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Abstract We introduce a new variant of the popular Burrows-Wheeler transform
(BWT), called Geometric Burrows-Wheeler Transform (GBWT), which converts a
text into a set of points in 2-dimensional geometry. We also introduce a reverse trans-
form, called Points2Text, which converts a set of points into text. Using these
two transforms, we show strong equivalence between data structural problems in
geometric range searching and text pattern matching. This allows us to apply the
lower bounds known in the field of orthogonal range searching to the problems in
compressed text indexing. In addition, we give the first succinct (compact) index for
I/O-efficient pattern matching in external memory, and show how this index can be
further improved to achieve higher-order entropy compressed space.
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1 Introduction

Given a text T of length n over an alphabet set Σ , we can construct the suffix trees
[39, 46] and the suffix arrays [38] with O(n logn) bits of space for answering pattern
matching queries efficiently. With the recent interest in succinct data structures (such
as [30, 40]) where the main goal is to design data structures in the (information-
theoretic) minimal space while supporting query in near-optimal time. For the text
data T , this information theoretically minimum space would be n log |Σ | bits or even
better in terms of (kth order) entropy compression of the text and it would be nHk bits
of space. The central question first addressed in compressed text indexing is whether
an index size can be reduced to O(n log |Σ |) bits while supporting pattern matching
queries efficiently over T . This was answered positively by Grossi and Vitter [20]
and Ferragina and Manzini [14]; subsequently, an exciting field of compressed text
indexing was established (see [34] for an excellent survey). One of the main tech-
niques in this field has been to use the Burrows-Wheeler Transform (BWT) [8] to
achieve space reduction.

All the above described indexes focussed on the internal memory model. However,
there are increasing needs to deal with massive data sets that do not easily fit into
the internal memory and thus the data and the index must be stored on secondary
storage, such as disk drives, or in a distributed fashion in a network [29]. This leads
to the requirement of an I/O-efficient external memory index. Ferragina and Grossi
introduced an O(n logn)-bit space index called string B-tree (SBT) [13] which can
support pattern matching of a query pattern P in O(|P |/B+ logB n+occ/B),1 where
B is the block size measured in terms of words.

It seems difficult to get insight into this problem using the current BWT-based
approach. In particular, since the BWT permutes the text, the contiguous characters
in the text can end up being far apart in the permutation. If the index is placed in
the external memory, every character match of a pattern could possibly come from a
different disk page. This forms the key bottleneck and thus until now there were no
successes in achieving an additive term like |P |/B or |P |/(B log|Σ | n) in query I/Os
using this approach.

In this paper, we take a fresh look at this problem and develop an alternative
approach for compressed text indexing. Similar to the Burrows-Wheeler transform
(BWT), which transforms a text into another text, we define the Geometric Burrows-
Wheeler Transform (GBWT), which transforms a text into a set of points. Conceptu-
ally, it is equivalent to taking Burrows-Wheeler transform on blocked text. But unlike
BWT, which needs the text characters to be stored in a particular order, GBWT can
maintain position information (for each character) explicitly within O(n log |Σ |) bits
and hence it is more amenable for the external memory model; in particular, the
|P |/B (or even |P |/(B log|Σ | n)) additive term can now be achieved. Unfortunately
our index cannot achieve optimality in the other two terms (logB n and occ/B) si-
multaneously. The details of the practical implementation of our index is available
in [12].

1Although the more optimal first term would be |P |/(B log|Σ | n) because the block size is measured in
terms of words and we assume the word-size to be logn bits and each character of the pattern takes log |Σ |
bits.
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We also define a reverse transform called Points2Text, which transforms a
set of points into a text. Both GBWT and Points2Text preserve space up to a
constant factor. These transformations allow results in orthogonal range searching
and compressed text indexing to be interchangeably used for each other. Since or-
thogonal range searching is a very extensively studied field [1], many results (lower
bounds and upper bounds) can now be translated to the field of compressed text in-
dexing. Using Points2Text transform, we show that it is impossible to perform
pattern matching queries in O(|P | logO(1) n + occ/B) I/Os with an index using only
succinct space. However, this is possible in a special case where the pattern is suffi-
ciently long, or if we are willing to incur an extra Õ(

√
n/B) term in the query I/Os.2

The key components of our succinct index are very simple, which include a sparse
suffix tree (or a sparse string B-tree), an orthogonal range searching data structure,
and a four-russians lookup table. Furthermore, we introduce a variable-length block-
ing scheme for the text, so that by encoding each block using arithmetic coding, we
can achieve higher order entropy compression.

Problem Definitions Given a text T with n characters over an alphabet Σ , and
an input query pattern P , the pattern matching query of P on T returns the set
Qmatch(T ,P ) = {i | T [i..(i + |P | − 1)] = P }. The problem of designing the data
structure for this taking only O(n log |Σ |) bits is called the (compressed text index-
ing) problem.

In two-dimensional orthogonal range searching, we are given a set S of n points
by their x and y coordinates: S = {(x1, y1), (x2, y2), . . . , (xn, yn)}. The query Qrange
specifies a rectangle R = (x�, xr , y�, yr ). The answer to the query is given by
Qrange(S,R) = {(xi, yi) ∈ S | x� ≤ xi ≤ xr , y� ≤ yi ≤ yr}. Two specific versions
of this query have been considered: counting and reporting. We call the problems
of designing data structures on S for efficient orthogonal range queries the RS2D
problem.

Our Results Based on our transforms, we show strong connections between the two
problems. The following is a summary of our results:

1. We propose two (asymptotically) space-preserving transforms GBWT and
Points2Text; these transforms are simple, quickly computable, and invertible.
With these, we show that text pattern matching and orthogonal range searching
can be reduced from one into the other.

2. Internal Memory Results
(a) Using GBWT, we derive a succinct full text index of O(n log |Σ |) bits space

and O(|P | + (log|Σ | n + occ) logn/ log logn) query time.
(b) Using Points2Text transform, we prove a space lower bound of Ω(n logn/

log logn) bits for any full text index with O(|P | logO(1) n + occ) query time.
3. External Memory Results

(a) Using GBWT, we derive a succinct full text index of O(n log |Σ |) bits space
and O(|P |/B + (log|Σ | n+ occ) logB n) query I/O’s. The I/O bound is further

improved to O(|P |/(B log|Σ | n) + log|Σ | n log1+ε n + occ logB n).

2The notation Õ ignores poly-logarithmic factors. Precisely, Õ(f (n)) ≡ O(f (n) logO(1) n).
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(b) Using Points2Text transform, we prove a space lower bound of Ω(n logn/

log logn) bits for any full text index with O(|P | logO(1) n + occ/B) query
I/O’s.

(c) We also show how to achieve entropy compressed space of O(nHk + n) +
o(n log |Σ |) bits.

Here Hk denotes the kth-order entropy of the text T , occ denotes the number
of occurrences of P in T , and B is the size of a disk page (measured in words).

Related Work A compact representation of suffix tree in secondary memory, called
Compact Pat Tree [10] is an efficient practical index even though it does not pro-
vide any theoretical guarantees. Disk based suffix array data structures are also
available in literature [7]. Mäkinen et al. proposed an external memory version
compressed suffix array (CSA) taking nH0(T ) + O(n log logΣ) bits space, how-
ever its I/O bound O(|P | logB n + occ logn) is too expensive [37]. There were sev-
eral attempts to design I/O-efficient compressed indexes based on popular Lempel-
Ziv compression. In [6], Arroyuelo and Navarro proposed an index whose space is
8nHk + o(n log |Σ |) bits, but the I/O bounds for pattern searching were not given.
Their work is practical in nature and claims to support pattern matching queries in
about 20–60 disk accesses. In [18], González and Navarro provided an index which
takes O(|P | + occ/B) I/Os for answering pattern matching query. However, their
space usage is O((n logn) × Hk log(1/Hk)) bits, which is an Ω(logn) factor away
from the optimal space complexity. The most famous external memory text index
“String B-tree” [13], which combines B-tree with Patricia tries, takes O(n) words
or O(n/B) disk blocks space and performs pattern matching queries in optimal
O(|P |/B + logB n + occ/B) I/O’s.

One of the main technique we use in this paper is suffix sampling and thus maintain
a trie of only those selected suffixes called sparse suffix tree. This technique have been
used as a simple tool for designing compressed indexes for many applications such as,
fully compressed suffix tree [41], aligned pattern matching [45], text indexing with
wild card [27], dictionary matching [23, 24, 28] etc. Recently Kolpakov et al. [33]
proposed an internal memory succinct index using sparse suffix trees. Kärkkäinen
and Ukkonen [32] attempted to obtain a compressed text index by using sparse suffix
array, which indexes only a subset of the suffixes of the text rather than all suffixes.
They also used range query data structures, but could only achieve exponential query
complexity in the worst case.

Our Points2Text transform has been used to prove some lower bounds results
such as, Chan [11] et al. showed that we cannot have a succinct index for position
restricted sub-string searching with O(|P | logO(1) n + |output|) query time. Similar
results were proved for aligned pattern matching, sub-string range reporting, two pat-
tern matching etc in pointer machine [16, 17, 45].

Organization of the Paper The organization of the paper is as follows. Section 2
summarizes the existing related results that will be applied later. Section 3 defines
the two transformations GBWT and Points2Text. In Sect. 4, we introduce our
GBWT-based index for the internal memory model, which forms the framework for
our external memory index in Sect. 5. In Sect. 6, we present our lower bound results.
We conclude the paper in Sect. 7 with some open problems.
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2 Preliminaries

2.1 Suffix Trees, Suffix Arrays, and Burrows-Wheeler Transform

Suffix trees [39, 46] and suffix arrays [38] are two well-known and popular text in-
dexes that support online pattern matching queries in optimal (or nearly optimal)
time. For text T [1..n] to be indexed, each substring T [i..n], with i ∈ [1, n], is called a
suffix of T . The suffix tree for T is a lexicographic arrangement of all these n suffixes
in a compact trie structure, where the ith leftmost leaf represents the ith lexicographi-
cally smallest suffix. Each edge e in the suffix tree is labelled by a series of characters,
such that if we examine each root-to-leaf path, the concatenation of the edge labels
along the path is exactly equal to the corresponding suffix represented by the leaf.

Suffix array SA[1..n] is an array of length n, where SA[i] is the starting position
(in T ) of the ith lexicographically smallest suffix of T . An important property of SA
is that the starting positions of all suffixes with the same prefix are always stored in
a contiguous region in SA. Based on this property, we define the suffix range of a
pattern P in SA to be the maximal range [�, r] such that for all j ∈ [�, r], SA[j ] is
the starting point of a suffix of T with P as a prefix. Note that SA can be obtained by
traversing the leaves of suffix tree in a left-to-right order, and outputting the starting
position of each leaf (i.e., a suffix of T ) along this traversal. In particular, we have
the following technical lemma about suffix trees, suffix arrays, and suffix ranges.

Lemma 1 Given a text T of length n, we can index T using suffix tree and suffix array
in Θ(n logn) bits such that the suffix range of any input pattern P can be obtained
in O(min{|P |, |P |/ log|Σ | n + log logn}) time.

Proof The normal suffix tree supports pattern matching in O(|P |) time. Alterna-
tively, we may slightly modify the definition of the suffix tree and perform search-
ing in O(|P |/ log|Σ | n + log logn) time as follows: Each suffix T [i..n] is converted
into T ′[i..n] by blocking every 0.5 log|Σ | n consecutive characters as a single meta-
character; the modified suffix tree is defined as a compact trie of all T ′[i..n]’s. Here
each meta-character is of length 0.5 logn bits, hence the number of such distinct
meta-characters is |Σ |0.5 log|Σ | n = √

n. Note that each edge in this modified suffix
tree contains an integral number of meta-characters, and each meta-character can
be processed in O(1) time in word RAM model. Therefore P can be matched in
O(|P |/ log|Σ | n) time until the last node in the tree is matched. Unlike the normal
suffix tree, we may need to perform a partial match (less than 0.5 log|Σ | n original
characters) starting from the last node, so as to find out all branches with prefix equal
to the partial match. This step can be done by binary search, and can be sped up to
O(log logn) time using a y-fast trie [47]. This proves the above lemma. �

Suffix trees or suffix arrays maintain relevant information of all n suffixes of T

such that on given any input pattern P , we can easily search for the occurrences of
P simultaneously in each position of T . However, a major drawback is the blow-up
in space requirement, from the original Θ(n log |Σ |) bits of storing the text in plain
form to the Θ(n logn) bits of maintaining the indexes.



Algorithmica (2015) 71:258–278 263

The Burrows-Wheeler transform of a text T is an array BWT of characters such
that BWT[i] is the character preceding the ith lexicographically smallest suffix of T .
That is, BWT[i] = T [SA[i] − 1].

2.2 External-Memory Model

The external-memory model [2] or I/O model was introduced by Aggarwal and Vitter
in 1988. In this model, the CPU is connected directly to an internal memory of size M ,
which is then connected to a much larger and slower disk. The disk is partitioned into
disk pages of B words (i.e., B logn bits). The CPU can only operate on data inside
the internal memory. So, we need to transfer data between internal memory and disk
through I/O operations, where each I/O may transfer a disk page from the disk to
the memory (or vice versa). Since internal memory (RAM) is much faster, operations
on data inside this memory are considered free. Performance of an algorithm in the
external-memory model is measured by the number of I/O operations used.

2.3 String B-Tree

String B-tree (SBT) [13] is an index for a text T that supports efficient online pattern
matching queries in the external-memory setting. Basically, it is a B-tree over the
suffix array SA of T but with extra information stored in each B-tree node to facilitate
the matching. The performance of SBT is summarized as follows.

Lemma 2 Given a text T of length n characters, we can index T using a string B-tree
in Θ(n/B) pages or Θ(n logn) bits such that the suffix range of any input pattern P

can be obtained in O(|P |/(B log|Σ | n) + logB n) I/Os.

In our compressed text index for the external-memory setting, we again achieve
space reduction by maintaining fewer suffixes. Thus, our index includes a sparsified
version of the SBT as the main component.

2.4 Orthogonal Range Searching in 2D Grid

In our compressed text index, in addition to the suffix trees or SBT, another key com-
ponent is a data structure to represent some integer array A[1..n], with each integer
represented in O(logn) bits, and can efficiently support online 4-sided queries of the
following form:

Input: A position range [�, r] and a value bound [y, y′]
Output: All those z’s in [�, r] such that y ≤ A[z] ≤ y′

The above problem can easily be modeled as a geometric problem as follows. First,
for each i ∈ [1, n], generate a point (i,A[i]) in the 2-dimensional grid [1, n] × [1, n].
This gives an alternative representation of the array A. Then, for any input query
with position range [�, r] and value bound [y, y′], the desired output corresponds to
all points in the grid that are lying inside the rectangle [�, r] × [y, y′].
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Such a query is called an orthogonal range query in the literature [5], and many
indexing schemes are devised that have different trade-offs between the index space
and the query time and we use the results summarized in the following lemma.

Lemma 3 Given an integer array A of length n with values drawn from [1, n], we can
index A in O(n logn) bits such that the four-sided query of any position range [�, r]
and any value bound [y, y′] can be answered in O((|output|+1) logn/ log logn) time
in the RAM model and O((|output| + 1) logB n) I/Os in the external-memory model.
If only counting query is required (that is, only the value |output| is needed), it can be
answered in O(logn) time in RAM or O(logB n) I/Os in the external-memory model.

Proof For the RAM model, the desired counting query bound is achieved by [36],
while the desired four-sided query bound is achieved by [48]. For the external-
memory model, we generalize the binary wavelet tree proposed in [19] into a degree-
B wavelet tree. Precisely, we maintain a complete degree-B wavelet tree WT with
h = logB n levels,3 so that for each internal node, the pointers to its B children are
stored compactly in one disk page (called the directory page). Each node of the
wavelet tree WT is augmented with an array of logB-bit items. The root r of WT
corresponds to the whole array A[1..n], which stores an array Ar [1..n] where Ar [i]
is the first logB bits of A[i]. Next, suppose A[i1],A[i2], . . . ,A[ij ] is the subsequence
of A[1..n] where the first logB bits of each entry is equal to the binary representation
of the integer x. Then, we define a new array A′[1..j ] such that A′[k] is equal to A[k]
with its first logB bits removed (i.e., each entry of A′ will be represented by only
(h − 1) logB bits). The xth child of the root r is defined recursively as a wavelet tree
with h − 1 levels that corresponds to the array A′[1..j ].

Each integer in the original array A is thus partitioned into h parts, one appearing
in each level of the wavelet tree. As in the binary wavelet tree proposed in [19], we
shall provide a way to link a part of an integer to its other part in the next level. First,
the array in each node, say Z[1..k], is stored in contiguous disk pages. For a disk page
storing Z[k′..k′′], we associate it with a disk page (called the counter page) storing
B values C[0..B − 1], such that C[x] counts the number of entries with value x in
Z[1..k′ − 1]. Now, for an entry Z[�] (which is a part of a certain integer), � ∈ [k′, k′′],
its other part in the next level will be stored in the Z[�]th child of the current node,
as the C[Z[�]] + γ th entry in its stored array, where γ is the number of entries in
Z[k′..�] whose value is equal to Z[�]. The value C[Z[�]], and the location of the
desired child, can be returned in O(1) I/Os by checking the directory and the counter
pages. The value γ can be computed based on the content of Z[k′..k′′], thus requiring
O(1) I/Os as well. In general, linking of a part of an integer to its other part in the
wavelet tree requires O(1) I/Os per level. This consequently allows us to answer the
four-sided range query and the counting query, analogously to that by using a binary
wavelet tree, within the stated bounds.

3For simplicity, we assume that n is a power of B , so that logB n is an integer. Otherwise, we simply

consider the range of values in A as [1, n′], where n′ = B�logB n� , so that both the space and query bounds
in our proposed scheme follow.
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For the space, all directories in the wavelet tree, and all arrays within the wavelet
tree nodes, can be stored in a total of O(n logn) bits. Nevertheless, there is a prob-
lem with the current wavelet tree design, concerning the space of the counter pages.
Precisely, we are using B counters, even though its associated disk page may contain
very few entries. To avoid the problem, we assume that the recursion of a wavelet
tree stops as soon as the number of entries is too few (fewer than B logn/ logB), so
that the corresponding array can be naively stored in O(logB n) disk pages, and the
query bounds still hold. Also, there is no need to associate a counter page for the first
of the contiguous disk pages that store the array. Thus, the number of counter pages
is no more than the number of disk pages for storing all arrays, so that the space of
the counter pages is also bounded by O(n logn) bits. �

3 The Two Transformations

This section describes two transformations GBWT and Points2Text which are
fundamental in deriving all results in this paper.

Definition of GBWT Given a text T with characters drawn from an alphabet
{1,2, . . . , |Σ |} and a blocking factor d , GBWT(T , d) is a set S of n/d points (xi, yi).4

Let T ′[1..n/d] be the text formed by blocking every d characters of T to form a sin-
gle meta-character. Thus, the suffix of T ′ at starting position i corresponds to the
suffix of T starting at position (i − 1)d + 1. Let SA′[1..n/d] be the suffix array of
T ′. For each character c appearing in T ′, its binary representation, denoted by bin(c),
has d log |Σ | bits. Let ←−

c be called as the reverse character of c, such that bin(
←−
c ) is

the reverse bit-string of bin(c), and is of length d log |Σ | bits.

The GBWT(T ,d) is simply the set of n/d points S = {(←−−−−−−−−−
T ′[SA′[i] − 1], i) | 1 ≤

i ≤ n/d}. Note that when the points in S are sorted (in increasing order) in the y-
coordinates, the corresponding x-coordinates will be similar to the BWT of T ′, except
that each character is replaced by its reverse character.

The GBWT of T can be constructed in the same time as the BWT of T ′. Given
GBWT, T can be recovered easily in O(n) time. Also, GBWT is space-preserving
within a constant factor. The GBWT can also be high-order entropy compressed to
achieve nHk bit representation using the results of [15, 35].

Definition of Points2Text Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of n

points in an n×n grid, such that the x- or y- coordinates of each point is represented
naturally in binary using h = O(logn) bits. Fix an alphabet {0,1,#, �} (i.e., each
character is encoded in two bits). Let 〈x〉 denote the string of h characters formed by
translating each bit (0 or 1) in the representation of x into the corresponding character
encoded in two bits.

4For simplicity, we assume n is a multiple of d . Otherwise, T is first padded with enough special character
$ at the end to make the length a multiple of d .
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To represent the n points of S, we construct a text T with alphabet {0,1,#, �} as
follows:

T = 〈←−x1 〉#〈y1〉 � 〈←−x2 〉#〈y2〉 � · · · � 〈←−xn 〉#〈yn〉.
This text T forms the Points2Text transform of S.

The Points2Text of S can be constructed and inverted in O(n) time in RAM.
In addition, Points2Text is space-preserving within a constant factor.

4 Internal Memory Text Index Using GBWT

First, we shall show an alternative succinct text index in internal memory using
GBWT. Then, we shall show a higher order entropy compressed version of this in-
dex. The space-time bounds of our succinct index is summarized in the following
theorem.

Theorem 1 We can index a text T in O(n log |Σ |) bits such that finding all occur-
rences of a pattern P in T can be done in O(|P | + (log|Σ | n + occ) logn/ log logn)

time.

Let T be a text and T ′ be the meta-text formed by blocking every d =
δ log|Σ | n characters of T into a single meta-character, with δ = 0.5.5 To obtain an
O(n log |Σ |)-bit text index, we first construct a data structure 
 consisting of the
suffix tree and the suffix array of T ′, so that it occupies only O((n/d) log(n/d)) =
O(n log |Σ |) bits. With 
, we can already support pattern searching, though in a very
restricted form. Precisely, it can only report those occurrences of P in T which occur
at positions of the form id + 1 (Note that |P | does not need to be a multiple of d

here.)
To extend the power of 
, we obtain the points GBWT(T ,d), sort them in the

y-coordinates, and get the modified Burrows-Wheeler transform BWTmod of T ′ by
listing the corresponding x-coordinates. That is, BWTmod[i] = ←−−−−

BWT[i]. After that,
we construct the wavelet tree [19, 25, 36] of BWTmod. As each value of BWTmod is
character in T ′, it is represented in d log |Σ | = δ logn bits, so the wavelet tree takes
O((n/d)δ logn) = O(n log |Σ |) bits.

We now show how to use the wavelet tree of BWTmod to extend the search-
ing power of 
. Note that we can alternatively use any RS2D data structure on
GBWT(T ,d). We describe this in terms of wavelet tree because it is easier to derive
higher-order entropy compressed index. In particular, we find all those occurrences
of P in T with starting position inside a character in T ′. That is, those occurring at
positions i in T with i (modd) = k, where k may not be 1. We call any such occur-
rence an offset-k occurrence. Here, we require that P is longer than π = d − k + 1 so

5For simplicity, we assume that d is an integer. If not, we can slightly modify the data structures without
affecting the overall complexity.
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that the offset-k occurrence of P starting inside a character in T ′ does not end inside
the same character.

Let P̂ denote the prefix of P of length π (i.e., with π log |Σ | bits) and P̃ denote
the suffix of P formed by taking P̂ away from P . We define two characters cmin

and cmax as follows: Reverse the bit-string of P̂ and then append (d − π) log |Σ |
bits of 0’s to it, we obtain the d log |Σ | bit-string of the character cmin; if we append
(d − π) log |Σ | bits of 1’s instead, we obtain the d log |Σ | bit-string of the character
cmax.

To find all offset-k occurrences of P in T , it is sufficient to find all positions i′ in
T ′ such that P̃ occurs at i′ in T ′ (precisely, P̃ occurs at (i′ − 1)d + 1 in T ), with the
binary encoding of P̂ matching the suffix of the binary encoding of T ′[i′ − 1]. The

latter happens if and only if cmin ≤ ←−−−−−−
T ′[i′ − 1] ≤ cmax. Based on this, the set of i′s can

be found as follows:

1. Search P̃ in 
 to obtain the SA range [�, r] of P̃ in T ′. That is, SA′[�..r] contain
all occurrences of P̃ in T ′.

2. Construct cmin and cmax based on P̂ .
3. Search wavelet tree of BWTmod to find all y’s in [�, r] such that cmin ≤

BWTmod[y] ≤ cmax.
4. Find SA′[y] for all the y’s in Step 3 (using the suffix array 
 built on T ′), which

are the offset-k occurrences of P .

We apply the above step to find offset-k occurrences of P for k = 2,3, . . . , d . This
gives the following:

Lemma 4 Based on 
 and the wavelet tree of BWTmod, all occurrences of P

with starting and ending positions inside different characters in T ′ can be found
in O(|P | + (log|Σ | n + occ) logn/ log logn) time.

Proof The total time to perform searching in 
 is O(|P |/d + log logn) × d =
O(|P | + d log logn). The total time to report the occurrences is O(

∑d
k=1(occk +

1) logn/ log logn), where occk denotes the number of offset-k occurrences. The pre-
vious sum is equal to O((d +occ) logn/ log logn), and lemma follows by combining
this two bounds. �

In next lemma we show how to find those occurrences of P that start and end in
the same character of T ′.

Lemma 5 Using four-russians technique, all occurrences of P with starting and
ending positions within the same characters in T ′ can be found in O(|P | + occ) time
using an O(n log |Σ |) bits data structure.

Proof Since d = 0.5 log|Σ | n, the number of distinct meta-characters is bounded by
|Σ |d = √

n. We maintain a generalized suffix tree of all meta-characters, using index
space of O(

√
n × d logn) = o(n) bits. Let Mi be a meta-character and Li be the list

of all positions in T ′ where Mi appears. We define a meta-character list L which
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is formed by the concatenation of Li ’s corresponding to all distinct Mi ’s. Hence the
space needed for L is O(|T ′|) words or (|T ′| logn) bits. For each leaf v representing a
string s in the generalized suffix tree, v contains pointers to the distinct lists Li ’s (may
be more than 1) whose meta-characters have s as a suffix. As each meta-characters
have d suffixes, the total number of pointers is bounded by O(

√
n × d) so that their

total space is again bounded by o(n) bits. When searching a pattern P , we can use
O(|P |) time to locate all the leaves where P occurs as a prefix, and then by chasing
the pointers from the leaves to their corresponding Li ’s, we obtain all the occurrences.
In conclusion, the desired occurrences of P can be found in O(|P | + occ) time, and
the space of the overall data structure is O(n log |Σ |) bits. �

By combining Lemmas 4 and 5, we obtain Theorem 1.

4.1 Higher-Order Entropy Compressed Index

We prove the following in this section.

Theorem 2 A text T can be indexed in O(nHk) + o(n log |Σ |) bits space, such
that all the occurrences of a pattern P in T can be reported in O(|P | logε n +
log2+ε n/ log |Σ | + occ logn/ log logn) time, where Hk represents the kth order em-
pirical entropy of T .

Proof In order to achieve entropy compressed space, we took a novel approach of
variable length blocking of T combined with arithmetic coding scheme. We first
transform T into an equivalent text T ′ such that T ′ consists of at most O((nHk +
o(n log |Σ |))/ logn) meta-characters, where each meta-character represents at most
d consecutive characters in the original text for some threshold d . In addition, we
also require that each meta-character can be described in O(logn) bits, so that T ′
can be described in O(nHk) + o(n log |Σ |) bits. Therefore, instead of having each
meta-character contain a fixed number of characters, we allow a variable number of
characters. Each meta-character is encoded in such a way that, its first k characters
are written explicitly (using fixed length encoding) and the rest using kth-order arith-
metic coding. The number of characters within a meta-character is restricted by the
following two conditions.

– The number of characters should not exceed a threshold d = log1+ε n/ log |Σ |.
– After encoding, the total length should not exceed 0.5 logn bits.6

In our new index, the transformation of T into T ′ can be performed as follows.
Start encoding T from T [1] and get its longest prefix T [1..j ], which satisfies the
conditions of a meta-character. Hence, T [1..j ] in its encoded form is our first meta-
character. After that the remainder of T is encoded recursively. (Note that the strings
corresponding to distinct meta-characters are not required to be prefix-free.) The

6Without loss of generality, we assume here that |Σ | < √
n. The parameters can be appropriately adjusted

for the more general case when |Σ | = O(n1−ε) for any fixed ε > 0.



Algorithmica (2015) 71:258–278 269

starting position of each meta-character is stored in an array M such that M[i] cor-
responds to the starting position of ith meta-character in T . In other words, the sub-
string T [M[i], . . . , (M[i + 1] − 1)] corresponds to the ith meta-character. For in-
stance, M[1] = 1 and M[2] = j + 1. By concatenating all these meta-characters
(in the order in which the corresponding block appears in T ), we obtain the desired
string T ′.

Since each meta-character corresponds to a maximal substring of T without vio-
lating the two conditions, a meta-character corresponds either to (i) exactly d char-
acters of T , or (ii) its encoding is just below 0.5 logn in which case the encoding is
of Θ(logn) bits and corresponds to Θ(log|Σ | n) characters of T .7 Note that in both
cases each meta-character corresponds to Ω(log|Σ | n) characters.

Direct entropy compression of T would have resulted in nHk + o(n log |Σ |)-
bit space for T ′. But in our scheme, the first k characters are written explic-
itly in each block. This results in an overhead of O((n/ log|Σ | n) × k log |Σ |) =
o(n log |Σ |) bits to encode T ′, assuming k = o(log|Σ | n).8 Thus, the number of
meta-characters from (i) cannot exceed n/d = o(n log |Σ |/ logn), while the num-
ber of meta-characters from (ii) is bounded by O((nHk + o(n log |Σ |))/ logn).
In summary, the length of T ′ = nHk + o(n log |Σ |) bits, and there is a total of
O((nHk + o(n log |Σ |))/ logn) meta-characters in T ′.

By considering each meta-character as a single character from the new al-
phabet set, we construct the suffix tree 
 of T ′. As the length of T ′ is given
by O((nHk + o(n log |Σ |))/ logn), so is the number of nodes in 
. Thus, 


takes O((nHk + o(n log |Σ |))/ logn × logn) = O(nHk) + o(n log |Σ |) bits of
space.

As each meta-character has an encoding between 1 and 0.5 logn bits, the num-
ber of distinct meta-character is at most

∑0.5 logn

r=1 2r = O(
√

n). Hence the re-
verse of each meta-character can also be encoded in O(logn) bits. Therefore the
wavelet tree of BWTmod of T ′ takes O(|T ′| logn) = O(nHk) + o(n log |Σ |) bits
of space. We maintain an auxiliary trie structure of all meta-characters in reverse
order with its leaf number (number of reverse meta-characters which are lexico-
graphically smaller) represents the corresponding encoded value. The size of this
trie is O(

√
n(log1+ε / log |Σ | + logn)) = o(n) bits. Therefore (encoded) Cmin and

Cmax corresponding to a P̂ (prefix of P ) can be calculated from this trie struc-
ture in O(d log |Σ |/ logn) = O(logε n) time and the pattern matching can be per-
formed in the similar way as before. The size of the auxiliary structure for small
patterns is o(n) bits and the associated list takes O(|T ′| logn) bits, hence the total
size of our compressed index is O(nHk) + o(n log |Σ |). The pattern matching time
is O((|P |/ log|Σ | n + logn)d + occ logn/ log logn). �

7Here, we make a slight modification that one extra bit is spent for each meta-character, such that if our
kth-order encoding of the next o(log|Σ | n) characters already exceeds 0.5 logn, we shall instead encode
the next 0.5 log|Σ | n characters (i.e., more characters) in its plain form. The extra bit is used to indicate
whether we use the plain encoding or the kth-order encoding.
8As mentioned, there is also an extra bit overhead per meta-character; however, we will soon see that the
number of meta-characters = O((nHk + o(n log |Σ |))/ logn) so that this overhead is negligible.
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5 External Memory Text Index Using GBWT

We first prove the following.

Theorem 3 We can index a text T in O(n log |Σ |) bits such that finding all occur-
rences of a pattern P in T can be done in O(|P |/B + log|Σ | n logB n + occ logB n)

I/Os. The space can be further improved to O(nHk) + o(n log |Σ |) bits, with a query
answering I/Os of O(|P | logε n/B + log|Σ | n logB n logε n + occ logB n).

Proof In order to obtain the bounds, we simply replaces each data structure used in
Sect. 4 by its external memory counter-part. That is, we replace 
 of T ′ by the string
B-tree [13] of T ′ and the wavelet tree of BWTmod by the external memory wavelet
tree of BWTmod (Lemma 3); for the suffix trees inside the data structures that search
short patterns, they are replaced by string B-trees as well. Recall that the B is the size
of disk page, which is measured in terms of memory words. Here, we further assume
that the decoding table for arithmetic coding fits in the internal memory. By choosing
appropriate parameters and with the condition that k = o(log|Σ | n), we can ensure
that the decoding table size is O(nε) bits. The case of short patterns can be handled
using a different structure and the result is summarized in Lemma 6. �

Lemma 6 All the occurrences of P with starting and ending positions within the
same meta-character can be found in O(d + occ/B) I/Os.

Proof Recall the generalized suffix tree (string B-tree) and the list L of all distinct
meta-characters. Here we maintain two lists L+ and L−, where L+ is same as L in
which we maintain Li only if Mi occurs at least B times in T ′. Let Li be the list
corresponding to the meta-character in which the ith suffix (in generalised suffix tree
of meta-characters) belongs to. The list L− is the concatenation of all those Li ’s in
which |Li | < B . Note that L− contain repeated lists (if ith and j th suffix may belongs
to the same meta-character, then Li = Lj ), but the total space taken by L− can be
bounded as O(|L−| logn) = O(

√
n ×B logn) = o(n) bits (assume B = O(n1/2−ε)).

Now for those lists which are guaranteed to give at least B occurrences, we search in
L+ list by spending O(1) I/O per B occurrences. For short lists, we retrieve the lists
from L� to Lr in L−, where [�, r] be the suffix range of P . Here O(d) is the time for
searching P (|P | < d) in the generalized suffix tree of all distinct meta-characters. �

The additive terms |P |/B (or |P | logε n/B) and occ logB n in the query I/O are not
optimal. In general, one desire factors like |P |/(B log|Σ | n) and occ/B . In this sec-
tion, first we show how to achieve |P |/(B log|Σ | n) term and later (in section 6) we
prove that achieving occ/B term in polynomial I/O’s and succinct space is not pos-
sible in general. However, this factor can be achieved when patterns are sufficiently
large.

Inorder to achieve |P |/(B log|Σ | n) term, we allow slightly more index space. This
is done by combining our index with Sadakane’s Compressed Suffix Tree (CST) [42].
Our goal is to avoid repeated pattern matching for various offsets, which is done by
using the “suffix link” functionality provided by CST. For any internal node u inside



Algorithmica (2015) 71:258–278 271

the suffix tree, let path(u) denote the string obtained by concatenation of edge labels
from root to u. The suffix link of u is defined to be the (unique) internal node v such
that the removal of the first character of path(u) is exactly the same as path(v). The
main idea is that if some part of the pattern is matched during the offset-k search
then we avoid re-matching it for offset-(k + 1) search and onwards; instead we rely
on the suffix link to provide information for the subsequent search. However, suffix
link with respect to the original suffix tree may not exist in the sparse suffix tree or
the sparse string B-tree (simply because some suffixes are missing). In our algorithm,
the full (non-sparse) suffix tree on T must be used and to stay within our space we
choose the CST of [42], which provides all suffix tree functionalities in compressed
space.

5.1 Compressed Suffix Tree

Let us assume we have stored Compressed Suffix Tree CST of the text T . In addition,
all the nodes in CST which are also in the sparse suffix tree ST ′ are marked. For
this marking, a bit-vector is maintained in addition to CST. The nodes in CST are
considered in pre-order fashion and whenever a marked node is visited we write “1”
or else we write “0”. Thus, this bit-vector B stores marking information on the top of
CST.

We shall need the following functionalities provided by the recent CSTs of [42]
together with our bit-vector B. We choose the O((1/ε)n log |Σ |) bits and nHk +6n+
O(n log logn/ log|Σ | n) bits CSTs for our succinct index and the entropy compressed
index respectively.

Suffix link: Given a node u (by its pre-order rank) in CST, return the suffix link node v

(by its pre-order rank). This function can be done in O(1) in succinct space and
in O(log |Σ |) in entropy compressed space.

Highest marked descendant: Given a node u in CST, its highest marked descendant
is defined to be the node v such that v is in the subtree of u, v is marked, and
no nodes between u and v is marked. Such a node v (if exists) is unique. This
is due to the fact that the least common ancestor of two marked nodes (i.e., the
least common ancestor of two sparse suffix tree nodes) is also marked. Note that
this functionality is not directly provided by CST of [42] but can easily be imple-
mented in O(1) by storing a rank/select data structure over the bit-vector B along
with the parentheses encoding of CST.

Lowest marked ancestor: Given a node u in CST, report its lowest marked ancestor
(if exists). This can be done in O(1) based on B and its the rank/select data
structure.

Leftmost leaf: Given a node u in CST, locate its leftmost (rightmost) leaf node in its
subtree. This can be done in O(1).

String-depth: Given a node u, report the length of path(u). This can be done in
O(logε n) in succinct space and in O(log2 n/ log logn) in entropy compressed
space.

Weighted level ancestor: Given a leaf � and string-depth w, report the (unique) node
u such that u is the first node on the path from root to � with string-depth ≥ w.
This node u must be a lowest common ancestor between � and some other leaf �′,
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so that we can find u if �′ is determined. Such �′ can be found by binary search-
ing all leaves to the right of �, and examine the string-depth of lowest common
ancestor of � and the leaf. The process can be done in O(log1+ε n) in succinct
space and O(log3 n/ log logn) in entropy compressed space.

5.2 Sparse String B-Tree

Our explanation below shall refer to both the sparse suffix tree 
st and the sparse
string B-tree 
sbt . However, the sparse suffix tree is never stored and is just for the
sake of notation and the identification of nodes. Firstly, the following two functional-
ities of the sparse string-B tree 
sbt will be used. The I/O complexity for both func-
tions follows directly from the searching strategy of SBT in the original paper [13].

1. Given a pattern P , let lcp(P,
st ) be the length of the longest common prefix of
P with any suffix stored in 
sbt : we can use O(lcp(P,
st )/B + logB n) I/Os to
find the node u (by its pre-order ranking in the suffix tree 
st ) such that u is the
node with smallest string-depth in 
st and lcp(P,
st ) = lcp(P,path(u)).

2. If we are given a node u in 
st such that the pattern P is guaranteed to match
up to some length x on path(u), then the above lcp search can be done in
O((lcp(P,
st ) − x)/B + logB n) I/Os.

5.3 Pattern Matching Algorithm

Now, we are ready to show how we match a pattern P in this combination of sparse
string B-tree and CST. First we start with finding offset-0 occurrences, then we find
offset-1 occurrences, then offset-2 occurrences and so on. Let Pi denote the pattern
P with the first i characters deleted. Thus we have to match P0,P1,P2, . . . ,Pd−1 in
the sparse string B-tree. Corresponding to each offset i we find the range [�i, ri] in
the sparse string B-tree.

We start matching the pattern P = P0 in 
sbt ; this allows us to find the node
u in 
st , such that u is the closest node from root such that lcp(path(u),P ) =
lcp(P,
st ). If the pattern is matched entirely, then we call this offset a success and
output its range. In this case we set lcp = p, and also obtain the range [�0, r0]. If not,
we set lcp = lcp(P,
st ) and follow the “suffix link”. Let’s first define the notion of
suffix link in the sparse suffix tree 
st (or 
sbt ).

Definition 1 Given the pair (u, lcp), let pair (v, lcp′) be such that (1) lcp′ = lcp − t ,
(2) path(u)[t + 1..lcp] = path(v)[1..lcp′] and (3) t is the smallest integer ≥ 1 for
which such a node v exists in 
st . If more than one v exists in 
st , we set v to be the
highest node among them. Then (v, lcp′) as is called t-suffix link of (u, lcp).

Now, we show how to compute t-suffix link for pair (u, lcp) in O(t log1+ε n) I/Os
in succinct space and in O(t log3 n/ log logn) I/Os in entropy compressed space. This
is done by using the suffix link functionality provided by CST. Note that the CST is
used only for implementing t-suffix links, and is residing ON DISK (not in internal
memory). Therefore, an operation in CST which takes O(x) time in internal memory
is counted as O(x) I/Os.
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First, we use the pre-order rank of u to find the corresponding node in CST. Then,
inside CST, we can find u’s ancestor y such that string-depth of y is just more than
lcp. This can be done by the weighted level ancestor query in O(log1+ε n) I/Os in
succinct space and in O(log3 n/ log logn) I/Os in entropy compressed space. The
node y represents the location where P stops in the CST if P were matched with
the CST instead. To proceed for the next offset, we follow the suffix link from y and
reach node w (and increment t by 1). Now, we first find the lowest marked ancestor
m of w in O(1) I/Os and check if its string-depth is at least lcp − t . If so, we come
back to its corresponding node v in 
st and set lcp′ = lcp − t . Note that (v, lcp′) is
the desired t-suffix link of (u, lcp), so that we can proceed with the pattern matching
in 
sbt .9 Otherwise, if m does not exist or its string-depth is too small, we find in
the subtree of w and try the highest marked descendant m′ of w in O(1) I/Os. If m′
exists, we come back to its corresponding node v′ in 
st and set lcp′ = lcp − t , while
it follows that (v′, lcp′) is the desired t-suffix link of (u, lcp) so that we can again
proceed with the pattern matching in 
sbt . If there is no such marked descendant m′,
we follow further the suffix link from w (and increment t), and keep following suffix
links until we reach either a node m or m′ using the above procedure. In this case, we
can be sure that none of the offsets between 1 and t − 1 would produce any results.
Consequently the corresponding (v, lcp′) or (v′, lcp′) will be the desired t-suffix link
and we can directly jump to offset-t match.

Theorem 4 The t-suffix link for pair (u, lcp) in a sparse suffix tree (or sparse string
B-tree) can be calculated in O(t log1+ε n) time (or I/Os) in succinct space and in
O(t log3 n/ log logn) time (or I/Os) in entropy compressed space.

Thus by chasing t-suffix links we obtain all the ranges [�i, ri] for all the possible
offsets (up to at most d of them).

5.4 Analysis

For matching the pattern P , there are d phases. In each phase, we match some dis-
tinct part of P and then spend O(log1+ε n) I/Os (in our succinct index) in CST plus
an extra O(logB n) I/Os (apart from matching characters of P ) in 
sbt . Thus, in to-
tal, we spend O(d log1+ε n) in addition to the I/O in which the pattern is matched
with the actual text inside the 
sbt . On the other hand, since the characters of P

are accessed once and are accessed sequentially, the total I/Os for matching char-
acters of P can be bounded by O(|P |/(B log|Σ | n) + d logB n). Overall, this gives

us O(|P |/(B log|Σ | n) + d log1+ε n + d logB n) I/Os for finding out all the ranges
[�0, r0], [�1, r1], . . . , [�d−1, rd−1]. Once these ranges are ready, we can use the ex-
ternal memory wavelet tree to find out the actual occurrences (which cross a meta-
character boundary) and the short patterns are also handled in the same way as before.
In our succinct index d = 0.5 log|Σ | n and the extra space taken by CST and associ-
ated bit vector is also O(n log |Σ |) bits. We summarize the result as follows.

9Note that when we switch back to a node in 
sbt , we choose the top-most node in 
sbt corresponding
to the node v.
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Theorem 5 A text T can be indexed in O(n log |Σ |) bits in external memory, such
that all occurrences of a pattern P in T can be reported in O(|P |/(B log|Σ | n) +
log|Σ | n log1+ε n + occ logB n) I/Os.

Similar analysis can be performed for the entropy compressed index and the re-
sulting I/O bound is O(|P |/(B log|Σ | n)+d log3 n/ log logn+d logB n+occ logB n).
Since the space of CST is O(nHk + n) bits which is the bottleneck, we may reduce
the blocking factor to be d = 0.5 logn (thus having the effect of more meta-characters
in T ′ but faster query) without affecting the space. The following theorem captures
our new result.

Theorem 6 A text T can be indexed in O(nHk + n) + o(n log |Σ |) bits in exter-
nal memory, such that all occurrences of a pattern P in T can be reported in
O(|P |/(B log|Σ | n) + log4 n/ log logn + occ logB n) I/Os.

The term occ/B can be achieved for long patterns
(|P | ≥ d = Θ

(
log2 n/(log |Σ | log logB n)

))

as follows. First we block the text T using a new blocking factor d .10 We maintain
the string B-tree of the blocked text T ′. Instead of using the external memory wavelet
tree to index BWTmod, we use the four-sided query index I of Arge et al. [4] (which
takes O((n/B) log(n/B) log logB n) pages space and O(logB n + |output|/B) I/O’s
for two dimensional orthogonal range reporting) to store the points (i,BWTmod[i]). It
is easy to check that the index I performs the desired query supported by the wavelet
tree of BWTmod. We obtain the following theorem:

Theorem 7 A given text T can be indexed in O(n log |Σ |) bits in the external mem-
ory, such that for a pattern P with |P | ≥ d = Θ(log2 n/(log |Σ | log logB n)), all its
occurrences in T can be reported in O(|P |/(B log|Σ | n)+ d log1+ε n+ occ/B) I/Os,
where occ is the number of occurrences. In a compressed space of O(nHk + n) +
o(n log |Σ |) bits, this can be performed in O(|P |/(B log|Σ | n)+d log3 n/ log logn+
occ/B) I/Os.

Similarly, if the blocking factor is d = 0.5 log|Σ | n, we can use the four-sided query
index by Kanth and Singh [31] (which takes O(n/B) pages space and O(

√
n/B +

|output|/B) I/O’s for two dimensional orthogonal range reporting) instead of wavelet
tree. Combining the results for short patterns in Lemma 6, we have the following
theorem.

Theorem 8 A given text T can be indexed in O(n log |Σ |) bits (or O(nHk + n) +
o(n log |Σ |) bits) in the external memory model, such that, finding all occurrences of
a pattern P in T can be done in O(|P |/(B log|Σ | n)+√

n/B log|Σ | n+occ/B) I/Os,
where occ is the number of occurrences.

10Note that choosing larger d allows more sparsification, but it is not possible to design the four-russians
data structure for small patterns in such cases.
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6 Lower Bounds Using Points2Text

While the internal memory result described above was only an alternative text index
described mainly to facilitate the external memory result, the lower bound result is
actually a new result even for the internal memory model. We first demonstrate the
reduction from 2-dimensional range query with n points in [1, n] × [1, n] (so that
each point is represented in h = Θ(logn) bits) to text searching. Based on this, we
can obtain the lower bound result for pattern matching with succinct text index.

Theorem 9 In the pointer machine model, a text index on T [1..n] supporting pattern
matching query in O(|P | logO(1) n + occ) time requires Ω(n logn/ log logn) bits in
the worst case. An external memory index on T [1..n] supporting pattern matching
query in O(|P | logO(1) n + occ/B) I/Os, requires Ω(n logn/ log logB n) bits in the
worst case.

Proof Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of n points in [1, n] × [1, n],
and T be the text T in the Points2Text of S. On an input ranges [xlef t , xright ]
and [ybottom, ytop], it is easy to see that finding all points in S that fall inside the
ranges can be done by issuing the corresponding (xright − xlef t ) × (ytop − ybottom)

pattern searching queries in T . In fact, we can limit the number of pattern queries to
O(log2 n) by the following observation.

Observation 1 For any k and any i, we call the range [k2i , (k +1)2i −1] a complete
range, which is denoted by Rk,i . That is, the range contains all 2i numbers whose
quotient, when divided by 2i , is k. For any range [�, r] with 1 ≤ � ≤ r ≤ 2h, it can be
partitioned into at most 2h complete ranges, and these ranges can be found in O(h)

time.

Now, suppose that Rk,i is a complete range in [xlef t , xright ] and Rk′,i′ is a com-
plete range in [ybottom, ytop]. Then, each point in S with x-coordinate falling in Rk,i

and y-coordinate falling in Rk′,i′ corresponds to exactly a substring of T in the form
of:

The last h − i characters of
〈←−
k2i

〉
, then #, then the first h − i′ characters of

〈
k′2i′ 〉.

Thus, we need to issue only 4h2 = Θ(log2 n) pattern queries in T . This gives the
following.

Lemma 7 Given a set S of n points in an n × n grid, each represented in h′ =
O(logu) bits, we can construct two sorted arrays for storing the x-coordinates and
y-coordinates, and a text T of length O(n logn) with characters chosen from an
alphabet of size 4; then, a four-sided range query on S can be answered by O(log2 n)

pattern match queries on T , each query searching a pattern of O(logn) characters.

The pointer machine result is obtained by combing the above lemma with the
following lower bound by Chazelle [9]: any two dimensional range reporting data
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structure with an I/O bound of O(logO(1) n+|output|) must use Ω(n logn/ log logn)

words. The external memory result is obtained by combining the above with the lower
bound result by Subramanian and Ramaswamy [44] stating, any two dimensional
range reporting data structure with an I/O bound of O(logO(1) n + |output|/B) must
use Ω(n logn/ log logB n) words. �

7 Conclusions and Open Problems

In this paper, we introduced the first I/O-efficient external memory text index, which
takes O(nHk) bits of space, which is asymptotically equal to the space taken by
the text in entropy-compressed form. This index is based on our newly introduced
transform called GBWT. Furthermore, its reverse transform, called Points2Text,
enables us to derive our lower bound results. However, many problems still remain
open. For example, can we improve the space complexity from O(nHk) bits to strictly
nHk + o(n log |Σ |) bits without compromising its I/O efficiency? It has been shown
that the LZ-based external memory indexes of [6, 18] are space-efficient in practice,
though it may be hard to achieve the theoretical I/O bounds as ours. It is interesting
to know if we can build a new index so as to take the advantage of both approaches.
Also, we remark that although linear-space data structures for RS2D are not very
encouraging in theory, many alternatives like R-trees, kd-trees, and Quadtrees [3, 21,
22, 43] are efficient in practice, and they are popular among the database community.
As RS2D data structure is a key component of our index, it may be worthwhile to
engineer the best range searching structures and incorporate them with our scheme to
achieve the best practical performance.
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