c are the relative positions
of the subregion in the lower left corner of Qh w.r.t. A0,0 in
lines y = x and y = −x, respectively, i2 = b(|Eh|+τ+|Vh|−
(x0 +y0))/2`c and j2 = b(|Eh|+τ−|Vh|−(y0−x0))/2`c are
the relative positions of the subregion in the top right corner
of Qh w.r.t. A0,0 in lines y = x and y = −x, respectively.
Since bz1/`c − bz2/`c ≤ (z1 − z2)/` + 1, for any z1 and z2,
we obtain i2 − i1 ≤ τ/` + 1 and j2 − j1 ≤ τ/` + 1. So we
computeQh inO((τ/`+2)2) time, which is almost constant.

In practice, we compute modes of data distributions of
(|Vg|, ·) and (·, |Eg|), respectively, and then take them as the
division point (x0, y0). For the subregion length `, we will
discuss it in the experiment.

4.2 Succinct Index Construction
In this section, we introduce a succinct q-gram tree index,
which incorporates succinct data structures and hybrid
encoding to achieve improved query time performance with
minimal space.

4.2.1 Tree Structure
Let UD and UL be the sets of all distinct degree-based
and label-based q-grams occurring in G, respectively, where
UD[i] and UL[i] are the ith most frequently occurring
degree-based and label-based q-grams, respectively. Then,
we define the q-gram profile of a graph as follows:

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Definition 7 (q-gram profile). The q-gram profile of a graph g is
defined as a four-tuple LD = (FD ,FL,nv ,ne), where nv and ne
are the numbers of vertices and edges in g, respectively, FD and
FL are two arrays to store the degree-based and label-based q-
gram multisets D(g) and L(g), respectively, such that FD[i] and
FL[i] are the numbers of occurrences of UD[i] in D(g) and UL[i]
in L(g), respectively.

Definition 8. Given two q-gram profiles LD and LD′, the union
operator ”t” between them is defined as: LD t LD′ = (FD ⊕
F ′D, FL ⊕ F ′L,min{nv, n′v},min{ne, n′e}), where

(FD⊕F ′D)[i] =

max{FD[i], F ′D[i]} if i < min{|FD|, |F ′D|};
FD[i] if |F ′D| ≤ i < |FD|;
F ′D[i] otherwise.

and similar definition for FL ⊕ F ′L.

Based on Definition 8, we can generalize the union
operator ”t” of two q-gram profiles to that of multiple q-
gram profiles.

Definition 9 (q-gram tree). A q-gram tree is a balanced tree
such that each leaf node stores a q-gram profile of a data graph
and each internal node is the union of its child nodes.

Imagining the q-gram profile as the minimum bounding
rectangle used to represent an object in R-tree [14], we can
construct the q-gram tree like the way of building theR-tree.
Fig. 4 gives an example of a q-gram tree built on graphs g1,
g2 and g3 shown in Fig. 1. 1

1

UD

i q-gram freq.
0 A 3
1 C 3
2 A 1
3 A 1
4 B 1
5 C 1
6 C 1

1

UL

i q-gram freq.
0 10
1 A 5
2 C 4
3 B 1

FD = [3 2 1 1 1 1 1]
FL = [4 3 2 1]
nv = 3, ne = 3

w1

FD = [3 2 1 0 0 0 1]
FL = [3 3 2]
nv = 3, ne = 3

w2

FD = [0 1 0 1 1 1]
FL = [4 1 2 1]
nv = 4, ne = 4

g3

FD = [0 2 1]
FL = [3 1 2]
nv = 3, ne = 3

g1

FD = [3 0 0 0 0 0 1]
FL = [3 3 1]
nv = 4, ne = 3

g2

Fig. 4: Example of a q-gram tree.

4.2.2 Succinct Representation
Considering a q-gram tree, FD and FL in each node take up
most of the space. In order to reduce the occupied space, we
compress FD and FL while maintaining the query efficiency.
Next, we regard X as D or L to explain the proposed
method.

For a q-gram tree, we traverse it in a depth-first order to
obtain a sequence of nodes w1, . . . , wN , where wi is the ith
node in this traversal and N is the number of nodes in the
tree. Let wi.FX be the array FX in the node wi. Then we
concatenate all wi.FX to obtain IX as follows:

IX = w1.FX ◦ w2.FX ◦ · · · ◦ wN .FX ,
where ”◦” is a concatenation operator. For instance, for the
q-gram tree shown in Fig. 4, we can obtain ID =
[3 2 1 1 1 1 1︸ ︷︷ ︸

w1.FD

3 2 1 0 0 0 1︸ ︷︷ ︸
w2.FD

0 2 1︸ ︷︷ ︸
g1.FD

3 0 0 0 0 0 1︸ ︷︷ ︸
g2.FD

0 1 0 1 1 1︸ ︷︷ ︸
g3.FD

].

Instead of directly using an int type to store each entry
in IX , we compress IX based on the following observations.
Observation 1. There are many zeros in IX .

0 5 1 0 1 5 2 00
1 x 1 0 7

2 x 1 0 7

3 x 1 0 7

4 x 1 0 7

5 x 1 0 7

E
ntr

ies
 in

 I D

E n t r y v a l u e
0 5 1 0 1 5 2 00

1 x 1 0 6

2 x 1 0 6

3 x 1 0 6

4 x 1 0 6

5 x 1 0 6

6 x 1 0 6

E
ntr

ies
 in

 I L

E n t r y v a l u e

Fig. 5: Distribution of entries in ID (left) and IL (right).
For instance, we empirically tested the q-gram tree built

on 5 million graphs from the PubChem dataset and showed
the top 90% of entries of ID and IL in Fig. 5. From this
figure, we know that more than 50% and 20% of the entries
in ID and IL are zeros, respectively.

We use a bit array BX and an array VX to represent IX
to reduce the space. Specifically, if IX [j] = 0 then we set
BX [j] = 0; otherwise, BX [j] = 1. Meanwhile, we set VX [j]
to the jth nonzero entry in IX . For example, for the above
array ID, we use BD = [1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0
0 0 0 1 0 1 0 1 1 1] and VD = [3 2 1 1 1 1 1 3 2 1 1 2 1 3 1 1 1
1 1] to represent it.
Observation 2. The small entries occupy a large proportion
of IX .

We also find that there are lots of small entries in IX
(e.g., more than 90% of entries are smaller than 20 in Fig. 5).
Thus an efficient encoding strategy for small entries is key
to further reduce the space.

We use the following strategy to encode small nonzero
entries stored in VX : First, we divide VX into fixed-length
blocks of size b. Then, we encode each block by choosing one
from two encoding methods so that the encoded bit sequence,
SX , has the minimum space. One encoding method is the
fixed-length encoding, which uses blog bmaxc + 1 bits to
encode each entry in a block, where bmax is the maxi-
mum value in this block. The other method uses Elias γ-
encoding [8] to encode each entry in a block.

Also, we build several auxiliary structures to support for
accessing each entry in IX :

• SBX is used to store the start position of the
encoding of each block in SX ;

• flagX is used to mark the encoding method used for
each block: if the kth block is a γ-encoding block,
then flagX [k] = 0; otherwise, it is a fixed-length
encoding block, and flagX [k] = 1.

• wordsX is used to indicate the number of bits
required for each entry in a fixed-length encoding
block.

The process of compressing IX is illustrated in Fig. 6.
In addition, in each node, we retain the numbers of

vertices and edges (i.e., nv and ne) and add the left and
right boundaries (i.e., lX and rX) that FX is located in IX .
Replacing X = D and X = L, we can obtain the succinct
representation of a q-gram tree, which is also called succinct
q-gram tree. Fig. 7 shows the succinct representation of the
q-gram tree shown in Fig. 4.

4.2.3 Accessing
In this section, we discuss how to access an entry in a
succinct q-gram tree, which is the basic operation when
searching on this tree.

Given a node wi, the jth entry in wi.FX is wi.FX [j] =
IX [k], where k = wi.lX + j is the position that wi.FX [j] is

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

IX
is represented by−−−−−−−−−−→

VX

is encoded by−−−−−−−−→

SX

SBX

flagX
wordsX

BX

Fig. 6: Process of compressing IX , where X = D or X = L.

located in IX . We know that IX is represented by BX and
VX (see Fig. 6), and can use them to access IX [k] as follows:

IX [k] =

{
0 ifBX [k] = 0;

VX [rank1(BX , k)] otherwise.
(2)

where rank1(·, k) returns the number of 1’s in the first k bits.
If BX [k] = 0, then IX [k] = 0; otherwise, we use the rank
operation rank1(BX , k) to determine the position that IX [k]
is stored in VX and then obtain IX [k] = VX [rank1(BX , k)].

However, we cannot directly access an entry in VX since
VX is encoded by four structures, SX , SBX , flagX and
wordsX (see Fig. 6). In order to retrieve an entry VX [z], we
perform the decoding operation decompress on SX and then
obtain

VX [z] = decompress(SX , flagX [bz/bc], SBX [bz/bc],
wordsX [rank1(flagX , bz/bc)], (z mod b) + 1), (3)

where b is the block size. The decoding operation
decompress contains the following two steps:

(1) We query flagX [bz/bc] and SBX [bz/bc] to determine
the encoding method used and decoding position
for the bz/bcth block to which VX [z] belongs, res-
pectively;

(2) If flagX [bz/bc] = 0, then the bz/bcth block is a γ-
encoding block, and we decode SX for (z mod b) + 1
times starting from the SBX [bz/bc]th bit. The last
decoding value is VX [z]. If flagX [bz/bc] = 1, then
the bz/bcth block is a fixed-length encoding block.
We use wordsX [rank1(flagX , bz/bc)] to determine
the number of bits used to encode each entry in this
block, and then directly decode the ((z mod b)+1)th
fixed-length encoded entry as VX [z].

We can finish the decoding operation decompress in con-
stant time using a lookup table [16]. Also, we can compute
rank1(,) in constant time with a rank dictionary [13], [17].
Thus, we obtain IX [k] from Formula (2) in constant time.
Example 5. We show how to access g2.FD[0] shown in
Fig. 4 by using the succinct representation shown in Fig. 7,
where b = 4. Clearly, g2.FD[0] = ID[g2.lD + 0] = ID[17].
According to Formula (2), ID[17] = VD[rank1(BD, 17)] =
VD[13]. Then, we compute VD[13] through Formula (3)
as follows: (1) We determine the encoding method by
flagD[b13/bc] = flagD[3] = 0 and the decoding position
by SBD[b13/bc] = SBD[3] = 22; (2) As flagD[3] = 0,
VD[13] is in a γ-encoding block. Starting form the 22th bit
of SD , we decode two times and the second decoding value
is VD[13] = 3. So, we obtain g2.FD[0] = 3.

4.3 Query Processing
Our query process consists of two phases: the computation
of the reduced query regionQh from Formula (1), described
in Section 4.1, and similarity search on the succinct q-gram
trees built in Qh.

4.3.1 Query on the Succinct Q-Gram Tree
Consider a node w in the succinct q-gram tree. Let CD(w, h)
and CL(w, h) be the number of common degree-based and
label-based q-grams between w and h, respectively. We have
CX(w, h) =

∑
i min{w.FX [i], h.FX [i]}, where X is D or L.

Then we establish Theorem 4 to safely prune w.

Theorem 4. If CL(w, h) < max{w.nv, |Vh|}+ max{w.ne,
|Eh|} − τ or CD(w, h) < max{w.nv, |Vh|} − 2τ , then we can
safely prune all the w’s child nodes.

Proof. See Appendix D in supplementary materials.

Query Algorithm. We give the query method on a succinct
q-gram tree in Alg. 2, where root is the root node and δ is
the boosting parameter.

Algorithm 2: searchSQTree(root , h, τ, δ)
1 C ← ∅;
2 searchTree (root , h, τ, δ, C);
3 return C;

procedure searchTree(h,w, τ, δ, C)
1 compute CD(w, h) and CL(w, h);
2 if CD(w, h) ≥ max{nv, |Vh|} − 2τ or CL(w, h) ≥

max{w.nv, |Vh|}+ max{w.ne, |Eh|} − τ then
3 if w is an internal node then
4 foreach w’s child node wj do
5 searchTree (wj , h, τ, δ, C);
6 else
7 flag ←filterGraph(h,w, τ, δ);
8 if flag is false then
9 C ← C ∪ {w};

The search process on a succinct q-gram tree is similar
to that on an R-tree. Starting from the root node, root , we
traverse this tree. For a node w, we compute CD(w, h) and
CL(w, h) and then determine whether pruning w according
to Theorem 4. If CD(w, h) < max{w.nv, |Vh|} − 2τ or
CL(w, h) < max{w.nv, |Vh|} + max{w.ne, |Eh|} − τ , then
we safely prune w; otherwise, we access each subtree of w.

Furthermore, when reaching a leaf node w, namely w is
a data graph and has not been pruned, we check whether
it passes the filtering method filterGraph introduced in
Section 3.2. Notice that we have not stored the degree
sequence σw in the succinct q-gram tree; when calling
filterGraph, we need to calculate σw through w.FD’s nonzero
entries that contain the vertex degree information.
Complexity Analysis. Let V be the set of nodes visited in
the search. For a node w ∈ V , we can compute CD(w, h)
in linear time of the number of nonzero entries in w.FD
and h.FD . Since h.FD contains at most |Vh| degree-based q-
grams, we can compute CD(w, h) inO(|Vh|) time. Similarly,
we can computeCL(w, h) inO(|Vh|+|Eh|) time. Thus, these
|V| nodes takes O(|V|(|Vh| + |Eh|)) time. Let L ⊂ V be the
set of leaf nodes unpruned in the search. For a leaf node inL,
we execute filterGraph to determine whether filtering it out,
which consumesO(|Vh|δ+2) time. Thus, these |L| leaf nodes
takesO(|L||Vh|δ+2) time. So, the time complexity of Alg. 2 is
O(|V|(|Vh|+ |Eh|) + |L||Vh|δ+2) = O(|Vh|2(|V|+ |L||Vh|δ)),
for |Eh| ≤ |Vh|2.

4.3.2 Whole Query Algorithm
Alg. 3 gives the whole query method over MSQ-Index, where
(x0, y0) is the division point, ` is the subregion length, δ is

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

1

lD = 0, rD = 6
lL = 0, rL = 3
nv = 3, ne = 3

w1

lD = 7, rD = 13
lL = 4, rL = 6
nv = 3, ne = 3

w2

lD = 24, rD = 29
lL = 13, rL = 16
nv = 4, ne = 4

g3

lD = 14, rD = 16
lL = 7, rL = 9
nv = 3, ne = 3

g1

lD = 17, rD = 23
lL = 10, rL = 12
nv = 4, ne = 3

g2

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18j

SD

SBD

flagD

wordsD

3 2 1 1 1 1 1 3 2 1 1 2 1 3 1 1 1 1 1

11 10 01 01 1 1 1 011 10 01 01 10 1 011 1 1 1 1 1

0 8 14 22 28

1 0 1 0 1

2 -

1111111 1110001 011 1000001 010111 BD

12 -

VD

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SL

SBL

flagL

wordsL

4 3 2 1 3 3 2 3 1 2 3 3 1 4 1 2

100 011 010 001 11 11 10 11 01 10 11 11 1 00100 1 010

0 12 20 28

1 1 1 0

3 2 2 -

1

38

1

16

1

j

1111 111 111 111 1111 BL

1

VL

(c)
Fig. 7: Succinct representation of a q-gram tree.

the boosting parameter, and rooti,j is the root node of the
succinct q-gram tree built in the subregion Ai,j .

Algorithm 3: search(h, τ, δ, x0, y0, l)
1 C ← ∅, ans ← ∅ ;
2 Qh ←

⋃
i,j Ai,j for all i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2 ;

3 foreach Ai,j ⊆ Qh do
4 Ci,j ←searchSQTree(root i,j , h, τ, δ);
5 C ← C ∪ Ci,j ;
6 foreach g ∈ C do
7 if ged(h, g) ≤ τ then
8 ans ← ans ∪ {g} ;
9 return ans ;

In Alg. 3, we first compute the query regionQh from For-
mula (1). Then, we call searchSQTree to perform similarity
search on the succinct q-gram trees built in the subregions
contained in Qh. Finally, the remaining unpruned graphs
constitute a candidate set C and we employ existing GED
computation methods [12], [27] to verify the graphs in C.

5 COST ESTIMATION

In this section, we analyze the performance of MSQ-Index.
As we know MSQ-Index consists of multiple succinct q-gram
trees, for simplicity we analyze the cost of using a succinct
q-gram tree built on G since this cost has the same order of
magnitude of that using multiple succinct q-gram trees built
on G’s subsets.

5.1 Storage Cost Estimation
The succinct q-gram tree built on G can be decomposed into
three parts (a), (b) and (c), as follows:

(a) left and right boundaries (i.e., lD/lL and rD/rL),
#vertices and #edges (i.e., nv and ne) and child-
pointers in all nodes;

(b) structures BD , SD , SBD , flagD , and wordsD used to
compress ID;

(c) structures BL, SL, SBL, flagL, and wordsL used to
compress IL.

For parts (a), (b) and (c), we denote their occupied space
by Sa, Sb, and Sc, respectively. An example of these three
parts is illustrated in Fig. 7.

For a node in the tree, we use blog |BD |c + 1 bits to
store lD and rD , respectively, and blog |BL|c + 1 bits to

store lL and rL, respectively, since lD ≤ rD ≤ |BD | and
lL ≤ rL ≤ |BL|. We also use blog vmc+1 and blog emc+1 bits
to store nv and ne , respectively, where vm = maxg∈G{|Vg|}
and em = maxg∈G{|Eg|}.

Let d be the average fan-out of each node in the tree.
The total number of nodes, N , is bounded by N =∑logd |G|
h=0

|G|
dh
≤ d|G|

d−1 . Thus, we can use blog d|G|
d−1c + 1 bits

to store each child-pointer. So the space Sa is bounded by

Sa = N (2(blog |BD |c+ 1) + 2(blog |BL|c+ 1) + blog vmc+ 1

+ blog emc+ 1 + blog
d|G|
d− 1

c+ 1)

≤ d|G|
d− 1

(2 log(|BD ||BL|) + log(vmem) + log
d|G|
d− 1

+ 7)

≤ 2|G|(2 log(|BD ||BL|) + 2 log Im + log(2|G|) + 7)

≤ 4|G|(log(Im|BD ||BL||G|) + 4)

= O(|G| log(Im|BD ||BL||G|))

where Im = max{vm, em}. The second inequality is due to
the fact that d ≥ 2.

Regarding X as D or L, we then consider the space
required by SX , BX , SBX , flagX , and wordsX .

First, we analyze the space needed by the encoded bit
sequence SX . Let Eγ and Ef be the collections of Elias γ-
encoding and fixed-length encoding blocks, respectively,
and |γ(bi)| and |f(bi)| be the number of bits required to
encode the ith block bi using γ-encoding and fixed-length
encoding, respectively. By our hybrid encoding scheme, the
number of bits needed by SX is bounded by

|VX |/b∑
i=1

min{|γ(bi)|, |f(bi)|}

=
∑
i∈Eγ

|γ(bi)|+
∑
i∈E f

|f(bi)| ≤
∑
i∈Eγ

|f(bi)|+
∑
i∈E f

|f(bi)|

≤
∑

i∈Eγ∪E f

b(blog bmXc+ 1) ≤ |VX |
b

b(blog bmXc+ 1)

≤ |VX | log bmX + |VX |,

where b is the block size and bmX is the maximum value
in VX . The first inequality is due to the fact that |γ(bi)| ≤
|f(bi)| when i ∈ Eγ . The second inequality is due to the
fact that the number of bits required to encode bi through
fixed-length encoding is bounded by b(blog V mX c + 1). The
third inequality is due to the fact that |Eγ |+ |Ef | = |VX |/b.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Second, we analyze the space required by the structures
BX , SBX , flagX , and wordsX .

For BX , it contains |BX | bits. Besides, we build the rank
dictionary over it, which needs o(|BX |) bits [17]. Thus, BX

totally requires |BX |+ o(|BX |) bits.
For SBX , it requires |VX |

b (log(|VX | log bmX + |VX |) + 1)
bits in the worst case because each entry in SBX needs at
most blog(|VX | log bmX+ |VX |)c+1 bits and there are |VX |/b
blocks.

For flagX , it requires |VX |/b + o(|VX |/b) bits, because
each block takes up one bit and there are |VX |/b blocks, and
the rank dictionary built over flagX needs o(|VX |/b) bits.

For wordsX , it requires |VX |
b (blog bmXc+1) bits since each

entry requires blog bmXc+1 bits and there are at most |VX |/b
entries.

Putting all the space required for BX , SBX , flagX , and
wordsX together, we then obtain

|BX |+ o(|BX |) +
|VX |
b

log(|VX | log bmX + |VX |)+

|VX |
b

log bmX + 3
|VX |
b

+ o(
|VX |
b

)

= |BX |+ o(|BX |) + o(|VX |) = |BX |+ o(|BX |) ,

for b = log2 |VX |. The second equality is due to the fact that
|VX | ≤ |BX |. Thus, the total space of SX , BX , SBX , flagX ,
and wordsX is at most |VX |(log bmX + 1) + |BX | + o(|BX |)
bits.

Considering a degree-based q-gram, it occurs at most
|Vg | times in a data graph g, thus we have bmD ≤ vm .
Similarly, bmL ≤ max{vm , em}. Replacing X with D and
substituting bmD ≤ vm, we obtain that

Sb ≤ |VD |(log vm + 1) + |BD |+ o(|BD |)
≤ |BD |(log Im + 2) + o(|BD |) = O(|BD | log Im)

where the second inequality holds because vm ≤ Im =
max{vm, em} and |VD| ≤ |BD|. Similarly, Replacing X
with L and substituting bmL ≤ max{vm, em}, we obtain that

Sc ≤ |VL|(log max{vm, em}+ 1) + |BL|+ o(|BL|)
≤ |BL|(log Im + 2) + o(|BL|) = O(|BL| log Im)

By summing the space required by Sa, Sb, and Sc, and
ignoring the lower-order terms, we obtain the space bound
on the succinct q-gram tree: O(|G| log(Im|BD ||BL||G|) +
(|BD |+ |BL|) log Im) bits.
Note. As we know, Im = max{vm, em} is the maximum
number of vertices or edges in G, which is usually a small
value. Therefore, the space in bits required by the succinct q-
gram tree is dominated by the addition of the “linearithmic”
function of the database size |G| and the linear function
of |BD |+ |BL|.

5.2 Query Cost Estimation

Alg. 3 gives the query method over MSQ-Index, where
the query process contains the following three parts: (i)
computing the query region Qh from Formula (1) (line 2);
(ii) searching on the succinct q-gram trees built in Qh to
obtain a candidate set C (lines 3–5); (iii) verifying graphs
in C (lines 6–8). Let T1, T2, and T3 be the cost incurred by

these three parts above, respectively. Then the total query
cost T can be formulated as

T = T1 + T2 + T3 = TQ + TV ,

where TQ = T1 + T2 is the filtering cost, TV = T3 =
|C| · TGED is the verifying cost, and TGED is the average
GED computation time.

For (i), the cost of computing Qh from Formula (1) is
T1 = O((τ/` + 2)2), which is almost constant and can be
negligible.

For (ii), for simplicity we analyze the cost of using a
succinct q-gram tree built in the whole region. As discussed
in Section 4.3.1, the cost is T2 = O(|Vh|2(|V| + |L||Vh|δ)),
where V is the set of nodes visited and L is the set of leaf
nodes unpruned.

Therefore, the filtering cost is TQ = T1 + T2 =
O(|Vh|2(|V| + |L||Vh|δ)). Putting the verifying cost TV
together, we obtain T = TQ+TV = O(|Vh|2(|V|+ |L||Vh|δ))
+ |C| · TGED . Clearly, T is mainly determined by |C|, |L|
and |V|. Next, we discuss how to estimate them.
Estimating |C| and |L|. Let XC(h, g) be the GED lower
bound such thatXC(h, g)= max{ξDk (h, g), ξLk (h, g), ξSk (h, g)},
where k = max{0,min{|Vh| − |Vg|, δ}}, and ξDk (h, g),
ξLk (h, g) and ξSk (h, g) are introduced in Section 3.2.3. A
data graph g cannot be filtered out by the filtering method
filterGraph (i.e., Alg. 1) when XC(h, g) ≤ τ . Thus, the
candidate set is C = {g ∈ G : XC(h, g) ≤ τ}.

Let τ be a random variable. Considering XC(,) as a
distance metric, we define a cumulative probability distri-
bution of τ as FC(τ) = Pr[XC(g, g′) ≤ τ] = #NumC(τ)

|G|·(|G|−1) ,
where #NumC(τ) is the number of data graph pairs (g, g′)
such that XC(g, g′) ≤ τ , for any g, g′ ∈ G and g 6= g′. We can
reasonably assume that data graphs similar to h always exist
in G, and then use FC(τ) to approximate the probability
that a data graph g belongs to C. Consequently, we can use
|G| · FC(τ) to estimate |C|.

From our empirical observation, FC exhibits a typical
“S”-shaped curve. The possible reason is that XC(,) distance
distribution of data graphs in the database G is not uniform.
(see our empirical test, Appendix E1 in supplementary ma-
terials). We can employ a sigmoid-like function to estimate
FC as follows:

FC(τ) =
1

1 + a · c−τ
,

where a, c > 0 are two parameters. When τ → ∞,
FC(τ) = 1 coincides with the fact that C contains all data
graphs in this case. Also, we can rewrite the above formula
as ln(1

FC(τ)−1) = ln a+τ ·(− ln c). By using the least-squares
method, we can estimate a and c.

Let XL(h, g) be the GED lower bound such that
XL(h, g) = max{λL(h, g), λD

′
(h, g)}, where λD

′
(h, g) =

1
2 (max{|Vh|, |Vg|} − |D(h) ∩D(g)|) ≤ λD(h, g). According
to Theorem 4, a leaf node g cannot be pruned when
XL(h, g) ≤ τ . Thus, the set of unpruned leaf nodes in the
search is L = {g ∈ G : XL(h, g) ≤ τ}. Similarly, we can also
consider XL(,) as a distance metric to estimate |L| like the
way of estimating |C| above.
Estimating |V|. Let d be the average fan-out of each node in
the tree. The number of nodes in the ith level is di, for 0 ≤
i ≤ t, where t = logd |G| is the height of this tree. Assuming

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0 1 8 3 6 5 4
0

1 x 1 0 4

2 x 1 0 4

3 x 1 0 4

4 x 1 0 4

0 1 8 3 6 5 4 0 1 8 3 6 5 4

| C |

 τ

| V || L |

 τ
 R e a l
 E s t i m a t e d
 τ

Fig. 8: Estimation of |C|, |L| and |V| on AIDS dataset.

that visited nodes in each level are evenly distributed. Let
Pr(i) be the probability of visiting a node in the ith level.
Then the number of nodes visited in the ith level is di ·Pr(i),
and thus we have |V| =

∑t
i=0 d

i · Pr(i).
For a leaf node g, the probability of g belonging to L is

|L|
|G| . For an internal node w in the ith level, it contains dt−i

descendant leaf nodes; as long as one of these descendant
leaf nodes belongs to L, w will be visited. Thus, the
possibility of visiting w is 1 − (1 − |L||G|)

dt−i . Since visited
nodes in each level are evenly distributed, we obtain Pr(i) =

1− (1− |L||G|)
dt−i . So, we can estimate |V| as

|V| =
∑t

i=0
di · (1− (1− |L|

|G|
)d
t−i

).

Empirical test. We consider the AIDS dataset as the tested
dataset and randomly select 104 graphs from this dataset
to make up the query graphs. Fig. 8 shows the real
and estimated values of |C|, |L| and |V| on the average,
respectively. From Fig. 8, we know that

(1) the estimated value of |C| (or |L| or |V|) is closed to
the real value.

(2) when τ is small (e.g., τ ≤ 9), both the estimated and
real values of |C| (or |L| or |V|) are small.

In practice, we consider τ as a small value because users
are typically more inclined to search for similar graphs to
a given query graph. Thus, the query cost of MSQ-Index is
acceptable, and thereby, MSQ-Index can efficiently finish the
similarity search.

6 EXPERIMENTS AND DISCUSSIONS

6.1 Datasets and Settings
Datasets. We choose several real and synthetic datasets from
different domains in the experiment, described as follows:

(1) AIDS1 is an antivirus screen compound dataset from
the Development and Therapeutics Program in NCI/NIH,
which contains 42,687 chemical compounds.

(2) COIL [26] consists of 7,200 images of different objects,
where each image is converted into a region adjacency
graph. Vertices represent different regions, and we ran-
domly assign four labels to them. Edges represent the
adjacency of regions and are labeled with the length (in
pixels) of the common border of two adjacent regions.

(3) NASA2 is an XML dataset that contains 36,790
data graphs, where each graph stores the metadata of an
astronomical. We randomly assign 10 vertex labels to each
graph according to the way described in [38].

(4) PubChem3 is an NIH funded project to record exper-
imental data of chemical that interactions with biological

1. http://dtp.nci.nih.gov/docs/aids/aidsdata.html
2. http://www.cs.washington.edu/research/xmldatasets/
3. http://pubchem.ncbi.nlm.nih.gov/

TABLE 2: Dataset Statistics

Dataset |G| avg. |V | avg. |E| |ΣV | |ΣE |
AIDS 42,687 25.6 27.5 62 3
COIL 7,200 21.5 54 4 2
NASA 36,790 33.2 32.2 10 1
Sync-5M 5,000,000 27.5 38.4 5 3
Pub-25M 25,000,000 23.4 25.2 101 3

systems. We randomly select 25,000,000 chemical com-
pounds to make up the large dataset, Pub-25M, used in the
experiment.

(5) Synthetic. The synthetic dataset is generated by the
synthetic graph data generator GraphGen4, which allows us
to specify various parameters, including the dataset size, the
average graph density ρ = 2|E|

|V |(|V |−1) , the number of edges,
and the number of vertex and edge labels. We first generate
several synthetic datasets and then merge them to obtain a
large dataset, Sync-5M, which contains 5,000,000 graphs.

For each dataset, we randomly select 100 graphs from
it to make up the query graphs. Table 2 summarizes some
general characteristics of the above five datasets.
Compared Methods. We perform comprehensive experi-
mental studies for MSQ-Index by comparing it with the state-
of-the-art indexing methods, GSimJoin [37], Pars [38], and
Mixed [39]. For Pars, we implemented it with a random
partition method because the authors did not share their
implementations.

For each compared method, we employ the GED com-
putation method, CSI GED [12], as the GED verifier except
for GSimJoin that has implemented A? as its verifier in the
executable binary file.
Evaluation Metrics. In the experimental studies, we con-
sider the following three metrics: (1) Index construction cost,
including the index size and construction time; (2) Candidate
set size, which is the number of data graphs that have not
been filtered out; (3) Response time, which is the sum of the
filtering time and verification time. The results obtained in
(2) and (3) are the average candidate set size and the average
response time for the 100 query graphs, respectively.

We have conducted all experiments on a HP Z800 PC
with a 2.67 GHz CPU and 24GB main memory, running
Ubuntu 12.04 operating system. We implemented MSQ-
Index in C++, with –O3 to compile and run. For MSQ-Index,
we set the boosting parameter δ = 2, subregion length
` = 2 and block size b = 16, respectively, as the default
parameters. For the other tested methods, we adopt their
default parameters.

6.2 Evaluating MSQ-Index

As described earlier in this paper, several techniques are
proposed in MSQ-Index, including: (1) the succinct repre-
sentation of a q-gram tree (Section 4.2), which is used to
decrease the index size; (2) two lower bounds together with
a boosting technique (Section 3.2), which aims to obtain
a candidate set as small as possible; (3) the preprocessing
method (Section 4.1), which ensures that similarity search is
preformed in a reduced query region. Thus, it is necessary
to study the contributions of these techniques to MSQ-Index.
Evaluating Succinct Representation. In this part, we evalu-
ate the effectiveness of our succinct representation.

4. http://www.cse.ust.hk/graphgen/

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

First, we evaluate the effectiveness of the method of
compressing ID and IL. The compressing process contains
the following two steps (see Fig. 6): (1) using BX and VX to
represent IX ; (2) employing SX , SBX , flagX , and wordsX to
encode VX , where X is D or L.

A I D S C O I L N A S A S y n c - 5 M P u b - 2 5 M1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

Sp
ac

e (
MB

yte
)

 B D + S D + S B D + w o r d s D + f l a g D
 B D + V D
 I D

A I D S C O I L N A S A S y n c - 5 M P u b - 2 5 M
1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

Sp
ac

e (
MB

yte
)

 B L + S L + S B L + w o r d s L + f l a g L
 B L + V L
 I L

Fig. 9: Space of compressing ID (left) and IL (right).

In Fig. 9, we report the space of each step. In the first step,
we can reduce ID’s space by more than 50%; this reduction
is due to the fact that ID contains lots of zeros. In the
second step, we can further reduce ID’s space by more than
80%. This is because that each encoded entry takes about
4–6 bits (see the experiment on encoding, Appendix E2, in
supplementary materials), which takes much fewer bits than
that used to store an int type (i.e., typical 32 bits). As a result,
using BD, SD, SBD , flagD , and wordsD to compress ID, we
can reduce the space by more than 90%. For IL, we have a
similar result.

TABLE 3: Space usage (MByte)

Dataset q-gram tree succinct q-gram tree
Ma Mb Mc Sa Sb Sc

AIDS 0.29 6.09 2.11 0.88 0.41 0.25
COIL 0.09 3.62 0.17 0.15 0.18 0.04
NASA 0.44 7.28 1.38 0.85 0.46 0.21
Sync-5M 59.6 3527.8 236.3 141.9 415.3 41.8
Pub-25M 343.6 3669.2 2014.1 649.1 327.3 191.9

Second, we report the space of a q-gram tree and its
succinct representation in Table 3. For a q-gram tree (see
Fig. 4), we decompose its space into three parts Ma, Mb,
andMc, whereMa is the space of nv , ne and child-pointers
of all nodes, and Mb and Mc are the space of FD and
FL of all nodes, respectively. Correspondingly, we obtain
three parts Sa, Sb, and Sc in the succinct representation (see
Fig. 7).

From Table 3, we know thatMb andMc take up most of
the space of a q-gram tree. By compressing them, we reduce
their space to about 10% of the original size, see Sb and Sc in
the last two columns. As a result, the space of the succinct q-
gram tree, namely the sum of Sa, Sb, and Sc, is less than 20%
of that of the original q-gram tree (i.e., the sum ofMa,Mb,
andMc).
Evaluating Filters. In this part, we evaluate the effective-
ness of the proposed lower bounds and boosting tech-
nique under different thresholds τ setting, that is, τ ∈
{1, 3, 5, 7, 9}. Notice that τ = 9 is the maximum threshold
value used in the current indexing-based methods [32], [36],
[37], [39], [21], [38]. Here we only display the experimental
results on the large dataset Pub-25M; for the results on other
datasets, see Appendix E3 in supplementary materials.

First, we fix the boosting parameter δ = 0 and then
evaluate the effectiveness of the proposed lower bounds.
Fig. 10 shows the obtained results, where “QF” denotes
that we employ the label-based and degree-based q-gram
counting lower bounds, and “DF” denotes the improved
version of QF by incorporating the degree-sequence lower
bound.

τ=1 τ=3 τ=5 τ=7 τ=9
1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

 P u b - 2 5 M

Ca
nd

ida
te

se
t s

ize

 Q F
 D F

Q F D F Q F D F Q F D F Q F D F Q F D F1 0 - 2
1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5

 P u b - 2 5 M

Re
sp

on
se

 tim
e (

s)

 V e r i f i c a t i o n t i m e
 F i l t e r i n g t i m e

 τ = 9τ = 3 τ = 5 τ = 7τ = 1

Fig. 10: Performance of multiple lower bounds on Pub-25M.
As depicted in Fig. 10, we can use these two q-gram

counting lower bounds to filter most of the dissimilar
graphs out. For instance, when τ = 3, QF produces less
than 1.0× 104 candidate graphs, which indicates that more
than 99.9% of data graphs are pruned. Moreover, through
incorporating with the degree-sequence lower bound, DF
further reduces the candidate set size by about 30%–60%.

τ=1 τ=3 τ=5 τ=7 τ=9
1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

 P u b - 2 5 M

Ca
nd

ida
te

se
t s

ize

 δ = 0
 δ = 1
 δ = 2
 δ = 3

τ=1 τ=3 τ=5 τ=7 τ=9
1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5
 δ = 0
 δ = 1
 δ = 2
 δ = 3

 P u b - 2 5 M

Re
sp

on
se

 tim
e (

s)

Fig. 11: Performance of boosting on Pub-25M.
Second, we evaluate the effectiveness of the proposed

boosting technique. From Fig. 11, we know that the can-
didate set size is getting smaller and smaller with the
increasing of δ. For instance, when τ = 9, the candidate set
size of δ = 2 is about 67% of that of δ = 0. Also, we observe
that the response time first decreases and then increases,
as δ increases; it achieves the minimum when δ = 2 in most
cases. Two factors may contribute to this trend: (1) When δ
is too small, we obtain a large candidate set and spend lots
of GED verification time; (2) When δ is too large, we spend
too much filtering time. Thus, we set δ = 2 as the default
parameter in MSQ-Index.
Evaluating Preprocessing. In this part, we evaluate the
effectiveness of the proposed preprocessing method.

To measure how much the query region Qh gets smaller
w.r.t. the whole region A, we define a metric access ratio as
|Qh|
|G| , where |Qh| is the number of points contained in Qh.

Correspondingly, we obtain the speedup in filtering time,
which is computed as the filtering time of SQ-Index divided
by that of MSQ-Index, where SQ-Index is a succinct q-gram
tree built in A. Table 4 lists the access ratio and speedup on
the average for the 100 query graphs.

TABLE 4: Average access ratio and speedup
Metric Dataset τ = 1 τ = 3 τ = 5 τ = 7 τ = 9

ac
ce

ss
ra

ti
o AIDS 9.9% 19.2% 25.5% 33.2% 38.7%

COIL 4.5% 8.4% 11.3% 14.8% 17.6%
NASA 4.7% 8.1% 12.1% 15.5% 21.1%
Sync-5M 4.0% 7.6% 14.1% 22.9% 32.3%
Pub-25M 3.4% 6.35% 8.6% 17.2% 22.8%

sp
ee

du
p AIDS 8.73 4.24 2.31 1.90 1.37

COIL 9.61 4.75 2.24 1.97 1.51
NASA 6.88 3.69 2.12 1.83 1.54
Sync-5M 7.58 3.44 2.69 1.88 1.46
Pub-25M 9.14 4.49 3.04 2.69 1.71

Table 4 shows thatQh contains a small number of points;
for example, it contains about 25% of the points when
τ = 5. This means that MSQ-Index searches only on a small
percentage of data graphs in the database. As a result, MSQ-
Index achieves 1.4x–9.7x speedup in filtering time compared
with SQ-Index.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Besides, we observe that the access ratio increases with
the increasing of τ . This is because that a larger τ will
produce a larger Qh. For the experimental results of the
subregion length `, see Appendix E4 in supplementary
materials.

6.3 Comparing with Existing Methods

In this section, we compare MSQ-Index with existing in-
dexing methods GSimJoin [37], Pars [38], and Mixed [39] to
evaluate its performance.
Index Construction. For the above methods, we test their
index construction performance and list the obtained results
in Table 5, where “-O” means that the memory consumption
is out of the 24 GB main memory during the index
construction.

TABLE 5: Index size (MByte) and building time (s)

Dataset GSimJoin Pars Mixed MSQ-Index
size time size time size time size time

AIDS 33.8 5.8 15.6 29.2 37.5 3.2 1.7 2.5
COIL 11.9 2.7 3.1 3.2 7.5 1.5 0.4 0.8
NASA 16.7 12.9 17.9 25.4 47.3 4.2 1.5 3.6
Sync-5M -O -O 3859.2 4407.6 6952.9 722.2 597.7 1821.8
Pub-25M -O -O -O -O -O -O 1168.1 2509.5

Table 5 shows that the succinct index MSQ-Index takes
much less space than GSimJoin, Pars, and Mixed; its index
size is only 5%–15% of other methods. For Pars, it has the
longest construction time since there are many subgraph
isomorphism tests during index construction. For Mixed, it
stores all branch and disjoint substructures, consuming the
most space in most cases. Besides, we observe that GSimJoin
requires more space than other methods on the COIL
dataset. This is because that COIL contains relatively dense
graphs and the number of paths increases exponentially in
these dense graphs. It is worth to mention that although
MSQ-Index is stored in a compressed form, its building time
is shortest in most cases.

For the large dataset Pub-25M, GSimJoin, Pars, and Mixed
all throw the memory error, and only MSQ-Index can be
successfully constructed. At the same time, MSQ-Index’s
index size is less than 1.2 GB and the index building time is
less than 45 minutes, achieving an excellent performance.
Query Performance. We evaluate the query performance
of all tested methods under different thresholds τ setting.
Fig. 12 shows the average candidate set size and the average
response time for the 100 query graphs.

From Fig. 12, we know that MSQ-Index produces the
smallest candidate set. GSimJoin does not perform well be-
cause the path-based q-grams have too many overlapping.
Mixed performs better than GSimJoin and Pars in most cases.
Compared with Mixed, the candidate set size produced by
MSQ-Index can decrease by about 67%, 79%, 28% and 25% on
the AIDS, COIL, NASA and Sync-5M datasets, respectively,
when τ = 5. Notice that for Sync-5M, GSimJoin throws the
memory error and we do not display the results.

For the response time of GSimJoin, Pars, Mixed and MSQ-
Index, denoted by “G”, “P”, “M” and “S”, respectively,
MSQ-Index takes the shortest response time in most cases,
which benefits from two aspects: (1) it searches in a reduced
query region, requiring the shortest filtering time; (2) it
generates the smallest candidate set, consuming the shortest
verification time. For Pars, it takes the longest filtering time

because it preforms lots of subgraph isomorphism tests. For
GSimJoin, it has the shortest response time when τ = 1;
this is because that GSimJoin’s verifier A? has a better
performance than other methods’ verifier CSI GED [12].
However, when τ becomes large (e.g., τ > 5), A? consumes
a large amount of memory and running time; as a result, A?

cannot finish the verification phase at this time. So we prefer
CSI GED as the default verifier in Pars, Mixed and MSQ-
Index. Notice that when τ > 5, we do not show the response
time of GSimJoin because its verifier cannot properly run for
the memory error.

To evaluate MSQ-Index on the large dataset Pub-25M,
we compare it with the online similarity search method,
CSI GED, which is the only method (as far as we know)
that can successfully run on this dataset. Fig. 13 shows the
average candidate set size and response time.

1 3 5 7 91 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7

 P u b - 2 5 M

Ca
nd

ida
te

se
t s

ize

G E D T h r e s h o l d τ

 C S I _ G E D
 M S Q - I n d e x

1 3 5 7 91 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5

 P u b - 2 5 M

Re
sp

on
se

 tim
e (

s)

G E D T h r e s h o l d τ

 C S I _ G E D
 M S Q - I n d e x

Fig. 13: Results on Pub-25M.

From Fig. 13, we know that the non-indexing method
CSI GED does not perform well. The reasons are as follows:
(1) the lower bound employed in CSI GED has a weak
pruning ability, leading to a large candidate set; thus the
verification cost is unacceptable. (2) CSI GED performs
pairwise computations to prune data graphs, resulting in
a large amount of filtering time. Compared with CSI GED,
MSQ-Index can achieve several hundred times speedup.

6.4 Scalability

In this section, we fix τ = 5 and then evaluate the scalability
of the tested methods on the real and synthetic datasets.
Varying |G|. We vary the size of Pub-25M from 500K
(kilo) to 25M (million) to study the effect of the database
size |G|. As the database size increases, the candidate set size
|C| produced by MSQ-Index shows a non-linear increasing
trend. For instance, when increasing the database size from
5M to 10M, |C| increases by 2.58 times, while increasing from
10M to 20M, it increases by 3.88 times. This naturally leads
to a problem: why |C| does not increases linearly with the
size of the database for a fixed threshold τ = 5? The possible
reason is that the distribution of data graphs in Pub-25M
is uneven (see Appendix E5 in supplementary materials).
From Appendix E5, on the uniformly distributed dataset
obtained by randomly shuffling the Pub-25M dataset, MSQ-
Index shows a linear scalability. Furthermore, when |G|
reaches 5M, 10M, and 10M, GSimJoin, Pars, and Mixed
cannot properly run, respectively, because of the memory
error. Among these indexing methods, only MSQ-Index can
scale to deal with such an extensive database.
Varying |Vh|. We vary the query graph size |Vh| from 10 to
60 to study |Vh|’s effect. The tested dataset is a subset of Pub-
25M, which contains 5 million randomly selected graphs.
Fig. 15 shows the average candidate set size and filtering
time, where we do not display GSimJoin’s results since this
method cannot properly run.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

1 3 5 7 91 0 0

1 0 1

1 0 2

1 0 3

1 0 4

A I D S

 Ca
nd

ida
te

se
t s

ize

G E D T h r e s h o l d τ

 G S i m J o i n
 P a r s
 M i x e d
 M S Q - I n d e x
 R e a l R e s u l t s

1 3 5 7 9
1 0 0

1 0 1

1 0 2

1 0 3

 C O I L

Ca
nd

ida
te

se
t s

ize

G E D T h r e s h o l d τ

 G S i m J o i n
 P a r s
 M i x e d
 M S Q - I n d e x
 R e a l R e s u l t s

1 3 5 7 9
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

 N A S A

 G E D T h r e s h o l d τ

Ca
nd

ida
te

se
t s

ize

 G S i m J o i n
 P a r s
 M i x e d
 M S Q - I n d e x
 R e a l R e s u l t s

1 3 5 7 9
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

 S y n c - 5 M

Ca
nd

ida
te

se
t s

ize

G E D T h r e s h o l d τ

 P a r s
 M i x e d
 M S Q - I n d e x
 R e a l R e s u l t s

G P M S G P M S G P M S P M S P M S

1 0 - 3

1 0 - 2
1 0 - 1

1 0 0
1 0 1

1 0 2

τ = 5 τ = 9τ = 7τ = 3τ = 1

 A I D S

Re
sp

on
se

 tim
e (

s)

 v e r f i c a t i o n t i m e
 f i l t e r i n g t i m e

G P M S G P M S G P M S P M S P M S1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

 C O I L

Re
sp

on
se

 tim
e (

s)

 V e r i f i c a t i o n t i m e
 F i l t e r i n g t i m e

τ = 9τ = 7τ = 5τ = 3τ = 1 G P M S G P M S G P M S P M S P M S

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2
 v e r f i c a t i o n t i m e
 f i l t e r i n g t i m e

Re
sp

on
se

 tim
e (

s)

 N A S A

τ = 9τ = 7τ = 5τ = 3τ = 1
P M S P M S P M S P M S P M S1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

 v e r f i c a t i o n t i m e
 f i l t e r i n g t i m e

Re
sp

on
se

 tim
e (

s)

 S y n c - 5 M

τ = 9τ = 7τ = 5τ = 3τ = 1
Fig. 12: Average candidate size and response time under different τ .

5 0 0 K 5 M 1 0 M 1 5 M 2 0 M 2 5 M1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

Ca
nd

ida
te

se
t s

ize

D a t a b a s e s i z e

 G S i m J o i n
 P a r s
 M i x e d
 M S Q - I n d e x
 R e a l

G P M S P M S S S S S
1 0 - 1

1 0 0

1 0 1

1 0 2 5 0 0 K 5 M 1 0 M 1 5 M 2 0 M 2 5 M

Re
sp

on
se

 tim
e (

s)

D a t a b a s e s i z e

 V e r i f i c a t i o n t i m e
 F i l t e r i n g t i m e

Fig. 14: Scalability vs. |G|.
From Fig. 15, as |Vh| increases, the candidate set size of

all tested methods first increases and then decreases. The
reason is that the distribution of data graphs in the database
is not uniform, where the number of graphs whose size near
30 occupies a relatively large proportion. As |Vh| increases,
the filtering time of Pars increases steadily, while for MSQ-
Index the filtering time incurred first increases and then
decreases. This is because that MSQ-Index searches only in a
reduced query region, which contains few graphs when |Vh|
is smaller than 20 or larger than 50.

1 0 2 0 3 0 4 0 5 0 6 01 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

Ca
nd

ida
te

se
t s

ize

Q u e r y g r a p h s i z e

 P a r s
 G S i m J o i n
 M S Q - I n d e x
 R e a l R e s u l t s

1 0 2 0 3 0 4 0 5 0 6 01 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

Fil
ter

ing
 tim

e (
s)

Q u e r y g r a p h s i z e

 P a r s
 M i x e d
 G S i m J o i n

Fig. 15: Scalability vs. |Vh|.

Varying |ΣV |. We generate a group of synthetic datasets to
study the effect of the number of vertex labels. Precisely,
we fix the dataset size be 100K, the average graph density
ρ = 50%, and the number of edges in each data graph be
30, respectively, and then vary the number of vertex labels.
Fig. 16 shows the average candidate size. Clearly, as the
number of vertex labels increases, the candidate set size of
all tested methods decreases; this is because that more label
information can be used to filter graphs out.

5 1 5 2 5 3 5 4 5 5 5
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Ca
nd

ida
te

se
t s

ize

N u m b e r o f l a b e l s

 G S i m J o i n
 P a r s
 M i x e d
 M S Q - I n d e x
 R e a l R e s u l t s

Fig. 16: Scalability vs. |ΣV |

1 0 2 0 3 0 4 0 5 0 6 0
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Ca
nd

ida
te

se
t s

ize

G r a p h d e n s i t y (%)

 G S i m J o i n
 P a r s
 M i x e d
 M S Q - I n d e x
 R e a l R e s u l t s

Fig. 17: Scalability vs. ρ.

Varying ρ. We fix the synthetic dataset size, the number of
edges, and the number of vertex labels be 100K, 30, and 5,
respectively, and then vary the graph density ρ to study

the effect of graph density. Fig. 17 displays the average
candidate set size; it shows that as ρ increases, the candidate
set size increases in most cases. This is because that all tested
methods only considering the local structures have a weak
filtering ability when dealing with the density graphs.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we present a space-efficient index structure for
the graph similarity search problem. The proposed succinct
index structure incorporates succinct data structures and
hybrid encoding, significantly reducing the space usage
while at the same time keeping fast query performance.
Each entry in the index structure is compressed and requires
about 4–6 bits to store on the tested datasets, which takes
much fewer bits than that used to store an int type in
the previous indexing methods. However, there is still a
room for improvement on the space bound. The design
of a representation of the q-gram tree that achieves the
entropy-compressed space bound while still preserving
query efficiency is left as a future work.

8 ACKNOWLEDGMENTS

The authors thank the editor and anonymous reviewers
for their careful reading and their constructive comments,
which have considerably improved the quality and readabi-
lity of the paper, and thank Xiang Zhao and Xuemin
Lin for their codes. This work was supported in part by
the National Natural Science Foundation of China grants
61741215, 61373044 and 61173025, and by the U.S. National
Science Foundation grant CCF-1017623. Hongwei Huo is the
corresponding author.

REFERENCES

[1] J. Berg and M. Lassig. Local graph alignment and motif search in
biological networks. PNAS, 101(41):14689–14694, 2004.

[2] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient Subgraph
Matching by Postponing Cartesian Products. In SIGMOD , pages
1199–1214, 2016.

[3] D. B. Blumenthal and J. Gamper. Improved lower bounds for
graph edit distance. IEEE Trans. Knowl Data Eng., 30(3):503–516,
2018.

[4] J. Cheng, Y. Ke, A. W. C. Fu, and J. X. Yu. Fast graph query
processing with a low-cost index. VLDB. J, 20(4):521–539, 2011.

[5] X. Chen, H. Huo, J. Huan, J. S. Vitter, W. Zheng, and
L. Zou. Source code for MSQ-Index. https://github.com/
Hongweihuo-Lab/MSQ-Index.

[6] X. Chen, H. Huo, J. Huan, and J. S. Vitter. Efficient Graph
Similarity Search in External Memory. IEEE Access, 5(1): 4551–
4560, 2017.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2954527, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[7] X. Chen, H. Huo, J. Huan, and J. S. Vitter. An efficient algorithm
for graph edit distance computation. Knowl.-Based Syst., 163:762–
775, 2019.

[8] P. Elias. Universal codeword sets and representations of the
integers. IEEE Trans. Inform Theory., 21(2):194–203, 1975.

[9] F. Emmert-Streib, M. Dehmer, and Y. Shi Fifty years of graph
matching, network alignment and network comparison. Inform.
Sciences, 346:180–197, 2016.

[10] M. L. Fernández and G. Valiente. A graph distance metric
combining maximum common subgraph and minimum common
supergraph. Pattern Recognit Lett., 22(6):753–758, 2001.

[11] K. Gouda and M. Arafa. An improved global lower bound for
graph edit similarity search. Pattern Recognit Lett., 58:8–14, 2015.

[12] K. Gouda and M. Hassaan. CSI-GED: An efficient approach for
graph edit similarity computation. In ICDE , pages 256–275, 2016.

[13] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-
compressed text indexes. In SODA, pages 841–850, 2003.

[14] A. Guttman. R-trees: a dynamic index structure for spatial
searching. In SIGMOD , pages 47–57, 1984.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst
Sci Cybernetics., 4(2):100–107, 1968.

[16] H. Huo, L. Chen, J. S. Vitter, and Y. Nekrich. A practical
implementation of compressed suffix arrays with applications to
self-indexing. In DCC , pages 292–301, 2014.

[17] G. Jacobson. Succinct data structures. Carnegie Mellon University,
1989.

[18] D. Justice and A. Hero. A binary linear programming formulation
of the graph edit distance. IEEE Trans. Pattern Anal Mach Intell.,
28(8):1200–1214, 2006.

[19] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema: Fast graph
search with label similarity. In PVLDB , pages 181–192, 2013.

[20] H. W. Kuhn. The hungarian method for the assignment problem.
Nav. Res. Log., 2:83–97, 1955.

[21] Y. Liang and P. Zhao. Similarity search in graph databases: A
multi-layered indexing approach. In ICDE , pages 783–794, 2017.

[22] R. M. Marı́n, N. F. Aguirre and E. E. Daza. Graph theoretical
similarity approach to compare molecular electrostatic potentials.
J .Chem.Inf .Model ., 48(1):109–118, 2008.

[23] M. Neuhaus and H. Bunke. Edit distance-based kernel functions
for structural pattern classification. Pattern Recogn., 39(10):1852–
1863, 2006.

[24] N. Prz̈ulj. Biological network comparison using graphlet degree
distribution. Bioinformatics, 23(2):e177–e183, 2007.

[25] M. Rahman, M. A. Bhuiyan and M. Al Hasan. Graft: An efficient
graphlet counting method for large graph analysis. IEEE Trans.
Knowl Data Eng. , 26(10): 2466–2478, 2014.

[26] K. Riesen and H. Bunke. IAM graph database repository for graph
based pattern recognition and machine learning. In SSPR, pages
287–297, 2008.

[27] K. Riesen, S. Emmenegger, and H. Bunke. A novel software toolkit
for graph edit distance computation. In GbRPR, pages 142–151,
2013.

[28] H. Shang, K. Zhu, X. Lin, Y. Zhang, and R. Ichise. Similarity search
on supergraph containment. In ICDE , pages 903–914, 2010.

[29] N. Shervashidze and K. M. Borgwardt. Fast subtree kernels on
graphs. In NIPS , pages 1660–1668, 2009.

[30] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin. An efficient
graph indexing method. In ICDE , pages 210–221, 2012.

[31] X. Wang, A. Smalter, J. Huan, and H. Gerald. G-hash: towards fast
kernel-based similarity search in large graph databases. In EDBT ,
pages 472–480, 2009.

[32] G. Wang, B. Wang, X. Yang, and G. Yu. Efficiently indexing large
sparse graphs for similarity search. IEEE Trans. Knowl Data Eng.,
24(3):440–451, 2012.

[33] N. Weskamp, E. Hullermeier, D. Kuhn, and G. Klebe. Multiple
graph alignment for the structural analysis of protein active sites.
IEEE/ACM Trans. Comput Biol Bioinformatics., 4(2):310–320, 2007.

[34] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-
based approach. In SIGMOD , pages 335–346, 2004.

[35] S. J. Yen and A. L. P. Chen. A graph-based approach for
discovering various types of association rules. IEEE Trans. Knowl
Data Eng. , 13(5):839–845, 2001.

[36] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou. Comparing
stars: On approximating graph edit distance. PVLDB, 2(1):25–36,
2009.

[37] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa. Efficient
processing of graph similarity queries with edit distance
constraints. VLDB. J, 22(6):727–752, 2013.

[38] X. Zhao, C. Xiao, X. Lin, W. Zhang, and Y. Wang. Efficient structure
similarity searches: a partition-based approach. VLDB. J, 27(1):53–
78, 2018.

[39] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao. Efficient graph
similarity search over large graph databases. IEEE Trans. Knowl
Data Eng., 27(4):964–978, 2015.

Dr. Xiaoyang Chen received the Ph.D. degree
in computer science from Xidian University in
2019. His research interests include graph in-
dexing and search, design and analysis of al-
gorithms, external memory algorithms, and com-
pressed indexes.

Dr. Hongwei Huo (SM’17) received the B.S. de-
gree in mathematics from Northwest University,
China, and the M.S. degree in computer science
and the Ph.D. degree in electronic engineering
from Xidian University. She is currently a Pro-
fessor in School of Computer Science and Tech-
nology, Xidian University. Her research interests
include the design and analysis of algorithms,
graph indexing and search, external memory
algorithms and compressed indexes, genome
compression, and algorithm engineering.
Dr. Jun (Luke) Huan (SM’11) directs the Baidu
Big Data Lab in Beijing. He works on Data
Science, AI, Machine Learning and Data Mining.
He has published more than 130 peer-reviewed
papers in leading conferences and journals. He
was a recipient of the US National Science
Foundation Faculty Early Career Development
Award in 2009. His group won several best paper
awards from leading international conferences.
Dr. Huan service record includes Program Co-
Chair of IEEE BIBM in 2015 among others.

Dr. Jeffrey Scott Vitter (F’93) received the B.S.
degree (Hons.) in mathematics from the Univer-
sity of Notre Dame in 1977, the Ph.D. degree
in computer science from Stanford University
in 1980, and an M.B.A degree from Duke Uni-
versity in 2002. Dr. Vitter is a Fellow of the
Guggenheim Foundation, the National Academy
of Inventors, the American Association for the
Advancement of Science, the ACM, and the
IEEE. He is currently Distinguished Professor
of Computer and Information Science at the

University of Mississippi. His research interests span the design and
analysis of algorithms, big data, external memory algorithms, data com-
pression, databases, compressed data structures, parallel algorithms,
and machine learning.

Dr. Weiguo Zheng received the Ph.D. degree
in computer science from Peking University
in July 2015. He is currently an Associate
Professor in School of Data Science, Fudan
University. His research interests include graph
database, knowledge graph management,
natural language question answering, and
similarity search.

Dr. Lei Zou received his B.S. degree and Ph.D.
degree in Computer Science at Huazhong Uni-
versity of Science and Technology (HUST) in
2003 and 2009, respectively. Now, he is a full
professor in Institute of Computer Science and
Technology of Peking University. His research
interests include graph database and semantic
data management.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 19:43:33 UTC from IEEE Xplore. Restrictions apply.

