
Fast Compression with a Static Model in High-Order Entropy

Luca Foschini∗ Roberto Grossi† Ankur Gupta‡ Jeffrey Scott Vitter§

Abstract

We report on a simple encoding format called wzip for decompressing block-sorting
transforms, such as the Burrows-Wheeler Transform (BWT). Our compressor uses the
simple notions of gamma encoding and RLE organized with a wavelet tree to achieve
a slightly better compression ration than bzip2 in less time. In fact, our compres-
sion/decompression time is dependent on Hh, the empirical hth order entropy. Another
key contribution of our compressor is its simplicity. Our compressor can also oper-
ate as a full-text index with a small amount of data, while still preserving backward
compatibility with just the compressor.

1 Introduction

Most text compression algorithms currently in use adapt their performance according to
the statistics of the file seen so far. These adaptive methods have many advantages, mainly
revolving around better compression ratios as the algorithm infers the statistical model
underlying the data. This process can be expensive computationally, and in truth, even a
deterrent to use, if the opportunity cost is high enough. On the other hand, purely static
compression models have suffered (up to this point) from the opposite problem—inadequate
compression with fixed encoding models for a large class of files. However, these static model
approaches perform extremely well with regard to compression/decompression time.

What we offer in this paper is a static model that compresses to within 5% of re-
sults achieved by adaptive methods, with extremely simple techniques, yet very fast encod-
ing/decoding. Two basic methods we use are those of RLE and gamma encoding, which we
detail below.

Run-length encoding (RLE) simply represents each subsequence of identical symbols (a
run) from an input sequence as the pair (l, s), where l is the number of times that symbol s
is repeated. For a binary string, there is no need to encode s, since its value will alternate
between 0 and 1. The length l is then encoded in some fashion. One such method is
the γ code, which represents the length ` in two parts: the first encodes blog `c in unary,

∗Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa (foschini@sssup.it). Support
was provided in part by Scuola Superiore Sant’Anna.

†Dipartimento di Informatica, Università di Pisa, via Filippo Buonarroti 2, 56127 Pisa
(grossi@di.unipi.it). Support was provided in part by the Italian MIUR project “ALINWEB: Algorith-
mics for Internet and the Web” and by the French EPST program “Algorithms for Modeling and Inference
Problems in Molecular Biology”.

‡Center for Geometric and Biological Computing, Department of Computer Science, Duke University,
Durham, NC 27708–0129 (agupta@cs.duke.edu). Support was provided in part by the ARO through MURI
grant DAAH04–96–1–0013.

§Department of Computer Sciences, Purdue University, West Lafayette, IN 47907–2067
(jsv@purdue.edu). Support was provided in part by the Army Research Office (ARO) through
grant DAAD19–01–1–0725 and by the National Science Foundation through research grant CCR–9877133.

1

 ipssm#pissii
0100010010011

 pss#pss
00001000

 imiii
001000

 psspss
0011011

p s

i m

p s

i m

 ipssm#pissii
1 1 3 1 2 1 2 2

 pss#pss
4 1 3

 imiii
2 1 3

 psspss
2 2 1 2

1 1 011 1 010 1 010 010 00100 1 011 010 1 011 010 010 1 010
1 1 3 1 2 1 2 2 4 1 3 2 1 3 2 2 1 2

Figure 1: Example for mississippi#, whose transform is ipssm#pissii.

followed by the value of ` − 2blog `c encoded in binary, for a total of 2blog `c bits. γ codes
are optimal for a statistical model in which the distribution is 1/x2.

2 The Wavelet Tree and the Static Model

2.1 The Wavelet Tree

Grossi, Gupta, and Vitter [3] introduce the wavelet tree for reducing the redundancy in-
herent in retaining separate dictionaries for each symbol appearing in the text. In order to
remove redundancy among dictionaries, each successive dictionary only encodes those posi-
tions not already accounted for previously. Encoding the dictionaries in this way achieves
the high-order entropy of the text, as per the discussion in Lemma 4.1 of [3]. Consider the
example wavelet tree in Figure 1, built on the text mississippi#.

We implicitly consider each left branch to be associated with a 0 and each right branch
to be associated with a 1. Each internal node u is a dictionary dict[u] with the elements
in its left subtree stored as 0, and the elements in its right subtree stored as 1. For
instance, consider the leftmost internal node, whose leaves are p and s. The dictionary
(leaving aside the leading 0) indicates that a single p appears in the BWT string, followed
by two s’s, and so on. The second tree indicates an RLE encoding of the dictionaries, and
the bottom bitvector indicates its actual storage on disk in heap layout with a γ encoding
of the runlengths previously described. The leading 0 in each node of the wavelet creates a
unique association between the sequence of RLE values and the bitvector.

It has been shown both theoretically [3] and practically [4] that the space occupancy
of the wavelet tree does not change regardless of the shape of the tree. As such, we opt
for a balanced tree whose nodes are stored according to the heap layout. Thus, the root
occupies position 1, and the node in position i has its parent in position bi/2c (if i > 1)
and its children (if any) in positions 2i and 2i + 1, respectively.

2.2 Empirical distribution of RLE values and γ codes

A natural question arises as to the choice of the simplistic γ encoding, since, theoretically
speaking, a number of other prefix codes (δ, ζ, and skewed Golomb, for instance) outperform

2

file γ δ γ+escape arithm. huffman a = 0.88 adaptive a

E.coli 2.1780 2.5238 2.4763 2.7797 1.9932 2.1017 2.0758
asyoulik.txt 2.6304 2.9104 2.9129 2.7324 2.5946 2.5875 2.5873

bible.txt 1.6109 1.7677 1.7839 1.8190 1.5963 1.5901 1.5903
cp.html 2.6949 2.9554 2.9310 2.7170 2.6487 2.6465 2.6543
fields.c 2.4387 2.6145 2.5894 2.4645 2.3228 2.4186 2.4186

kennedy.xls 1.4269 1.6051 1.4718 1.6834 1.3521 1.3998 1.3968
random.txt 6.7949 7.9430 7.7460 6.1273 6.0004 6.5210 6.4187

sum 2.9500 3.2324 3.1803 2.9184 2.8765 2.8792 2.8698
world192.txt 1.4699 1.5890 1.6095 1.5815 1.4555 1.4540 1.4550

xargs.1 3.3820 3.7303 3.6564 3.3763 3.3068 3.3404 3.3404

Table 1: Bits per symbol of several codes for RLE

Value Huffman γ code Value Huffman γ code Value Huffman γ code
1 0 1 6 10100 00110 11 1100010 0001011
2 111 010 7 110101 00111 12 1010101 0001100
3 100 011 8 110000 0001000 13 11011100 0001101
4 1011 00100 9 1101111 0001001 14 11011000 0001110
5 11001 00101 10 1101001 0001010 15 11000111 0001111

Table 2:

γ codes with respect to the space required per symbol. However, as is discovered in [4],
γ encoding seems extremely robust. Our recent experiments are summarized in Table 1,
where we report the bits per symbol (bps) achieved in our experiments. There is clear
empirical evidence that γ encoding is almost the best. In Section 2.3, we’ll formalize this
experimental finding more clearly by curve-fitting the distribution implied by γ onto the
distribution of the runlengths.

Improving upon γ to encode these RLE values requires a significant amount of work
with more complicated methods. For the purposes of illustration, consider the comparison
of γ encoding to that of an optimal Huffman encoding for bible.txt, given in Table 2.
Note that the γ code differs from Huffman by at most one bit. A similar skew appears in
almost every file, and as such, this means that the majority of RLE values are encoded into
codewords of roughly the same length by both Huffman and γ.

As a matter of fact, this news is both encouraging and discouraging—it seems that there
is no real hope to improve upon γ using prefix codes, since Huffman codes are optimal prefix
codes. Further improvement then, in some sense, necessitates more complicated techniques
(such as arithmetic coding) which have their own host of difficulties, most often a greatly
increased encoding/decoding time. We consider assigning a non-integral number of bits to
each RLE in Section 2.3.

2.3 Statistical evidence that the distribution of RLE values fits the static

model of γ codes

In this section, we motivate our choice of γ encoding more formally, with statistical evidence
suggesting that the underlying distribution of RLE values matches that which is optimally
encoded by γ encoding. For instance, consider the empirical cumulative distribution of the
RLE values for bible.txt show in Figure 2. Note that this distribution is fitted by the
function

cdf (x) = e
−a

x x ∈ N
+, (1)

3

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 RLE

cd
f(

R
LE

)

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 RLE

pd
f(

R
LE

)

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RLE

pd
f(

R
LE

)

Figure 2: The x-axis shows the distinct RLE values for bible.txt, in increasing order.
Left: The empirical cumulative distribution together with our fitting function cdf . Center:
The empirical probability density function together with our fitting function pdf . Right:
The empirical probability density function together with the fitting function 6

π2·x2 where
6
π2 = 1� ∞

i=1

1

i2

is the normalizing factor.

where parameter a ∈ R
+ is a constant depending on the data file (bible.txt in our case).

For the Canterbury Corpus, we observed that a ∈ [0.5 . . . 1.8] depending on the file (e.g.,
a = 0.9035 for bible.txt).

We can compute the derivative of cdf as if it were a continuous function and, after
renormalization, we obtain the corresponding probability density function:

pdf (x) =

(

ae
−a

x

x2

)

/

(

∞
∑

i=1

ae
−a

i

i2

)

i, x ∈ N
+, a ∈ R

+ (2)

where the term
∑∞

i=1
ae

−a

i

i2
is the normalization factor. As one can see from Figure 2,

the function (2) fits the empirical probability density of the RLE values computed for file
bible.txt well, suggesting that the approximation of the cdf to a continuous function leads
to a negligible error.1 As one can see, pdf (x) ∼ 1

x2 as x approaches infinity, i.e.,

lim
x→∞

e
−a

x = 1 ⇒ lim
x→∞

(

ae
−a

x

x2

)

/

(

∞
∑

i=1

ae
−a

i

i2

)

∝

1

x2

Since the γ code is optimal for distributions proportional to 1
x2 , we finally have some

reasonable motivation for the success of the γ code on an RLE stream of wavelet tree data.
However, these results only indicate the measure of success on prefix codes; encodings which
can assign fractional bits may yet yield significant improvement.

2.4 Arithmetic coding of RLE values

We performed various tests with Moffat’s implementation of arithmetic coding.2 The results
are not satisfying as compared to γ, as the range of RLE values to encode is unlimited and
this is not the best situation to work with an arithmetic encoder.

1We employed the matlab function called LSQCurvefit, which finds the best fitting in terms of the least
square error between the function and the raw data to be approximated.

2The code written in Java <http://mg4j.dsi.unimi.it> is inspired by the arithmetic coder by
J. Carpinelli, R. M. Neal, W. Salamonsen and L. Stuiver, which is in turn based on [2].

4

We then employed the statistical model of function cdf to tailor an arithmetic coder to
perform well on RLE values. Recall that both pdf and cdf depend on the knowledge of
the parameter a in formula (1), which in turn depends on the file being encoded. (We ran
experiments with a fixed a = 0.88, which also tends to yield good results on most files.) To
this end, we took a free and fast arithmetic-like coder called range coder [6], employed in
szip. We encode the RLE value r by assigning it an interval of length cdf (r+1)−cdf (r) =
pdf (r). (This appears to be faster than using the cumulative counts of the frequency of
values already scanned, analogously to the well-known arithmetic coders.) With this kind
of compressor we improve the compression rate from 1% to 5% with respect to γ encoding
(see Table 1).

We then transformed our arithmetic compressor so that the parameter a could be
changed adaptively during the execution, hoping for a better compression ratio. We needed
a cue to infer a from the values already read, and decided to use an MLE (maximum
likelihood estimation) algorithm (described below).

The main hurdle to simply using MLE is its assumption of independent trials. (In
our terminology, this would have to mean that each of the runlengths is independently
drawn from its pdf.) Though we could not find a satisfiable measure for this notion, we
did measure the autocovariance (normalized) of the RLE values. This method is widely
adopted in signal theory [1] as a good indicator on independence of a sequence of values,
though it does not necessarily imply independence. In our case, the correlation between
consecutive RLE values is very low for the files in Canterbury corpus, which again, though
it does not imply independence in the strict sense, is a strong indication of it.

With this observation in mind, we assume statistical independence of the RLE values
in order to define the likelihood function

lx(a, x1 . . . xk) =

k
∏

i=1

pdf (xi) =

(

k
∏

i=1

ae
−a

xi

x2
i

)(

∞
∑

i=1

ae
−a

i

i2

)−k

.

We want to find the value a where l(x) reaches its maximum. Equivalently, we can find
where the log of the function reaches its maximum (log-likelihood function):

Lx(a, x1 . . . xk) = log lx(a, x1 . . . xk) = −k log
(

∞
∑

i=1

e
−a

i

i2

)

− 2
∞
∑

i=1

log(xi) − a
∞
∑

i=1

1

xi

The function is differentiable and we can take the derivative of it with respect to a,
equating to zero. This yields

−
∂

∂a
log
(

∞
∑

i=1

e
−a

i

i2

)

=
1

k

k
∑

i=1

1

xi

= H(x)−1

where H(x) is the Harmonic mean of the sequence x. By denoting the left hand term by
f(a), we have that a = f−1(H(x)−1).

Unfortunately, f(·) is not an analytical function and it is very difficult to compute even

for a fixed a. For instance, for a = 0 we have f(a) = ζ(3)
ζ(2) = 0.7307629, where ζ(·) is the

Riemann Z function. We therefore apply numerical methods to approximate the function
for a ∈ [0.5 . . . 1.8] (which is the range of interest for us) with the second-degree polynomial:

a = 6.96 − 16.4912 · H(x)−1 + 10.6186 · H(x)−2 (3)

5

In our code, we update the value of a using the above formula, restarting from 0 to compute
the inverse of the Harmonic mean. Surprisingly, all this work leads to a small improvement
with respect to the non-adaptive version in which a = 0.88. Looking at Table 1, the
improvement is negligible, ranging from 1% to 2% in the best cases. The best case is the
file random.txt belonging to the Calgary corpus, for which the hypothesis of independence
of the RLE values holds with high probability by its very construction.

3 Wzip: A Simple Tool for Fast Compression and Decom-

pression

3.1 The wzip encoding format

The lesson learned in Section 2 suggests that the wavelet tree, coupled with RLE and
γ encoding, is a simple but effective mean for compressing the output of block-sorting
transforms. In this section, we propose our compression format, wzip. The header contains
three basic pieces of information: the text length n, the block size b, and the alphabet
size Σ. The body of the encoding is then dn/be blocks, each block encoding b contiguous
text symbols. The last block encodes (n mod b) symbols if n is not a multiple of b. With
reference to Figure 1, recall the nodes of the wavelet tree are stored in heap ordering. We
break this stream into blocks and encode it. The format for a given block is:

• A (possibly compressed) bitvector of |Σ| bits that stores the symbols actually occurring
in the block. Let α ≤ |Σ| be the number of symbols present. (For large Σ, we may
want to store such bitvector in the header, and then smaller bitvectors in the blocks
that refer only to the symbols stored in the bitvector in the header).

• Note that the wavelet tree has α implicit leaves and α− 1 internal nodes with dictio-
naries (see Figure 1). We store the dictionaries encoded with RLE+γ by taking them
in heap numbering and by concatenating their encoding. (We may want to byte-align
the encoding of each dictionary, but this is not necessary).

Note that we do not need to store the length of each encoding, as it is already implicitly
encoded as follows. When processing, the end of the encoding for the dictionary in the
root of the wavelet tree ends when the sum of the encoded RLEs equals n (or (n mod b)
for the last block if not length b). At this point, we also know the total number of 0s and
1s, plus the (dummy) leading 0. The former must be the sum of the RLE values in the
next dictionary (in the left child), and the latter the sum of the one after that (in the right
child). We can go on recursively this way, up to the implicit leaves, from which we can even
infer the frequency of the occurrences of each symbol in the block.

3.2 Compression with bwt2wzip

In this section we describe our compression method bwt2wzip, which takes as input the
Burrows-Wheeler transformation (hereafter bwt stream) of the file and compresses it effi-
ciently using our wavelet tree techniques. Our method introduces a novel method of creating
the wavelet tree, which relates the speed of compression to the compressibility of the input.
This behavior is a key observation, and introduces a new consideration into the notion of
compressibility—highly uniform data should be easier to handle, both in terms of space and
time.

6

If we were to build the wavelet tree naively from the bwt stream, we would run multiple
scans on bwt to set up the bitvector in each individual node, as shown in Figure 1. Then,
we would compress the resulting dictionaries with RLE+γ. A single-scan method is made
possible by placing one item at a time, in each of the internal nodes from its root-to-leaf
path via an upward walk. Since, for each node, process could take up to O(log |Σ|) time,
it requires O(n log |Σ|) in total. We describe a refinement of this construction method
requiring just O(n + min(n, nHh) × log |Σ|) time, which is also faster in practice, as the
entropy factor can significantly lower the time required.

Let c be the current symbol in bwt and let u be its corresponding leaf in the wavelet tree.
(Recall that the numbering of internal nodes follows the heap layout.) While traversing the
upward path in the wavelet tree to the root, we have to decide whether the run of bits in
the current node should be extended or switched (from 0 to 1 or vice versa). However, we
do not perform this task on an individual basis, but we exploit the runs of equal symbols c,
say rc in number, in the input to avoid multiple passes. We then extend the runs by rc units
at a time. Given any internal node in the tree, the set of values stored there are produced
in increasing order, without explicitly creating the corresponding bitvector.

To make things more concrete, we use the following auxiliary information to compress
the input string bwt. First notice that the leaves of the wavelet tree do not need to be
explicitly represented; given a symbol c ∈ Σ, it suffices to know its leaf number leaf[c]. We
also allocate enough space for the dictionaries dict[u] of the internal nodes u. We keep a
flag bit[u], which is 1 iff we are encoding a run of 1s.

Below, we describe the main loop of the compression. We do not specify the task of
encoding the RLE values with gamma codes as it is a standard computation performed on
the dictionaries dict[u] of the internal nodes u.

1 while (bwt != end) {

2 for (c = *bwt, r_c = 1; bwt != end && c == *(++bwt); r_c++) ;

3 u = leaf[c];

4 while (u > 1) {

5 if ((u & 0x1) != bit[u >>= 1]) {

6 bit[u] = 1 - bit[u]; *(++dict[u]) = 0; }

7 *(dict[u]) += r_c;

8 }

9 }

We scan the input symbol c from the current position in bwt to determine rc, the length
of the run of c (line 2). We determine the heap number of the (virtual) leaf u associated
with c (line 3) and start an upward traversal (lines 4–7). Here, we close the run in the
current node u and start a new run (with cumulative run length equal to zero), either when
we arrive from the left child of u and the current run in u is made up of 1s, or when we
arrive from the right child of u and the current run in u is made up of 0s. We express this
condition succinctly in line 5, where the flag bit indicates if the current run is of 1s or
not. We complement the value of that flag, and prepare for the next entry in the current
dictionary (line 6). We then extend the current run length by rc (line 7). We exit the loop
at the arrival in the root (when u = 1 in line 4).

The time required to perform these actions over the whole bwt input stream is O(n) to
scan the bwt stream, and O(nr × log |Σ|), since we will require nr traversals of O(log |Σ|)
length in the wavelet tree. It turns out that nr = O(min(n, nHh), which proves our bound.
Since nr ≤ n trivially, we focus on showing that nr = O(nHh), thus capturing precisely

7

the high-order entropy of the text. Note that nr is asymptotically upper bounded by the
number of runs in the dictionaries of the internal nodes in the wavelet tree. This is true,
since either the beginning or the end of a run in bwt must correspond to the beginning
or the end (or vice versa) of at least one distinct run in a dictionary (otherwise, we could
extend the run also in bwt, except possibly for the first or the last run in bwt). Now, the
number of runs in the dictionaries is upper bounded by the sum of the logarithm of their
runlengths, which is O(nHh) as shown in [4].

3.3 Decompression with wzip2bwt

Decompression is a fairly straightforward task, once the encoding has been done, though
some care must be taken when decomposing sets of runs. The decompression algorithm first
performs a downward traversal to identify the symbol c to decompress. Then it performs an
upward traversal, analogous to that in bwt2wzip, except that it decrements the RLE values
by rc, producing in output rc instances of c. However, the value of rc is not necessarily
the last RLE value examined along this path; rather it is the minimum among them. The
reason for this is due to the fact that the runs in the dictionaries in the internal nodes
(except for the root) may correspond to a union of runs that were disjoint in the input
string bwt. Fortunately, the minimum value among those in an upward traversal from a
leaf refers to an individual run in bwt, and it is the value rc.

In order to facilitate this process, we use the auxiliary information in bwt2wzip, with the
addition of symbol and alphabetsize. The latter denotes the actual number of symbols
in bwt, and they are numbered from 0 to alphabetsize - 1. To recover the original value,
we remap them using array symbol. We are now ready to comment on our main loop for
decoding. Again, we do not describe how to decode the RLE values with gamma code as it
is a standard task.

1 while(r_c = *(dict[u=1])) {

2 while ((u = (u << 1) | bit[u]) < alphabetsize)

3 if (*(dict[u]) < r_c) r_c = *(dict[u]);

4 c = u - alphabetsize;

5 while (u > 1)

6 if (!(*(dict[u >>= 1]) -= r_c)) {

7 bit[u] = 1 - bit[u]; ++dict[u]; }

8 for(c = symbol[c]; r_c--; *(bwt++) = c) ;

9 }

We start with the RLE value in the dictionary of the root (u = 1). When this value
is 0, we have completed the task of decoding all the symbols. We perform the downward
traversal (lines 2–3) guided by the current run of 1s or 0s, by looking at the flag bit[u] to
branch either to the left (bit[u] = 0) or to the right (bit[u] = 1) in the heap layout. We
also keep the minimum RLE value in rc, as previously mentioned. We then find the rank of
the symbol to be decoded. Lines 4 and 8 are the counterpart of line 2 in bwt2wzip, except
that we output symbol c after remapping it with symbol in the current position indicated
by bwt. The upward traversal is like that of lines 4–7 in bwt2wzip, except that we decrease
the RLE values in the dictionaries (lines 5–7).

The time required for decompression follows the same argument as that for compressing.

8

bwt2wzip wzip2bwt

filename ATH AXP PIII PIV XEO ATH AXP PIII PIV XEO

ap5.txt 4.811 2.822 2.244 4.878 5.250 6.736 4.200 3.438 6.232 6.500
bible.txt 4.093 2.688 2.162 3.473 4.370 5.302 3.656 2.910 4.746 5.037
world95.txt 3.077 2.375 1.946 2.705 3.800 3.744 3.167 2.698 3.750 4.450

calgary 4.465 3.481 2.566 4.162 5.565 6.256 5.148 3.939 5.643 6.826
cantrbry 4.419 3.091 2.324 3.255 5.625 5.839 4.318 3.522 4.614 6.625

Table 3:

3.4 Performance and experiments

In this section, we discuss our experimental setup and detail our results.
We used a number of platforms to test our algorithms: ATH = Athlon AMD 1Ghz

512Mb Linux, gcc version 3.3.2 (Debian); AXP = AMD Athlon XP 1.8Ghz 512Mb Linux,
gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5); PIII = Intel Pentium III 1Ghz 512Mb
Windows XP, gcc version 3.2 (mingw special 20020817-1); PIV = Pentium IV 2Ghz 1Gb
Windows XP, gcc version 3.2 (mingw special 20020817-1), XEO = Intel Xeon 2Ghz 2Gb
Linux, gcc version 3.3.1 20030626 (Debian prerelease).

We drew our data from the Canterbury and Calgary corpuses. The first three rows of
Table 3 are individual files from those corpora, and the last two rows are the concatenation
of all the files.

The performance is compared with that of simple routine that copies the input bwt into
another array. We normalize our routines with the simple copy operation. (We don’t use
scan, as the compiler often cheats and doesn’t actually generate code to scan if nothing
happens. In these cases, “scan” is extremely fast, and misleading with regard to our experi-
mental results.) bwt2wzip(compression) is just between 2 and 6 times slower than a simple
copy operation. wzip2bwt(decompression) is between 3 and 7 times slower than the same.
The difference in performance depends mainly on the architecture of the processor on the
platform, rather than the input file. (Consult Table 3 for corroboration of this fact, with
bold figures for the minimum and the maximum.) The computation of RLE takes roughly
30% of the total time in bwt2wzip and 40% in wzip2bwt.

With regard to fine tuning perfomance, in the code for bwt2wzip and wzip2bwt, each
time we access an entry pointed by dict[u], we may give rise to a cache miss. Also, we need
to pre-allocate more space than needed to accomodate all the dictionaries (whose final size
is known at the end of the compression, which is too late). We can alleviate this problem by
synchronizing the access to the decoded RLE values. Consider the first time that wzip2bwt
accesses each decoded RLE value. By running an example, the reader may be convinced
that we can provide the same access pattern during the execution of bwt2wzip. Indeed,
during the computation, wzip2bwt accesses the new RLE values in some nodes along a
path in the wavelet only during the upward traversal (line 7). Some care must be taken at
initialization to maintain this information.

Consequently, the RLE values are scrambled among the dictionaries and follow the
access pattern of wzip2bwt. We no longer keep a pointer in dict[u], instead, we temporary
store the current RLE value for u. As a result, except for dict[u], bit[u] and symbol,
the access to the other structures is sequential, which enables us to exploit the several
levels of cache. Moreover, we do not need to allocate temporary storage for keeping all the
RLE values that we will encode. We can produce each RLE value and encode it soon, on

9

the fly. A drawback of this approach is that we lose compatibility with the text indexing
functionalities mentioned in Section 1.

4 Conclusions

In this paper, we developed the simple notions of RLE and gamma encoding to achieve
competitive compression ratios and extremely fast time to compress/decompress. Our code
does not require any additional parameters beyond the text size, alphabet size, and block
size. Our method is tailored to work for large alphabets, e.g., Unicode, UTF/16. Our
method performs integer bit assignments, and does not resort to costly computation of
fractional bits, as does an arithmetic coding technique. A simply byte-wise copy is only
2–6 times faster than our compression, and only 3–7 times faster than our decompression.
As a matter of fact, our compression algorithm is so fast that the true bottleneck is the
encoding/decoding of γ!

Compared to gzip and bzip, our compression ratio is good. However, data in
http://www.maximumcompression.com shows that it does not achieve the best ratio on
the market. On the other hand, the code is open source and easy to implement as it uses
introductory material on standard compression techniques.

References

[1] http://ccrma-www.stanford.edu/ jos/mdft/Autocorrelation.html

[2] A. Moffat, R. M. Neal and I. H. Witten Arithmetic Coding Revisited, DCC95.

[3] R. Grossi, A. Gupta, J. S. Vitter. High-order entropy-compressed text indexes. SODA 2003.

[4] R. Grossi, A. Gupta, J. S. Vitter. When Indexing Equals Compression: Experiments with
Compressing Suffix Arrays and Applications SODA 2004.

[5] The Canterbury Corpus, http://corpus.canterbury.ac.nz.

[6] www.compressconsult.com/rangecoder/

10

