
SIGMOD '93

Practical Prefetching via Data Compression

(extended abstract)

Kenneth M. Curewitz�

Digital Equipment Corp.

146 Main Street

Maynard, MA 01754

P. Krishnany

Dept. of Computer Science

Brown University

Providence, RI 02912{1910

Je�rey Scott Vitterz

Dept. of Computer Science

Duke University

Durham, NC 27708{0129

Abstract

An important issue that a�ects response time performance

in current OODB and hypertext systems is the I/O involved

in moving objects from slow memory to cache. A promising
way to tackle this problem is to use prefetching, in which we

predict the user's next page requests and get those pages into

cache in the background. Current databases perform limited
prefetching using techniques derived from older virtual

memory systems. A novel idea of using data compression

techniques for prefetching was recently advocated in [KrV,
ViK], in which prefetchers based on the Lempel-Ziv data

compressor (the UNIX compress command) were shown

theoretically to be optimal in the limit. In this paper
we analyze the practical aspects of using data compression

techniques for prefetching. We adapt three well-known data

compressors to get three simple, deterministic, and universal
prefetchers. We simulate our prefetchers on sequences of

page accesses derived from the OO1 and OO7 benchmarks

and from CAD applications, and demonstrate signi�cant
reductions in fault-rate. We examine the important issues

of cache replacement, size of the data structure used by

the prefetcher, and problems arising from bursts of \fast"
page requests (that leave virtually no time between adjacent

requests for prefetching and book keeping). We conclude

that prediction for prefetching based on data compression
techniques holds great promise.

�Support was provided in part by a Digital Equipment Corpo-

ration GEEP fellowship. Email curewitz@mast.enet.dec.com.
ySupport was provided in part by the Defense Advanced

Research Projects Agency under contract N00014{91{J{4052,

ARPA order 8225, and by the O�ce of Naval Research. Email

pk@cs.brown.edu.
zSupport was provided in part by a National Science Foun-

dation Presidential Young Investigator Award with matching

funds from IBM, by Air Force O�ce of Scienti�c Research

grant number F49620{92{J{0515, and by a Universities Space

Research Association/CESDIS associate membership. Email

jsv@cs.duke.edu.

1 Introduction

Most computer memories are organized in a hierarchical
manner. For example, a typical two-level memory
consists of a relatively small but fast cache (such
as internal memory) and a relatively large but slow
memory (such as disk storage). The pages accessed by
an application must be in cache. In the event that a
requested page is not in cache, a page fault occurs and
the application has to wait while the page is fetched
from slow memory to cache. The method of fetching
pages into cache only when a fault occurs is called
demand fetching. The problem of cache replacement

is to decide which pages to remove from cache to
accommodate the incoming pages.

In many OODB applications and hypertext systems,
users spend a signi�cant amount of time processing a
page, and the computer and I/O system are essentially
idle during that period. If the computer system can
predict which page the user will request next, it can
fetch that page into cache (if it is not already in cache)
before the user asks for it. Thus, when the user actually
asks for the page, the page is available instantaneously,
and the user perceives a faster response time. This
method of anticipating and getting pages into cache in
the background is called prefetching.

Current database systems perform prefetching using
techniques derived from older virtual memory systems.
The I/O bottleneck is seriously impeding performance
in large-scale databases, and the demand for improving
response time performance is growing [Bra]. This has
stimulated renewed interest in developing improved al-
gorithms for prefetching [ChB, Lai, MLG, PaZb, RoL].
Independently to our approach, there has been recent
work by Palmer and Zdonik, who use a pattern match-
ing approach to prediction [PaZb], by Salem, who com-
putes various �rst-order statistics for prediction [Sal],
and by Laird who uses a growing-order Markov pre-
dictor [Lai]. Prefetching in a parallel environment is
studied in [KoE]. Research projects in prefetching at a
lower level of abstraction include a software approach

1



in which the compiler reorders instructions and intro-
duces explicit prefetching instructions to reduce the ef-
fect of cache misses [MLG], a hardware scheme of non-
blocking and prefetching caches that lets processing con-
tinue when a cache miss occurs, blocking only when the
missed data is actually needed [ChB], and a combined
hardware and software approach which uses an optimiz-
ing compiler and speculative loads to issue read requests
in anticipation of a demand request [RoL].
The idea of using data compression techniques for

prefetching was �rst advocated by Vitter and Krish-
nan [KrV, ViK]. The intuition is that data compressors
typically operate by postulating (either implicitly or ex-
plicitly) a dynamic probability distribution on the data
to be compressed. Data expected with high probabil-
ity are encoded with few bits, and unexpected data with
many bits. Thus, if a data compressor successfully com-
presses the data, then its probability distribution on the
data must be realistic and can be used for e�ective pre-
diction. Assuming that we can prefetch as many pages
as desired limited only by the cache size k (the pure

prefetching assumption), Vitter and Krishnan show the-
oretically that any optimal character-by-character data
compressor (for example, one derived from the Lempel-
Ziv compressor for sequences of page accesses generated
by a �nite state Markov source) can be converted to a
prefetcher that has an optimal fault rate. This is ex-
tended to worst-case page access sequences in [KrV].
In this paper we analyze the practical issues of using

data compression techniques for prefetching. Although
the pure prefetching assumption in [ViK] may be valid
in some hypertext applications, in general the time
between user page requests will not allow k prefetches
at a time. It may actually be prudent in practice
to prefetch less than k pages even if there is time
(e.g., to avoid burning disk bandwidth). It is therefore
imperative to meld good cache replacement techniques
with good pure prefetchers, which we address.
The process of converting character-based data com-

pressors to pure prefetchers is quite simple. However,
the practical issues in prefetching are much di�erent

from the ones in data compression; in prefetching, time
and memory issues are more signi�cant. In this paper
we look at these problems of practical prefetching and
develop solutions for them.
We look at three data compressors that perform well

in practice and build simple, deterministic, universal1

1A universal prefetcher makes no assumptions about the

application or data representation. Older virtual memory

prefetchers that prefetch pages in sequence, that is, prefetch

page i + 1 when page i was being accessed, are not universal.

The usefulness of universality is extremely signi�cant in current

databases [Sal]. Any speci�c knowledge about the sequence of

page accesses can be utilized to improve the performance further

using the techniques of [FKL].

prefetchers based on them. We simulate our prefetchers
on page access sequences derived from the Object Op-
erations (OO1) benchmark [CaS], the OO7 benchmark
[CDN], and from CAD applications used at DEC. We
�nd that the page fault rate (number of page faults di-
vided by the length of the access sequence) decreases
signi�cantly compared to that of demand fetching, in
which the cache is organized using the least-recently
used (LRU) heuristic or using the optimal o�ine algo-
rithm, OPT [Bel] (in which the page evicted from cache
is the one whose next access is furthest in the future).
The reduction in fault-rate is also better than that of
recent proposed schemes for prefetching [PaZb].
In Section 2 we describe the system environment. We

describe our three prefetchers in Section 3. In Section 4
we look closely at problems stemming frommemory and
time restrictions unique to prefetching in some systems.
We propose solutions to these problems and bound
their worst-case behavior. In Section 5 we present
our simulation environment. In Section 6 we give a
brief description of the page access traces and present
our simulation results. We present our conclusions in
Section 7.

2 System Environment

We model the client-server paradigm of computing in
which the client is the database user (or application) and
the server manages the database. Clients make requests
for data from the server and the server ful�lls these
requests. The client typically runs on a workstation
with a modest amount of main memory (cache) and
local secondary storage. Data used by an application
must be in cache to be accessible. Secondary storage,
which can be accessed faster than server storage, is
used to store the local operating system, application
programs, and is used as swap space by the workstation.
The client is connected to the server over a network for
communication.
The database is necessarily managed by the server

because of its size, its distributed nature, and for
consistency control. The server manages the database
and handles requests from a number of clients. The
obvious bene�ts of such a distributed system are well
known. Prefetching reduces the e�ect of network
latency by anticipating the client's future requests and
making such requests when the network is idle.
The server has the ability to handle demand read

requests from the application and prefetch read requests
from the prefetcher. The server gives priority to the
client's requests, ushing prefetch requests in its queue
when a demand request arrives. Such provisions are
generally available in prefetching systems [GrR, PaZa].
The prefetcher can be either part of the application

or a separate entity distinct from the application.

2



It works by processing the sequence of the client's
previous page requests and making requests for data
from the server. If more speci�c information is available
about the client's pattern of page requests, prefetching
performance can be improved further. In this paper,
though, we prefetch based only on previous page
accesses.
Due to the diverse nature of user's access patterns,

the improvement in fault rate is best when each instance
of an application (i.e., each user) on the client runs a
copy of the prefetcher which takes into account only its

access sequence.

3 Algorithms for Prefetching

Let � be the alphabet size (total number of pages in the
database) and k be the cache size. In typical databases,
� is large and k� �.
In this section, we describe our three simple, deter-

ministic prefetching algorithms based on practical data
compressors. (An elegant discussion of the data com-
pressors appears in [BCW].) We describe our prefetch-
ers in Sections 3.1{3.3 in their \generic" form, as pure
prefetchers that can store their entire data structure
in cache. These prefetchers make k suggestions for
prefetch ordered by their relative merit. To make these
suggestions the algorithms use O(k) time. Sometimes
the algorithms may have information to make k1 < k

suggestions. In such cases, the remaining k � k1 loca-
tions of cache are left undisturbed.
In Section 3.4 we look at the modi�cation to the

generic algorithm in which we must prefetch fewer than
k pages at a time instant. This occurs when the time
between page requests is small, or as mentioned ear-
lier, when the prefetcher makes only k1 < k educated
choices. This partial prefetching automatically intro-
duces the problem of cache replacement; our decision
strategy on which pages are evicted from cache becomes
important. It is implicit in our discussion that the page
the application is working on is left undisturbed; hence
the actual number of pages in cache is k + 1. Other
changes to the generic algorithms in situations that arise
in practice (for example, when the data structure cannot
be stored entirely in cache) are discussed in Section 4.

3.1 Algorithm LZ

We denote the empty string by �. Algorithm LZ
[ViK] is based on the character-based version E of
the Lempel-Ziv algorithm for data compression. The
original Lempel-Ziv algorithm [ZiL] is a word-based
data compression algorithm. The Lempel-Ziv encoder
breaks the input string into blocks of relatively large
length n, and it encodes these blocks using a block-to-
variable code in the following way: It parses each block
of size n into distinct substrings x0 = �, x1, x2, : : :, xc

a b

a b

a b

5/6 1/6

1/5
3/5 1/5

1/3 1/3 1/3

Root

Leaf

x

Figure 1: The parse tree constructed by the character-
based encoder E for Example 1. Notice that since the
substrings are pre�x-closed, they can be represented by
a tree in a natural way.

such that for all j � 1, substring xj without its last
character is equal to some xi, for 0 � i < j. It encodes
the substring xj by the value i, using dlg je bits, followed
by the ascii encoding of the last character of xj, using
dlg�e bits.
The equivalent character-based algorithm E builds in

an online fashion a probabilistic model that feeds prob-
ability information to an arithmetic coder [HoV, Lan,
WNC]. (The exact compression method is irrelevant for
our current discussion and is omitted.) We show by an
example how the probabilistic model is built.

Example 1 Assume for simplicity2 that our alphabet
is fa; bg. We consider the page access sequence
\aaaababaabbbabaa : : :," which the Lempel-Ziv encoder
parses as \(a)(aa)(ab)(aba)(abb)(b)(abaa) : : :."
In the character-based version E of the Lempel-Ziv

encoder, a probabilistic model (or parse tree) is built
for each substring when the previous substring ends.
The parse tree at the start of the seventh substring is
pictured in Figure 1. There are �ve previous substrings
beginning with an \a" and one beginning with a \b."
The page \a" is therefore assigned a probability of 5/6
at the root, and \b" is assigned a probability of 1/6 at
the root. Similarly, of the �ve substrings that begin with
an \a," one begins with an \aa" and three begin with
an \ab," accounting for the probabilities of 1/5 for \a"
and 3/5 for \b" at node x, and so on. 2

Our prefetcher LZ uses the probabilistic model built
by the encoder E as follows: At the start of each
substring, LZ's current node is set to be the root of

2We use a binary alphabet in our examples only for ease of

exposition. In general, �� 2.

3



E 's parse tree. (See Figure 1.) Before each page
access, LZ prefetches the pages with the top k estimated
probabilities as speci�ed by the transitions out of its
current node. On seeing the actual page requested, LZ
resets its current node by walking down the transition
labeled by that page and gets ready to prefetch again.
In addition, if the page is not in memory, a page fault is
generated. When LZ reaches a leaf, it fetches in k pages
at random. The next page request ends the substring,
and LZ resets its current node to be the root. Updating
the model can be done dynamically while LZ traverses
it. At the end of n page accesses, for some appropriately
large n, LZ throws away its model and starts afresh.
The data structure used for prediction is a tree with at

most one pointer into each node. Instead of maintaining
explicit probabilities on each transition, we instead
maintain an (integer) count of the number of times the
transition is \traversed." For example, in Figure 1,
at node x we can store counts of 1, 3, and 1 at the
three transitions (instead of the probabilities). The
same comment holds for the PPM and FOM algorithms
described below.
In our simulations, we use a heuristic for LZ that

parallels the Welsh implementation [BCW] of the
Lempel-Ziv data compressor. While LZ is at a leaf,
instead of fetching in k pages at random, it resets its
current node to be the root (that is, it goes to the
root one step early). However, it updates the transition
counts for both the leaf node and the root.

3.2 Algorithm PPM

Although the LZ prefetcher is theoretically optimal
in the limit [KrV, ViK], convergence to optimality is
slow. This motivates us to adapt for prefetching the
prediction-by-partial-match (PPM) data compressors,
which perform better in practice for compression of text
than the Lempel-Ziv algorithm.
A jth-order Markov predictor on page access se-

quence � uses statistics of contexts of length j from the
sequence to make its predictions for the next character.

Example 2 Let j = 2, and let the page access
sequence � encountered so far be \abbababab." The next
character is predicted based on the current context, that
is, on the last j = 2 characters \ab" of �. In �, an \a"
follows an \ab" twice, and a \b" follows an \ab" once.
Hence \a" is predicted with a probability of 2/3, and
\b" is predicted with a probability of 1/3. Note that if
j = 0, each character is predicted based on the relative
number of times it appears in the access sequence. 2

A PPM prefetcher of order m maintains jth-order
Markov predictors (on the page access sequence seen till
now) for all 0 � j � m. It prefetches the k pages with
the maximum k probabilities giving preference to pages

predicted by higher order contexts. In our simulations
we use PPM of order 3 and order 1.
The various jth-order Markov predictors, j =

0; 1; : : : ;m, can be represented and updated simultane-
ously in an e�cient manner using a forward tree with
vine pointers [BCW]. (Details of data structure manage-
ment are omitted in this abstract.) The data structure
is \almost" a tree; there can be more than one edge into
a node because of vine pointers.

3.3 Algorithm FOM

Algorithm FOM is a limited memory prefetcher de-
signed so it can always �t in a small cache. It takes
as parameter a quantity w, the window size. Algorithm
FOM with window size w maintains a 1st-order Markov
predictor on the page access sequence formed by the last
w page accesses. (The 1st-order Markov predictor is ex-
plained in Section 3.2.) It prefetches the k pages with
the maximum k probabilities as given by this 1st-order
Markov predictor. We use w = 1000 in our experiments
reported in Section 6.2. We would expect FOM with
w =1 to be \close to" PPM of order 1 in performance.
(Note that unlike FOM, algorithm PPM of order 1 uses
an additional order-0 context for prediction.)

3.4 Cache Replacement Issues

Cache replacement issues automatically arise when
we prefetch less than k pages; we need to decide
which pages to evict from cache to make space for
incoming pages. Any cache replacement algorithm
can be suitably modi�ed to work with the \generic"
prefetchers described earlier. In particular, we can use
the probabilities of the generic prefetcher to determine
what to evict from cache, or adapt strategies like the
MLP replacement strategy from [PaZb], or adapt well-
known cache replacement algorithms like FIFO or LRU.
In our simulations, we use a version of LRU suitably
modi�ed to handle prefetched pages. Prefetched items
are put into cache as if they were demand fetched.
They are marked as most recently used items, with
more probable pages marked as more recently used.
Prefetched data replace the least recently used pages
which, if modi�ed, are written back to disk (a write-
back policy).

4 Restricted Memory Environment

Our descriptions of the algorithms in Section 3 assume
that the data structures of the prefetcher �t in cache. In
some applications this is justi�ed. However, we cannot
expect all systems to have this facility.
Several techniques are known for limiting data struc-

ture size in data compressors [Sto]. An explicit upper
boundM is placed on the size of the data structure. The
data structure is either frozen when its size reaches M ,

4



ushed and rebuilt when its size reaches M , or frozen
when its size reaches M=2 and a new one is built while
the old one is used for prefetching. There are also more
sophisticated techniques that use an LRU-type strategy
on the data structure to maintain its size [BuB]. Our
ongoing work studies these techniques in the prefetch-
ing context. (We shall see later in Section 6 though that
order-1 PPM performs better than FOM; this suggests
that placing explicit bounds on the data structure size
degrades performance.)
We present the following new scheme to prefetch in a

restricted memory environment. For brevity we mention
the basic ideas and omit the details.

4.1 Paging the Data Structure

The data structures used by our prefetchers are essen-
tially trees (see Figure 1). Each node of the tree main-
tains information about its children (their counts, ad-
dresses, etc.). This information is required to make pre-
dictions for the next access. It is reasonable to assume
that every node of the tree (except maybe the root) �ts
in at most one page of memory. (This can be ensured
by simple schemes.)
We maintain some of the nodes of the tree in cache

using one of many heuristics (like LRU) to decide what
to evict from cache. In particular, the root is always
maintained in cache. We page in a node of the tree when
it is required. This scheme works smoothly if each node
is given its own page and at least two extra I/Os can
be performed between two accesses (to write out the
evicted node and read in the desired node).
It is more space-e�cient to compact several \small"

nodes into a single page and to allocate only \big" nodes
to a page by themselves. In such cases, nodes may have
to be moved when they threaten to overow a page.
For a pure tree data structure as in LZ (Figure 1), it
can be veri�ed that nodes can be reallocated to \less
crowded" pages in a lazy fashion using one extra I/O
for the movement, and no subsequent extra I/Os. In
PPM, the node of the data structure can have many
(vine) pointers into it. In this case, when a node
moves, it leaves back a \forwarding address," and when
a vine pointer is traversed, this forwarding address
pointer is \short-circuited." In the worst case there
may be one extra I/O per vine pointer per reallocation
(although in practice we see few reallocations and few
short-circuiting of pointers). Simulations show that
this technique signi�cantly reduces paging for the data
structure.

4.2 Sequence of Fast Page Requests

The scheme explained in Section 4.1 solves the limited
memory problem by using disk space e�ciently but
creates a new \timing" problem of fast page requests

(page requests that arrive quickly so that no I/O can
be performed between them). When the data structure
is always in cache, it can be updated every time even
when there is no time to prefetch between page requests.
If the data structure is paged, a sequence of fast page
requests � can force us to disregard important sequence
information.
We have proposed and investigated the following

strategy to cope with this problem: In both LZ and
PPM, the counts for the pages accessed in the fast
sequence � are incremented at the current node (that
is, the node used for prediction just before � started).
We explain our scheme with an example for the LZ
algorithm. (A similar scheme is used with the PPM
algorithm.)

Example 3 Consider a subsequence \abba : : :" of an
access sequence. Let the relevant nodes in the subtree
for the LZ data structure be as shown in Figure 2a.
If the subsequence of page requests is \slow" (i.e., if
there is su�cient time to prefetch between accesses),
the data structure would look as in Figure 2b after this
subsequence.
Consider now the case where the page requests in

the subsequence are fast. The current node does not
change during the subsequence of fast accesses. The
reference counts for a and b are incremented at the
current node, which is accessible to the prefetcher in
cache. By assumption, a node �ts on a page, so no page
faults are required to update the data structure. The
updated data structure is shown in Figure 2c. 2

The intuition behind this scheme is that if the sequence
of fast accesses is context-dependent, accumulating
statistics at the current node will aid in prefetching
the correct pages in the future before the start of a
fast access subsequence. By this updating strategy we
encapsulate information at a node about not just the
next page request but a sequence of future fast page
requests.

5 Simulation Environment

In this section we describe the simulation environment
we developed to evaluate our prefetchers. We �rst look
at the assumptions we make for our simulation and then
describe the method used for simulations.

5.1 Simplifying Assumptions

We bound the complexity of the simulator with the
following assumptions about the application being
analyzed: We assume that pages do not change their
identity during a run and that they are of �xed size. As
a rule of thumb, the cache size is chosen to be about
1=100 to 1=1000 of the number of distinct pages in the
trace. Most of our simulations are performed on page

5



Current node

Internal node

(a)

a,1

b,2

b,3

a,4 b,1

(b)

a,5 b,1

b,4

b,3

a,2

(c)

a,6 b,3

b,3

b,2

a,1

Figure 2: E�ect of updating the LZ data structure
for the subsequence \abba : : :". The transition between
nodes is labeled with the page identi�er and the
reference count. (a) Before the subsequence. (b) After
the subsequence assuming slow page requests. (c) After
the subsequence assuming fast page requests.

access traces. We also perform one set of simulations on
object reference traces to aid in comparison with other
prefetchers.

5.2 Simulation Method

Each trace (described in more detail in Section 6.1) is
a sequence � of page numbers accessed by a database.
We perform two types of simulations on each page access
sequence:

Uniform Prefetching. For each page access se-
quence �, we simulate each of our prefetchers from
Section 3 on �, prefetching d pages at each prefetch
step. From Section 3.4 it follows that when d = 0 the
prefetcher works as an LRU cache. This provides a basis
for comparison against our prefetcher.
We measure the page fault rate for an access sequence

using each of the prediction algorithms and for each
value of d from 0 up to k. Statistics about the number
of faults and the size of the prefetch data structure when
it is allowed to grow unbounded are reported.
To analyze the situation when the data structure is

paged using our strategy from Section 4.1, we associate
with each node of the data structure a logical page
number used for caching the nodes of the tree. We page
the data structure just as we page the actual database,
evicting (and writing out) the least-recently-used page
and replacing it with the page containing the node
needed by the prefetcher. The fault rate statistics are
the same as without paging. We additionally report the
number of data structure page I/Os. (Strictly speaking,

when we page the data structure, prefetching d pages at
each time step implies that we prefetch d pages and do
any required data structure I/Os.)

Fast Page Request Prefetching. Fast page requests
preempt any prefetching at a step in the execution of
the simulator. We use our strategy from Section 4.2
to deal with fast requests. In order to simulate fast
requests, we need either traces with detailed timing
information or, alternatively, a probabilistic approach
to decide when and if prefetching can occur, and
if it can occur, how much data can be prefetched.
Reliable timing information for purposes of prefetching
is di�cult to obtain. A probabilistic approach is
simpler and more widely applicable and was our method
of choice. Unfortunately, it removes the relationship
between the previous context and the occurrence of fast
accesses we expect in practice and thus it provides a
conservative estimate of prefetching performance. In
practice, we expect that our prefetching algorithms will
perform even better.

We supply our simulator with the (raw) page access
sequence � (used in the uniform prefetching case) and
two probability parameters p, q, 0 � p; q � 1. The
parameters p and q are used to simulate a workload in
a computer system. At each access, the simulator tosses
a (biased) coin that lands a \head" with probability p.
A \head" signi�es that prefetching can be done. If the
�rst coin lands a \head," the second (biased) coin (that
lands a \head" with probability q) is repeatedly tossed
until we get a \tail" or get k�1 \heads." The number of
\heads" from the second coin plus one gives the number
of pages we can prefetch at this time instance. Setting
p and q to a real number close to zero simulates fast
page requests while setting p and q to a real number
close to one simulates a lightly loaded system. (The
expected number of pages prefetched at each time step
is p(kqk +

P
1�t�k tq

t�1(1� q)).)

In this context we simulate only the LZ and the PPM
algorithms. (The FOM data structure can always be
updated since its data structure is always in cache.)

6 Experimental Results

This section presents the results of simulating our
prefetcher on access traces generated by a CAD appli-
cation, the Object Operations Benchmark (OO1), and
the OO7 benchmark written at the University of Wis-
consin [CDN]. We �rst describe the access traces and
then present our results. In Section 6.4 we analyze the
results; this also gives the intuition for the particular
format in which the results are presented.

6



Pages Unique
Trace name accessed pages LRU OPT
CAD1 73,768 15,430 .853 .809
CAD2 147,344 15,430 .833 .825
OO1 F 11,719 526 .941 .891
OO1 R 11,700 534 .952 .911
OO7 T1 28,103 6,033 .999 .994
OO7 T3A 30,127 6,260 .999 .994
OO7 T4 1,529 1,521 .994 .987

Table 1: Trace �les and fault rates for LRU and OPT
demand caching for cache size k = 10.

6.1 Description of the Traces

We used CAD and database traces3 to test our prefetch-
ing algorithms. Statistics are given in Table 1.

CAD1 and CAD2 are object ID (UID) traces from a
CAD tool written at Digital's CAD/CAM Technology
Center in Chelmsford MA. We include them here as a
comparison to the Fido [PaZb] algorithm that analyzed
prefetching on the same traces.

The OO1 database benchmark, also known as the
\Sun Benchmark," was run on the DEC Object/DB4

product to generate page fault information for all phases
of the benchmark. The more interesting phases include
traversal of the structure in both the forward and
reverse directions. The OO1 benchmark tests aspects
of a DBMS that are critical in computer-aided software
engineering (CASE) and computer-aided design (CAD)
applications [CaS].

The OO7 benchmark, developed at the University
of Wisconsin [CDN], tests critical aspects of object-
oriented database systems not covered by other bench-
marks. This suite of tests was also run on the DEC
Object/DB product used for the OO1 tests. This bench-
mark includes tests and reports the performance of an
object oriented database in the following key areas:
pointer traversal, application-DBMS coupling, complex
object support and long data items, updates and re-
covery, path indexing, caching and clustering, queries
and optimization, concurrency control, and relation-
ships and versioning. The benchmark performs traver-
sals, associative queries, insert/delete operations, and
multiuser tests [CDN]. We tested our prefetcher run-
ning with traces from the traversal query portion of the
benchmark.

3The traces were provided as part of the DEC-ERP grant 1139.
4DEC Object/DB is a trademark of Digital Equipment

Corporation, Maynard MA.

Trace name FOM LZ PPM-1 PPM-3
CAD1 .378 .398 .328 .267
CAD2 .464 .358 .315 .236
OO1 F .791 .806 .778 .766
OO1 R .842 .838 .820 .783
OO7 T1 .702 .682 .492 .407
OO7 T3A .723 .689 .505 .418
OO7 T4 .994 .994 .994 .994

Table 2: Fault rates of uniform prefetching for cache
size k = 10, when prefetching d = 1 page.

Prefetch Size

Fa
ul

t R
at

e

0

20

40

60

80

100

0 2 4 6 8

LZ  

 FOM

PPM Order 1

PPM Order 3

Figure 3: The fault rate for prefetching d objects (0 �
d < k) for a �xed cache size k = 10 for the trace CAD1.

6.2 Prefetch Results for Uniform Prefetching

The simulation method for uniform prefetching was
described in Section 5.2. We depict graphically the
performance of our prefetchers on trace CAD1 in
Figure 3 and on trace OO7 T1 in Figure 4. The y-
axis denotes the fault rate and the x-axis denotes the
parameter d (the number of pages prefetched at each
time step) that varies from 0 to k. When d = 0, the
fault rate generated is exactly the fault rate of an LRU
cache and is a basis for comparison with our prefetcher.

In the CAD1 trace, any prefetcher that predicts only
pages previously accessed must have a fault rate of at
least 15; 430=73; 768 � 21%, by Table 1. The PPM-3
fault rate of 26.7% is therefore close to best possible.
The graphs look similar for the other traces (except
OO7 T4) and the performance numbers are given in
Table 2. Our prefetchers' data structure size (when the

7



Prefetch Size

Fa
ul

t R
at

e

0

20

40

60

80

100

0 2 4 6 8

LZ

FOM

PPM Order 1

PPM Order 3

Figure 4: The fault rate for prefetching d objects (0 �
d < k) for a �xed cache size k = 10 for the trace
OO7 T1.

Trace name LZ PPM-1 PPM-3
CAD1 28,513 32,871 69,986
CAD2 44,000 35,886 40,664
OO1 F 1,792 8,807 28,127
OO1 R 1,902 8,842 28,837
OO7 T1 13,479 17,462 45,486
OO7 T3A 14,161 18,695 49,650
OO7 T4 1,525 3,048 6,108

Table 3: Uniform prefetching memory use in terms
of number of nodes for Algorithms LZ, PPM-1, and
PPM-3.

data structure is allowed to grow unbounded) is given in
Table 3. In Table 4 we give the number of data structure
I/Os performed when 10 out of k = 20 cache pages are
used for storing the prefetch data structure.

6.3 Prefetch Results with Fast Page Requests

Our method for simulating with fast page requests was
described in Section 5.2. Multiple simulation runs,
using di�erent seeds in the random number generator,
produced little variation in the results. We present
our results of running algorithm PPM order 3 on trace
OO7 T1 in Figure 5. The cache size used is 10 pages.
The x-axis denotes the probability q (that ranges from
0:0 to 1:0) and the y-axis denotes the fault rate. The
lines represent the fault rate curves for di�erent values
of p; one of the lines gives the fault rate performance of
LRU (our comparison base).

Probability q

Fa
ul

t R
at

e

0

20

40

60

80

100

0 0.1 0.25 0.5 0.75 0.9 1

LRU

p=0.25

p=0.5 

p=0.75

p=0.9

p=1.0

Figure 5: The fault rate for prefetching with the fast
page request model for a cache size k = 10 on the trace
OO7 T1 using algorithm PPM order 3.

Trace name LZ PPM-1 PPM-3
CAD1 27,961 42,050 69,478
CAD2 43,448 68,215 92,139
OO1 F 1,240 14,894 35,048
OO1 R 1,350 15,540 36,144
OO7 T1 12,927 23,251 1,272
OO7 T3A 13,609 25,768 1,170
OO7 T4 973 131 12

Table 4: Data structure page I/Os for Algorithms LZ,
PPM-1, and PPM-3.

6.4 Analyzing the Results

For each of our traces, our prefetchers achieve a
signi�cantly reduced fault rate than that of a pure LRU
cache and even of the OPT caching strategy. (As seen
from Table 1, the fault rates reduce by about 60% for
the CAD application traces, by about 15%{20% for
the OO1 traces, and by about 50%{60% for the OO7
traces.)

In most cases it takes only a small number of
predictions (one or two) to greatly reduce the fault
rate of the application. (This is graphically visible in
Figures 3, 4 and is true for other traces as well; this is
the reason we give numbers for only d = 1 in Table 2.)

We �nd that the algorithms' prefetching performance
relative to one another parallels their relative perfor-
mance for data compression in general: FPPM < FLZ <

FFOM (where FA is the fault rate for algorithm A).

8



k LRU LZ PPM-3
10 .853 .398 .267
50 .817 .391 .264

Table 5: The e�ect of di�erent cache sizes on prefetching
performance for trace CAD1.

Increasing the cache size by a signi�cant factor of 5
(from say, 10 to 50) does not lower the fault rate much.
(See Table 5. Although it is shown for only trace CAD1
in Table 5, it is true for other traces also.) Hence LRU
with a larger cache can be compared to our prefetcher
with a smaller cache (with the remaining cache space
used for storing the in-core prefetch data structures),
and the gains in fault rate still hold. In addition, the
number of data structure I/Os is not much (see Table 4);
for LZ and PPM-1, for example, that is typically a
fraction of a data structure I/O per page request.

The true test of a prefetcher is when the cache size
is small. We have simulated using a cache size that is
roughly 1/100{1/1000 of the number of distinct pages
in the trace.

The cache replacement strategy used in conjunction
with the uniform prefetcher is extremely relevant. Our
cache replacement scheme performs very well as seen.
Some other cache replacement strategy may give even
better improvements.

For comparison with Fido [PaZb], we simulated our
algorithms on the same trace (CAD2) with the same
cache sizes for LRU (2,000) and the prefetcher (1,500) as
used in [PaZb]. Fido decreased the fault rate from 45.8%
to about 23.5%. Our improvement (for PPM of order 1)
was better; from45.8% to 18.2%. (In Fido, the predictor
is trained on an access sequence, the model is frozen,
and it is used for prefetching on access traces from
similar applications. This is in contrast to our adaptive
approach which continuously learns and predicts for
each access sequence. The MLP cache replacement
strategy in Fido uses prediction information to both
\promote" and \demote" cached pages; this idea can
be used in our approach also.)

For comparison with popular heuristics, we analyzed
the OO1 traces using sequential prefetching (that is
prefetching page i + 1 after a request to page i).
We found that such an approach decreases the cache
fault rate only minimally (by 5%). Some traces (e.g.,
OO7 T4) are entirely sequential with almost all pages
seen only once. In such cases simple heuristics would
work well. We observe that heuristics can be melded
with our prefetchers to get added performance bene�ts.

The fast page request prefetching results (see Fig-
ure 5) suggest that the load on the system is inversely

proportional to the improvement gained by prefetch-
ing and that, even under heavy load, a system with
prefetching outperforms one without. These results con-
�rm the validity of our methods for modeling fast page
requests in the algorithms. The negative slope of the
lines suggest that making more than one prefetch at
each time step (if possible) has added bene�ts. This jus-
ti�es the argument presented at the end of Section 4.2.

7 Conclusions

We started with the theoretical result from [KrV, ViK]
that using data compression for prefetching is optimal
in the limit. We observed that the practical issues
in prefetching in databases are much di�erent from
the practical issues in data compression, and the pure
prefetching assumption made in [KrV, ViK], although
valid for some hypertext systems, needs to be relaxed
while looking at general databases. Motivated thus, we
converted three practical data compressors to get three
practical prefetchers. We simulated our prefetchers
on page access traces generated from the OO1 and
OO7 benchmarks and from CAD applications at DEC.
We observed signi�cant improvements in hit rate in
comparison to using an LRU cache, and in comparison
to other good prefetchers.
General predictors (except the simplest ones) can be

expected to require nontrivial data structures, and these
may not �t in cache for some applications. We looked
at the data structures used by our algorithms, and
suggested techniques for paging in the data structures
e�ciently with a minimum number of I/Os. We have
also proposed a solution to the problem of fast accesses
(when there is insu�cient time between accesses to
update the paged data structures in a normal way).
An interesting result of our simulations is that the

prefetching performance of our prefetchers is directly re-
lated to the compression ability of the data compressors
they are derived from; in particular, algorithm PPM
performs better than LZ for both compression and for
prefetching. This suggests strongly that the vast re-
search being done in developing good data compressors
can be used to develop good prefetchers. The impor-
tance of the current paper also lies in its attempt to
unite two seemingly di�erent practical �elds of research.
There is a note of caution required since the issues in
data compression are di�erent from the ones in prefetch-
ing; signi�cant work is required to convert a data com-
pressor to a prefetcher and vice-versa. We expect that
the problems encountered in this task are similar to the
ones addressed in the current paper.
Another important way to achieve better response

time is to use clustering. Clustering is in a way
dual to prefetching. Clustering algorithms attempt
to improve the performance of database systems by

9



placing related sets of objects on the same page in the
hope of reducing the average number of I/Os needed
to retrieve objects. There has been extensive work
in clustering (e.g., [TsN] and references therein). It
would be interesting to see the combination of clustering
and prefetching on response-time performance. Using
prefetch data structures for clustering could also be
considered.
There are many open problems that this work

motivates, both theoretical and practical. Can our
strategy of using LRU with prefetching be shown to
be optimal in some reasonable models? Otherwise, is
there some other provably optimal cache replacement
strategy that can be blended with prefetchers? We
expect that recent work on caching models in [KPR]
may be relevant. Can our techniques be extended for
prefetching in parallel environments?

Acknowledgements. We would like to thank Mark
Palmer from Digital for his support in providing us
with access traces and for many useful discussions and
comments. We would also like to thank Stan Zdonik and
Dave Langworthy at Brown for sharing their thoughts
and practical experience with us.

References

[Bel] L. A. Belady, \A Study of Replacement Algorithms
for Virtual Storage Computers," IBM Systems Jour-
nal 5 (1966), 78{101.

[BCW] T. C. Bell, J. C. Cleary & I. H. Witten, Text
Compression, Prentice Hall Adv. Ref. Series, 1990.

[Bra] J. T. Brady, \A theory of productivity in the
creative process," IEEE CG&A (May 1986).

[BuB] S. Bunton & G. Borriello, \Practical Dictionary
Management for Hardware Data Compression," De-
partment of Computer Science, University of Wash-
ington, FR-35, 1991.

[CDN] M. J. Carey, D. J. DeWitt & J. F. Naughton, \The
OO7 Benchmark," Proceedings of the 1993 ACM
SIGMOD International Conference on Management
of Data, this proceeding.

[CaS] R. G. G. Cattell & J. Skeen, \Object Operations
Benchmark," ACM Transactions on Database Sys-
tems 17 (March 1992), 1{31.

[ChB] T. F. Chen & J. L. Baer, \Reducing Memory
Latency via Non-blocking and Prefetching Caches,"
ASPLOS-V , Boston, MA (October 1992).

[FKL] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch,
D. D. Sleator & N. E. Young, \Competitive Paging
Algorithms," CMU, CS{88{196, November 1988.

[GrR] J. Gray & A. Reuter, Transaction Processing: Con-
cepts and Techniques, Morgan Kaufmann Publish-
ers, Inc., 1993.

[HoV] P. G. Howard & J. S. Vitter, \Analysis of Arith-
metic Coding for Data Compression," Information
Processing and Management 28 (1992), 749{763, in-
vited paper in special issue on data compression for
images and texts.

[KPR] A. R. Karlin, S. J. Phillips & P. Raghavan, \Markov
Paging," Proceedings of the 33rd Annual IEEE
Conference on Foundations of Computer Science
(October 1992).

[KoE] D. F. Kotz & C. S. Ellis, \Prefetching in File Systems
for MIMD Multiprocessors," IEEE Transactions
on Parallel and Distributed Systems 1 (April 1990),
218{230.

[KrV] P. Krishnan & J. S. Vitter, \Optimal Prefetching in
the Worst Case," manuscript (November 1992).

[Lai] P. Laird, \Discrete Sequence Prediction and its
Applications," AI Research Branch, NASA Ames
Research Center, manuscript, 1992.

[Lan] G. G. Langdon, \An Introduction to Arithmetic
Coding," IBM J. Res. Develop.28 (March 1984),
135{149.

[MLG] T. C. Mowry, M. S. Lam & A. Gupta, \Design and
Evaluation of a Compiler Algorithm for Prefetch-
ing," ASPLOS-V , Boston, MA (October 1992).

[PaZa] M. Palmer & S. Zdonik, \Predictive Caching,"
Brown University, CS{90{29, November 1990.

[PaZb] M. Palmer & S. Zdonik, \Fido: A Cache that Learns
to Fetch," Proceedings of the 1991 International
Conference on Very Large Databases, Barcelona
(September 1991).

[RoL] A. Rogers & K. Li, \Software Support for Spec-
ulative Loads," ASPLOS-V , Boston, MA (October
1992).

[Sal] K. Salem, \Adaptive Prefetching for Disk Bu�ers,"
CESDIS, Goddard Space Flight Center, TR{91{64,
January 1991.

[Sto] J. A. Storer, Data Compression Methods and The-
ory , Computer Science Press, 1988.

[TsN] M. M. Tsangaris & J. F. Naughton, \On the Per-
formance of Object Clustering Techniques," Proc.
of the 1992 ACM SIGMOD International Confer-
ence on Management of Data , San Diego, California
(June 1992).

[ViK] J. S. Vitter & P. Krishnan, \Optimal Prefetching via
Data Compression," Proceedings of the 32nd Annual
IEEE Symposium on Foundations of Computer
Science (October 1991), also appears as Brown Univ.
Tech. Rep. No. CS{91{46.

[WNC] I. H.Witten, R. M. Neal & J. G. Cleary, \Arithmetic
Coding for Data Compression," Communications of
the ACM 30 (June 1987), 520{540.

[ZiL] J. Ziv & A. Lempel, \Compression of Individual Se-
quences via Variable-Rate Coding," IEEE Transac-
tions on Information Theory 24 (September 1978),
530{536.

10


