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Wavelet Trees have been introduced by Grossi et al. in SODA 2003 and have been rapidly

recognized as a very flexible tool for the design of compressed full-text indexes and data

compression algorithms. Although several papers have investigated the properties and

usefulness of this data structure in the full-text indexing scenario, its impact on data

compression has not been fully explored. In this paper we provide a throughout theoretical

analysis of awide class of compression algorithmsbasedonWavelet Trees. Also,wepropose

a novel framework, called Pruned Wavelet Trees, that aims for the best combination of

Wavelet Treesofproperly-designedshapesandcompressors eitherbinary (like, Run-Length

Encoders) or non-binary (like, Huffman and Arithmetic encoders).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Burrows–Wheeler Transform [5] (bwt for short) has changed theway inwhich fundamental tasks for string processing

and data retrieval, such as compression and indexing, are designed and engineered (see e.g. [9,18,19]). The transform reduces

the problemof high-order entropy compression to the apparently simpler task of designing and engineering good zero-order

(ormemoryless) compressors. This point has lead to theparadigmof compressionboostingpresented in [9]. However, despite

nearly 60 years of investigation in the design of good memoryless compressors, no general theory for the design of zero-

order compressors suited for the bwt is available, since it poses special challenges. Indeed, bwt is a string in which symbols

following the same context (substring) are grouped together, giving raise to clusters of nearly identical symbols. A good

zero-order compressormust both adapt fast to those rapidly changing contexts and compress efficiently the runs of identical

symbols. By now, it is understood that one needs a clever combination of classic zero-order compressors and Run-Length

Encoding techniques. However, such a design problem is mostly open. Recently, Grossi et al. [10,11,13] proposed an elegant

and effective solution to the posed design problem: the Wavelet Tree. It is a binary tree data structure that reduces the

compression of a string over a finite alphabet to the compression of a set of binary strings. The latter problem is then solved

via Run-Length Encoding or Gap Encoding techniques. (A formal definition is given in Section 4.1.)
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Wavelet Trees are remarkably natural since they use a well known decomposition of entropy in terms of binary entropy

and, in this respect, it is surprising that it took so long to define and put them to good use. The mentioned ground-breaking

work by Grossi et al. highlights the beauty and usefulness of this data structure mainly in the context of full-text indexing,

and investigates a few of its virtues both theoretically and experimentally in the data compression setting. In this paper

we make a step forward by providing throughout theoretical analysis of a wide class of compression algorithms based on

Wavelet Trees. A part of our theoretical results either strengthen the ones by Grossi et al. or fully support the experimental

evidence presented by those researchers and cleverly used in their engineering choices. The remaining part of our results

highlight new virtues of Wavelet Trees. More specifically, in this paper:

(A) We provide a theoretic analysis of the two most common techniques used to compress a binary string β, namely Run-

Length Encoding (Rle) and Gap Encoding (Ge), in terms of the zero-order entropy H0(β) of the string β (see Lemmas 3.3 and

3.4). These results are the key for our subsequent analysis, and are quite general that may turn to be useful in other settings.

(B)Weprovide a throughout analysis ofWavelet Trees as stand-alonegeneral-purpose compressor by considering two specific

cases inwhich either the binary strings associated to the tree nodes are compressed viaRle, and refer to it asRleWavelet Tree

(Theorem 4.2), or via Ge, and refer to it as Ge Wavelet Tree (Theorem 4.3). Our results generalize the ones given in [14,11] to

the case of a generic prefix-free encoding of the integers output by Rle or Ge, and hence provide compression bounds which

depend on the features of these prefix-free encoders and on the zero-order entropy H0(s) of the input string s. A notable

consequence of these results is Corollary 4.7 that provides the first theoretical analysis of Inversion Frequencies coding [3,4].

Then, we move to study the use of Wavelet Trees for compressing the output of the bwt, and show that Rle Wavelet Trees

can achieve a compression bound in terms of Hk(s) (Theorem 5.3), whereas Ge Wavelet Trees cannot. This result generalizes

[14,11] to the case in which a generic prefix-free encoder is used in combination with Rle or Ge, and also it theoretically

supports the algorithmic engineering choices made in [7,10,11], based only on an experimental analysis of the data. Note

that our result has been recently strengthened in [17] where the authors show that Rle can be replaced by the succinct

dictionaries of [20] (see discussion at the end of Section 5).

(C) We combineWavelet Trees with the compression booster [9] to build a new compression algorithm that compresses any

string s in at most 2.2618|s|H*
k
(s) + log |s| + �

(
|�|k+1

)
bits for any k � 0 (Theorem 6.2 and Corollary 6.3), where H

*
k
(s) is the

modified k-th order empirical entropy defined in Section 2. This improves the best known bound [9] that achieved a constant

2.5 in front of |s|H*
k
(s). Moreover, we show that we cannot lower that constant down to 2, so that our result is actually close

to being optimal. We remark that these kinds of entropy-only bounds, namely having the form λ|s|H*
k
(s) + log |s| + gk with

gk depending only on k and the alphabet size, are much interesting because they guarantee that the compression ratio is

proportional to the entropy of the input string s, even if s is highly compressible (see Section 6 for further details).

(D) We define Pruned Wavelet Trees (see Section 7) that generalize Wavelet Trees and add to this class of data structures in

several ways. In order to present our results here, we need to mention some facts about Wavelet Trees, when they are used

as stand-alone zero-order compressors. The same considerations apply when they are used upon the BWT. Wavelet Trees

reduce the problem of compressing a string to that of compressing a set of binary strings. That set is uniquely identified by:

(D.1) the shape (or topology) of the binary tree underlying the Wavelet Tree; (D.2) an assignment of alphabet symbols to

the leaves of the tree. How to choose the best Wavelet Tree, in terms of number of bits produced for compression, is open.

Grossi et al. establish worst-case bounds that hold for the entire family of Wavelet Trees and therefore they do not depend

on (D.1) and (D.2). They also bring some experimental evidence that choosing the “best” Wavelet Tree may be difficult [11,

Section 3]. It is possible to exhibit an infinite family of strings over an alphabet � for which changing theWavelet Tree shape

(D.1) influences the coding cost by a factor �(log |�|), and changing the assignment of symbols to leaves (D.2) influences the

coding cost by a factor �(|�|). So, the choice of the best tree cannot be neglected and remains open. Moreover, (D.3)Wavelet

Trees commit to binary compressors, losing the potential advantage that might come from a mixed strategy in which only

some strings are binary and the others are defined on an arbitrary alphabet (and compressed via general purpose zero-order

compressors, such as Arithmetic and Huffman coding). Again, it is possible to exhibit an infinite family of strings for which

a mixed strategy yields a constant multiplicative factor improvement over standard Wavelet Trees. So, (D.3) is relevant and

open.

In Section 7 we introduce the new paradigm of Pruned Wavelet Trees that allows us to reduce the compression of a

string s to the identification of a set of strings, where only a subset may be binary, which are compressed via the mixed

strategy sketched above. We develop a combinatorial optimization framework so that one can address points (D.1)–(D.3)

simultaneously. Moreover, we provide a polynomial-time algorithm for finding the optimal mixed strategy for a Pruned

Wavelet Tree of fixed shape and assignment of alphabet symbols to the leaves of the tree. In addition,weprovide a polynomial-

time algorithm for selecting the optimal tree-shape for Pruned Wavelet Trees, when only the assignment of symbols to the

leaves of the tree is fixed. Apart from their intrinsic interest, beingWavelet Trees a special case, those two results shed some

light on a problem implicitly posed in [14], where it is reported that a closer inspection of the data did not yield any insights

as to how to generate a space-optimizing tree, even with the use of heuristics.
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2. Empirical entropies

Let s be a string over the alphabet � = {a1, . . . , ah}, and for each ai ∈ �, let ni be the number of occurrences of ai in s.4

The zero-order empirical entropy of s is defined as H0(s) = −∑h
i=1(ni/|s|) log(ni/|s|). It is well known that H0 is the maximum

compressionwe can achieve using a fixed codeword for each alphabet symbol. It is alsowell known thatwe can often achieve

a compression ratio better than H0(s), if the codeword used for each symbol depends on the symbols preceding it. In this

case, the maximum compression is lower bounded by the k-th order entropy Hk(s) defined as follows. Let Sk denote the set

of all length-k substrings of s. For anyw ∈ Sk , letws denote the string consisting of the concatenation of the single characters

following each occurrence ofw inside s. Note that the length ofws is equal to the number of occurrences ofw in s, or to that

number minus one if w is a suffix of s. The k-th order empirical entropy of s is defined as

Hk(s) = 1

|s|
∑
w∈Sk

|ws|H0(ws) . (1)

The value |s|Hk(s) represents a lower bound to the compression we can achieve using codewords which depend on the k

most recently seen symbols. For any string s and k � 0, it is Hk(s) � Hk+1(s).

As pointed out in [18], for highly compressible strings H0(s) fails to provide a reasonable lower bound to the performance

of compression algorithms. For that reason, [18] introduced the notion of 0-th order modified empirical entropy:

H
*
0
(s) =

⎧⎨
⎩
0 if |s| = 0

(1 + ⌊log |s|⌋)/|s| if |s| /= 0 and H0(s) = 0

H0(s) otherwise.

(2)

For a non-empty string s, |s|H*
0
(s) is at least equal to the number of bits needed to write down the length of s in binary.

Starting from H*
0
we define the k-th order modified empirical entropy H

*
k
using a formula similar to (1). However, to ensure

thatH
*
k+1

(s) � H
*
k
(s) for every string s,H

*
k
is defined as themaximumcompression ratiowe can achieve using for each symbol

a codeword which depends on a context of size at most k (instead of always using a context of size k as for Hk , see [18] for

details). We use the following notation. Let Sk denote the set of all length-k substrings of s as before. Let Q be a subset of

S1 ∪ · · · ∪ Sk . We write Q � Sk if every stringw ∈ Sk has a unique suffix in Q. The k-th order modified empirical entropy of s

is defined as

H
*
k
(s) = min

Q�Sk

{
1

|s|
∑
w∈Q

|ws|H*
0
(ws)

}
. (3)

It is straightforward to verify that for any k � 0 and for any string s it is H
*
k
(s) � H

*
k+1

(s) and H
*
k
(s) � Hk(s). In Section 6

we will establish bounds in terms of H
*
k
and we will show that the same bounds cannot be established in terms of Hk .

We now provide some useful lemmas related to the empirical entropies. Recall that a run is a substring of identical

symbols in a string, and a maximal run is a run which cannot be extended, i.e., it is not a proper substring of a longer run.

Lemma 2.1. [16, Section 3]. The number of maximal runs in a string s is bounded by 1 + |s|H0(s).

Lemma 2.2. For any c � 1/2 and for 2 � r � n/2, we have

log(n/r) � cr log(n/r) − cr + 2c.

Proof. Let G(r) = cr log n
r − cr − log n

r + 2c. For c � 1/2, G(2) and G(n/2) are non-negative and G(r) is a concave function in

[2,n/2]. Hence, G(r) � 0, for 2 � r � n/2, and the thesis follows. �

Lemma 2.3. Let s be a binary string such that H0(s) /= 0. Let n = |s| and let r, 1 � r � n/2, denote the number of occurrences of

the least frequent symbol in s. We have

|s|H0(s) � r log(n/r) + r.

Proof. It is

|s|H0(s) = r log(n/r) + (n − r) log(n/(n − r))

= r log(n/r) + r log

(
1 + r

n − r

) n−r
r

� r log(n/r) + r

where the last inequality holds since (1 + 1/t)t � 2 for t � 1. �
4 In this paper we write log to denote log2 and we write ln to denote the natural logarithm. We also assume 0 log 0 = 0.
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Lemma 2.4. For any string s and k � 0 it is

|s|H*
k
(s) � log(|s| − k).

Proof. Let Q � Sk denote the subset for which the minimum (3) is achieved. It is

|s|H*
k
(s) =

∑
w∈Q

|ws|H*
0
(ws) �

∑
w∈Q

max(1, log(|ws|)) =
∑
w∈Q

logmax(2, |ws|).

Since
∑

i(log xi) � log(
∑

i xi) whenever mini xi � 2, we have

|s|H*
k
(s) � log

(∑
w∈Q

|ws|
)

� log(|s| − k). �

3. Compression of binary strings

This section provides the technical presentation of the results outlined in point (A) of Section 1. Two widely used binary

compressors are Rle and Ge. They both represent a binary string via a sequence of positive integers. Each integer in the

sequence is then compressed via a prefix-free encoder of the integers. The choice of which one to pick, among the many [6],

is the most critical part of the compression process. Therefore, it is very useful to have an analysis of both Rle and Ge that

accounts both for H0 and for the parameters characterizing the compression ability of the chosen encoder of the integers.

We provide such an analysis here, together with a rather useful variant of Ge.
Let Pfx denote a uniquely decodable encoder of the positive integers (not necessarily prefix-free). Assume that there exist

two positive constants a and b such that, for any positive integer i, we have |Pfx(i)| � a log i + b. For instance, γ -coding [6]

satisfies the inequality with a = 2 and b = 1. Notice that the assumption |Pfx(i)| � a log i + b is not restrictive, since the

codeword set generated by Pfx is universal [15]. Those universal codeword sets have a nice subadditivity property, when

used to encode sequences of integers, as it is the case of interest here:

Lemma 3.1 (Subadditivity). Let a, b be two constants such that |Pfx(i)| � a log i + b, for i > 0. Then, there exists a constant dab
such that, for any sequence of positive integers i1, i2, . . . , ik , we have∣∣∣∣∣∣Pfx

( k∑
j=1

ij

)∣∣∣∣∣∣ �
( k∑
j=1

|Pfx(ij)|
)

+ dab.

Proof. From elementary calculus, we have that Pfx(i1 + i2) � Pfx(i1) + Pfx(i2), whenever min(i1, i2) � 2. Hence, we only

need to take care of the case in which some of the ij ’s are 1. For i � 1, we have:

|Pfx(i + 1)| − |Pfx(i)| − |Pfx(1)| = a log(1 + (1/i)) − b (4)

= (a log e) ln(1 + (1/i)) − b

� (a log e)/i − b, (5)

where the last inequality holds since t � 0 implies ln(1 + t) � t. Let cab = (a log e)/b. From (4), we get that i � 1 implies

Pfx(i + 1) � Pfx(i) + Pfx(1) + (a − b). Moreover, from (5), we get that i � cab implies Pfx(i + 1) � Pfx(i) + Pfx(1). Combining

these inequalities, we get

∣∣∣∣∣∣Pfx
( k∑
j=1

ij

)∣∣∣∣∣∣ �
( k∑
j=1

|Pfx(ij)|
)

+ cab(a − b),

and the lemma follows with dab = cab(a − b). �

In the remainder of this paper, we will use integer encoders as the basic compression procedure in different settings. The

only assumption we make is that the integer encoders are of logarithmic cost, i.e., |Pfx(i)| � a log i + b. Since the codeword

Pfx(1) must be at least one bit long, we have b � 1 for every code. Note that, since γ -codes have a = 2 and b = 1, a code with

a > 2 (and necessarily b � 1) would be worse than γ -codes for any integer and therefore not interesting. Hence, from now

on, we assume a � 2 and b � 1.

It is also useful to recall a prefix-free encoding based on the base 3 representation of the integers. For any positive

integer n, let (n)3# denote the string over the alphabet {0, 1, 2, #} consisting of the base 3 representation of n, followed by



P. Ferragina et al. / Information and Computation 207 (2009) 849–866 853

the special symbol #. Note that the first symbol of (n)3# can only be either 1 or 2. Given (n)3#, we build the binary string

Trn(n) by encoding the first symbol with one bit (1 → 0, 2 → 1), and the other symbols with two bits (0 → 00, 1 → 01,
2 → 10, # → 11). For example, we have 15 = (120)3 so Trn(15) = 0 10 00 11. It is straightforward to verify that Trn provides a

prefix-free encoding of the integers. Moreover:

Lemma 3.2. For any positive integer n, we have |Trn(n)| � (log3 4) log n + 3 = (1.2618 . . .) log n + 3.

Proof. Assume (n)3 has length k. Then n � 3k−1 and k � log3 n + 1. We have

|Trn(n)| = 2k + 1 � 2(log3(n) + 1) + 1 = (log3 4) log n + 3

as claimed. �

3.1. Analysis of Run-Length Encoding

Definition 1. For any binary string β = b
�1
1
b

�2
2

· · · b�k
k
, with bi /= bi+1, Rle(β) is defined as the concatenation of the binary

strings

Rle(β) = b1Pfx(�1)Pfx(�2) · · · Pfx(�k).

Note that the bit b1 is needed to establish which symbol appears in each run.

Next lemma bounds the length of Rle(β) in terms of H0(β).

Lemma 3.3. Let Pfx be an integer coder such that |Pfx(i)| � a log(i) + b. For any binary string β such that H0(β) /= 0, we have

|Rle(β)| � max(2a, b + 2a/3)|β|H0(β) + 3b + 1.

Proof. Let β = b
�1
1
b

�2
2

· · · b�k
k
, with bi /= bi+1, so that |Rle(β)| = 1 +∑k

i=1 |Pfx(�i)|. Moreover, let n = |β| and let r denote the

number of occurrences of 1 in β. Assume 1 is the least frequent symbol in β, so that 1 � r � n/2. We distinguish three cases,

depending on the value of r.

Case r = 1.We have |Rle(β)| � 2a log n + 3b + 1. The thesis follows since |β|H0(β) � log n.

Case 2 � r < n/4. This is the most complex case. We have

|Rle(β)| = 1 +
k∑

i=1

(a log �i + b) = a

⎛
⎝ k∑

i=1

log �i

⎞
⎠ + bk + 1 (6)

Since the runs of 0’s and 1’s alternate, we have k � 2r + 1. We now show that the number of non-zero logarithms in (6)

(that is, the number of logarithms for which �i > 1) is at most r + 1. To see this, let g denote the number of singletons (runs

of length 1) in the r occurrences of the least frequent symbol. Therefore, there are at most g + ⌊(r − g)/2
⌋
runs of 1’s, and at

most 1 + g + ⌊(r − g)/2
⌋
runs of 0’s. Hence the number of runs of length �i > 1 are at most⌊

(r − g)/2
⌋+ (

1 + g + ⌊(r − g)/2
⌋)� r + 1

as claimed. Using Jensen’s inequality and the fact that the function x log(n/x) is increasing, for x � (r + 1) � (n/e), we get

|Rle(β)|�a

(∑
�i>1

log �i

)
+ b(2r + 1) + 1

�a(r + 1) log(n/(r + 1)) + b(2r + 1) + 1

�a(r + 1) log(n/r) + 2br + b + 1. (7)

Assume that b � a. Since (r + 1) � 2r, we get from (7) that |Rle(β)| � 2a(r log(n/r) + r) + b + 1, and the thesis follows by

Lemma 2.3. Assume now that b > a. Applying Lemma 2.2 to (7) with c = (2b − a)/2a � 1/2, we get

|Rle(β)|�a(1 + c)r log(n/r) + (2b − ac)r + 2ac + b + 1

= (b + a/2)r log(n/r) + (b + a/2)r + 3b − a + 1

� (b + a/2)(r log(n/r) + r) + 3b + 1

and the thesis follows again by Lemma 2.3.

Case n/4 � r � n/2. By Jensen’s inequality, we have
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|Rle(β)| = 1 + a

k∑
i=1

log �i + kb � ak log(n/k) + kb + 1.

Since the function x log(n/x) has its maximum for x = n/e and, by Lemma 2.1, k � 1 + |β|H0(β), we get

|Rle(β)| � a(n/e) log e + b(1 + |β|H0(β)) + 1. (8)

Since r � n/4, we have H0(β) � −(1/4) log(1/4) − (3/4) log(3/4) = (2 − (3/4) log 3). Since

[(log e)/e]
(2 − (3/4) log 3)

= 0.654 . . . < 2/3

by (8), we get

|Rle(β)| � (2/3)a|β|H0(β) + b|β|H0(β) + b + 1.

This completes the proof. �

Note that, although Rle encodes unambiguously a single binary string, it does not provide a uniquely decodable code

for the set of all binary strings. Indeed, if we are given the concatenation Rle(β1)Rle(β2), we are not able to retrieve β1 and

β2 because the decoder does not know where the encoding of β1 ends. To retrieve β1 and β2, we need some additional

information, for example the length of Rle(β1).

3.2. Analysis of Gap Encoding and of a novel variant

Definition 2. For any binary string β such that H0(β) /= 0, let c0 denote its least frequent symbol. Define c1 = 1, if c0 is also

the last symbol of β. Otherwise, let c1 = 0. Moreover, let p1, p2, . . . , pr denote the positions of the occurrences of c0 in β, and

let g1, . . . , gr be defined by g1 = p1, gi = pi − pi−1, for i = 2, . . . , r. If c1 = 1, Ge(β), the Gap Encoding of β, is defined as:

Ge(β) = c0c1Pfx(g1)Pfx(g2) · · · Pfx(gr).

If c1 = 0, Ge(β) is defined as:

Ge(β) = c0c1Pfx(g1)Pfx(g2) · · · Pfx(gr)Pfx(|β| − pr).

Note that the additional term Pfx(|β| − pr) is needed since, when c1 = 0, we have no information on the length of the last

run in β. We now bound |Ge(β)| in terms of H0(β).

Lemma 3.4. Let Pfx be an integer coder such that |Pfx(i)| � a log(i) + b. For every binary string β it is

|Ge(β)| � max(a, b)|β|H0(β) + a log |β| + b + 2.

Proof. Let r denote the number of occurrences of the least frequent symbol in β. Using the notation of Definition 2, we have

|Ge(β)| �
r∑

i=1

|Pfx(gi)| + a log |β| + b + 2.

Since
∑r

i=1 gi � |β|, by the concavity of the logarithm, it is

r∑
i=1

|Pfx(gi)| = a

⎡
⎣ r∑

i=1

log(gi)

⎤
⎦+ rb � ar log(|β|/r) + rb � max(a, b)(r log(n/r) + r).

The thesis then follows by Lemma 2.3. �

Notice that, similarly to Rle, Ge does not provide a uniquely decodable code for the set of binary strings. However, as it

will be self-evident later, it turns out to be convenient to devise and analyze a modified Gap Encoder Ge*, not substantially
different from Ge, that provides a prefix-free, and therefore uniquely decodable, code for the set of binary strings. Since we

need to perform a rather tight analysis of Ge*, we give its complete pseudo-code in Fig. 3.2. It makes use of an auxiliary

procedure SeqCompr, which is described and analyzed in the following lemma.

Lemma 3.5. Let d1, d2, . . . , dt denote a sequence of positive integers such that di−1 < di for i = 2, . . . , t. Consider the integer gaps

g1 = d1, g2 = d2 − d1, . . . , gt = dt − dt−1 and the string

SeqCompr(d1, . . . , dt) = Pfx(t)Pfx(g1)Pfx(g2) · · · Pfx(gt).
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Fig. 1. Procedure Ge* for the encoding of a binary string β with H0(β) /= 0.

SeqCompr(d1, d2, . . . , dt) is a prefix-free encoding of d1, d2, . . . , dt , in the sense that we can detect the end of the encoding

without any additional information. Moreover, we also have:

|SeqCompr(d1, . . . , dt)| � at log

(
dt

t

)
+ a log t + b(t + 1).

Proof. Notice that

|SeqCompr(d1, . . . , dt)| = |Pfx(t)| +
t∑

i=1

|Pfx(gi)| �
t∑

i=1

(a log(gi) + b) + a log t + b.

Since
∑t

i=1 gi = dt , using Jensen’s inequality, we get

|SeqCompr(d1, . . . , dt)| � at log

(
dt

t

)
+ a log t + b(t + 1)

and the lemma follows. �

Lemma 3.6. Ge* is a prefix-free encoder such that, for any binary string β with H0(β) /= 0, we have

|Ge*(β)| � Cab|β|H0(β) + �
(
1
)

with

Cab =
{
a + 1 if b < a + 2,

(a + b)/2 + ε if b � a + 2.
(9)

where ε > 0 is an arbitrarily small positive constant.

Proof.ClearlyGe* is prefix-free. To prove the boundweuse the notation of Fig. 3.2. Assumefirst r = 1. Since |β|H0(β) � log |β|
we have

|Ge*(β)| = (a + 1) log |β| + �
(
1
)� (a + 1)|β|H0(β) + �

(
1
)
.

The thesis follows since b � a + 2 implies a + 1 � (a + b)/2.

Assume now r > 1. We consider only the subcase in which br < |β|, since the other is simpler and left to the reader. By

Lemma 3.5, we get

|Ge*(β)| � a(r + 1) log

( |β|
r + 1

)
+ a log(r + 1) + br + �

(
1
)
.

From elementary calculus, we know that, for any ε > 0, there exists kε such that a log(r + 1) � εr + kε . Hence

|Ge*(β)| � ar log

( |β|
r

)
+ a log

( |β|
r

)
+ (b + ε)r + �

(
1
)
.

Using Lemma 2.2 to bound log(|β|/r), we get that, for any c � 1/2, it is

|Ge*(β)| � (ac + a)r log

( |β|
r

)
+ (b + ε − ac)r + �

(
1
)
. (10)

If b < 2a, we take c = 1/2 and ε < 2a − b. Plugging these values in (10) and using Lemma 2.3, we get

|Ge*(β)| � (3/2)ar log

( |β|
r

)
+ (3/2)ar + �

(
1
)� (3/2)a|β|H0(β) + �

(
1
)
. (11)

If b � 2a, we choose c = ((b − a)/2a) � 1/2, which, plugged in (10) and using Lemma 2.3 yields
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Fig. 2. Procedure TreeLabel for building the full Wavelet Tree Wf (s) given the alphabetic tree T� and the string s. The procedure is called with u = root(T).

|Ge*(β)| �
(
a+b
2

)
r log

( |β|
r

)
+
(
a+b
2

+ ε
)
r + �

(
1
)� ( a+b

2
+ ε
)

|β|H0(β) + �
(
1
)
. (12)

To complete the proof, it suffices to verify that the bounds (11) and (12) imply that |Ge*(β)| � Cab|β|H0(β) + �
(
1
)
(when

2a � b < a + 2 we must take ε � a + 2 − b; recall also that we can assume a � 2). �

4. Compression of general strings: achieving H0

This section gives the technical presentation of the results claimed in point (B) of Section 1, where Wavelet Trees are

used as stand-alone, general purpose, zero-order compressors. In particular, we analyze the performance of Rle compacted

Wavelet Trees (Section 4.2) and Ge compactedWavelet Trees (Section 4.3), showing that Ge is superior to Rle as a zero-order

compressor over Wavelet Trees. Nevertheless, we will show in Section 5 that Ge Wavelet Trees, unlike Rle Wavelet Trees,

are unable to achieve the k-th order entropy, when used to compress the output of the Burrows–Wheeler Transform. This

provides a theoretical ground to the practical choices and experimentationmade in [10,11].Moreover, a remarkable corollary

of this section is the first theoretical analysis of Inversion Frequencies coding [3,4].

4.1. Wavelet Trees

Given a string s over the alphabet �, we use �(s) to denote the set of symbols that actually appear in s. For Wavelet Trees

we will use a slightly more verbose notation than the one adopted in [13], because we need to distinguish between the base

alphabet � and the set �(s).

Let T� be a complete binary tree with |�| leaves. We associate one-to-one the symbols in � to the leaves of T� and refer

to it as an alphabetic tree. Given a string s over �, the full Wavelet Tree Wf (s) is the labeled tree returned by the procedure

TreeLabel of Fig. 2 (see also Fig. 3). Note that we associate two strings of equal length to each internal node u ∈ Wf (s). The first

one, assigned in Step 1, is a string over � that we denote by s(u). The second one, assigned in Step 3, is a binary string that we

denote by s01(u). Note that the length of these strings is equal to the number of occurrences in s of the symbols associated

to the leaves of the subtree rooted at u.

If �(s) = �, theWavelet TreeWf (s) has the same shape as T� and it is therefore a complete binary tree. If �(s) ⊂ �,Wf (s) is

not necessarily a complete binary tree since itmay contain unary paths. By contracting all unary paths,we obtain a compacted

Wavelet Tree Wc(s), which is a complete binary tree with |�(s)| leaves and |�(s)| − 1 internal nodes (see Fig. 3).

As observed in [13], we can always retrieve s given the binary strings s01(u) associated to the internal nodes of a Wavelet

Tree and the mapping between leaves and alphabetic symbols. Hence, Wavelet Trees are a tool for encoding arbitrary strings

using an encoder for binary strings. The following fundamental property of compacted Wavelet Trees was established in [13]

and shows that, in order to achieve the zero-order entropy on s, it suffices to achieve the zero-order entropy on the binary

strings associated to the internal nodes of any Wavelet Tree associated to s.

Theorem 4.1 [13]. For any string s drawn from the alphabet �(s), and for any compacted Wavelet Tree Wc(s), we have

|s|H0(s) =
∑

u∈Wc(s)

|s01(u)|H0(s
01(u)),

where the summation is done over all internal nodes of Wc(s).

4.2. Analysis of Rle Wavelet Trees

Let s be a string over the alphabet �(s). We define the algorithm Rle−wt as follows. First we encode |s| with the codeword

Pfx(|s|). Then, we encode the binary strings associated to the internal nodes of theWavelet TreeWc(s) using Rle. The internal
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Fig. 3. Analphabetic tree (left) for the alphabet� = {a,b,c,d,e,f}. The corresponding fullWavelet Tree (center) for the string s = fcdcfcffd. The compacted

Wavelet Tree (right) for the same string.

nodes are encoded in a predetermined order—for example heap order—such that the encoding of a node u always precedes

the encoding of its children (if any).5 We can always retrieve s from the output of Rle−wt: when we start the decoding of the

string s01(u), we already know its length |s01(u)| and therefore no additional information is needed to mark the end of the

encoding.

Theorem 4.2. For any string s over the alphabet �(s), we have

|Rle−wt(s)| � max(2a, b + 2a/3) |s|H0(s) + a log |s| + �
(
|�(s)|

)
.

The bound holds regardless of the shape of the Wavelet Tree.

Proof. The output of Rle−wt consists of |Pfx(|s|)| � a log |s| + b bits, in addition to the cost of encoding the binary string

associated to each internal node of the Wavelet Tree, using Rle. That is:

|Rle−wt(s)| = |Pfx(|s|)| +
∑

u∈Wc(s)

|Rle(s01(u))|, (13)

where the summation is done over internal nodes only. IfH0(s) = 0, there are no internal nodes and there is nothing to prove.

If H0(s) /= 0, we have that, by Lemma 3.3,

|Rle(s01(u))| � max(2a, b + 2a/3) |s01(u)|H0(s
01(u)) + 3b + 1,

for each internal node u. The thesis then follows by Theorem 4.1. �

4.3. Analysis of Ge Wavelet Trees

The algorithm Ge−wt is identical to Rle−wt except that the binary strings s01(u) associated to the internal nodes of Wc(s)

are encoded using Ge instead of Rle. The analysis is also very similar and provided in the next theorem.

Theorem 4.3. For any string s over the alphabet �(s), we have

|Ge−wt(s)| � max(a, b) |s|H0(s) + |�(s)|(a log |s| + b + 2).

The bound holds regardless of the shape of the Wavelet Tree.

Proof. The output of Ge−wt(s) consists of Pfx(|s|), followed by the encoding of the |�(s)| − 1 internal nodes. By Lemma 3.4, we

have

|Ge−wt(s)| =
∑

u∈Wc(s)

|Ge(s01(u))| + a log |s| + b

�max(a, b)
∑

u∈Wc(s)

|s01(u)|H0(s
01(u)) + |�(s)|(a log |s| + b + 2).

5 We are assuming that the Wavelet Tree shape is hard-coded in the (de)compressor.
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Fig. 4. Procedure Ge*−wt for compressing a string s over the alphabet �(s) ⊆ �. We assume that the shape of the alphabetic tree T� used for buildingWc(s)

and the order in which internal nodes are compressed by Ge* are hard-coded in the (de)compressor.

and the thesis follows by Theorem 4.1. �

Comparing the bounds in Theorems 4.2 and 4.3, we see that the latter has a smaller constant in front of H0(s) since

max(a, b) � max(2a, b + 2a/3). Indeed, if a � b, as in γ -codes, we have max(a, b) � (1/2)max(2a, b + 2a/3).

So far we have bounded the compression of Rle and Ge Wavelet Trees in terms of: (1) the entropy of the input string, and

(2) the logarithm of the input string length. For most strings s, we have log |s| = o(|s|H0(s)), so �
(
log |s|) can be regarded as

a lower order term. However, if s is highly compressible, for example s = a1a
n
2
, we have |s|H0(s) = �

(
log |s|) and a �

(
log |s|)

term cannot be considered lower order. It turns out that because of this additional �
(
log |s|) term Rle and Ge Wavelet Trees

are not the best algorithms for compressing low entropy (i.e., highly compressible) strings. Here we provide a variant of Ge
Wavelet Trees that is well suited for highly compressible strings and that will be fundamental to obtain the higher order

entropy-only bounds reported in Section 6.

Consider the binary compressor Ge* introduced in Section 3 and recall that it is a prefix-free encoder: the decompressor

knows when the decoding of a string is complete without the need of additional information. Hence, we can compress

an arbitrary string s by first encoding the alphabet �(s) and then building a compacted Wavelet Tree for s compressing

internal nodes with Ge* (see Fig. 4). The output consists of |�| bits followed by the concatenation of the compressed internal

nodes.6 The resulting algorithm, called Ge*−wt, still has the property of being prefix-free. The next lemma bounds Ge*−wt’s
compression in terms of the modified empirical entropy. The use of the modified empirical entropy makes it possible to

prove a bound which is significant also for the highly compressible strings for which |s|H*
0
(s) = O

(
log |s|).

Theorem 4.4. For any string s, we have

|Ge*−wt(s)| � Cab |s|H*
0
(s) + �(|�|) , (14)

where Cab is the constant defined by (9).

Proof. If |�(s)| = 1 we have |Ge*−wt(s)| = a log |s| + �(|�|). The thesis follows since, by (2), we have |s|H*
0
(s) = 1 + ⌊log |s|⌋. If

|�(s)| > 1, by Lemma 3.6 and Theorem 4.1, we have

|Ge*−wt(s)|�
∑

u∈Wc(s)

|Ge*(s01(u))| + |�|

�
∑

u∈Wc(s)

Cab |s01(u)|H0(s
01(u)) + �(|�|)

�Cab |s|H0(s) + �(|�|) ,

and the thesis follows since H0(s) � H
*
0
(s). �

Fromtheabove theoremandLemma3.2 it follows that combiningGe*−wtwith theprefixencoderTrn (definedat thebeginning

of Section 3) the bound (14) holdswith Cab = 1 + log3 4 ≈ 2.2618. The following theorem shows that no prefix-free algorithm

can achieve a substantially better bound, in the sense that the constant in front of H*
0
(s) must be greater than 2.

Theorem 4.5 [12, Section 7]. If a compression algorithm A is prefix-free, then the bound

|A(s)| � λ|s|H*
0
(s) + f (|�|) for every string s (15)

with f (|�|) independent of |s|, can only hold with a constant λ > 2.

6 The algorithms Rle and Ge are not prefix-free and for this reason both Rle−wt and Ge−wt need to encode also the length of the input string.
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Fig. 5. The skewed Wavelet Tree for the string s = dabbdabc. Symbol b is the most frequent one and is therefore associated to the leftmost leaf.

4.4. Skewed Wavelet Trees and Inversion Frequencies coding

All results in the previous sections hold regardless of the shape of the Wavelet Tree. In this section we consider a variant

of Ge−wt, in which we choose the Wavelet Tree shape and the correspondence between leaves and symbols. Although this

approach leads to (minor) improvements in the compression bounds given in Theorem 4.3, it establishes an important

and unexpected connection between Wavelet Tree and Inversion Frequencies coding [3,4]. To our knowledge, the results

presented here provide the first bound on the output size of IF coding in terms of the entropy of the input string. They also

provide a theoretical justification for the strategy, suggested in [1], of processing the symbols in order of increasing frequency.

Given a string s over the alphabet �(s), consider the algorithm Ge−skwt defined as follows. First, encode the length of s

and the number of occurrences of each symbol using a total of |Pfx(|s|)| + |�(s)| (⌊log |s|⌋+ 1
)
bits. Then, build aWavelet Tree

completely skewed to the left such that the most frequent symbol is associated to the leftmost leaf. The other symbols are

associated to the leaves in reverse alphabetic order (see Fig. 5). Letting ui denote the internal node of depth i − 1, we finally

use Ge to encode the strings s01(u1), . . . , s
01(u|�(s)|−1), in that order. The crucial observation is that when we encode (and

later decode) the string s01(ui), we already know:

1. its length |s01(ui)|, which is equal to the number of occurrences of the symbols associated to the subtree rooted at ui;

2. the number of 1’s in s01(ui), which is equal to the number of occurrences of the symbol associated to the right child of ui;

3. that 1 is the least frequent symbol in s01(ui), since the most frequent symbol in s is associated to the leftmost leaf.

We can take advantage of this extra information to encode s01(ui)with a “simplified” version of Ge. Indeed, with reference to

Definition2,weomit the two initial bits c0 and c1, and the last codewordPfx(|s01(ui)| − pr |). Thus, the “simplified”Geencoding

of s01(ui) consists of the concatenation Pfx(g1), · · · ,Pfx(gr). An analysis analogous to the one in the proof of Lemma 3.4 shows

that the length of this encoding is bounded by max(a, b)|s01(ui)|H0(s
01(ui)). Summing up, we have the following result.

Theorem 4.6. For any string s over the alphabet �(s), using the skewed Wavelet Tree and the “simplified” Gap Encoding detailed

above, we have

|Ge−skwt(s)| � max(a, b) |s|H0(s) + (a + |�(s)|) log |s| + |�(s)| + b.

Proof. From the above discussion, we get

|Ge−skwt(s)| � max(a, b)
∑

u∈Wc(s)

|s01(u)|H0(s
01(u)) + (a log |s| + b) + |�(s)|(⌊log |s|⌋+ 1).

The thesis follows by Theorem 4.1. �

Comparing the bounds in Theorems 4.3 and 4.6, we see that the latter has a smaller non-entropy term due to the use of the

“simplified” Gap Encoder. Further study is needed to understand whether this advantage is outweighted (or improved) by

the use of the skewed tree shape.

Assume now that �(s) = � = {a1, a2, . . . , ah} and that ah is the most frequent symbol in s. Consider now the Ge−skwt
algorithm applied to s (that is, consider a skewed Wavelet Tree whose leaves are labeled ah, ah−1, . . . , a1 from left to right).

In this setting the Gap Encoding of s01(ui) coincides with the encoding of the positions of the symbol ai in the string s, with

the symbols a1, . . . , ai−1 removed. In other words, we are encoding the number of occurrences of ai+1, . . . , ah between two

consecutive occurrences of ai. This strategy is known as Inversion Frequencies (IF) coding and was first suggested in [4] as an

alternative toMove-to-Front encoding. Since also in IF codingwe initially encode the number of occurrences of each symbol,

from our analysis we get the following result.

Corollary 4.7. Assuming that the most frequent symbol is processed last, IF coding produces a sequence of integers that we can

compress within the same bound given in Theorem 4.6.
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Note that in its the original formulation IF processes symbols in alphabetic order. However, [1] showed that processing

symbols in order of increasing frequency usually yields better compression. Corollary 4.7 provides theoretical support to this

heuristic strategy.

5. Compression of general strings: achieving Hk

This section provides the technical details about the results claimed in point (B) of Section 1 concerning the combination

ofRleWavelet Trees and bwt.We show that this approach can achievehigher order entropy compression,whereasGeWavelet

Trees cannot.

We need to recall a key property of the Burrows–Wheeler Transform of a string z [18]: If s = bwt(z) then, for any k � 0,

there exists a partition s = s1s2, · · · , st such that t � |�|k + k and |z|Hk(z) =∑t
i=1 |si|H0(si). In other words, the bwt is a tool

for achieving the k-th order entropy Hk , provided that we can achieve the entropy H0 on each si. An analogous result holds

for H
*
k
as well.7 In view of the above property, we establish our main result by showing that compressing the whole s via one

Rle Wavelet Tree is not much worse than compressing each string si separately. In order to prove such a result, some care is

needed. We can assume without loss of generality that �(s) = �. However, �(si) will not, in general, be equal to �(s) and this

creates some technical difficulties and forces us to consider both full and compactedWavelet Trees. Indeed, if we “slice” the

compacted Wavelet Tree Wc(s) according to the partition s = s1, · · · , st , we get fullWavelet Trees for the strings si’s.

Recall from Section 4.2 that the total cost of encoding a Wavelet Tree with Rle is given by (13). As a shorthand, we define∥∥Wc(s)
∥∥
rle

=
∑

u∈Wc(s)

|Rle(s01(u))| and
∥∥Wf (s)

∥∥
rle

=
∑

u∈Wf (s)

|Rle(s01(u))| (16)

where both summations are done over internal nodes only. Our first lemma essentially states that, for full Rle Wavelet Trees,

partitioning a string does not improve compression.

Lemma 5.1. Let s = s1s2 be a string over the alphabet �. We have∥∥Wf (s)
∥∥
rle

� ∥∥Wf (s1)
∥∥
rle

+ ∥∥Wf (s2)
∥∥
rle

.

Proof. Let u be an internal node of Wf (s) and let �(u) denote the set of symbols associated to u. That is, the set of symbols

associated to leaves in the subtree rooted at u. If the string si, for i = 1, 2, contains at least one of the symbols in �(u), then

Wf (si) contains an internal node ui that has�(u) as the associated set of symbols. Assume first that the symbols of�(u) appear

only in s1. In this case, we have that s01(u) coincides with s01
1

(u1), which is the binary string associated to u1 inWf (s1). Hence,

|Rle(s01(u))| = |Rle(s01
1

(u1))|. Similarly, if the symbols of �(u) appear only in s2, we have |Rle(s01(u))| = |Rle(s01
2

(u2))|.
Assume now that u1 and u2 both exist. In this case s01(u) is the concatenation of s01

1
(u1) and s01

2
(u2). Hence, if s

01(u) =
b

�1
1
b

�2
2
, · · · , b�k

k
, there exist an index j, 1 � j � k, and a value δ, 0 � δ < �j , such that

s011 (u1) = b
�1
1

· · · b�j−1

j−1
bδ
j , and s012 (u2) = b

�j−δ

j
b

�j+1

j+1
· · · b�k

k
.

Summing up, we have

|Rle(s01(u))|=1 +
k∑

i=1

|Pfx(�i)|

|Rle(s011 (u1))|=1 +
j−1∑
i=1

|Pfx(�i)| + |Pfx(δ)|

|Rle(s012 (u2))|=1 + |Pfx(�j − δ)| +
k∑

i=j+1

|Pfx(�i)|.

Hence

|Rle(s01(u))| − |Rle(s011 (u1))| − |Rle(s012 (u2))| = |Pfx(�j)| − |Pfx(δ)| − |Pfx(�j − δ)| − 1.

Refining the proof of Lemma 3.1 it is easy to see that |Pfx(i1 + i2)| � |Pfx(i1)| + |Pfx(i2)| + (a − b) for any pair i1, i2. Hence,

|Pfx(�j)| � |Pfx(δ)| + |Pfx(�j − δ)| + (a − b). Since a � 2 and b � 1, we get

|Rle(s01(u))| � |Rle(s011 (u1))| + |Rle(s012 (u2))|.
The thesis follows summing over all internal nodes of Wf (s). �

7 When the bwt is used, log |z| additional bits must be included in the output file: these are required to retrieve z given s. In this section we ignore this

additional cost since it would be a lower order term in the bounds of this section. The additional log |z| bits will be instead accounted for in Section 6.
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Theorem4.1 bounds the cost of compactedWavelet Trees in terms of the entropy of the input string. In order to use Lemma5.1,

we need a similar result for the fullWavelet Tree Wf (s).

Lemma 5.2. For any non-empty string s over the alphabet �, it holds∥∥Wf (s)
∥∥
rle

� max(2a, b + 2a/3) |s|H0(s) + (|�| − 1)(a log |s|) + �(|�|) .

Proof. Assume first H0(s) /= 0. Since Wc(s) is obtained fromWf (s) contracting all unary paths, we have∥∥Wf (s)
∥∥
rle

= ∥∥Wc(s)
∥∥
rle

+ cost of deleted nodes.

Comparing (13) and (16) we see that
∥∥Wc(s)

∥∥
rle

= |Rle−wt(s)| − Pfx(|s|). Hence, by Theorem 4.2∥∥Wc(s)
∥∥
rle

� max(2a, b + 2a/3) |s|H0(s) + �
(
|�(s)|

)
.

Recall now that a node u ∈ Wf (s) is deleted if and only if s01(u) contains only 0’s or only 1’s. Hence, each deleted node u

contributes to the difference
∥∥Wf (s)

∥∥
rle

− ∥∥Wc(s)
∥∥
rle

by an amount 1 + Pfx(|s01(u)|) � a log |s| + b + 1. The thesis then follows

since the number of deleted nodes is at most |�| − 1.

Assume now H0(s) = 0, i.e., s = σn, for some σ ∈ �. In this case, Wf (s) contains at most |�| − 1 internal nodes. Their Rle
cost is bounded by a log |s| + b + 1, and the thesis follows. �

We are now able to bound the size of a Rle Wavelet Tree over the string s = bwt(z) in terms of the k-th order entropy of z.

Theorem 5.3. Let z denote a string over the alphabet � = �(z), and let s = bwt(z). For any k � 0, we have

|Rle−wt(s)| � max(2a, b + 2a/3) |z|Hk(z) + |�|k+1(a log |z|) + O
(
|�|k+1

)
. (17)

In addition, if |�| = O(polylog(|z|)), for all k � α log|�| |z|, constant 0 < α < 1, we have

|Rle−wt(s)| � max(2a, b + 2a/3) |z|Hk(z) + o(|z|). (18)

Proof. Let Cab = max(2a, b + 2a/3), and let s = s1 · · · st denote the partition of s such that |z|Hk(z) =∑t
i=1 |si|H0(si). Since

� = �(z) = �(s),Wf (s) coincides with Wc(s). By (13), we have

|Rle−wt(s)| = ∥∥Wc(s)
∥∥
rle

+ |Pfx(|s|)| = ∥∥Wf (s)
∥∥
rle

+ |Pfx(|s|)|. (19)

By Lemmas 5.1 and 5.2, we get

∥∥Wf (s)
∥∥
rle

�
t∑

i=1

∥∥Wf (si)
∥∥
rle

�
t∑

i=1

(
Cab |si|H0(si) + (|�| − 1)(a log |si|) + �(|�|)

)

�Cab |z|Hk(z) + (|�| − 1)

t∑
i=1

a log |si| + �(t|�|) . (20)

Since
∑t

i=1 log |si| � t log(|s|/t), from (19) and (20) we get

|Rle−wt(s)| � Cab |z|Hk(z) + t(|�| − 1)a log(|s|/t) + a log(|s|) + �(t|�|) . (21)

Since t � |�|k + k, we have

|Rle−wt(s)| � Cab |z|Hk(z) + |�|k+1a log(|s|) + �
(
|�|k+1

)
which implies (17), since |s| = |z|. To prove (18), we start from (21) and note that �’s size and the inequality t � |�|k + k

imply t|�| log(|s|/t) = o(|s|) = o(|z|). �

Theorem5.3showsthatRleWaveletTreesachieve thek-thorderentropywith thesamemultiplicativeconstantmax(2a, b +
2a/3) that Rle achieves with respect to H0 (Lemma 3.3). Thus, Wavelet Trees are a sort of booster for Rle (cf. [9]). After the

appearance of the conference version of the present paper [8], Mäkinen and Navarro [17] proved that Rle is not the only

compressor that allows to achieve Hk using Wavelet Trees. More precisely, [17] considers the Wavelet Tree over the entire

string bwt(z) in which the binary strings associated to the internal nodes of the Wavelet Tree are represented using the

succinct dictionaries of [20]. Such Wavelet Tree takes at most

|z|Hk(z) + O
(
|�|k+1(log |z|)

)
+ O
(
(|z| log |�| log log |z|)/ log |z|) (22)
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bits. Succinct dictionaries support O
(
log |�|) time rank and select queries [20], so the data structure of [17] is not simply a

compressed file but a more powerful compressed full-text index [19]. Comparing (22) with (17), and recalling that a � 1, we

see that (22) has a smaller multiplicative constant in front of |z|Hk(z) but also an additional O
(
(|z| log |�| log log |z|)/ log |z|)

term which can become dominant for strings with small entropy.

In proving Theorem 5.3 we used some rather coarse upper bounds. So we believe it is possible to improve the bounds (17)

and (18). However, there are some limits to the possible improvements. As the following example shows, the o(|z|) term
in (18) cannot be reduced to �

(
1
)
even for constant size alphabets. This is true not only for Hk , but also for the modified

empirical entropy H*
k
.

Example 1. Let � = {1, 2, . . . ,m}, and let z = (123 · · ·m)n. We have H1(z) = 0, |z|H*
1
(z) ≈ m log n, and s = bwt(z) = mn1n2n · · ·

(m − 1)n. Consider a balanced Wavelet Tree of height
⌈
logm

⌉
. It is easy to see that there exists an alphabet ordering such

that the internal nodes of the Wavelet Tree all consist of alternate sequences of 0n and 1n. Even encoding these sequences

with log n bits each would yield a total cost of about (m logm) log n ≈ (logm)|z|H*
1
(z) bits.

It is natural to ask whether we can repeat the above analysis and prove a bound for Ge Wavelet Trees in terms of the

k-th order entropy. Unfortunately, the answer is no! The problem is that, when we encode swith Ge, we have to make some

global choices—e.g., the shape of the tree inGe−wt, the role of zeros or ones in each internal node in the algorithmof [14]—and

these are not necessarily good choices for every substring si. Hence, we can still splitWf (s) intoWf (s1), . . . ,Wf (st), but it is not

always true thatWf (si) � λ|si|H0(si) + o(|si|). As a more concrete example, consider the string z = (01)n. We have H1(z) = 0,

|z|H*
1
(z) = �

(
log n

)
, and s = bwt(z) = 1n0n. Wc(s) has only one internal node—the root—with associated string 1n0n. We can

either encode the gaps between 1’s or the gaps between 0’s. In both cases, the output will be of �(n) bits, thus exponentially

larger than |z|H*
1
(z). Of course this example does not rule out the possibility that a modified version of Ge could achieve the

k-th order entropy. Indeed, in view of the remark following the proof of Theorem 4.3, a modified Ge is a natural candidate

for improving the bounds of Theorem 5.3.

6. Compression of general strings: achieving entropy-only bounds

This section contains the technical details of the results claimed in (C) of Section 1. In particular, we show how to use

Wavelet Trees to achieve the best entropy-only bound known in the literature. Entropy-only bounds have the form λ|s|H*
k
(s) +

log |s| + gk , whereH
*
k
is themodified k-th order empirical entropy (defined in Section 2), and gk depends only on k and on the

alphabet size. Achieving an entropy-only bound guarantees that, even for highly compressible strings, the compression ratio

will be proportional to the entropy of the input string. Too see this, recall that |s|H*
k
(s) � log(|s| − k) (Lemma 2.4). Hence, if

a compressor A achieves an entropy-only bound, it is |A(s)| � (1 + λ)|s|H*
k
(s) + g′

k
for any string s. The reason for which the

term log |s| appears explicitly in entropy-only bounds is that bwt-based algorithms need to include in the output file log |s|
additional bits in order to retrieve s given bwt(s). Keeping the term log |s| explicit provides a better picture of the performance

of bwt-based compressors when |s|H*
k
(s) = ω(log |s|). Entropy-only bounds cannot be established with the entropy Hk . To see

this, consider the family of strings s = an
1
. We have |s|Hk(s) = 0 for all of them and clearly we cannot hope to compress all

strings in this family in �
(
1
)
space.

For convenience of the reader, we recall the main technical result from [9, Section 5].

Property 1. Let A be a prefix-free compressor that encodes any input string x ∈ �* within the following space and time

bounds8:
1. |A(x)| � λ|x|H*

0
(x) + μ bits, where λ and μ are constants,

2. the running time of A is T(|x|) and its working space is S(|x|), where T( · ) is a convex function and S( · ) is non-decreasing.

Theorem 6.1 [9, Th. 5.2]. Given a compression algorithm A that satisfies Property 1, one can apply the compression booster

in [9] so that it compresses s within λ|s|H*
k
(s) + log |s| + gk bits, for any k � 0. The above compression takes O(T(|s|)) time and

O(S(|s|) + |s| log |s|) bits of space.

We can combine Theorem 6.1 with Theorem 4.4 to obtain:

Theorem 6.2. Combining the algorithm Ge*−wt with the compression booster, we can compress any string s over the alphabet

� in at most Cab|s|H*
k
(s) + log |s| + �

(
|�|k+1

)
bits for any k � 0. The constant Cab multiplying H

*
k
depends, according to (9), on

8 In [9] instead of assuming A to be prefix-free, the authors made the equivalent assumption that A appends a unique end-of-string symbol at the end of

the input string x.
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the parameters a and b of the integer coder Pfx used by Ge*−wt. The compression process takes linear time and O(|s| log |s|) bits of
space.

From Theorem 6.2 and Lemma 3.2 we immediately get the best known entropy-only bound:

Corollary 6.3. If we use the integer coder Trn within the algorithm Ge*−wt, combined with the compression booster, we can

compress any string s over the alphabet � in at most

(1 + log3 4)|s|H*
k
(s) + log |s| + �

(
|�|k+1

)
= (2.2618 . . .)|s|H*

k
(s) + log |s| + �

(
|�|k+1

)
bits. The bound holds simultaneously for any k � 0.

Note that Theorem 4.5 implies that Property 1 can only hold with λ > 2. Hence, using the compression boosting theorem

(Theorem 6.1) we can only prove bounds of the form λ|s|H*
k
(s) + log |s| + gk with λ > 2. This implies that to substantially

improve over the bound in Corollary 6.3 one needs to either refine the compression boosting theorem or use a completely

different approach (possibly not based on the bwt). However, by Theorem 4.5 and the fact that H
*
k
(s) � H

*
0
(s), no prefix-free

compressor can achieve an entropy only bound of the form λ|s|H*
k
(s) + gk with λ � 2.

7. Pruned Wavelet Trees

In point (D) of Section 1, we discussed the impact on the cost of a Wavelet Tree of: (D.1) its (binary) shape, (D.2) the

assignmentofalphabet symbols to its leaves, (D.3) thepossibleuseofnon-binarycompressors toencode thestringsassociated

to internal nodes. Here we provide some concrete examples showing that these issues cannot be neglected. In the following,

we consider Rle Wavelet Trees but similar examples can be given for Ge Wavelet Trees as well.

For (D.1), let us consider the infinite family of strings sn = an
1
a2a3 · · · a|�|. For large n, the encoding cost is dominated by the

�
(
log n

)
cost of encoding an

1
. If the Rle Wavelet Tree is balanced, we pay this cost �

(
log |�|) times. If the leaf corresponding

to a1 is at depth 1, we pay this cost only once. This means that the Rle Wavelet Tree shape may impact the output size by a

multiplicative factor �(log |�|).
For (D.2), consider again sn = an

1
a2a3, · · · , a|�| and a skewed Wavelet Tree, in which leaves have depth 1, 2, . . . , |�| − 1. It

is easy to see that the overall cost increases by a factor �(|�|), if a1 is assigned to a leaf of depth |�| − 1 rather than to the

leaf of depth 1. Note that the symbol-leaf mapping is critical even for balanced Wavelet Trees: Consider the string an
1
an
3
an
2
an
4

and a balanced tree of height 2. If leaves are labeled a1, a2, a3, a4 (left to right) the encoding cost is ≈ 8a log n, whereas for

the ordering a1, a3, a2, a4, the encoding cost is ≈ 6a log n. (Recall that we are assuming Pfx(x) � a log x + b.)

As for (D.3), let us consider the infinite family of strings sn = an
1
(a2a2a3a3)

n and the balanced Wavelet Tree for sn, where

the leaf corresponding to a1 is the left child of the root r, while a2 and a3 are assigned to the leaves descending from the

right child, say u, of the root. We have s01(r) = 0n14n, s(u) = (a2a2a3a3)
n, and s01(u) = (0011)n. We compress s01(r) via Rle in

�(log n) bits, andwe compress s01(u) either via Huffman or via Rle. The former takes 4n bits, while the latter takes 2n|Pfx(2)|
bits, which is at least 6n bits, for all representations of the integers for which |Pfx(2)| > 2 (this includes γ and δ codes [6] and

all Fibonacci representations of order > 1 [2]). This shows that a mixed encoding strategymay save a constant multiplicative

factor on the output size.

Those examples motivate us to introduce and discuss Pruned Wavelet Trees, a new paradigm for the design of effective

zero-order compressors. LetA01 andA� be two compression algorithms such thatA01 is a compressor specialized onto binary

strings while A� is a generic compressor working on strings drawn over arbitrary alphabets �. We assume that A01 and A�

satisfy the following property, which holds—for example—when A01 is Ge* (see Section 6) and A� is Arithmetic or Huffman

coding.

Property 2. Let A01 and A� be two compression algorithms such that:
(a) For any binary string z with H0(z) /= 0, |A01(z)| � α|z|H0(z) + β bits, where α and β are constants.

(b) For any string s, |A�(s)| � |s|H0(s) + η|s| + μ bits, where η and μ are constants.

(c) The running times of both A01 and A� are convex functions (say T01 and T�) and their working space are non-decreasing

functions (say S01 and S�).

Given theWavelet TreeWc(s), a subsetL of its nodes is a leaf cover if every leaf ofWc(s) has a unique ancestor inL (see [9,

Section 4]). Let L be a leaf cover of Wp(s) and let WL
p (s) be the tree obtained by removing all nodes in Wp(s) descending

from nodes inL. We assign colors to nodes of WL
p (s) as follows: all leaves are black and the remaining nodes red. We use

A01 to compress all binary strings s01(u), where u ∈ WL
p (s) and it is colored red, while we use A� to compress all strings s(u),

where u ∈ WL
p (s) and it is colored black. Nodes that are leaves ofWp(s) are ignored (as usual). It is a simple exercise to work
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out the details on how to make this encoding decodable.9 The cost
∥∥∥WL

p (s)
∥∥∥
P
of the Pruned Wavelet Tree is defined as the

total number of bits produced by the encoding process just described:∥∥∥WL
p (s)

∥∥∥
P

=
∑
u red

|A01(s
01(u))| +

∑
u black

|A�(s(u))|.

Example 2. IfL = root(Wp(s)), then WL
p (s) consists of one node only, namely the root, and thus we compress the entire s

usingA� only. By Property 2(b),wehave
∥∥∥WL

p (s)
∥∥∥
P
� |s|H0(s) + η|s| + μ. The other extreme case iswhenL consists of all the

leaves ofWp(s), and thusWp(s) = WL
p (s): we never use A� andwe have

∥∥∥WL
p (s)

∥∥∥
P
� α|s|H0(s) + β(|�| − 1), by Property 2(a)

and Theorem 4.1.

We note that when the algorithms A01 and A� are fixed, the cost
∥∥∥WL

p (s)
∥∥∥
P
depends on two factors: the shape of the

alphabetic tree T� , and the leaf coverL. The former determines the shape of theWavelet Tree and the assignment of alphabet

symbols to the leaves of the tree, the latter determines the assignment of A01 and A� to the nodes of Wp(s). It is therefore

natural to consider the following two optimization problems.

Problem 1. Given a string s and a Wavelet Tree Wp(s), find the optimal leaf cover Lmin that minimizes the cost function∥∥∥WL
p (s)

∥∥∥
P
. Let Copt(Wp(s)) be the corresponding optimal cost.

Problem 2. Given a string s, find an alphabetic tree T� and a leaf cover Lmin for that tree, giving the minimum of the

function Copt(Wp(s)). That is, we are interested in finding a shape of the Wavelet Tree, an assignment of alphabet symbols to

the leaves of the tree, and an assignment of A01 and A� to the Wavelet Tree nodes, so that the resulting compressed string

is the shortest possible.

Problem 2 is a global optimization problem, while Problem 1 is a much more constrained local optimization problem.

Note that, by Example 2, we have Copt(Wp(s)) � min(|s|H0(s) + η|s| + μ,α|s|H0(s) + β(|�| − 1)).

7.1. Optimization algorithms

The first algorithm we describe solves efficiently Problem 1. Its pseudo-code is given in Fig. 6. The key observation is a

decomposability property of the cost functions associated toLmin, with respect to the subtrees of Wp(s). We point out that

such a property is essentially the same identified by Ferragina et al. for their linear time Compression Boosting algorithm [9],

here exploited to devise an optimal Pruned Wavelet Tree in efficient time. In the following, with a little abuse of notation,

we denote byLmin(u) an optimal leaf cover of the subtree of Wp(s) rooted at the node u and by Copt(u) the corresponding

cost.

Lemma 7.1. Lmin(u) consists of either the single node u, or of the union of optimal leaf covers of the subtrees rooted at its left

and right children uL and uR, respectively.

Proof. We can assume that s consists of at least two distinct symbols. When u is a leaf of Wp(s), the result obviously holds,

since the optimal leaf cover is the node itself and its cost is zero. Assume that u is an internal node of depth at least two.

Note that both node sets {u} andLmin(uL)
⋃
Lmin(uR) are leaf covers of the subtree ofWp(s) rooted at u. We now show that

one of them is optimal for that subtree. Let us assume thatLmin(u) /= {u}. Then,Lmin(u) consists of nodes which descend

from u. We can then partitionLmin(u) asL(uL)
⋃
L(uR), where those sets are leaf covers for the subtree rooted at uL and

uR respectively. By the optimality ofLmin(uL) andLmin(uR) we have that their cost cannot be higher than the one ofL(uL)

andL(uR) and thereforeLmin(uL)
⋃
Lmin(uR) is an optimal leaf cover as well. �

Theorem 7.2. Given two compressors satisfying Property 2 and a Wavelet Tree Wp(s), the algorithm in Fig. 6 solves Problem 1 in

O(|�|(T01(|s|) + T�(|s|))) time and O(|s| log |s| + max(S01(|s|), S�(|s|))) bits of space.

Proof. The correctness of the algorithm comes from Lemma 7.1. As for the time analysis, it is based on the convexity of the

functions T01(·) and T�(·), which implies that on anyWavelet Tree level we spend O(T01(|s|) + T�(|s|)) time, and the fact that

9 Note that we need to encode which compressor is used at each node and (possibly) the tree shape. For simplicity, in the following, we ignore this �(|�|)
bits overhead.
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Fig. 6. The pseudocode for the linear-time computation of an optimal leaf coverLmin for a given decomposition tree Ts .

the tree has height at most |�|. Finally, the proof of the space bound can be derived from the monotonicity of the working

space functions of the two compression algorithms. �

Note that the algorithm of Fig. 6 can be turned into an exhaustive search procedure for the solution of Problem 2. The

time complexity would be polynomial in |s| but at least exponential in |�|. Although we are not able to provide algorithms

for the global optima with time complexity polynomial both in |�| and |s|, we are able to settle the important special case in

which the ordering of the alphabet is assigned, and so is assigned the mapping of the symbols to the leaves of the Wavelet

Tree.

Fix a total order relation ≺ of the alphabet symbols. To simplify notation, let it be � = {a1, a2, · · · , a|�|}. Consider the class

of Wavelet Trees such that a visit in symmetric order gives the leaves ordered according to the ≺ relation defined on the

alphabet. We restrict Problem 2 to such a class of trees and let Copt,≺ be the corresponding optimal cost.

Given a string s, let si,j be the string obtained by keeping only the symbols ai, · · · , aj in s. Moreover, given an integer k,

i < k � j, let s01
i,j,k

be thebinary string obtainedby replacingwith 0 each character a�, i � � < k, in si,j andwith 1 each remaining

symbol. Let Ci,j be the optimal cost of compressing string si,j with Pruned Wavelet Trees, subject to the constraint that the

symbols of the alphabet must appear “from left to right” in the order ai, · · · , aj . Hence, Copt,≺ = C1,|�|. We now show that such

an optimal cost, together with an optimal Pruned Wavelet Tree, can be computed via the following dynamic programming

algorithm:

Ci,j = min(|A�(si,j)|, min
i<k�j

(Ci,k−1 + Ck,j + |A01(s
01
i,j,k)|)) (23)

where i < j and the initial conditions are given by Ci,i = 0. Indeed, the correctness of the above recurrence relation comes

from the observation that, for each string si,j , we can compress it in two possible ways: (a) use A� on the entire string or (b)

choose optimally a character ak in the list ai, · · · , aj; compress both si,k−1 and sk,j optimally and finally compress the binary

sequence s01
i,j,k

. Moreover, Ci,j is labeled black if A� wins. Else, it is labeled red. We can then recover the optimal alphabetic

tree via standard traceback techniques and the color assigned to any chosen Ci,j is assigned to the node corresponding to

it. Finally, the optimal leaf cover is given by the set of black nodes that have no black node as an ancestor. As for the time

analysis, it is a standard textbook exercise. We have:

Theorem 7.3. Consider a string s and fix an ordering ≺ of the alphabet symbols appearing in the string. Then, one can solve

Problem 2 constrained to that ordering of �, in O(|�|4(T01(|s|) + T�(|s|)) time.

8. Conclusions and open problems

We have provided a throughout theoretical analysis of a wide class of compression algorithms based on Wavelet Trees,

and also shown how to improve their asymptotic performance by introducing a novel framework, called Pruned Wavelet

Trees, that aims for the best combination of binary compressors and generic compressors in their nodes.

Our results raise several open questions. First, it would be interesting to improve the bounds established for Rle and

Ge, possibly introducing small modifications to the basic algorithms. Our results for the modified Gap Encoder Ge* suggest
that this should be possible. Second, it would be interesting to extend our analysis to prefix-free codes such that |Pfx(i)| �
log(i) + o(log(i)) (one of such codes is δ-coding). Third, further study should be devoted to understand the influence of the

shape of theWavelet Tree on compression (see also Problem 2 in Section 7). Finally, our results ask for a deeper investigation,

both at the algorithmic and at the experimental level, on Pruned Wavelet Trees.
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