
Geometric Burrows-Wheeler Transform:
Linking Range Searching and Text Indexing ∗

Yu-Feng Chien Wing-Kai Hon
National Tsing Hua University, Taiwan

{cyf,wkhon}@cs.nthu.edu.tw

Rahul Shah
Louisiana State University, LA, USA

rahul@csc.lsu.edu

Jeffrey Scott Vitter
Purdue University, IN, USA

jsv@cs.purdue.edu

Abstract

We introduce a new variant of the popular Burrows-Wheeler transform (BWT)
called Geometric Burrows-Wheeler Transform (GBWT). Unlike BWT, which merely
permutes the text, GBWT converts the text into a set of points in 2-dimensional
geometry. Using this transform, we can answer to many open questions in compressed
text indexing: (1) Can compressed data structures be designed in external memory
with similar performance as the uncompressed counterparts? (2) Can compressed data
structures be designed for position restricted pattern matching [16]? We also introduce
a reverse transform, called Points2Text, which converts a set of points into text.
This transform allows us to derive the first known lower bounds in compressed text
indexing. We show strong equivalence between data structural problems in geometric
range searching and text pattern matching. This provides a way to derive new results
in compressed text indexing by translating the results from range searching.

1 Introduction

Given a text T of length n over an alphabet set Σ, is there a data structure which
takes O(n log Σ) bits of space and can answer pattern matching queries efficiently over
T?—is a central question in the field of succinct data structures and text indexing.
This was answered positively by Grossi and Vitter [11] and Ferragina and Manzini [8];
subsequently a new field of compressed text indexing was established (see [14] for an
excellent survey). This was a positive improvement over suffix trees and suffix arrays
which used O(n log n) space. A central technique in this field has been to use the
Burrows-Wheeler Transform (BWT) [4].

Although many positive results are known, many questions still remain unan-
swered. What is the best possible space versus query complexity; are there any
fundamental lower bounds? What other more complex pattern searching functions

∗This work is supported in part by Taiwan NSC Grant 96-2221-E-007-082-MY3 (W. Hon) and US NSF
Grant CCF–0621457 (R. Shah and J. S. Vitter).

can be supported in the compressed space? Can one design such indexes in exter-
nal memory I/O model? It seemed difficult to get insight into these problems using
current BWT based approaches.

We take a fresh look at the problem of compressed text indexing and develop
an alternative approach. Using this approach, we answer many of these questions,
either positively or negatively. Similar to the Burrows-Wheeler transform (BWT),
which transforms a text into another text, we define the Geometric Burrows-Wheeler
Transform (GBWT), which transforms a text into a set of points. It is equivalent
to taking Burrows-Wheeler transform on blocked text and reversing the characters.
Unlike BWT, which needs the text characters to be in a particular order, GBWT can
maintain position information (for each character) explicitly within O(n log |Σ|) bits
and hence it is more amenable for other models like external memory. Since the BWT
permutes the text, the contiguous characters in the text can end up being far apart in
the permutation. This is the key bottleneck for pattern matching in external memory
which relies on the locality between the contiguous text characters. In traditional
BWT based approach, every character match of a pattern could possibly come from
a different disk block. Thus, in the external memory model, it was never possible to
achieve an additive term like |P |/B in query I/Os, where B is a memory block size
(measured in words). For our GBWT, since we explicitly have position information,
the |P |/B additive term can be achieved.

We also define a reverse transform called Points2Text, which transforms a set of
points into text. Each individual point is converted into a string of characters and
these strings are concatenated. This allows many known lower bounds known for
the geometric problems to be applicable to compressed text searching problem. Both
GBWT and Points2Text preserve space up to a constant factor. These transfor-
mations allow results in orthogonal range searching and compressed text indexing to
be interchangeably used for each other. Since orthogonal range searching is a very
extensively studied field [1], many results (lower bounds and upper bounds) can now
be translated to the field of compressed text indexing.

Problems. We start with describing the key problems/queries we consider. For
the pattern matching query Qmatch, the input is a pattern P , and the query returns
the set (or the cardinality of the set) Qmatch(T) = {i | T [i..(i + |P | − 1)] = P}. An
index should support these queries in O(|P | + polylog(n) + |Qmatch(T)|) time. The
problem of designing the data structure for this taking only O(n log |Σ|) bits is called
CSA (compressed suffix array) problem.

An extension to pattern matching is the problem of position-restricted pattern
matching [16]. This can be used as a building block for many other complex text
retrieval queries [12]. Here, the text T is given and the input of a query Qpr match

consists of a pattern P along with positions i and j. The query returns the set (or
the cardinality of the set) Qpr match(T) = Qmatch(T) ∩ [i, j].

In orthogonal range searching, we are given a set of n points by their x and y
coordinates: S = {(x1, y1), (x2, y2), .., (xn, yn)}. The query Qrange specifies a rectangle
(x`, xr, y`, yr). The answer to query is given by Qrange(S) = {(xi, yi) ∈ S | x` ≤ xi ≤

xr, y` ≤ yi ≤ yr}. Two specific versions of this query have been considered: counting
and reporting. We shall also consider similar queries in dimension 3. We call the
problems of designing data structures on S for efficient orthogonal range queries the
RS2D problem for the 2-D case and the RS3D problem for the 3-D case.

Our Results. Based on our transforms, we show equivalence between the com-
plexities of Qmatch and Qrange in 2-dimensions, and between the complexities of
Qpr match and Qrange in 3-dimensions. We design data structures based on this prin-
ciple. Following is the summary of our results:

1. We propose two transforms GBWT and Points2Text; these transforms are
simple, quickly computable, invertible, and (asymptotically) space-preserving.
With these, we show that text pattern matching and orthogonal range searching
are closely related.

2. We show that using GBWT one can achieve an O(n log |Σ|)-bit text index
answering queries in O(|P | + (logΣ n)(log n) + occ log n) time. This gives an
alternative result to the current internal memory text index.

3. We show that lower bounds for orthogonal range searching in the pointer ma-
chine (and other models) can be applied to text indexing, thus giving the first
lower bound results.

4. We develop the first external memory data structure taking O(n log |Σ|) bits
that can answer pattern matching queries in O(|P |/B + (log|Σ| n)(logB n) +
occ logB n) I/Os.

5. We develop a data structure taking O(n log |Σ|) bits that can answer position-
restricted pattern matching queries in O(|P | + polylog(n) + occ) time if P >
(log2+ε n)/(log |Σ|). This is an improvement in space from the current data
structures [16] taking O(n log n) bits of space.

Comparison with Related Work. Range query structures have been used for
many pattern matching queries, however rarely for achieving compressed space [11].
Kärkkäinen and Ukkonen [13] also explored the use of RS2D indexes for string
matching and proposed the sparse suffix arrays; nevertheless, their query complexity
was exponential in the worst case.

The problem of compressed text indexing (CSA) in external memory has been a
well-known open problem [18]. The question of developing compressed data structure
for position-restricted queries was left open [12, 16]. No good lower bounds have been
known except for the one by Demaine and López-Ortiz [6], which only goes to say
that the data structures need to be at least the size of the input text.

2 The Geometric BWT

Let T be a text of n characters, denoted by T [1..n]. The substrings of T in the
form T [i..n] (for i = 1, 2, . . . , n) are called the suffixes of T . The suffix tree is a

compact trie storing the n suffixes of T . The suffix array SA[1..n] is an array of
n integers, where SA[i] stores the starting position of the ith smallest suffix in the
lexicographical order. If a pattern P appears in T , P is the prefix of some suffix of
T , say T [i..n]; in this case, we say P occurs at position i. It is shown [17] that one
can find ` and r such that SA[`], SA[` + 1], . . . , SA[r] stores all positions where P
occurs. We call [`, r] the SA range of P in T .

Lemma 1 We can index T in O(n log n) bits such that for any input pattern P , we
can find the SA range [`, r] of P in T using O(|P |) time. Also, each SA value can be
reported in O(1) time.

The Burrows-Wheeler transform of T is a text BWT [1..n] such that BWT [i] =
T [SA[i]− 1].‡ So, BWT [i] is the character preceding the ith smallest suffix.

The Geometric-BWT. Given a text T drawn from {1, 2, . . . , |Σ|} and a blocking
factor d, GBWT(T , d) is a set S of n/d points (xi, yi).

‡‡ Let T ′[1..n/d] be the text
formed by blocking every d characters of T to form a single meta-character. Thus,
the suffix of T ′ at starting position i corresponds to the suffix of T starting at position
(i− 1)d+1. Let SA′[1..n/d] be the suffix array of T ′. For each character c appearing
in T ′, its binary representation, denoted by bin(c), has d log |Σ| bits. Let ←−c be the
character such that bin(←−c) is the reverse bit-string of bin(c) of d log |Σ| bits, and we
call ←−c the reverse character of c.

The GBWT(T, d) is simply the set of n/d points S = {(←−−−−−−−−−T ′[SA′[i]− 1], i) | 1 ≤
i ≤ n/d}. Note that when the points in S are sorted (in increasing order) in the
y-coordinates, the corresponding x-coordinates will be similar to the BWT of T ′,
except that each character is replaced by its reverse character. The GBWT of T
can be constructed in the same time as the BWT of T ′. Given GBWT, T can be
recovered in O(n) time. Also, GBWT is space-preserving within a constant factor.

Definition of Points2Text. Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of n
points in N2, such that the x-, or y- coordinate of each point is represented naturally
in binary using h = O(log n) bits. Fix an alphabet {0, 1, #, ?} (i.e., each character is
encoded in two bits). Let 〈x〉 denote the string of h characters formed by translating
each bit (0 or 1) in the representation of x into the corresponding character (0 or
1). To represent the n points of S, we construct a text T with alphabet {0, 1, #, ?},
known as the the Points2Text transform of S, as follows.

T = 〈←−x1〉#〈y1〉 ? 〈←−x2〉#〈y2〉 ? · · · 〈←−xn〉#〈yn〉.

The Points2Text of S can be constructed and inverted in O(n) time in RAM. In
addition, Points2Text is space-preserving within a constant factor.

‡In the special case where SA[i] = 1, we set BWT [i] = T [n].
‡‡For simplicity, we assume n is a multiple of d. Otherwise, T is first padded with enough special character

$ at the end to make the length a multiple of d.

3 External Memory Succinct Text Index

We first show an alternative succinct text index in internal memory using GBWT.
Then, we show that this index can be easily converted into an external memory index.

Let T be a text and T ′ be the meta-text formed by blocking every d = δ log|Σ| n
characters of T into a single meta-character, with δ = 1/4.§ To obtain an O(n log |Σ|)-
bit text index, we first construct a data structure ∆ consisting the suffix tree and
suffix array of T ′, so that it occupies only O((n/d) log(n/d)) = O(n log |Σ|) bits.
With ∆, we can already support pattern searching, though in a very restricted form.
Precisely, it can only report those occurrences of P in T which occur at positions of
the form id + 1 (Note that |P | does not need to be a multiple of d here.)

To extend the power of ∆, we obtain the points GBWT(T, d), sort them in the
y-coordinates, and get the modified Burrows-Wheeler transform BWTmod of T ′ by

listing the corresponding x-coordinates. That is, BWTmod[i] =
←−−−−−
BWT [i]. After that,

we construct the wavelet tree [10, 12, 16] (See Lemma 3 in Appendix) of BWTmod. As
each value of BWTmod is character in T ′, it is represented in d log |Σ|, so the wavelet
tree takes O((n/d)d log |Σ|) = O(n log |Σ|) bits.

We now show how to use the wavelet tree of BWTmod to extend the searching power
of ∆. Note that we can alternatively use any RS2D data structure on GBWT(T, d).
We describe this in terms of wavelet tree because it is easy to later derive high-order
entropy compressed index. In particular, we find all those occurrences of P in T with
starting position inside a character in T ′. That is, those occurring at positions i (in
T) with i mod d = k, where k may not be 1. We call such an occurrence an offset-k
occurrence. Here, we require that P is longer than π = d− k + 1, so that its offset-k
occurrence does not start and end inside the same character in T ′.

Let P̂ denote the prefix of P of length π (i.e., with π log |Σ| bits) and P̃ denote the

suffix of P formed by taking P̂ away from P . We define two characters cmin and cmax

as follows: Reverse the bit-string of P̂ and then append (d − π) log |Σ| bits of 0s to
it, we obtain the d log |Σ| bit-string of the character cmin; if we append (d−π) log |Σ|
bits of 1s instead, we obtain the bit-string of cmax.

To find all offset-k occurrences of P in T , it is sufficient to find all positions i′

in T ′ such that P̃ occurs at i′ in T ′,‡‡ with the binary encoding of P̂ matching
the suffix of the binary encoding of T ′[i′ − 1]. The latter happens if and only if

cmin ≤
←−−−−−
T ′[i′ − 1] ≤ cmax. Based on this, the set of i′s can be found as follows:

1. Search ∆ to obtain the SA range [`, r] of P̃ , so that SA′[`..r] are all occurrences
of P̃ in T ′.

2. Construct cmin and cmax based on P̂ .

3. Search the wavelet tree to find all y’s in [`, r] with cmin ≤ BWTmod[y] ≤ cmax.

4. Find SA′[y] for all the y’s in Step 3 (using the suffix array ∆ built on T ′), which
are the offset-k occurrences of P .

§For simplicity, we assume that d is an integer. If not, we can slightly modify the data structures without
affecting the overall complexity.
‡‡Precisely, P̃ occurs at (i′ − 1)d + 1 in T .

We apply the above to find offset-k occurrences of P for k = 2, 3, . . . , d, thus giving:

Lemma 2 Based on ∆ and the wavelet tree of BWTmod, all occurrences of P with
starting and ending positions inside different characters of T ′ can be found in O(|P |+
(log n)(log|Σ| n) + occ log n) time.

It remains to show how to find those occurrences of P that start and end in the
same character of T ′. We claim that this can be solved in O(|P |+occ) time, by using
an o(n)-bit auxiliary data structure based on the standard four-russians technique.
First, for each character c in T ′, if c appears at least

√
n times, we say c is a frequent

character. Otherwise, c is an infrequent character.
For each frequent character c, we maintain a list of positions in T ′ where it appears.

Because each occurs at least
√

n times, there are at most O(
√

n) of them. We now
treat each of the distinct frequent characters as a string of d original characters, and
construct a generalized suffix tree on these strings.¶ Then, on any input pattern P , we
can find all distinct frequent characters containing P (and the exact position(s) where
P is located inside each frequent character). Also, the corresponding pointers to their
lists of positions can be returned. Precisely, once we have searched the generalized
suffix tree and found that P appears at position α in a particular frequent character
c, we can conclude that P appears at position dγ1 + α, dγ2 + α, . . . , in T , where γi

denotes the ith occurrence of c in T ′. Thus, the time to output all occurrences of P
appearing in all frequent characters is O(|P |+ occ) time. The space is dominated by
the generalized suffix tree, which requires O(

√
n× d× log n) = o(n) bits.

The number of distinct infrequent characters is at most 2δ log n = n1/4, as each
character is represented in δ log n bits. In total, the number of infrequent characters
(counting repeats) is at most n1/4 × √

n. We treat each of them as a string of d
original characters and construct a generalized suffix tree for these strings. Then, on
any input pattern P , we can find all occurrences of P appearing inside all (possibly
non-distinct) infrequent characters in O(|P |+ occ) time. The space of this suffix tree
is O(n1/4 ×√n× d× log n) = o(n) bits.

In conclusion, the desired occurrences of P can be found in O(|P |+ occ) time, and
the space of the overall data structure is o(n)-bits. Combining this with Lemma 2,
we have the theorem below:

Theorem 1 We can index a text T in O(n log |Σ|) bits such that we can find all
occurrences of a pattern P in T in O(|P |+ (log n)(log|Σ| n) + occ log n) time.

Extension to External Memory Index. Let B be the size of a disk page. Our
first result simply replaces each data structure used in Section 3 by its external
memory counter-part. That is, we replace ∆ of T ′ by the string B-tree [7] of T ′ and
the wavelet tree of BWTmod by the external memory wavelet tree of BWTmod (See
Appendix); for the suffix trees inside the data structures that search short patterns,
they are replaced by string B-trees as well. Immediately, we obtain:

¶Given a set of strings S1, S2, . . . , Sk, the generalized suffix tree is a compact trie storing all suffixes of
all Si’s. Searching of a pattern is done simultaneously in all Si’s.

Theorem 2 We can index a text T in O(n log |Σ|) bits such that we can find all
occurrences of a pattern P in T in O(|P |/B + log|Σ| n logB n + occ logB n) I/Os.

The additive term occ logB n in the query I/O is not optimal. Here, we show that
this factor can be achieved when patterns are sufficiently large. First, we use a new
blocking factor d = (log2 n)/((log |Σ|)(log logB n)) and block the text T accordingly.‖

We maintain the string B-tree of the blocked text T ′. Instead of using the external
memory wavelet tree to index BWTmod, we use the four-sided query index I of Arge
et al. [3] to store the points (i, BWTmod[i]). It is easy to check that the index I
performs the desired query supported by the wavelet tree of BWTmod. This gives:

Theorem 3 We can index a text T in O(n log |Σ|) bits such that whenever P is
longer than d = (log2 n)/((log |Σ|)(log logB n)), we can find all occurrences of P in T
in O(|P |/B + d logB n + occ/B) I/Os, where occ is the number of occurrences.

3.1 Lower bounds using Points2Text

We first demonstrate the reduction from 2-dimensional range query with n points
in [1, n] × [1, n] (so that each point is represented in h = Θ(log n) bits) to text
searching. Based on this, we can obtain the lower bound result for pattern matching
with succinct text index. The general case for reducing range query in R2, assuming
each point is represented in h′ bits, can be handled easily by storing a sorted array
of x values and a sorted array of y values, using O(nh′)-bit extra space and O(log n)
extra time for coordinate translation.

Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of n points in [1, n] × [1, n], and
T be the text T in the Points2Text of S. On an input ranges [xleft, xright] and
[ybottom, ytop], it is easy to see that finding all points in S that fall inside the ranges can
be done by issuing the corresponding (xright−xleft)×(ytop−ybottom) pattern searching
queries in T . In fact, we can limit the number of pattern queries to O(log2 n) by the
following observation.

Observation 1 For any k and any i, we call the range [k2i, (k+1)2i−1] a complete
range, which is denoted by Rk,i. That is, the range contains all 2i numbers whose
quotient, when divided by 2i, is k. For any range [`, r] with 1 ≤ ` ≤ r ≤ 2h, it can be
partitioned into at most 2h complete ranges in O(h) time.

Now, suppose that Rk,i is a complete range in [xleft, xright] and Rk′,i′ is a complete
range in [ybottom, ytop]. Then, each point in S with x-coordinate falling in Rk,i and
y-coordinate falling in Rk′,i′ corresponds to exactly a substring of T in the form of:

Last h− i characters of 〈←−k2i〉, then #, then first h− i′ characters of 〈k′2i′〉.

Thus, we need to issue only 4h2 = Θ(log2 n) pattern queries in T . So we have:

‖Note that choosing larger d allows more sparsification, but it is not possible to design the four-russians
data structure for small patterns in such cases.

Theorem 4 Given a set S of n points in R2, each represented in h′ bits, we can
construct two sorted arrays for storing the x-coordinates and y-coordinates, and a
text T of length O(n log n) with characters chosen from an alphabet of size 4; then, a
four-sided range query on S can be answered by O(log2 n) pattern match queries on
T , each query searching a pattern of O(log n) characters.

Chazelle [5] showed that in a pointer machine, an index supporting d-dimensional
range searching in O(polylog(n) + occ) query time requires O(n(log n/ log log n)d−1)
words of storage. Combining this (d = 2) with Theorem 4, we have:

Theorem 5 In pointer machine, an index on T [1..n] supporting pattern matching in
O(polylog(n) + occ) time requires Ω((n log n)/(log log n)) bits in the worst case.

We can also apply Theorem 4 to obtain a lower bound in the external memory
model. Subramanian and Ramaswamy [19] showed that any external memory data
structure that can answer 2-D orthogonal range query in O((logB n)c + occ/B) I/Os,
for any c, must use at least Ω((n log n)/(log logB n)) words. So, we have:

Theorem 6 An external memory index on T [1..n] supporting pattern matching in
O((logB n)c/ log2 n+occ/B) I/Os needs Ω((n log n)/ log logB n) bits in the worst case.

4 Succinct Index for Position-Restricted Query

Given a text T and a pattern P , and two positions i and j, the position-restricted
query finds all occurrences of P in T whose starting positions are between i and j. Our
index is defined as follows: We use a similar blocking technique as in Lemma 2. Let
T [1..n] be a text with characters drawn from {1, 2, . . . , |Σ|}. Let d = log2+ε n/ log |Σ|
for some fixed ε > 0 and T ′[1..n/d] be a meta-text formed by blocking every d
characters in T into a meta-character. Let SA′ denote the suffix array of T ′. Also,
we re-use the notations ←−c , P̂ , P̃ , cmin, and cmax in Section 3 analogously.

We construct a data structure ∆ consisting of the suffix tree and suffix array of
T ′. Now, we obtain the set of points S in 3-dimensions. For this, we use augmented-
GBWT which also adds z-coordinate as SA′[i] to the x and y coordinates obtained

by GBWT. Thus, S consists of points of the form (
←−−−−−−−−−
T ′[SA′[i]− 1], i, SA′[i]). Now, we

construct an index I for S such that RS3D can be answered in O(log n+k) time [2].
The sizes of both data structures are O(n log |Σ|) bits.

When P is longer than d, any offset-k occurrence of P with starting position
between i and j in the original text T must have P̃ occurring at some position x
in T ′, P̂ matching the “suffix” of T ′[x − 1], and x between i′ = d(i + |P̂ |)/de and

j′ = d(j + |P̂ |)/de. Thus, all offset-k occurrences can be found as follows:

1. Search P̃ in ∆ to obtain the SA range [`, r] of P̃ in T ′.

2. Construct cmin and cmax based on P̂ . Compute i′ and j′.

3. Search I for all (x, y, z) such that z ∈ [i′, j′], x ∈ [cmin, cmax], and y ∈ [`, r].

4. The z values of all points obtained in Step 3 correspond to offset-k occurrences
of P . (Precisely, P appears at positions (z − 1)d + k in T for all z.)

The position-restricted occurrences of P can thus be obtained by finding all offset-
k occurrences of P in the above process, for k = 1, 2, . . . , d. The total time to
obtain all SA ranges for d times is O(|P |). The total time to search I for d times
is O(d log2 n + occ), where occ is the number of position-restricted occurrences of P .
Combining the two terms gives the following theorem.

Theorem 7 For a fixed ε > 0, we can index T in O(n log |Σ|) bits such that for any
input pattern P longer than (log2+ε n)/(log |Σ|) and any input positions i and j, we
can support the position-restricted query in O(|P | + (log4+ε n)/(log |Σ|) + occ) time,
where occ is the number of occurrences.

Lower Bound. Here, we reduce the 3-dimension range query about n points in
[1, n]× [1, n]× [1, n] to position-restricted query. The general case for reducing range
query in R3, when each point is represented in h′ bits, can be handled easily with
O(nh′)-bit extra space and O(log n) extra time for coordinate translation.

Let S = {(xi, yi, zi) | 1 ≤ i ≤ z} be a set of n points in [1, n] × [1, n] × [1, n]. We
perform Points2Text transform on S to obtain a text T and an array Z, where we
assume z1 ≤ z2 ≤ . . . zn and Z[i] = zi. Recall that T is in the form

T = 〈←−x1〉#〈y1〉 ? 〈←−x2〉#〈y2〉 ? · · · 〈←−xn〉#〈yn〉.

Let e = 2h+2 denote the length of the string 〈←−xi 〉#〈yi〉?. On input ranges [xleft, xright],
[ybottom, ytop], and [zfront, zback], let i denote the minimum k with Z[k] ≥ zfront and
j denote the maximum k with Z[k] ≤ zback. Then, finding all points in S that fall
inside the ranges can be done by searching the substring representing (x, y) in T for
all x ∈ [xleft, xright] and y ∈ [ybottom, ytop] with positions restricted by (i− 1)e + 1 and
(j − 1)e + 1. Again by Observation 1, we can limit the number of position-restricted
pattern queries to O(log2 n). This gives the following theorem.

Theorem 8 Given a set S of n points in R2, each represented in h′ bits, we can
construct a sorted array for each of the x-, y-, and z- coordinates, and a text T
of length O(n log n) with characters chosen from an alphabet of size 4; then, a 3-D
orthogonal range query on S can be answered by O(log2 n) position-restricted pattern
searching queries on T , with each query searching a pattern of O(log n) characters.

Then, we can combine Chazelle’s lower bound (with d = 3) and obtain:

Theorem 9 In pointer machine, an index on T [1..n] supporting position-restricted
query in O(polylog(n)+occ) time needs Ω(n(log n/ log log n)2) bits in the worst case.

References

[1] P. K. Agarwal and J. Erickson. Geometric Range Searching and Its Relatives. Advances in
Discrete and Computational Geometry, 23:1–56, 1999.

[2] S. Alstrup, G. S. Brodal, and T. Rauhe. New Data Structures for Orthogonal Range Searching.
In FOCS, pages 198–207, 2000.

[3] L. Arge, G. S. Brodal, R. Fagerberg, and M. Laustsen. Cache-Oblivious Planar Orthogonal
Range Searching and Counting. In SOCG, pages 160–169, 2005.

[4] M. Burrows and D. J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm. Tech-
nical Report 124, Digital Equipment Corporation, Paolo Alto, CA, USA, 1994.

[5] B. Chazelle. Lower Bounds for Orthogonal Range Searching, I: The Reporting Case. Journal
of the ACM, 37:200–212, 1990.

[6] E. D. Demaine and A. López-Ortiz. A Linear Lower Bound on Index Size for Text Retrieval.
In Proceedings of Symposium on Discrete Algorithms, pages 289–294, 2001.

[7] P. Ferragina and R. Grossi. The String B-tree: A New Data Structure for String Searching in
External Memory and Its Application. JACM, 46(2):236–280, 1999.

[8] P. Ferragina and G. Manzini. Indexing Compressed Text. JACM, 52(4):552–581, 2005.
[9] P. Ferragina and R. Venturini. A Simple Storage Scheme for Strings Achieving Entropy

Bounds. In Proceedings of Symposium on Discrete Algorithms, pages 690–696, 2007.
[10] R. Grossi, A. Gupta, and J. S. Vitter. High-Order Entropy-Compressed Text Indexes. In

Proceedings of Symposium on Discrete Algorithms, pages 841–850, 2003.
[11] R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applications to

Text Indexing and String Matching. SIAM J. Comput., 35(2):378–407, 2005.
[12] W.-K. Hon, R. Shah, and J. S. Vitter. Ordered Pattern Matching: Towards Full-Text Retrieval.

Technical Report TR-06-008, Purdue University, March 2006.
[13] J. Kärkkäinen and E. Ukkonen. Sparse Suffix Trees. In Proceedings of International Conference

on Computing and Combinatorics, pages 219–230, 1996.
[14] G. Navarro and V. Mäkinen. Compressed Full-Text Indexes. ACM CSUR, 39(1), 2007.
[15] V. Mäkinen and G. Navarro. Dynamic Entropy-Compressed Sequences and Full-Text Indexes.

To appear in ACM TALG.
[16] V. Mäkinen and G. Navarro. Position-Restricted Substring Searching. In LATIN, pages 703–

714, 2006.
[17] U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String Searches. SIAM

Journal on Computing, 22(5):935–948, 1993.
[18] S. J. Puglisi, W. F. Smyth, and A. Turpin. Inverted Files Versus Suffix Arrays for Locating

Patterns in Primary Memory. In SPIRE, pages 122–133, 2006.
[19] S. Subramanian and S. Ramaswamy. The P-range Tree: A New Data Structure for Range

Searching in Secondary Memory. In SODA, pages 378–387, 1995.

A Appendix

Simple Wavelet Tree as a Data Structure for RS2D. Given an array A[1..m]
of m integers drawn from [1, n], a simple implementation of the wavelet tree [10, 16]
supports on an input range [`, r] and an input value y, finding all z’s in [`, r] such
that A[z] = y in O((occ + 1) log n) time, where occ denotes the number of z’s in the
output. In fact, the wavelet tree can be generalized easily so that we achieve the
following results [12].

Lemma 3 We can index A in O(m log n) bits such that on an input range [`, r]
and an input bound [x, y], we can output all z ∈ [`, r] such that x ≤ A[z] ≤ y in
O((1 + occ) log n) time (or, O((1 + occ) logB n) I/Os in external memory), where occ
denotes the size of the output.

