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Abstract

It is infeasible for a sensor database to con-
tain the exact value of each sensor at all
points in time. This uncertainty is inherent in
these systems due to measurement and sam-
pling errors, and resource limitations. In order
to avoid drawing erroneous conclusions based
upon stale data, the use of uncertainty inter-
vals that model each data item as a range and
associated probability density function (pdf)
rather than a single value has recently been
proposed. Querying these uncertain data in-
troduces imprecision into answers, in the form
of probability values that specify the likeli-
ness the answer satisfies the query. These
queries are more expensive to evaluate than
their traditional counterparts but are guar-
anteed to be correct and more informative
due to the probabilities accompanying the an-
swers. Although the answer probabilities are
useful, for many applications, it is only neces-
sary to know whether the probability exceeds
a given threshold – we term these Probabilis-
tic Threshold Queries (PTQ). In this paper
we address the efficient computation of these
types of queries.

In particular, we develop two index structures
and associated algorithms to efficiently answer
PTQs. The first index scheme is based on
the idea of augmenting uncertainty informa-
tion to an R-tree. We establish the difficulty

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

of this problem by mapping one-dimensional
intervals to a two-dimensional space, and show
that the problem of interval indexing with
probabilities is significantly harder than inter-
val indexing which is considered a well-studied
problem. To overcome the limitations of this
R-tree based structure, we apply a technique
we call variance-based clustering, where data
points with similar degrees of uncertainty are
clustered together. Our extensive index struc-
ture can answer the queries for various kinds of
uncertainty pdfs, in an almost optimal sense.
We conduct experiments to validate the supe-
rior performance of both indexing schemes.

1 Introduction

Uncertainty is a common problem faced by sensor
databases that interact with external environments.
Consider a database system which stores and monitors
current pressure, with pressure sensors being deployed
in the venue being investigated. Due to resource lim-
itations such as battery power of sensors and network
bandwidth, it is often infeasible for a sensor database
to contain the exact value of each sensor at all points
in time. In particular, since pressure is a continuously
changing entity, the system only receives old samples
of pressure values. The situation is not helped by the
fact that sensor data may not arrive at the system on
time, and may even be lost due to network problems.
The measurement error incurred by the sensor while
measuring the value further aggravates the problem.

In general, uncertainty occurs in any database that
attempts to model and capture the state of the physi-
cal world, where entities being monitored such as pres-
sure, temperature, locations of moving objects, are
constantly changing. As pointed out in [7], if the re-
ceived (stale) sensor value is directly used to answer
queries, erroneous answers may result. In order to al-
leviate this problem, the idea of incorporating uncer-
tainty information into the sensor data has been pro-



posed recently. Instead of storing single values, each
item is modeled as a range of possible values, associ-
ated with a probability density function (pdf) [7].

With the notion of uncertainty, querying on data
generates imprecise, rather than exact answers. In
these probabilistic queries, answers are augmented
with probability values that specify the likelihood
that they satisfy the query. As an example, suppose
there are ten sensors, namely s1, s2, . . . , s10 that mon-
itor the temperature values in different offices of a
building. Without considering uncertainty, a query
that inquires which sensor has a temperature value
over 30oF may yield the answer {s1, s3, s9}. On the
other hand, its probabilistic counterpart can generate
{(s1, 0.9), (s3, 0.7), (s8, 0.6), (s9, 0.1)} as an imprecise
answer. Here we can observe that sensor s1 has a very
high probability of producing a temperature value over
30oF , while s9 only has a marginal chance of satisfying
the query. A probabilistic query thus allows us to see
the difference in the likelihood of each answer satisfy-
ing a query. We can also see that s8 is a new member
of the answer to the probabilistic query, which is not
in the answer set of the query that does not consider
data uncertainty. This is probably because the per-
ceived value of s8 received by the database is less than
30oF , but in fact its current actual value can be higher
than 30oF with a non-trivial chance (0.6). A proba-
bilistic query is thus able to produce a more accurate
and informative answer than a traditional query.

Despite these advantages over their traditional
counterparts, probabilistic queries suffer from a seri-
ous problem: they are much more expensive to evalu-
ate. While traditional queries require only exact and
single data inputs, probabilistic queries must man-
age uncertainty information, including intervals and
pdfs. In particular, probability values augmented to
query answers can be obtained only after costly inte-
gration operations are performed. However, it should
be noted that although answer probabilities are use-
ful, in practice for many queries, it is only necessary
to know whether the probability of answer exceeds a
given threshold – we term these Probabilistic Threshold
Queries (PTQ). A PTQ version for the previous ex-
ample can be “return the ids of the sensors that have
values over 30oF with a probability of greater than
or equal to 0.7”, in which case the answer {s1, s3} is
produced.

By exploiting the probability threshold requirement
on a probabilistic query, we propose efficient searching
techniques. We investigate how an index data struc-
ture and its associated algorithms are developed for
imprecise data. Two index structures are developed
to answer PTQs efficiently. The first index scheme is
based on the novel idea of augmenting uncertainty in-
formation to an R-tree, where the number of I/Os and
integration operations are reduced significantly while
the index is still being visited. Although this idea is

simple to implement, it is far from being optimal. We
then change our focus to study the theoretical com-
plexity of indexing uncertainty, and argue that there
is no formerly known optimal solution that is applica-
ble to this problem. By mapping one-dimensional in-
tervals to a two-dimensional space, we illustrate that
the problem of indexing uncertainty with probabilities
is significantly harder than interval indexing, which is
considered a well-studied problem.

Based on the interpretation of theoretical stud-
ies, we develop a technique called variance-based clus-
tering, in order to overcome the limitations of the
uncertainty-information-augmented R-tree structure.
In this indexing scheme, data points with similar de-
grees of uncertainty (e.g., mean and standard devia-
tion) are clustered together. The final extensive in-
dex is an R-tree based index, augmented with uncer-
tainty information, and enhanced with the variance-
based-clustering technique. This index can answer the
queries for various kinds of uncertainty pdfs, in an al-
most optimal sense. The results are verified by an
extensive experimental evaluation.

As a summary of our contributions, we propose two
structures to index uncertain data for PTQs. The
first index, called PTI, augments uncertain informa-
tion to internal nodes so that more search paths can
be pruned while the index is being visited. This in-
dex forms the basis of a more extensive scheme, where
intervals with similar variance values are clustered to-
gether. We also show that with a fixed probability
threshold, querying uncertainty intervals with uniform
pdf can be answered in optimal time, and establish a
theoretical foundation of the problem. We also per-
form extensive experiments to compare our proposed
schemes with an R-tree.

The rest of this paper is organized as follows. In
Section 2 we formally define the uncertainty model and
probabilistic threshold queries. Section 3 presents a
simple index with uncertainty information augmented
to evaluate a PTQ. We further establish the theoretical
difficulty of the problem in 4. An extensive framework
for evaluating PTQ is presented in 5. We present our
experimental results in 6. Section 7 discusses related
work and Section 8 concludes the paper.

2 Data Uncertainty and Probabilistic
Queries

In [7][9], a data representation scheme known as prob-
abilistic uncertainty model was proposed. The model
requires that at the time of query execution, the range
of possible values of the attribute of interest, and their
distributions, are known. For notational convenience,
we assume that a real-valued attribute a of a set of
database objects T is queried. The ith object of T
is named Ti, and the value of a for Ti is called Ti.a
(i = 1, . . . , |T |), where Ti.a is treated as a continuous
random variable. The probabilistic uncertainty of Ti.a



consists of two components:

Definition 1 An uncertainty interval of Ti.a, de-
noted by Ui, is an interval [Li, Ri] where Li, Ri ∈ <,
and the conditions Ri ≥ Li and Ti.a ∈ Ui always hold.

Definition 2 An uncertainty pdf of Ti.a, denoted
by fi(x), is a pdf of Ti.a, such that fi(x)=0 if x /∈ Ui.

This simple model provides flexibility where the ex-
act model of uncertainty is determined by application-
dependent assumptions. A simple example is the mod-
eling of sensor measurement uncertainty, where each
Ui is an error range containing the mean value, and
fi(x) is a normal distribution. Another example is
the modeling of one-dimensional moving objects based
on [20], where at any point in time, the actual loca-
tion is within a certain bound, d, of its last reported
location value. If the actual location changes further
than d, then the sensor reports its new location value
to the database and possibly changes d. In this case,
Ui contains all the values within a distance of d from
its last reported value. For fi(x), one may assume that
Ti.a is uniformly distributed, i.e., fi(x) = 1/[Ri − Li]
for Ti.a ∈ Ui. Treating fi(x) as a uniform pdf models
the scenario where Ti.a has an equal chance of locating
anywhere in Ui. Due to its simplicity, a uniform dis-
tribution facilitates ease of analysis and efficient index
design, as illustrated in subsequent sections.

Alternatively, one may perform an estimation of
the pdf based on time-series analysis, the discussion
of which is beyond the scope of this paper. Interested
readers are referred to [5] for details. Also notice that
we limit our discussion of uncertainty to interval data.
A comprehensive discussion of different types of un-
certainty can be found in [21].

A probabilistic threshold query (PTQ), proposed in
[9], is a variant of probabilistic query, where only an-
swers with probability values over a certain threshold
p are returned. The PTQ that we study specifically in
this paper is defined formally below.

Definition 3 Probabilistic Threshold Query
(PTQ) Given a closed interval [a, b], where a, b ∈ <
and a ≤ b, a PTQ returns a set of tuples Ti, such that
the probability Ti.a is inside [a, b], denoted by pi, is
greater than or equal to p, where 0 < p ≤ 1.

Simply speaking, a PTQ can be treated as a range
query, operating on probabilistic uncertainty informa-
tion, and returns items whose probabilities of satisfy-
ing the query exceed p.

3 A Simple Uncertainty Index

A naive method to evaluate a PTQ is to first retrieve
all Ti’s, whose uncertainty intervals have some over-
lapping with [a, b], into a set S. Each Ti in S is then

evaluated for their probability of satisfying the PTQ
with the following operation:

pi =

∫
OI

fi(x)dx (1)

where pi is the probability that Ti satisfies the PTQ,
and OI is the interval of overlap between [a, b] and Ui.
The answer only includes Ti’s whose pi’s are larger
than p.

Two problems can be seen from this approach.
First, how can we find the elements of S i.e., Ui’s that
overlap with [a, b]? It can be very inefficient if each
item Ti is retrieved from a large database and tested
against [a, b]. A typical solution is to build an index
structure over Ui’s (which are intervals) and apply a
range search of [a, b] over the index. This problem is
known as the interval indexing problem, and has been
well studied [17][15].

The second problem is that the probability of each
element in S needs to be evaluated with Equation 1.
This can be a computationally expensive operation.
Notice that the bottleneck incurred in this step is in-
dependent of whether we use an interval index or not.
In particular, the interval index does not help much
if many items overlap with [a, b], but most have prob-
ability less than p. In this situation, we still need to
spend a lot of time to compute the probability values
for a vast number of items, only to find that they do
not satisfy the PTQ after all.

3.1 Probability Threshold Indexing

The above problems illustrate the inefficiency of using
an interval index to answer a PTQ. While the range
search is being performed in the interval index, only
uncertainty intervals are used for pruning out intervals
which do not intersect [a, b]. Another piece of impor-
tant uncertainty information, namely the uncertainty
pdf, has not been utilized at all in this searching-and-
pruning process. As a result, a large number of items
may overlap with [a, b], while in fact only a small frac-
tion of them contribute to the results of PTQ.

Our goal is to redesign index structures so that
probabilistic uncertainty information is fully utilized
during an index search. This structure, called Proba-
bility Threshold Indexing (PTI), is based on the modi-
fication of a one-dimensional R-tree, where probability
information is augmented to its internal nodes to fa-
cilitate pruning. To illustrate our idea, let us review
briefly how a range query is performed on an R-tree.
Starting from the root node, the query interval [a, b]
is compared with the maximum bounding rectangle
(MBR) of each child in the node. Only children with
MBRs that overlap with [a, b] are further followed. We
thus save the effort of retrieving nodes whose MBRs do
not overlap [a, b]. We can generalize this idea by con-
structing tighter bounds (that we call x-bounds) than



���������	
��
 ����������	
��


���������	
��
� ����������	
��


�

�

�

�����������

�����

�����

���

Figure 1: Inside an MBR Mj , with a 0.2-bound and
0.3-bound. A PTQ named Q is shown as an interval.

the MBR in each node, by using uncertainty informa-
tion of intervals, so as to further reduce the chance of
examining the children of the node. Let Mj denote
the MBR/uncertainty interval represented by the jth
node of an R-tree, ordered by a pre-order traversal.
Then the x-bound of Mj is defined as follows.

Definition 4 An x-bound of an MBR/uncertainty
interval Mj is a pair of lines, namely left-x-bound
(denoted by Mj .lb(x)) and right-x-bound (denoted by
Mj .rb(x)). Every item Ti.a contained in Mj can only
have a probability of at most x (where 0 ≤ x ≤ 1)
both on the left of the left-x-bound and on the right of
the right-x-bound. That is to say, if Li ≤ Mj .lb(x)
and Ri ≥ Mj .rb(x), then the following must hold:∫ Mj .lb(x)

Li
fi(y)dy ≤ x and

∫ Ri

Mj .rb(x) fi(y)dy ≤ x.

Using the definition of an x-bound, the MBR of
an internal node can be viewed as a 0-bound, since
it guarantees all intervals in the node are contained
in it with probability one i.e., no interval lies beyond
the 0-bound. Figure 1 illustrates three children MBRs
(A,B,C), in the form of one-dimensional intervals, con-
tained in a larger MBR Mj . A 0.2-bound and a 0.3-
bound for Mj are also shown.

As Figure 1 shows, an x-bound is a pair of lines
where at most a fraction of x of each interval in the
MBR cross either of them. The uncertainty pdf of A is

shown, where we can see that
∫ Mj .lb(0.2)

LA
fi(x)dx ≤ 0.2,

and
∫ Mj .lb(0.3)

LA
fi(x)dx ≤ 0.3. For interval B, the con-

straint on the right-0.3-bound is
∫ RB

Mj .rb(0.3)
fi(x)dx ≤

0.3. Interval C does not cross either the 0.2-bound and
the 0.3-bound, so it satisfies the constraints of both x-
bounds. Furthermore, we require an x-bound to be
unique, where the left-x-bound and right-x-bound are
pushed towards the center of the MBR as much as
possible, without violating their definitions.

The whole purpose of storing the information of the
x-bound in an R-tree node is to avoid investigating the
contents of a node. If we can avoid this probing, a con-
siderable amount of I/Os can be saved. Furthermore,
we do not need to compute the probability values of
those intervals, which cannot satisfy the query anyway.
To illustrate how this idea works, let us look at Fig-
ure 1 again. Here a range query Q, represented as an
interval, is tested against the internal node. Without
the aid of the x-bound, Q has to (i) examine which
MBR (i.e., A, B, or C) overlaps with Q’s interval, (ii)
for the qualified MBRs (B in this example), further
retrieve the node pointed by B until the leaf level is
reached, and (iii) compute the probability of the inter-
val in the leaf level.

The presence of the x-bound allows us to decide
with ease whether an internal node contains any qual-
ifying MBRs, without further probing into the sub-
trees of this node. In this example, we first test
Q’s range against the left-0.2-bound and the right-0.2-
bound. As shown in Figure 1, it intersects none of
these bounds. In particular, although Q overlaps the
MBR, its overlapping region is somewhere between the
right-0.2-bound and the right boundary of Mj ’s MBR.
Recall that a 0.2-bound allows at most an accumulated
pdf of 0.2 of any interval in an MBR. This implies that
the portion of the intervals (interval B) that passes
through the 0.2-bound cannot exceed a probability of
0.2. Therefore, the probability of intervals in the MBR
that overlap the range of Q cannot be larger than 0.2.
Assume Q has a probability threshold of 0.3 i.e., Q
only accepts intervals with an overlapping probability
of at least 0.3. Then we can be certain that none of
the intervals in the MBR satisfies Q, without further
probing the subtrees of this node. Compared with the
case where no x-bounds are implanted, this represents
a significant saving in terms of the number of I/Os and
computation time.

In general, given an x-bound of a MBR Mj , and a
PTQ with interval [a, b] and probability threshold p,
we can eliminate Mj from further examination if the
following two conditions hold:

1. [a, b] does not intersect left-x-bound or right-x-
bound of Mj i.e., either b < Mj .lb(x) or a >
Mj .rb(x) is true, and

2. p ≥ x

If no x-bound in Mj satisfies these two conditions,
the checking of intersections with Mj is resumed,
where the contents of the node represented by Mj are
loaded, and the range searching process is done in the
same manner as for an R-tree.

3.2 Implementation of PTI

Figure 2 illustrates an implementation of PTI. Its
framework is the same as R-tree, where each internal
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Figure 2: Structure of PTI

node consists of children MBRs and their correspond-
ing pointers. In addition, each child Mj consists of
a table, Mj .PT , that contains information of its x-
bounds. Each entry of Mj .PT is a tuple of the form
<left-x-bound, right-x-bound>. Further, a global ta-
ble called TG is defined, which contains the values of
x for x-bounds. The i-th entry of Mj .PT contains the
x-bound whose value of x is stored in the i-th entry
of TG. The data items being indexed are essentially
uncertainty intervals and pdfs.

To insert Ti.a, we first compute its x-bounds, cor-
responding to the values of x in TG. Then we insert
Ti.a to the PTI, using a similar procedure as inserting
an interval to an R-tree. The main difference is that
the x-bounds of the intermediate nodes being traversed
during insertion need to be expanded appropriately. In
particular, the left-x-bound of an internal node needs
to be replaced by the corresponding left-x-bound of
Ti.a if the former value is larger than the latter. The
right-x-bounds are expanded analogously. Finally, the
x-bound information computed for Ti.a is copied to
PT of the node that directly points to Ti.a.

Removing an object follows a similar procedure of
the R-tree. Again, we need to take care of the update
issues of x-bounds. We observe that if an MBR Mj is
to be deleted, then the left-x-bound of the parent node
that points to Mj has to be shrinked to the minimum
of left-x-bound of all MBRs in the same node as Mj .
The right-x-bound of the parent node is adjusted in
a similar manner. We therefore need to keep parent
pointers in each node. To update the x-bounds, begin-
ning from the leaf node that contains the interval of
interest, the changes to x-bounds are propagated until
the root is reached.

Although the fan-out of a PTI node is lower than
an R-tree node because each node contains less space
to store MBRs (assume the node size is fixed), the
fan-out only logarithmically affects the height of the
tree. Hence, in most cases this results in an increase in
height by an additive constant, which only has a minor
effect on PTI’s performance. Indeed, its performance

illustrates significant improvements over R-tree, as ob-
served in our experimental results (Section 6).

However, PTI by itself is not an optimal solution,
because it cannot avoid the problem that an R-tree
faces – if the data source consists of both large and
small intervals, a lot of smaller intervals will reside in
the same leaf node as the large intervals. The search
time is increased unnecessarily, because a range search
may have to go through many large MBRs consisting
of large intervals. The major cause of this problem is
that the insertion mechanism of the R-tree does not
differentiate between large and small intervals. We in-
vestigate this problem in subsequent sections, and de-
velop an extensive framework to tackle this shortcom-
ing. The framework employs the idea of PTI as well.
In some cases, the framework is even able to eliminate
the extra overhead of PTI altogether, by computing
the probability threshold information “on the fly”.

4 Theoretical Implications

Any index is considered theoretically efficient if it
achieves provably logarithmic update and query times
while using a linear amount of space. We will discuss
the difficulty of the PTQ problem as compared with
other known problems in computational geometry. In-
terval indexing [14, 3, 2] is considered a well-studied
problem and theoretically efficient indexes exist. How-
ever, we show here that interval indexing coupled with
pdfs is significantly more complex than interval index-
ing. On the other hand, theoretically efficient index
structures for PTQ are possible only when the thresh-
old p is apriori fixed constant for all the queries.

In this section, we will mainly focus on PTQ assum-
ing the pdf in each interval is uniform. That is, if a
query specifies 80% threshold, then any interval satis-
fying this query has at least 80% of its length within
the query range. We call this the PTQU problem.
In this section, we want to show that PTQ is a hard
problem to be provably solved even with uniform pdfs.
However, good heuristics can be used for PTQU and
they can be extended to PTQs when pdfs are arbi-
trary using the idea of PTI in the previous section. As
a side note, we also show that a provably good index
for PTQU can exist if the threshold of probability p is
a fixed constant.

4.1 2D mapping of intervals

We first explore PTQUs when the intervals are indexed
as points in two dimensional space [14, 3]. Here, each
interval [x, y] is mapped to a point (x, y) in 2D. Note
that, for all intervals, x < y and hence these points all
lie in the region above (and to the left of) the line x =
y. Figure 3(a) gives the illustration. A stabbing query
is a particular kind of query associated with the notion
of intervals. Given a point c, a stabbing query reports
all the intervals containing point c. A stabbing query
[3] for point c is converted to a two-sided orthogonal
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Figure 3: Probabilistic Threshold Queries with Uniform pdf

query originating at point (c, c) in this mapping. A
range query (a, b) is just a union of the stabbing queries
for all the points from a to b. This is same as a two-
sided orthogonal query originating at point (b, a).

A PTQU (a, b, p) where 0 < p ≤ 1 now becomes a
3-sided trapezoidal query as shown in Figure 3(b). To
see this, consider any point (x, y) (i.e. interval [x, y])
that satisfies PTQU. There are four cases:

x ≤ a < b ≤ y: In this case the query lies within the
interval. All we require is that the query covers a
sufficient length of the interval. That is b − a ≥
p(y − x). That means point (x, y) is in the region
below the line y − x = (b − a)/p. This line has
slope 1.

x ≤ a < y ≤ b: In this case the query region is on the
right of the interval. The amount of overlap is
given by y−a. This condition translates to y(1−
p) + xp ≥ a. That is the region above the line
y(1 − p) + xp = a which has slope −p/(1− p).

a ≤ x < b ≤ y: In this case is the query region is on
the left of the interval. This is given by the region
x(1 − p) + yp ≤ b. The separating line has slope
−(1 − p)/p.

a < x < y < b: In this case, the entire interval lies
within the query and hence it satisfies the PTQU
for any p.

Thus, the query satisfying region is given by the inter-
section of the three regions (first three) above. This
becomes an isosceles trapezoid region. The fourth side
of the region given by line x = y can be essentially con-
sidered redundant since there are no points below (or
to the right) of this line. We will call this as an open
side of the trapezoid. Thus, PTQU becomes a 3-sided
trapezoidal query.

As p approaches 0, this becomes a range intersec-
tion query i.e. the slopes of the lines in the second and
third cases become zero and infinity respectively. The
first constraint becomes redundant. This is the same
as a two-sided orthogonal query. At p = 1, the trape-
zoid becomes a right-angled triangle and the query be-
comes a containment query. At p = 0.5 the trapezoid
becomes a square. For p < 0.5 the close side (as given
by first constraint) of the trapezoid is bigger than the
open side (on line x = y) and for p > 0.5 the closed
side is smaller than the open side. See Figure 5.

4.2 Relation of PTQU to other well known
problems

To establish the difficulty of the problem we will relate
PTQU to two well known problems, namely simplex
queries in 2D and half-space queries in 2D. First we
define these problems and then show that PTQU lies
between these two problems in terms of its hardness.
This indicates that a provably good indexing may not
be possible for PTQU. On the other hand we shall
show in the next subsection that if the threshold for
PTQU is fixed for all the queries, then provably good
query times can be achieved.

Problem 1 Half-space queries in 2D (HQ2D):
Given a dynamic set of points in 2D, report the set of
points which satisfy a query given by a linear constraint
ax + by ≥ c where a, b, c are real numbers.

Problem 2 Simplex queries in 2D (SQ2D):
Given a dynamic set of points in 2D, report the set of
points which satisfy a query given by a constant num-
ber of linear constraints aix + biy ≥ ci where i goes
from 1 to a constant j and ai, bi, ci are real numbers.

It is easy to see that PTQU is a special case of
Simplex queries. Also, we can establish that PTQU
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Figure 4: Wedge queries and parallelogram queries with fixed slopes

is at least as hard as half-space queries. Let n be
the number of points and k be the number of points
satisfying a query. We state the following lemma. The
proof is skipped for conciseness.

Lemma 1 If PTQU for n intervals can be answered
in time t with update times u and using space s, then
HQ2D can be answered in O(t) time, with update time
O(u) and in O(s) space.

Here, we consider problems (HQ2D and SQ2D)
which report all the points satisfying the query. These
are called reporting versions of the problem. Lower
bounds exist for these problems in the algebraic
model [12, 6]. Data structures which use a linear
amount of storage for HQ2D require at least Ω(n1/3)
for query and update operations on average[12, 4].
For SQ2D, this lower bound is Ω(

√
n) [6]. The best

known data structures can answer SQ2D queries in√
n log n, which is considered almost tight against the

lower bound. Half-space range searching, is one of the
exceptions in the class of geometric range searching
problems where lower bounds from algebraic models
do not apply to the reporting version of the problem
(i.e. HQ2D as we have defined). See the surveys on
Geometric range searching by [18, 11] for more details.
However, the best known data structure for HQ2D can
answer reporting queries in time O(nε + k) using lin-
ear storage [1]. If the storage is allowed to be super-
linear i.e. O(n1+ε), then optimal reporting time of
O(log n + k) can be achieved [10]. Note that ε can be
made arbitrarily small but this increases the constants
hidden in the big-O notation. This implies that we can
not hope for a linear space index which gives provably
good query times (i.e. O(log n + k)).

However, the above bounds are for the worst case
performance of the data structure. In general, when
points in 2D are uniformly distributed (and not patho-
logically arranged to force the worst case), any space
partitioning data structure like R-tree gives reasonably
good query times for polygonal queries (i.e. SQ2D).
Goldstein et al. [13] use R-trees to answer SQ2D
queries. Although worst case bounds can not be
proven, practically the index works fairly well.

Motivated by [13], we use R-tree in 2D to answer
PTQU. For a general pdf (not necessarily uniform) we
develop a heuristic based on this idea to answer PTQ.
More details are provided in Section 5.

4.3 PTQU with fixed threshold

Here we show that PTQU can be answered provably
efficiently when the threshold value p is fixed for all
queries and p is not close to 0. However, we wish to
note that these results are for theoretical interest only.
We can use the data structures which handle 2-sided
and 3-sided orthogonal queries [2] (see Figure 4(a,b)).
First we establish the following lemma when 2-sided or
3-sided queries are not orthogonal but consist of line
segments with fixed slopes (see Figure 4(c,d)). Also,
in external memory where the cost model is number
of I/Os, with block size B, a 2-sided angular query
(also called wedge queries) is a query specified by an
angle (i.e. two rays) and it reports all the points in the
interior of the angle. A 3-sided parallelogram query is
a generalization of 3-sided orthogonal queries, where
there are two parallel sides and one closed side, and
each of these can be at an arbitrary inclination (not
just orthogonal).

Lemma 2 For n points in two dimensional space,
2-sided wedge queries where the slopes of both the
sides are fixed for all queries and 3-sided parallelogram
queries where two independent slopes involved are fixed
for all queries can be answered in O(log n + k) time.
Also, in external memory where block size for I/Os is
B, these queries can be answered in O(logB n + k/B)
I/Os.

Proof : (sketch) Since the slopes of lines involved are
fixed for all the queries, we use a linear transformation
to align the directions of the axes along these slopes.
Now, these queries simply become 2-sided and 3-sided
orthogonal queries. Known structures from [2] can be
used to answer them.

Theorem 1 PTQU with fixed threshold p can be an-
swered within O(logB n+ k/B) I/Os using O(n) space
when p ≥ 0.5 and can be answered in O(((1 −
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p)/p)(logB n + k/B) I/Os using O((1 − p)n/p) space
when p < 0.5.

Proof : Figure 5 shows the trapezoidal query regions
for p ≥ 0.5 and p < 0.5. When p ≥ 0.5 the query can
be answered by answering two wedge queries AÂA

′

,
B

′

B̂B and a 3-sided parallelogram query A
′

ÂB̂B
′

.
Recall that side AB is an open side since there are
no points on the other side of AB. Hence, the open
side for all these queries are along the side AB. Since
the slopes of these lines only depend on p and p is
fixed, all the slopes involved are fixed. Hence, the an-
swer is the union of these 3 queries. Note that this
requires maintaining three separate structures, one for
each query.

When p < 0.5, the ratio of lengths of ÂB̂ and AB is
(1− p)/p. The query can be answered using (1− p)/p

3-sided parallelogram queries (ÂB̂ can be partitioned
into (1 − p)/p segments which have the same length
as AB and each segment forms a separate parallelo-
gram query). The answer is the union of answers of
these queries. This requires (1 − p)/p simultaneous
structures and hence the space and time bounds.

While these kind of bounds (provable data struc-
tures) do not exist when p is not fixed, we can still use
2D R-tree as in [13] to answer the trapezoidal queries.
This forms the basis of our index in the next section.

5 An Extensive Uncertainty Index

In the previous section, we observed that if the uncer-
tainty pdfs are uniform over each interval, then PTQ
can be answered by indexing intervals as 2D objects
and performing polygonal search queries over this in-
dex. However, this approach works only for uniform
pdfs. When pdfs are allowed to be arbitrary, we can-
not always obtain a boundary which separates inter-
vals that satisfy the query from the intervals that do
not. However, the pruning approach of Section 3 can
be helpful. Here we explore how to combine both ideas
to build an extensive index capable of handling arbi-
trary pdfs.

As discussed in the Section 3, a possible drawback of
the simple R-tree based approach is that the MBR of

an R-tree can have a small interval as well as a large
interval. Suppose a large MBR contains an interval
much shorter than the length of the MBR, placed near
the right boundary of the MBR. If the result of a PTQ
contains the small interval, this implies the PTQ has
to visit the large MBR just for the sake of the small
interval. This can result in a larger search cost, par-
ticularly when the small interval in that MBR is all
that the PTQ answer requires, but the large amount
of space on the left of the small interval may have to
be visited unnecessarily. Although, heuristics for R-
tree (e.g., minArea) attempt to avoid such cases they
cannot always acheive it.

For uniform pdfs, as we will see in the experiments,
2D indexing supporting trapezoidal queries shows im-
provement over PTI. Now consider the mapping of in-
tervals to a 2D plane with interval [x, y] mapped to the
point (x, y). By rotating this mapping by 45 degrees

clockwise and scaling it upwards by a factor of
√

2, the
transformation represents the mean points of intervals
along x axis, and the lengths of the intervals along the
y axis. For uniform pdfs, the length of the interval is
directly proportional to the standard deviation (which
is one-third of the length). Thus, the 2D mapping
when indexed using R-tree not only tends to put the
intervals with close proximity (similar mean values) in
the same MBR, but also ensures that all intervals in
the same MBR have similar standard deviation values
(or more generally, variances). We call this property
of 2D indexing where intervals with similar variance
values are grouped together as variance-based cluster-
ing. Let us have a closer look at how this property can
be extended to handle general cases of pdfs.

Definition 5 An x-deviation of a node N (either in-
terval or an MBR) in a PTI is defined as (N.rb(x) −
N.lb(x))/2. It is denoted by N.dev(x).

Note that N.dev(x) decreases as x increases. Also,
N.dev(x) can be negative, if x > 0.5. In particular,
when N is an interval (and not an MBR), N.dev(x) is
necessarily negative, if x > 0.5, in which case its left-
x-bound and right-x-bound “swap” their positions.

Definition 6 A set T of data items is variance-
monotonic if for any two items Ti and Tj, their un-
certainty pdfs fi and fj are such that for any val-
ues x, y ∈ (0, 1] if |Ti.dev(x)| ≥ |Tj .dev(x)| then
|Ti.dev(y)| ≥ |Tj .dev(y)|.

Definition 7 A variance monotonic set T is
variance-monotonic smooth if Ti.dev(x)/Ti.dev(y) =
Tj .dev(x)/Tj .dev(y) for any i, j, x, y.

Definition 8 A set T of data items is symmetric if its
pdf is symmetric around the midpoint of the interval.

Definition 9 A set T of data items is regular if it is
both symmetric and smooth variance-monotonic.



Many standard pdfs like Gaussian1 or uniform have
the smooth variance-monotonic property. For exam-
ple, consider two intervals Ti = [9, 19] and Tj =
[35, 55] with uniform pdfs. Let us pick two arbi-
trary values for x and y, say 0.2 and 0.4. Then,
Ti.dev(x) = 6, Ti.dev(y) = 2, Tj .dev(x) = 12 and
Tj .dev(y) = 4. Thus, the ratio Ti.dev(x)/Ti.dev(y) =
Ti.dev(x)/Ti.dev(y) = 3. Thus, for a smooth variance-
monotonic set, this ratio only depends on x and y and
is same for all the objects in the set when x and y
are fixed. A set of data items which consists of all
objects with Gaussian pdfs (each object can have dif-
ferent µ, σ) is smooth variance-monotonic. This is true
also for a set of all the objects with uniform pdfs. How-
ever, if a set of objects has both kinds of pdfs uniform
as well as Gaussian simultaneously, then it is no longer
smooth variance-monotonic.

Given an interval with a pdf, we first determine
its representative deviation Ti.rdev, defined in the fol-
lowing manner: Select some values x1, x2, x3, ..., xj ∈
(0, 1]. Then, for each i, Ti.rdev is an aggregate func-
tion of |Ti.dev(x1)|, ..., |Ti.dev(xj)|. In this paper, we
will simply take the aggregate function to be the av-
erage of these values. The values of x1, x2, .., xj are
selected as some of the most relevant thresholds for
the index. Note that for smooth variance monotonic
data set just one value of x can give the representative
deviation. We also calculate an entity called Ti.mean
which is the point in the interval such that there is
50% probability on either side of the point (i.e. mean
value of the interval according to the pdf).

5.1 Uncertainty Indexing for Regular Sets

As noted earlier, both Gaussian and uniform pdfs are
symmetric and smooth variance-monotonic. Thus a
set consisting of all Gaussian pdfs is a regular set. For
indexing a regular set, we can use a 2D R-tree. First a
representative threshold value x is selected (say 30%).
Then we calculate Ti.mean and Ti.rdev for all items
in T . For different values of y ∈ (0, 1], a table of ratios
of r(y) = Ti.dev(y)/Ti.dev(x) is also calculated. This
table is called the ratio table and is kept in the main
memory. Note that this ratio is the same for each
object in T . We index each item by its 2D coordinates
(Ti.mean, Ti.rdev), and construct a 2D R-tree on this
representation.

To process a query (a, b, p), we first check the query
against MBRs of the nodes in this tree. A node N
is pruned when it is guaranteed that no item in the
subtree rooted at N can satisfy (a, b, p). Let µ1, µ2

be the lowest and highest values of Ti.mean over all
objects in the subtree of N and let σ1, σ2 be the lowest

1When we assume Gaussian pdf the length of the interval
may be considered as infinite. Alternatively we may use an
approximation of Gaussian distribution by trimming away the
portion of the interval beyond which the probability is below a
certain threshold and normalizing the pdf inside the interval

and highest values of Ti.rdev over all the objects in
the subtree. Note that the MBR for N is [(µ1, σ1) :
(µ2, σ2)].

2 Let p̂ ≤ p be the value where the ratio
r(p̂) is pre-calculated in the ratio table. We calculate
two values L, R such that L ≤ N.lb(p̂) ≤ N.lb(p) and
R ≥ N.rb(p̂) ≥ N.rb(p). Note that L may be greater
than R, when p̂ ≥ 0.5. If p̂ < 0.5 then, L = µ1−r(p̂)σ2

and R = µ2 + r(p̂)σ2. If p̂ ≥ 0.5 then, L = µ1 + r(p̂)σ1

and R = µ2 − r(p̂σ1. In the case where L ≤ R, if the
range of the query [a, b] does not overlap with [L, R]
then we can safely prune N . If L > R then the range
of the query [a, b] must contain [R, L] to not prune N .
If it does not contain, then N is pruned. The following
theorem proves the correctness of the method.

Theorem 2 If a node N with MBR [(µ1, σ1) :
(µ2, σ2)] is pruned by the query (a, b, p) where the set
of data items T is regular, then there is no data item
in the subtree of N which satisfies the query (a, b, p).

Proof : Consider the case when p < 0.5 and N is
pruned. Here, L ≤ R and [a, b] does not overlap with
[L, R]. Without loss of generality, we assume that
b < L. We prove our claim by contradiction. Assume
that there is an object Ti in the subtree of N satisfy-
ing the query. Now, Ti.mean ≥ µ1 and Ti.rdev ≤ σ2.
Let L′ = Ti.mean − Ti.dev(p̂). Thus, by symmetry
and the definition of Ti.dev, L′ = Ti.lb(p̂). Since
r(p̂) = Ti.dev(p̂)/Ti.rdev, L′ ≥ L. Also, p̂ < p im-
plies Ti satisfies the query (a, b, p̂), This means L′ ≤ b
implies L ≤ b, which is a contradiction. Hence, such
an object Ti cannot exist. The proofs for all other
cases are exactly the same with appropriate parame-
ters changed, which we skip due to limitation of space.

Compared with PTI, this scheme has an advantage
in terms of space. Recall that PTI requires extra space
to store probability threshold information. With this
scheme, we exploit the fact that the data set is smooth
variance-monotonic and symmetric, and compute the
probability threshold information “on the fly”. Thus
overhead required by PTI can be avoided.

5.2 Uncertainty Indexing for Arbitrary pdfs

For arbitrary pdfs (not necessarily variance mono-
tonic), the correctness of the above approach cannot
be guaranteed. We need to revert to the PTI struc-
ture of Section 3. Hence, apart from the MBR bound-
aries we also maintain the boundaries from certain
fixed values of probability threshold. We can build
an index based on 2D R-tree, with operations like in-
sert, delete and split. For this we index each item by
(Ti.mean, Ti.rdev). Here, Ti.rdev is calculated as an
average of Ti.dev(x) for some predetermined values of
x.

2We use (lx, ly) : (rx, ry) to represent a rectangle where
(lx, ly) and (rx, ry) are the coordinates of the lower and upper
bounds respectively.



However, this structure does not guarantee query
correctness and does not allow pruning if we do not
include PTI information. Hence, for query processing,
we consider each node N ’s MBR as a one-dimensional
object. In PTI structure, we first include N.lb(0) and
N.rb(0). This forms the MBR of Tj when it is consid-
ered as a one-dimensional entity. Then we also include
N.lb(x) and N.rb(x) for various predetermined values
of x depending upon likely query thresholds. Then
query pruning is done based on this PTI structure
given in Section 3. Thus this structure is constructed
as a 2D R-tree, but its query processing is treated as
a 1D R-tree operation. The main difference between
this structure and the one in Section 3 is that this
structure attempts directly to cluster the data items
with similar variance values. We will see in Section 6
that the variance-clustered R-tree improves the query
performance.

6 Experimental Results

In this section we present the performance results of
an extensive simulation for the index structures we
proposed. We implemented a one-dimensional R-tree
without uncertain information augmented (hereby re-
ferred to as R-tree), a PTI, as well as the extensive
uncertainty scheme (referred to as extensive), where
both the ideas of PTI and two-dimensional variance-
based-clustering techniques applied. We will discuss
our simulation model followed by experimental results.

6.1 Simulation Model

We generated two sets of data. The first set of data
are uncertain data, with their lengths uniformly dis-
tributed in [Umin, Umax], with a uniform uncertainty
pdf. The second set of data are the properties of prob-
abilistic threshold queries. Similar to the uncertain
data, the length of each query range is also normally
distributed with Umean and Udev, with a uniform un-
certainty pdf. Their probability thresholds are uni-
formly distributed between 0.1 and 1. Table 1 presents
the parameters for uncertain data and PTQ.

The total insertion and query I/O performance of
the indexes is measured. Each disk page contains Spage

bytes, with Nentry entries per page. By default, a
PTI node contains five tuples of x-bounds, where x ∈
{0.1, 0.3, 0.5, 0.7, 0.9}.

6.2 Results

6.2.1 Scalability of Uncertainty Indexes

In the first experiment, we examine the scalability of
the three indexes. Figure 6 shows their I/O perfor-
mance as the number of items are increased from 25K
to 100K. We can see that the total number of I/Os
for updates and queries for all three indexes increase
linearly with the data set size. This is because all the
lengths of queries are normally distributed with µ 100

Param Default Meaning

Uncertain Data
Nint 100K # of intervals
Lmin 0 Min value of Li

Rmax 10, 000 Max value of Ui

Umin 10 Min value of Ui − Li

Umax 1, 000 Max value of Ui − Li

fi(x) 1/(Ui − Li) Uncertainty pdf
Probabilistic Threshold Queries

Nint 10K # of range queries
amin 0 Min of lower bound(a)
bmax 10, 000 Max of upper bound(b)
Imean 100 Mean of interval length
Idev 10 Deviation of interval length
p [0.1, 1] Prob. threshold (uniform)

Tree parameters
Spage 4096 Size of a page (bytes)
Nentry 20 # of entries (per page)

Table 1: Parameters and baseline values.
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and σ 10 throughout the experiment while the data
size increases. As a result, the number of items that
satisfy the queries increases linearly with number of
items.

A more interesting observation is that both PTI and
extensive perform much better than the R-tree. In-
deed, PTI almost spent about 50% of the I/Os required
for R-tree, while extensive needs only about 30% of R-
tree’s effort. The reason is simply because R-tree does
not use uncertainty pdf while the index is being ac-
cessed. As a result, many items that do not satisfy
the probability thresholds of queries are not pruned.
This results in a large set of intervals being needed to
be examined. On the other hand, both PTI and ex-
tensive are designed to be sensitive to uncertainty pdf
information during the searching-and-pruning process.
Thus, they are able to prune much more items away
than R-tree. Notice that although here we only show
the number of I/Os, answering PTQ with an R-tree
may even suffer more in terms of computation time,
because more items are obtained after the index is
searched, and the time required for the integration op-



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
is

k 
I/O

Query Probability Threshold

Rtree
PTI

Extensive

Figure 7: Total I/Os vs. Query Probability Threshold

eration to evaluate the probability will be significantly
increased.

We can also see that extensive requires about 50%
less I/Os than PTI. This is because extensive applies
the variance-based clustering techniques, while PTI
does not. In a PTI node, it is possible for a small
interval to be stored in a relatively large MBR. Thus,
if that small interval satisfies a PTQ (which is easy
because of its small size), the large MBR has to be
visited, and the query may need to spend time on the
space in the large MBR, which can be avoided in the
extensive scheme.

6.2.2 Effect of Query Probability Threshold

In the second experiment, we study the effect of prob-
ability thresholds (p) of queries on I/O performance.
To obtain a data point, the threshold value of each
query is made the same in (0,1]. The results are shown
in Figure 7, which illustrates the three indexes’ perfor-
mance under different values of p. We can observe that
as p increases, the number of I/Os requried for both
PTI and extensive decreases. This is simply due to the
reduction in the number of qualified intervals for the
queries with more stringent probability threshold re-
quirements. Nonetheless, R-tree does not take advan-
tage of this at all, since it only prunes away items that
do not overlap the queries, regardless of their threshold
requirements.

The performance of PTI improves as p increases.
Consider a query with some amount of overlap with
an MBR. When its threshold increases, it has more
chance to use an x-bound. For extensive, the size of
the trapezoidal region is inversely proportional to p
and hence its performance also improves. The advan-
tages of extensive over PTI are more pronounced when
p is betwen 0.3 and 0.7. When p is 0.5, extensive re-
quires four times fewer I/Os than PTI. At the extreme
values of p, the advantages of extensive are not as pro-
nounced, becasue the query either becomes a contain-
ment query or an overlap query. Hence, both PTI and
extensive perform similarly.

7 Related Work

The probabilistic uncertainty model for sensor data
studied here is a modified version of the one discussed
in [9]. While we assume the bounds of uncertain inter-
vals are constant, in that paper the uncertain intervals
are time-varying functions. That paper also presents
a taxonomy of different representations of data un-
certainty in terms of intervals. The probabilistic un-
certainty model for two-dimensional moving objects is
discussed in [8]. Yazici et al. [21] discusses uncertainty
in different data types, such as sets, intervals and fuzzy
data.

In [7], a general classification, evaluation and qual-
ity of different types of probabilistic queries for sensor
data are presented. Probabilistic queries in moving ob-
ject databases are studied in [20] and [8], where range
query and nearest-neighbor query algorithms respec-
tively are presented. The probabilistic threshold query
for sensor data is proposed in [9], where efficient com-
putation strategies of probability values by exploiting
probability thresholds are discussed. However, it does
not address indexing of imprecise data.

There are numerous works in the field of interval
indexing. In [14][3], the idea of mapping intervals as
points in two-dimensional space is discussed. They
also talk about the transform of one-dimensional stab-
bing queries and range queries to two-sided orthogo-
nal queries in two-dimensional space. Manolopoulos et
al. [17] propose an efficient interval tree to facilitate the
execution of intersection queries over intervals. Kriegel
et al. [15] discusses an implementation of interval trees,
which is conveniently built on top of relational tables,
and algorithms are expressed as SQL queries.

Different types of range queries in two dimensional
space have been well studied. For half-space queries,
lower bounds are discussed in [12][4], and optimal data
structures are presented in [1][10]. The lower bounds
of simplex queries are derived by Chazelle [6]. Gold-
stein et al. [13] modifies the R-tree to answer simplex
queries, which works well in practice. Optimal data
structures for answering 2-sided and 3-sided queries,
which have fixed slopes but not necessarily orthogo-
nal, are discussed in [2]. A comprehensive survey on
geometric range searching can be found in [18][11].

Although a rich vein of work exists in interval index-
ing, the issue of indexing uncertain data that involves
probability computation has not been well addressed.
A recent paper by Lin et al. [16] discusses an extension
of the TPR-tree [19] to index trajectories of moving ob-
jects, where each point in the trajectory has a rectan-
gular uncertain bound. We study the indexing of gen-
eral sensor data, and establish a theoretical foundation
of the problem. We also propose novel indexing tech-
niques for fixed/variable probability thresholds, and
different kinds of pdfs. To our best knowledge, these
questions have not been answered previously.



8 Conclusions

Uncertainty is an important emerging topic in sensor
databases. In this paper we investigated the problem
of indexing uncertain data.We showed that this prob-
lem is theoretically difficult, by showing how it can
be transformed to a polygonal range query in two-
dimensional space. However, heuristics do exist to
handle the problem efficiently in practice. In particu-
lar, we proposed the ideas of augmenting probability
threshold bounds to an index, as well as clustering
intervals based on their statistical information. Our
extensive experiments showed that these two ideas,
when used together, can significantly improve the per-
formance of probabilistic threshold queries.

There are numerous avenues for future work. We
will study the uncertainty indexing problem for other
kinds of queries. The indexing of other types of un-
certain data, such as sets and fuzzy data, are also
worth investigating. We are also interested in the issue
of efficient indexing of uncertain intervals with time-
dependent bounds.
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