
Efficient Join Processing over Uncertain Data

Reynold Cheng
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Email: csckcheng@comp.polyu.edu.hk

Yuni Xia Sunil Prabhakar Rahul Shah Jeffrey Vitter
Department of Computer Science

Purdue University
West Lafayette, IN 47907-1398, USA

Email: {xia,sunil,rahul,jsv}@cs.purdue.edu

Submission no: 396

Abstract

In an uncertain database, each data item is modeled as
a range associated with a probability density function. Pre-
vious works for this kind of data have focussed on sim-
ple queries such as range and nearest-neighbor queries.
Queries that join multiple relations have not been ad-
dressed in earlier work despite the significance of joins in
databases. In this paper, we address probabilistic join over
uncertain data, essentially a query that augments the re-
sults with probability guarantees to indicate the likelihood
of each join tuple being part of the result. We extend the no-
tion of join operators, such as equality and inequality, for
uncertain data.

We also study the performance of probabilistic join. We
observe that a user may only need to know whether the
probability of the results exceeds a given threshold, instead
of the precise probability value. By incorporating this con-
straint, it is possible to achieve much better performance.
In particular, we develop three sets of optimization tech-
niques, namely item-level, page-level and index-level prun-
ing, for different join operators. These techniques facilitate
pruning with little space and time overhead, and are easily
adapted to most join algorithms. We verify the performance
of these techniques experimentally.

1 Introduction

There is ongoing research interest in systems that acquire
information from the external world. Sensornets, for exam-
ple, allow physical entities such as temperature, pressure
and voltage to be collected through large numbers of inex-
pensive sensors [6]. Locationing devices like cell phones
and GPS-equipped devices also allow phone users’ and ve-
hicle’s locations to be obtained easily. The massive amounts
of information collected about the physical world enable the
development of novel applications that base their decisions

on these physical data.
An important operation for these applications is join pro-

cessing between relations where join predicates are evalu-
ated on these measured attributes. An all-pairs join query is
a well-known example of such a join: Given a relation with
location information for moving objects, return all pairs of
points that are within some distance, ε of each other.

Joins are also important for sensor data. Consider an ap-
plication that stores the temperature and pressure recorded
by various sensors. A join query can be used to determine
pairs of sensors for which one sensor has a higher tem-
perature while the other has a higher pressure (this may
be anomalous behavior as pressure is expected to rise with
temperature). As another example, consider a query that
determines pressure and temperature values for points in a
region. Suppose two sets of sensors (e.g., sensor dusts) were
dispersed by aircraft into the region, where one set provides
location and temperature, and the other provides location
and pressure. An equality join over location attribute val-
ues produces temperature and pressure information for ev-
ery location. As another example, an equality (self-) join
query can be issued to evaluate the pairs of sensors that re-
port the same value (temperature, pressure, etc.) from a set
of sensors. The results of these join queries may be useful
for further scientific studies, physical data correlation [6],
weather forecasting, etc.

Unfortunately, joining “natural data” from the sensing
instruments is not straightforward, due to the uncertainty
inherent with the data obtained in the external dynamic en-
vironment. In particular, The entities like temperature and
location values are continuously evolving. Since the infor-
mation during the inter-arrival time of data samples is not
provided to the system, there is uncertainty between the
database value and the actual value. This problem can be
aggravated by network issues, where data packets can be
delayed or even lost, especially in a wireless network [1, 6].
As a result, the database values may have a large discrep-
ancy compared with the actual values.

A direct consequence of data uncertainty is that join

queries may produce incorrect results. To illustrate, con-
sider a scientific application where an equality join query is
issued over two sets of temperature values (obtained from
two sensor networks in separate geographical regions) to
discover the pairs of sensors that give the same tempera-
ture value. Figure 1(a) shows two tables, A and B, storing
two attributes (ID, T emp), which represents the tempera-
ture values Temp recorded by sensors with names given
by ID. Suppose we would like to perform an equality join
over the temperature attributes to find out which pairs of
entities in A and B match. The result is shown by the line
joining the two entities. This result is incorrect if we con-
sider the true values of the sensors given by Figure 1(b):
since the actual value for A1 is different from that of B1,
A1 should not be paired with B1. Instead, A1 matches B2,
where both temperature values equal to 11oF . Thus there
is a false positive in the true result – (A1, B1) is wrongly
returned to the user. Figure 1(b) also shows that A2 should
be matched with B3. Consequently, (A1, B2) and (A2, B3)
are not returned to the user, resulting in two false negatives.
As we can see, the join result returned by the database is
significantly different from the actual result. If this result
is further processed by the application, the error may prop-
agate in the analysis and wrong conclusions/decisions may
be made.

�����������	

������
���	�

���	��
���	�� ������	����

��������

��
	� �

��

��

�	

�

�

��
	� �

��

��

�	

��

����������

������
���	�

���������

������	��

��
	� �

��

��

�	

��

�

��
	� �

��

��

�	

��

�������	�����

������
���	�

����������

��������������

������������
�

������	�������

��	���	������

��
	� �

��

��

�	

�
��	�

���
�

�����

��
	� �

��

��

�	

�����
���

�������

���������
���

��

���

���

�������	�����

������
���	�

�������
�����

����� !�

���������

������	�

��
	� �

��

��

�	

�
��	�

���
�

�����

��
	� �

��

��

�	

�����
���

�������

���������
���

��

Figure 1. Illustrating join over uncertain data.

To avoid incorrectness in query answers, the idea of us-
ing an uncertainty model rather than a single numerical
value to describe an item is proposed in [1]: each item
is associated with a range of possible values and a proba-
bility density function (pdf) that describes the probability

distribution of the value within the range. To address the
above uncertainty problem, an uncertainty interval can be a
fixed bound d, which is a result of negotiation between the
database system and the sensor; if the system does not re-
ceive any update from the sensor, it can assume that the sen-
sor’s current value must be between [v−d, v+d], where v is
the value of the sensor last reported to the server [17]. The
pdf of the sensor value within the range may be obtained
through machine learning techniques [6]. By incorporating
the notion of uncertainty into data values, imprecise, rather
than exact, answers are generated. Each join-pair is asso-
ciated with a probability to indicate the likelihood that the
two tuples are matched. We use the term Probabilistic Join
Queries (PJQ) to describe these types of joins over uncer-
tain data.

Figure 1(c) illustrates the idea of PJQ. Each tempera-
ture attribute stores a range that encloses the data value, to-
gether with a pdf that describes the distribution (not shown
here). Each tuple-pair is associated with a probability value
that indicates the likelihood of the join. Notice that both
(A1, B2) and (A2, B3) are now included in the result. In
this example, therefore, the false negative problem vanishes.
Also, we have a 0.7 and 0.8 confidence for these pairs. On
the other hand, the false positive, (A1, B1), remains in the
result, and a new false positive, (A3, B3), is introduced.
However, both false positives are augmented with a rela-
tively low probability (0.1 and 0.2 respectively), suggesting
to the user that these two matches are less likely to occur.

How are these probability values computed? To answer
this, we must understand the semantics of join operators for
uncertainty. The notions of equality and inequality have to
be extended to support uncertain data. We will address the
new definitions of comparison operators for the uncertain
data model. Furthermore, we demonstrate how it is possi-
ble to relax the requirements for comparison operators, in
order to allow more flexibility in specifying accuracy re-
quirements of joins over uncertainty.

Another dimension of our study deals with the perfor-
mance issues of joins over uncertainty. We observe that
although the answers probabilities are useful, it is not al-
ways necessary to know their exact values. Often the user is
only concerned about whether the probability value exceeds
a given threshold. We term the variant of PJQ which only
returns tuple pairs when their probabilities exceed a certain
threshold as Probabilistic Threshold Join Queries (PTJQ).
An example of PTJQ is shown in Figure 1(d), where we as-
sume the user is only interested in tuple pairs whose proba-
bilities exceed threshold p = 0.7. As a result, the two pairs
with low probability values (0.1 and 0.2) are not included
in the answer. Compared with Figure 1(c), PTJQ returns
fewer false negatives.

More importantly, there are various techniques to en-
hance the I/O and CPU performance of PTJQ. In particular,

we develop three pruning techniques: (1) item-level prun-
ing, where two uncertain values are pruned without evaluat-
ing the probability; (2) page-level pruning, where two pages
are pruned without probing into the uncertain data stored in
each page; and (3) index-level pruning, where all the data
stored under a subtree are pruned. These techniques intro-
duce little space and time overhead, and can be augmented
to existing join algorithms easily.

As a summary of our contributions, we extend the se-
mantics of join operators over exact, single-valued data to
uncertain data. We present the concept of probabilistic join
queries (PJQ) and illustrate how they can be evaluated. We
illustrate how probabilistic threshold join queries (PTJQ),
a variant of PJQ that constrains on the answers based on
their probability values, can improve the join performance
significantly based on various pruning techniques. We also
perform evaluations to test our methods.

In Section 2, we define the uncertainty model of data
assumed in this paper, and various notions of join opera-
tors over uncertainty. Section 3 presents item-level prun-
ing techniques for each join operator. In Section 4, we
study how the performance of join can be further improved
through page-level and index-level pruning techniques. We
present our experimental results in Section 5. Related work
is discussed in Section 6, and Section 7 concludes the pa-
per.

2 Comparing Uncertain Values

In this section we describe the uncertainty model, and
definitions of comparison operators for uncertainty.

2.1 Probabilistic Uncertainty Model

To capture the uncertainty of dynamic entities such as
temperature, pressure and location values, a data scheme
known as probabilistic uncertainty model was proposed in
[1]. This model assumes that each data item can be repre-
sented by a range of possible values and their distributions.
Formally, assume each tuple of interest consists of a real-
valued attribute a where join operations will be performed.
Note that a is treated as a continuous random variable, and
it is assumed that each uncertain attribute value is mutually
independent. The probabilistic uncertainty of a consists of
three components [1]:

Definition 1 An uncertainty interval of a, denoted by
a.U , is an interval [a.l, a.r] where a.l, a.r ∈ <, a.r ≥ a.l
and a ∈ a.U .

Definition 2 An uncertainty pdf of a, denoted by a.f(x),
is a probability distribution function of a, such that
∫ a.r

a.l
a.f(x)dx = 1 and a.f(x)=0 if x /∈ a.U .

Definition 3 An uncertainty cdf of a, denoted by a.F (x),
is a cumulative distribution function (cdf) of a, where
a.F (x) =

∫ x

a.l
a.f(y)dy.

Notice that a.F (x) = 0 if x < a.l and a.F (x) = 1 if
x > a.r.

The exact realization of this model is application-
dependent. For example, in modeling sensor measurement
uncertainty, a.U is an error bound and f(x) is a Gaus-
sian distribution. In modeling moving objects, Wolfson et
al. [17] suggested a bounded uncertainty model where each
moving object only reports its location if its current location
deviates from its reported location by more than d, so that at
any point of time the uncertainty of the location value stored
in the system has uncertainty of not more than d.

The specification of uncertain pdf is also application-
specific. For convenience, one may assume that the uncer-
tainty pdf f(x) is a uniform distribution i.e., f(x) = 1

a.r−a.l

for a ∈ [a.l, a.r]; essentially, this implies a “worst-case”
scenario where we have no knowledge of which point in
the uncertainty interval possesses a higher probability. In
sensor networks, Deshpande et al. [6] assumed the read-
ing of each sensor node is a Gaussian distribution param-
eterized with a mean and variance value. They also sug-
gested that these Gaussian distributions can be constructed
through machine learning algorithms, such as [11]. Another
example pdf is a triangular distribution. Note that although
the uncertainty model described here is presented for one-
dimensional data, its concept can be extended to multiple
dimensions.

2.2 Uncertainty Comparison Operators

Consider the equality of two uncertain-values a and b.
Since a and b are not single values, traditional notions of
comparison operators (such as equality and inequality) can-
not be used. Due to the range of possible values for each
data item it is not immediately obvious whether the two are
equal in value or not. If there is no overlap in their range,
clearly they cannot be equal. However, if there is an over-
lap, there is the possibility that the two could be equal. We
are interested in finding the likelihood of this event. In this
section, we extend the definitions of common comparison
operators to support uncertain values. In particular, we ex-
press “imprecision” in these operators in terms of probabil-
ity values.

To understand “equality” for uncertain data, consider
Figure 2 where the overlap between a.U and b.U is
[a.l, b.r]. Apparently, the probability a equals to b is just
∫ b.r

a.l
a.f(x)b.f(x)dx (that is, a is considered to be equal

to b if they are within infinitesimal distance from one an-
other). By this definition, the probability of equality be-
tween two continuous random variables is always infinitesi-
mally small. Also, given that the exact values for these data

�

��� ���

�

������
�������

�������

�

�

Figure 2. Comparing uncertain values.

items are not known, the user is more likely to be interested
in them being very close in value rather than exactly equal.
Naturally, how close they are should be determined by the
user.

Based upon this observation, we define equality using a
a user prescribed parameter, called resolution (c), as: a is
equal to b if they are within c of each other i.e., b− c ≤ a ≤
b + c or a − c ≤ b ≤ a + c:

Definition 4 Equality (=c): Given a resolution c, a is
equal to b with probability

P (a =c b) =

∫

∞

−∞

a.f(x) · (b.F (x + c) − b.F (x − c))dx

Essentially, a is equal to b when a = x0 if b is in the
range [x0 − c, x0 + c], with a probability of b.F (x0 + c) −

b.F (x0 − c), or
∫ x0+c

x0−c
b.f(x)dx. It can be seen that if c is

zero, P (a =c b) becomes zero, which is consistent with our
previous discussions that a and b have a zero probability of
being exactly equal. This definition is thus more reasonable
than the definition

∫ b.r

a.l
a.f(x)b.f(x)dx. Figure 2 illustrates

this definition of equality, where we can see a and b only
join in [a.l − c, b.r + c].

Let la,b,c be max(a.l−c, b.l−c) and ua,b,c be min(a.u+
c, b.u + c). For the case that the two intervals are within
distance c of each other, Definition 4 can be rewritten as:

P (a =c b) =

∫ ua,b,c

la,b,c

a.f(x)(b.F (x + c)− b.F (x− c))dx (1)

where the overlap of a.U and b.U is given by [la,b,c, ua,b,c].
We assert without proof that our definition of equality is
symmetric i.e., P (a =c b) yields the same value as P (b =c

a).
Notice that P (a =c b) is zero when b.r + c < a.l or

a.r + c < b.l. This indicates that a and b have no chance of
being equal. Based upon the definition of equality, we can
define Inequality as follows:

Definition 5 Inequality (6=c): Given a resolution c, a
is not equal to b with probability P (a 6=c b) = 1 −
∫

∞

−∞
a.f(x) · (b.F (x + c) − b.F (x − c))dx.

To address the question “Is a greater than’ b?”, let us
look at Figure 2. In [b.r, a.r], b cannot be larger than
a, since b.f(x) is 0 when b > b.r. Thus if a is within
[b.r, a.r], it is larger than b with probability

∫ a.r

b.r
a.f(x)dx,

or 1− a.F (b.r). At any point x0 inside [a.l, b.r], a is larger
than b with a probability a.f(x0)b.F (x0), where b.F (x0)
is the probability that b is less than x0. Therefore, in
[a.l, b.r], the probability that a is larger than b is given by
∫ b.r

a.l
a.f(x)b.F (x)dx. There is no need to consider [b.l, a.l],

because b is always less than a when b is in this region. To
sum up, the probability that a is larger than b in Figure 2 is:

∫ b.r

a.l

a.f(x)b.F (x)dx + 1 − a.F (b.r)

Upon considering all possible scenarios of overlap between
a.U and b.U , we obtain the definition of “>”:

Definition 6 Greater than (>): a > b with probability
P (a > b)

=

{

∫ b.r

max(a.l,b.l)
a.f(x)b.F (x)dx + 1 − a.F (b.r) a.l≤ b.r<a.r

∫ a.r

max(a.l,b.l)
a.f(x)b.F (x)dx b.l≤a.r≤b.r

For the case that a lies entirely to the left of b, i.e. a.r<
b.l, P (a > b) = 0. Also, for the case that a lies entirely to
the right of b, i.e. a.l≥b.r, P (a > b) = 1.

Note that in a continuous-valued domain, P (a > b) is
the same as P (a ≥ b) because a can never be exactly equal
to b. In the sequel we will not discuss a ≥ b. In a similar
manner as <, we can also define Less than (<).

We can see from that comparison over uncertainty is im-
precise. The degree of imprecision, represented by prob-
ability values, indicates the confidence of the comparison
result. For example, if P (a > b) = 0.01, then a is un-
likely to be greater than b. It is worth mentioning that the
definitions of comparisons for uncertainty with continuous
uncertainty pdfs can be extended to support discrete pdfs,
as discussed in our technical report [4].

2.3 Comparing Uncertainty with Certainty

Some situations may require the join of uncertain values
with “certain” values. For example, a user can join the cur-
rent locations of people with locations of buildings (where
the locations are fixed), in order to find out which persons
are in which buildings. In general, operators between an
uncertain value a and a certain value v ∈ < can be defined
as:

P (a =c v) =

∫ v+c

v−c

a.f(x)dx = a.F (v + c) − a.F (v − c)

P (a 6=c v) = 1 − P (a =c v) = 1 − a.F (v + c) + a.F (v − c)

P (a > v) = 1 − a.F (v)

P (a < v) = a.F (v)

which can be treated as special cases for the definitions of
uncertainty operators.

2.4 Probabilistic Join Queries

We can now formulate the join problem. Suppose we
have two tables R and S containing m and n tuples respec-
tively. Both tables contain an uncertain attribute upon which
the join will be performed. We name the uncertain attribute
of the ith row as Ri for table R, and as Si for table S. Then
the Probabilistic Join Query (PJQ) is defined as follows.

Definition 7 Given an uncertainty comparator θu (where
θu is any one of =c, 6=c, >,<), a Probabilistic Join Query
(PJQ) returns all tuples (Ri, Sj , P (RiθuSj)) where i =
1, . . . ,m, j = 1, . . . , n and P (RiθuSj) > 0.

Essentially, a PJQ returns join pairs with a non-zero
probability of meeting the join condition. In this paper, we
study a variant of PJQ called Probabilistic Threshold Join
Query (PTJQ). It has an additional constraint that only join
pairs whose probabilities exceed a user-defined threshold is
returned – which makes sense when a user is only interested
in results that meets his confidence requirement.

Definition 8 Given an uncertainty comparator θu (where
θu is any one of =c, 6=c, >,<), a Probabilistic Threshold
Join Query (PTJQ) returns all tuples (Ri, Sj) such that
i = 1, . . . ,m, j = 1, . . . , n, and P (RiθuSj) > p, where
p ∈ [0, 1] is called the probability threshold.

A PTJQ only returns join pairs that have probabilities
higher than p. Another difference from PJQ is that PTJQ
only returns the pairs, (Ri, Sj), but not the actual proba-
bility values. In the sequel, we will explain how these two
differences are exploited for performance improvement.

2.5 Processing Joined Tuples

So far we have defined the semantics of join over uncer-
tain attributes for two tables. In the rest of the paper, we will
investigate efficient evaluation techniques for PTJQs. Now,
what if the joined result is further joined with another table?
Here we discuss how our model can be extended to address
this problem. In particular, we explain how to use PJQ an-
swers, as well as the evaluation and performance issues of
PTJQ result processing.

Suppose table R has an uncertain attribute a, which is
to be joined with attribute b of S. Suppose the attribute
S.b of the joined tuple (i.e.,RiθuSj) is further joined with
attribute c of another table T . Recall from the definition of
PJQ that the probability R joins S is also augmented to the
result. We must take this probability into account in order
to further process this joined relation.

Now consider a relation X created by joining R and S.
Every tuple in X has an extra attribute called exist-prob

which represents the probability that such a tuple exists in
X .

For any tuple Xk (i.e., kth tuple of X) created by
RiθuSj , Xk.exist-prob = P (RiθuSj). The probability that
Xk joins tuple Tm (i.e., the mth tuple of T) is then

Xk.exist-prob × Tm.exist-prob × P (Xk.bθuTm.c) (2)

Thus, by augmenting the column exist-prob to every table
created, the join result can be further passed to another
join operator in a query plan. By default, in “certain” re-
lations, exist-prob is equal to 1 for every row. Note that this
definition of tuple uncertainty is widely used in uncertain
databases [5, 12].

For PTJQ, we may not get the exact probability val-
ues. All we know about the returned tuple Xk is that
p ≤ P (RiθuSj) ≤ 1. If some tuple was eliminated by
PTJQ, then we are sure that the probability that this tuple
will produce further result is certainly less than p. For the
tuples which are outputted by PTJQ, we need to compute
the corresponding probability values. We will see in further
sections that this still gives us the advantage of pruning.

3 Evaluating PTJQ with Interval Join

To evaluate a PTJQ, common methods like block-nested-
loop join and indexed-loop can be used. The advantage of
these algorithms is that they have been implemented in typ-
ical database systems, and so the system requires little mod-
ification to support joins over uncertain data. However, we
will demonstrate that these join techniques can in fact be
improved by a number of novel techniques.

Figure 3 illustrates a possible approach of using tradi-
tional join algorithms for processing uncertainty. As shown
in Step 2, the main idea is to join the uncertainty intervals
with an interval-join algorithm, and store the possible can-
didates are stored in a set, C. Subsequently, the pdf/cdf
information is used to calculate the probability of each can-
didate pair, and those that have probability greater than p
are retained in the result (Step 3). In the rest of this section,
we examine these two steps in more details.

The exact method used in Step 2 depends on the type of
the comparison operator. For equality over two uncertain
intervals Ri.U and Sj .U , we can eliminate intervals that do
not overlap after considering the resolution c (i.e., pairs that
satisfy Ri.r + c < Sj .l or Sj .r + c < Ri.l). According to
Definition 4, these tuples have zero chance of being paired
up. Thus, any I/O-efficient overlap join algorithms over in-
tervals (e.g., [8]) can be used. For the case of >, we can
immediately eliminate (Ri, Sj) if Ri.r < Sj .l. In general,
based on the uncertainty operator and uncertainty intervals,
we may derive pruning conditions and choose an efficient
I/O join algorithm to facilitate pruning.

Input
R, S /* tables containing common uncertainty attributes */
θu /* uncertainty join operator */
p /* probability threshold of PTJQ */

Output
(Ri, Sj) that satisfies P (RiθuSj) > p

Begin
1. Let A← φ /* A is the answer of PTJQ */
2. Let C ← {(Ri, Sj)| where (Ri, Sj) are results returned

by an interval join algorithm over Ri.U and Sj .U }
(For =c and 6=c, join over [Ri.l−c, Ri.r+c], [Sj .l−c, Sj .r+c])

3. ∀(Ri, Sj) in C

i. if P (RiθuSj) > p then A← A
⋃

(Ri, Sj)
End

Figure 3. Evaluating a PTJQ with an interval join.

3.1 Item-Level Pruning

The set C of candidate pairs (Ri, Sj), produced in Step
2, is further refined in Step 3. The refinement process can be
done by directly computing the join probability, P (RiθuSj)
for every pair of (Ri, Sj); only those larger than p are re-
tained. The exact way of computing the this probability
depends on the type of uncertainty pdf. For uniform pdf,
a closed-form formula can be derived. For Gaussian dis-
tribution, the join probability may be implemented by a ta-
ble lookup. For an arbitrary pdf, P (RiθuSj) may not be
in closed-form; the join probability can be computed with
(relatively expensive) numerical integration methods.

We develop a set of techniques to facilitate the evaluation
of Step 3. These methods do not compute P (RiθuSj) di-
rectly. Instead, they establish pruning conditions that can
be checked easily to decide whether (Ri, Sj) satisfy the
query. They are applicable to any kind of uncertainty pdf,
and do not require the knowledge of the specific form of
P (RiθuSj). They are thus convenient for developing an
uncertain database system that supports a wide range of un-
certainty pdfs. Moreover, they form the basis of discus-
sions of other pruning techniques in later sections. We term
these techniques “item-level-pruning”, since pruning is per-
formed based on testing a pair of data items. Let us now
discuss the pruning criteria for each operator.

For Equality and Inequality, we establish the following
lemma:

Lemma 1 Suppose a and b are uncertain-valued variables
and a.U ∩ b.U 6= φ. Let la,b,c be max(a.l − c, b.l − c) and
ua,b,c be min(a.r + c, b.r + c). Then,

• P (a =c b) is at most

min(a.F (ua,b,c)−a.F (la,b,c), b.F (ua,b,c)− b.F (la,b,c)) (3)

• P (a 6=c b) is at least

1−min(a.F (ua,b,c)− a.F (la,b,c), b.F (ua,b,c)− b.F (la,b,c))
(4)

Lemma 1 enables us to quickly decide whether a can-
didate pair (Ri, Sj) ∈ C should be included into or ex-
cluded from the answer, since uncertainty cdfs are known
and Equations 3 and 4 can be computed easily. For equality,
the lemma allows us to prune away (Ri, Sj) when Equa-
tion 3 is less than p; for inequality, we can immediately
claim that (Ri, Sj) is the answer when Equation 4 is larger
than p. The proof of Lemma 1 is detailed in [4].

For Greater than and Less than, we have the following
Lemma 2.

Lemma 2 Suppose a and b are uncertain-valued variables.
Then, for a > b,

1. If a.l ≤ b.r < a.r, P (a > b) ≥ 1 − a.F (b.r).

2. If a.l ≤ b.l ≤ a.r, P (a > b) ≤ 1 − a.F (b.l).

Again, the proof of Lemma 2 is described in [4]. To
understand how this lemma facilitates pruning for >, notice
that we can immediately include (Ri, Sj) in the answer if
Ri.l ≤ Sj .r < Ri.r and 1 − Ri.F (Sj .r) ≥ p, since by the
first rule of the lemma P (Ri > Sj) has to be larger than
p. Observe that (Ri, Sj) can also be included in the answer
if Ri.l > Sj .r. On the other hand, the second rule of the
lemma allows (Ri, Sj) to be excluded from the answer, if
the right side expression of P (a > b) has probability value
less than p. Notice that (Ri, Sj) can also be excluded from
the answer if Ri.r < Sj .l. The rules for < in Lemma 2 can
be used for pruning in a similar manner.

Given that the pdfs of the uncertain values are known, the
above lemmata allow us to perform a constant-time check to
decide whether P (RiθuSj) has to be evaluated. Thus, for a
small overhead, we may be able to avoid the evaluation of
actual probabilities in Step 3, which can be expensive. From
now on, we assume that checks based on the above lem-
mata are performed to process the predicate P (RiθuSj) in
Step 3. In Section 5, we experimentally examine the effec-
tiveness of the framework presented in Figure 3, where we
study two common interval join algorithms: block nested
loop join (BNLJ) and indexed nested loop join (INLJ).

Notice that the interval-join operation, performed in Step
2, can generate a lot of candidate pairs that are actually not
part of the answer (i.e., their probabilities are less than p)
The key problem with Step 2 is that it uses uncertainty in-
tervals as the only pruning criterion. In the next section, we
examine algorithms that use both uncertainty intervals and
uncertainty pdfs for pruning, so that a smaller candidate set
is produced. In some of these methods, the I/O performance
is improved too.

4 Uncertainty-based Joins

Interval joins may not be the best solution because they
do not utilize uncertainty pdfs. We now present join algo-
rithms that are tailored for uncertainty. We discuss how to
prune at the page level for different uncertainty operators,
and how this page-level pruning can be realized in join al-
gorithms.

The discussion focuses on the equality (=c) and greater
than (>) operators. The other operators are similar to these
and are thus not discussed in detail.

4.1 The Uncertainty Bounds

For database joins like the block-nested-loop join and the
indexed-loop-join, the unit of retrieval is a page. Suppose
we are given two pages, one from R and the other from S.
To perform a join between the uncertain values contained in
these two pages, a simple approach is to consider all pairs
of values in the two pages. This can be time-consuming,
because a page of a modest size can contain many uncertain
values1. Our goal is “page-level” pruning: with an addi-
tional small storage overhead, it can avoid examining the
page contents.

The idea of using a small overhead to facilitate the prun-
ing of uncertain values was first proposed in [3] to answer
probabilistic threshold range queries – essentially a range
query where only uncertain data items that satisfy it with
a probability higher than a user-defined threshold are re-
ported. The main idea is to augment some tighter bounds
(x-bound) in each node in an interval R-tree. Each x-bound
is a pair of bounds that are calculated based on the proper-
ties of the uncertainty pdfs associated with the entries stored
in that node. Since an x-bound is potentially tighter than the
Minimum Bounding Rectangle (MBR), the pruning power
can be increased. In this paper, we borrow the idea of x-
bound to facilitate page-level joins. Based on the definition
of x-bounds for a tree node in [3], we generalize the defini-
tion of x-bound for a page:

Definition 9 Given 0 ≤ x < 1, an x-bound of a page B
consists of two values, called left-x-bound (B.l(x)), and
right-x-bound (B.r(x)). For every uncertain value a stored
in B, two conditions must hold:

• If a.l < B.l(x), then a.F (B.l(x)) ≤ x.

• If a.r > B.r(x), then 1 − a.F (B.r(x)) ≤ x.

Essentially, we require that every uncertain attribute
stored in a page must have no more than a probability of

1For example, if an uncertain attribute uses 8 bytes to store its uncer-
tainty interval, 8 bytes to specify the uniform uncertainty pdf and cdf, a
4K page can store 256 items. Joining values in two pages then requires
examining 2562 = 65536 pairs.

x of being outside either the left-x-bound or the right-x-
bound. We also assume that x-bounds are “tight”, i.e., the
left-x-bounds (right-x-bounds) are pushed to the right (left)
as much as possible. To illustrate, Figure 4 shows a page
storing two uncertain attributes, a and b. As we can see, a
has a probability less than 0.1 and 0.3 of lying to the left
of the left-0.1-bound and left-0.3-bound respectively, i.e.,
a.F (B.l(0.1)) ≤ 0.1 and a.F (B.l(0.3)) ≤ x. Similarly, a
cannot have a probability of over 0.3 of being outside the
right-0.3-bound. Finally, all the uncertainty intervals must
be fully enclosed by the 0-bound, which is akin to the MBR
of an index node.

���������	
��
 ����������	
��

���������	
��
� ����������	
��

�

�

�������	
��
� ��������	
��
�

�����
�����

�����

�����

� �

�����

Figure 4. Pruning with x-bounds.

The major purpose of the x-bound is to facilitate pruning
for probabilistic threshold range queries. Suppose a range
query has a lower bound l, upper bound u and probability
threshold p. As shown in Figure 4, if p is larger than 0.4,
we are immediately guaranteed that none of the uncertain
attributes can satisfy the query: each attribute has a proba-
bility of less than 0.3 of being located inside [l, u]. We will
explain how x-bounds are used to prune in order to process
joins effectively.

The implementation of uncertain items and x-bounds in
a page is shown in Figure 5. For pdf and cdf, we store
the symbol of the type of the distribution, and the param-
eters relevant to that distribution. For example, if the pdf is
Gaussian, then the pdf can be a pair of values (mean, vari-
ance), and the cdf may be approximated by a histogram. To
implement the x-bounds, we store a table V on the same
page, where Vi is a tuple of the form (l, r) for storing the
left-Wi-bound and right-Wi-bound. The values of Wi’s
(i = 1, . . . , |Wi|) are stored in an external table W , sorted
in ascending order of Wi’s. Our join algorithms require 0-
bounds to be stored, with W1 equal to 0, and [V1.l, V1.r]
representing the position of the 0-bound. Figure 5 shows the
implementation of x-bounds for the example in Figure 4.
The total space cost of V and W is O(|W |), which is usu-
ally small since only a few x-bounds are stored.

To insert an item to the page, we first compute the x-

bound of the item. This is usually an inexpensive one-time
cost. If the uncertainty pdf is a standard distribution (e.g.,
uniform), the x-bounds are readily obtained. For an arbi-
trary pdf (e.g., represented by a histogram), its x-bounds
can be derived by scanning the histogram once. Then x-
bound of the page is then expanded to accommodate the
new item. Readers are referred to [3] for further mainte-
nance details.

�

���

���

�

�

�

���

��

��	

	

��������	

��
��

��
���

��������	

��
����

��
���

����

Figure 5. Implementing x-bounds in a page.

Input
[l, u] /* Lower and upper bound of range query Q */
p /* probability threshold of range query */
B /* Page with table B.V */
W /* Global table storing values of x for x-bounds */

Output
FALSE: All intervals in B are guaranteed to fail Q,
TRUE otherwise.

(a) CheckLeft(l, u, p, B, W) /* prune using left-x-bounds */
1. for i = 1, . . . , |W | do

(i) if u < B.Vi.l and Wi < p then
(a) return FALSE

2. return TRUE
(b) CheckRight(l, u, p, B, W) /* prune using right-x-bounds */

1. for i = 1, . . . , |W | do
(i) if l > B.Vi.r and Wi < p then

(a) return FALSE
2. return TRUE

Figure 6. CheckLeft and CheckRight

Given a page B with uncertainty tables, we now
present two algorithms (Figure 6) to decide if any un-
certain attributes have a probability higher than p of sat-
isfying a range query. Algorithm CheckLeft checks
the range query against left-x-bounds while Algorithm
CheckRight employs right-x-bounds for checking. They
use the idea illustrated in Figure 4 for pruning, and we state
without proof the following lemma.

Lemma 3 Given a range query Q with interval [l, u] and
probability threshold p, if CheckLeft or CheckRight
returns FALSE, no uncertain attribute in B can satisfy Q
with probability higher than p.

These two checking routines form the fundamental
building blocks for the page-level join operators. They are

Input
BR /* Page (with uncertainty bounds) from table R */
BS /* Page (with uncertainty bounds) from table S */
W /* Global table storing values of x for x-bounds */
c /* Resolution of equality */
p /* probability threshold of equality join */

Output
(i) PRUNE: ∀Ri ∈ BR, Sj ∈ BS ,it is certain that P (Ri =c Sj) < p,
(ii)CHECK otherwise.

EquiJoin(BR, BS , W, c, p)
1. if (NOT(CheckLeft(BR.V1.l − c, BR.V1.r + c, p, BS , W))) or

(NOT(CheckRight(BR.V1.l− c, BR.V1.r + c, p, BS , W)))
then return PRUNE

2. if (NOT(CheckLeft(BS .V1.l − c, BS .V1.r + c, p, BR, W))) or
NOT(CheckRight(BS .V1.l − c, BS .V1.r + c, p, BR, W)))

then return PRUNE
3. return CHECK

Figure 7. Page Level Join for Equality.

usually very efficient since only a few x-bounds need to be
stored and W is small.

4.2 Page-Level Equality Join

Using CheckLeft and CheckRight, a page-level
equality join can be constructed easily. Figure 7 illustrates
EquiJoin, which returns PRUNE to indicate that two given
pages from R and S do not contain any join pairs with prob-
ability over p of being equal, in which case the two pages
can be pruned without further investigation. EquiJoin re-
turns CHECK to indicate that there is a possibility that some
pairs satisfying the conditions exist which results in a pair-
wise evaluation of the values in the pages R and S.

EquiJoin applies two sets of criteria. The first test (Step
1) uses CheckLeft and CheckRight on page BS (of
table S), using the 0-bound of page BR (extended with res-
olution c) to form a range query. In other words, the range
query with the interval [BR.V1.l−c,BR.V1.r+c] is checked
against BS using left- and right-x-bounds. If CheckLeft
or CheckRight returns FALSE, by Lemma 3 no uncer-
tain attribute in BS is in [BR.V1.l − c,BR.V1.r + c] with a
probability higher than p. EquiJoin then returns PRUNE to
indicate that these pages cannot be joined. If Step 1 does not
return PRUNE, EquiJoin uses another set of tests in Step 2,
which exchanges the role of BR and BS .

The correctness of EquiJoin hinges on the four test con-
ditions. Following lemma establishes the correctness of
CheckLeft in step 1. The other three conditions use the
same principles and their proofs are skipped.

Lemma 4 If CheckLeft of Step 1 in EquiJoin returns
FALSE, then for every uncertain values Ri, Sj in BR, BS ,
P (Sj =c Ri) < p.

Proof : We give a brief proof here, the detailed proof can
be found in [4]. Consider any two uncertain values Ri, Sj

from BR, BS respectively. From Lemma 1, we know that
P (Sj =c Ri) ≤ Sj .F (uRi,Sj ,c) − Sj .F (lRi,Sj ,c) which
we shall show to be less than p. From Lemma 3, we know
that no attribute in BS satisfies the range query formed by
[BR.V1.l − c,BR.V1.r + c] with probability greater than
p. Further, any uncertainty interval Ri.U in BR must be
enclosed by [BR.V1.l, BR.V1.r], and therefore Ri.r + c ≤
BR.V1.r + c. According to Step 1(i) of CheckLeft there
must be some q such that BR.V1.r+c < BS .Vq.l and Wq <
p. Therefore,

Ri.r + c < BS .Vq.l (5)

As shown in Figure 8, none of the uncertainty intervals
in BS crosses the line BS .Vq.l with a fraction of more
than Wq . Since Sj lies in BS , this implies Sj satis-
fies range query [Ri.l − c,Ri.r + c] with probability <
p. The overlap of Sj with this range query is given
by interval [lRi,Sj ,c, uRi,Sj ,c]. Thus, Sj .F (uRi,Sj ,c) −
Sj .F (lRi,Sj ,c) < p.

������

���	
��

���� ���� ����������
�

���� ��������
�

���	��� ���	���

��

Figure 8. Illustrating the correctness of EquiJoin.

Thus Step 1’s CheckLeft prunes pages correctly. For
the remaining criteria, the proofs are skipped due to lack
of space. By calling four small testing routines, EquiJoin
can identify pruning opportunities by using x-bounds of the
pages quickly.

4.3 Page-Level Join for “Greater than”

We have developed a page-level pruning algorithm for
“>” called GTJoin. As illustrated in Figure 9, GTJoin
returns three possible answers. The first type of answer,
called PRUNE, signals to the caller of GTJoin that no in-
terval pairs in the pages concerned have a probability of p
or more of being joined (Step 1). The second type of an-
swer, called INCLUDE, does the opposite: it informs the
user that every pair of intervals from BR and BS join with
probability higher than p, and these pairs can be inserted to
the answer without hesitation (Step 2). The final kind of
answer, CHECK, is returned when neither the conditions in

Input
BR /* Page (with uncertainty bounds) from table R */
BS /* Page (with uncertainty bounds) from table S */
W /* Global table storing values of x for x-bounds */
p /* probability threshold of > join */

Output
(i)PRUNE:∀Ri ∈ BR, Sj ∈ BS ,it is certain that P (Ri > Sj) < p;
(ii)INCLUDE:∀Ri ∈ BR, Sj ∈ BS ,it is certain that P (Ri > Sj) ≥ p;
(iii) CHECK otherwise.

GTJoin(BR, BS , W, p)
1. if (NOT(CheckRight(BS .V1.l, BS .V1.r, p, BR, W))) or

(NOT(CheckLeft(BR.V1.l, BR.V1.r, p, BS , W)))
then return PRUNE

2. if (NOT(CheckRight(BR.V1.l, BR.V1.r, 1− p, BS , W))) or
(NOT(CheckLeft(BS .V1.l, BS .V1.r, 1− p, BR, W)))

then return INCLUDE
3. return CHECK

Figure 9. Page Level Join for Ri > Sj .

�������������� �������

���

	
�� 	
��

���� ����

���

���

�	��
��

	
�� 	
��

���� ����

�	����� �	�����

��

Figure 10. Pruning pages (for >).

Step 1 nor those in Step 2 is satisfied. This implies that all
pairs must be checked for possible inclusion in the result.

Intuitively, Step 1 first forms a range query by using the
0-bounds of BS and query it against the right x-bounds of
page BR, by using CheckRight. Figure 10(a) illustrates
this. If there exists some q such that BS .V1.l ≥ BR.Vq.r
and Wq < p, the page pairs can be pruned (the proof in [4]).
If this test fails to prune, another test based on CheckLeft
is performed, where the range query is formed by the 0-
bounds of BR, querying against the left x-bounds of BS .
The scenario is shown in Figure 10(b).

We can summarize that the function of CheckRight
and CheckLeft of Step 1 is to test whether P (Ri >
Sj) < p, and if so, “throw away” BR and BS . Step
2 performs the opposite: it establishes the conditions in
which every pair of items in BR and BS can be placed
in the answer. Specifically Step 2 verifies the condition
P (Sj > Ri) < 1 − p, which can be easily achieved by
modifying the parameters in Step 1. Since P (Ri > Sj) =
1 − P (Sj > Ri), if any of the two conditions in Step 2 are
satisfied, we can conclude that P (Ri > Sj) ≥ p. GTJoin

then returns INCLUDE to indicate that all combinations of
(Ri, Sj) can be inserted to the answer without probing.

Similar to EquiJoin, GTJoin requires little time as it
only calls four small checking subroutines. With this little
overhead, the savings can be significant as illustrated in our
experiments.

4.4 Uncertainty-enhanced Joins

The page-level pruning techniques can be used to im-
prove the performance of interval or spatial join algorithms
that retrieve data in units of pages. Whenever two data
pages are compared in the join algorithms, uncertainty ta-
bles can be read first, and with our pruning techniques,
probing into actual values in the pages can be avoided. Of
course, GTJoin may not prevent the retrieval of intervals
when INCLUDE is returned – however, it still improves per-
formance because we can simply add the Cartesian product
of the intervals from the two pages to the answer without
computing the actual probabilities.

We further illustrate our techniques by studying the ex-
ample of the Block-Nested-Loop Join (BNLJ). In this algo-
rithm, the two relations to be joined are organized as lists of
unordered pages. Each page read from the outer relation is
matched with each page from the inner relation iteratively,
which can be slow because we have to check each pair of
intervals from both relations. However, by augmenting each
page with an uncertainty table, we can speed up this match-
ing process by using EquiJoin or GTJoin. We denote the
version of BNLJ where uncertainty tables are augmented
as Uncertainty-based Block-Nested-Loop Join (U-BNLJ
for short). We will compare the performance differences
experimentally between these two join algorithms in Sec-
tion 5. Other page-based join algorithms, such as interval
hash join and sort-merge-join, can be enhanced in a similar
manner and the details are skipped here.

4.5 Index-level Join

Although uncertainty tables can be used to improve the
performance of page-based joins, they do not improve I/O
performance, simply because the pages still have to be
loaded in order to read the uncertainty tables. However, we
can extend the idea of page-level pruning to improve I/O
performance, by organizing the pages in a tree structure.
Conceptually, each tree node still has an uncertainty table,
but now each uncertainty interval in a tree node becomes a
Minimum Bounding Rectangle (MBR) that encloses all the
uncertainty intervals stored in that MBR. Page-level prun-
ing now operates on MBRs instead of uncertainty intervals.
The correctness of these algorithms can be shown easily, by
using the fact that each MBR tightly encloses the intervals
within the subtree, and arguments similar to Lemma 4.

An implementation of uncertainty tables in the index
level is the the Probability Threshold Index (PTI) [3],
originally designed to answer probability threshold range
queries. It is essentially an interval R-Tree, where each
intermediate node is augmented with uncertainty tables.
Specifically, for each child branch in a node, PTI stores both
the MBR and the uncertainty table V of each child. We
can use PTI to improve join performance in the framework
of the Indexed-Nested-Loop-Join (INLJ), by constructing a
PTI for the inner relation. The 0-bound of each page from
the outer relation is then treated as a range query and tested
against the PTI in the inner relation. All pages that are re-
trieved from the PTI are then individually compared with
the page from where the range query is constructed, and
our page-level pruning techniques can then be used again to
reduce computation efforts.

We denote the version of INLJ where PTI is used in
place of an interval index as Uncertainty-based Indexed-
Loop Join, or U-INLJ for short. We present the perfor-
mance results of INLJ and U-INLJ in the next section.

5 Experiment results

We have evaluated the performance of our pruning meth-
ods for the equality operator. We will present the simulation
model followed by the results.

5.1 Simulation Model

We simulate the scenario where two sets of sensors were
scattered in a region, with one set provides location (one-
dimensional) and temperature, and the other provides loca-
tion and pressure. We consider an equality join query over
location attribute values, which produces temperature and
pressure information for every location.

Two tables of uncertain data are generated, where the un-
certainty pdf is uniform for both datasets. For the first table,
uncertainty intervals are uniformly distributed in [0, 10000].
The length of each interval is normally distributed with a
mean µ of 5 and deviation σ of 1. For the other table, in-
tervals are uniformly distributed in [5000, 15000], and the
length is normal with µ = 10 and σ = 2. Each disk page
stores up to 50 tuples. We study the performance of joins
over these two tables by evaluating the number of tuple-
pair candidates output from the join algorithms (Npair) for
item-level pruning, and the number of pairs where probabil-
ity evaluation has to be performed (Nprob).

5.2 Results

Page-Level Pruning Figure 11 shows that U-BNLJ
performs substantially better than BNLJ in Npair. This is
because U-BNLJ performs page-level pruning while BNLJ

 200000

 250000

 300000

 350000

 400000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 C

om
pa

ri
so

ns
(K

)

Probability Threshold

BNLJ
U-BNLJ

Figure 11. BNLJ and U-BNLJ

 800

 900

 1000

 1100

 1200

 1300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 C

om
pa

ri
so

ns
(K

)

Probability Threshold

INLJ
U-INLJ

Figure 12. INLJ and U-INLJ

 520

 540

 560

 580

 600

 620

 640

 660

 680

 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 C

om
pa

ri
so

ns
(K

)

Probability Threshold

BNLJ
U-BNLJ

INLJ
U-INLJ

Figure 13. Nprob vs p

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 C

om
pa

ri
so

ns
(K

)

Resolution

BNLJ
U-BNLJ

INLJ
U-INLJ

Figure 14. Nprob vs c

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 R

es
ul

ts
(K

)

Resolution

Number of Results

Figure 15. No. of results vs c

 5

 10

 15

 20

 25

 30

 35

 40

 45

 4000 6000 8000 10000 12000

N
um

be
r

of
 I

/O
s(

K
)

Selectivity

U-INLJ

Figure 16. Selectivity on U-INLJ

does not. However, U-BNLJ does not benefit much from
large values of p. Since intervals are stored randomly, inter-
vals in each disk page can be widely spread. Consequently
all the x-bounds are close to the 0-bound, and the page-level
join cannot exploit p effectively.

Index-Level Pruning The above problem can be alle-
viated by organizing intervals in a better way, for exam-
ple, with an index. Figure 12 shows that both INLJ and
U-INLJ address a much better performance in Npair than
BNLJ and U-BNLJ. Further, U-INLJ exploits p much bet-
ter than INLJ as uncertainty bounds are used effectively.

Item-Level Pruning Figure 13 shows the number of
pairs that we have to compute probability (Nprob) for the
four joins. We see that the four graphs almost coincide. This
means regardless of how many tuple-pairs are produced, the
final number of intervals that have to be evaluated is almost
the same. This implies our item-level pruning techniques
can eliminate a large portion of false positives regardless of
the join algorithm. The computational effort due to proba-
bility evaluation is reduced significantly.

The effect of Resolution for the equality operator is il-
lustrated in Figure 14. We observe that Nprob increases with
c. With a larger value of c, the uncertainty interval of each
tuple is expanded significantly and thus the chance for prun-
ing is reduced. However, the increase in c implies more
relaxation of “equality”, potentially returns more answers.
This is illustrated in Figure 15. Interestingly, the growth of
number of answers saturates as c > 3. This indicates that
c does not need to be large in order to obtain all possible
matches.

Selectivity We also test the effect of join selectivity on
U-INLJ. Figure 16 shows that U-INLJ benefits from high
selectivity. When a join is highly selective, U-INLJ re-
quires less traversal over the tree, and thus fewer pages need
to be retrieved.

Greater Than We present an interesting result for > in
Figure 17. We observe that U-INLJ does not have the same
behavior as in Figure 12. Here Npair does not show a sharp
drop as p increases. Recall that in the page-level join for
>, INCLUDE may be returned. When p is very low, there
is a high chance for objects to be directly included in the
answer. Hence Npair is low when p is low.

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
um

be
r

of
 C

om
pa

ri
so

ns
(K

)

Probability Threshold

INLJ
U-INLJ

Figure 17. INLJ and U-INLJ (for >)

6 Related Work

The model for managing uncertain data discussed in
this paper is based on [1]. Similar models are proposed

Level Savings Applicability Algorithms

Item Computation =c, 6=c, >, < BNLJ, INLJ
Page Computation =c, >, < U-BNLJ
Index I/O & computation =c, >, < U-INLJ

Table 1. Pruning Methods for Uncertainty
Joins.

in moving-object environments [17, 7] and in sensor net-
works [6]. Recently, the UDBMS [2] and the Trio Sys-
tem [16] has been proposed to handle such kind of uncer-
tainty. The discussions of uncertainty in other data types
can be found in [18]. Another representation of data uncer-
tainty is a “probabilistic database”, where each tuple is asso-
ciated with a probability value to indicate the confidence of
its presence [5]. Probabilistic databases have also been re-
cently extended to semi-structured data [12] and XML [10].

Probabilistic queries are classified as value-based (return
a single-value) and entity-based (return a set of objects) in
[1]. Probabilistic join queries belong to the entity-based
query class. Evaluation of probabilistic range queries is
discussed in [7, 17, 1, 5]. Nearest-neighbor queries are
discussed in [1]. In [1, 5],aggregate value-queries eval-
uation algorithms are presented. To our best knowledge,
probabilistic join queries have not been addressed before.
Also these works did not focus on the efficiency issues
of probabilistic queries. Although [3] did examine the is-
sues of query efficiency, their discussions are limited to
range queries for one-dimensional uncertain data. Re-
cently in [14] the indexing solution for probabilistic range
queries has been extended to support uncertain data in high-
dimensional space.

There is a rich vein of work on interval joins, which are
usually used to handle temporal and one-dimensional spa-
tial data. Different efficient algorithms have been proposed,
such as nested-loop join [9], partition-based join [13], and
index-based join [19]. Recently the idea of implementing
interval join on top of a relational database is proposed in
[8]. All these algorithms do not utilize probability distri-
butions within the bounds during the pruning process, and
thus potentially retrieve many false candidates. We demon-
strated how our ideas can be applied easily to enhance these
existing interval join techniques.

7 Conclusions

Uncertainty management is an emerging topic and has
attracted research interest in recent years. Indeed, as
pointed out in the Lowell Database meeting [15], DBMSs
should support imprecision that arises in data acquired by
scientific instruments. We identified an important issue

in managing data imprecision: the extension of compari-
son operators for uncertainty and the joining of uncertain-
valued attributes. We illustrate how pruning can be achieved
at different granularity: item level, page level, and index
level (see Table 1). With only a small overhead, these tech-
niques can improve join performance significantly. We in-
tend to extend this work to address join queries over multi-
dimensional uncertainty.

References

[1] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In Proc. SIGMOD,
2003.

[2] R. Cheng, S. Singh, and S. Prabhakar. UDBMS: A database
system for managing constantly-evolving data. In In Proc.
VLDB, 2005.

[3] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter. Ef-
ficient indexing methods for probabilistic threshold queries
over uncertain data. In Proc. VLDB, 2004.

[4] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Ef-
ficient join processing over uncertain data. Technical Report
CSD TR# 05-004, Dept. of CS, Purdue University, 2005.

[5] N. Dalvi and D. Suciu. Efficient query evaluation on proba-
bilistic databases. In Proc. VLDB, 2004.

[6] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks.
In Proc. VLDB, 2004.

[7] D.Pfoser and C. Jensen. Capturing the uncertainty of
moving-objects representations. In Proc. SSDBM, 1999.

[8] J. Enderle, M. Hampel, and T. Seidl. Joining interval data in
relational databases. In Proc. SIGMOD, 2004.

[9] H. Gunadhi and A. Segev. Query processing algorithms for
temporal intersection joins. In Proc. ICDE, 1991.

[10] E. Hung, L. Getoor, and V. S. Subrahmanian. PXML: A
probabilistic semistructured data model and algebra. In
ICDE, 2003.

[11] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[12] A. Nierman and H. V. Jagadish. ProTDB: Probabilistic Data

in XML. In VLDB, 2002.
[13] M. Soo, R. Snodgrass, and C. Jensen. Efficient evaluation of

the valid-time natural join. In Proc. ICDE, 1994.
[14] Y. Tao, R. Cheng, X. Xiao, W. Ngai, B. Kao, and S. Prab-

hakar. Indexing multi-dimensional uncertain data with arbi-
trary probability density. In In Proc. VLDB, 2005.

[15] The Lowell Database Research Self-Assessment Meeting.
Lowell massachusetts. May 2003.

[16] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In Proc. CIDR, 2005.

[17] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha. Up-
dating and querying databases that track mobile units. Dis-
tributed and Parallel Databases, 7(3), 1999.

[18] A. Yazici, A. Soysal, B. Buckles, and F. Petry. Uncertainty
in a nested relational database model. Elsevier Data and
Knowledge Engineering, 30, 1999.

[19] D. Zhang, V. Tsotras, and B. Seeger. Efficient temporal join
processing using indicies. In Proc. ICDE, 2002.

