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Abstract

In this paper, we present a nearly tight analysis of the
encoding length of the Burrows-Wheeler Transform
(bwt) that is motivated by the text indexing setting.
For a text T of n symbols drawn from an alphabet Σ,
our encoding scheme achieves bounds in terms of
the hth-order empirical entropy Hh of the text, and
takes linear time for encoding and decoding. We
also describe a lower bound on the encoding length
of the bwt that constructs an infinite (non-trivial)
class of texts that are among the hardest to compress
using the bwt. We then show that our upper bound
encoding length is nearly tight with this lower bound
for the class of texts we described.

In designing our bwt encoding and its lower
bound, we also address the t-subset problem; here,
the goal is to store a subset of t items drawn from a
universe [1..n] using just lg

(
n
t

)
+O(1) bits of space. A

number of solutions to this basic problem are known,
however encoding or decoding usually requires either
O(t) operations on large integers [Knu05, Rus05]
or O(n) operations. We provide a novel approach
to reduce the encoding/decoding time to just O(t)
operations on small integers (of size O(lg n) bits),
without increasing the space required.

1 Introduction

The Burrows-Wheeler transform [BW94] (bwt) has
had a profound impact on a myriad of algorithmic
fields in Computer Science. The bwt preprocesses
an input text T by a reversible transformation—the
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result is then easily compressible by other simpler
encoding methods. The bwt highlights (among other
things) that a series of encoders may be more effective
than a one-pass compression algorithm. The bwt has
shown remarkable evidence to that effect, especially
in practice: it is at the heart of the bzip2 algorithm,
which has become a mainstream data compression
tool.

The bwt has also revolutionized the field of text
indexing [NM06]. Using the bwt, one can build a
“compressed text index”, a class of data structures
that support powerful substring searches and occupy
roughly the same space as that required by the
best compressors. These results [GV05, FM05] have
dispelled the notion that an efficient full-text index
must use space superlinear in the text length. Clearly,
the bwt is a powerful compression tool that manages
to organize data in a searchable way—but where is
the magic?

The bwt has been analyzed extensively since
its original introduction in 1994, especially in the
information-theory community [WMF94, EVKV02].
These results apply to a wide range of statistical
models for generating a text T , including high-order
Markov sources, tree sources, and finite-state ma-
chine (FSM) sources. To the best of our knowl-
edge, the best known encoding of the bwt appears
in [BB04], achieving a nearly optimal bwt encoding
length that encodes in O(n) time, but decoding takes
longer.

In a text indexing setting, recent theoretical
results [Man01, FGMS05, KLV06] have shed light
on the success of the bwt and present some limits
on its compressibility. For a text T of n symbols
drawn from an alphabet Σ (|Σ| = σ), these results
achieve bounds in terms of the modified hth-order
empirical entropy H∗

h of the text. However, little
attention is paid to reducing the cost for encoding the
hth order count statistics, since σh = o(n/ log σ) is a
reasonable assumption. Even in such cases, the costs
for encoding the empirical statistical model for T
may dwarf the leading entropy term. (More precise
comparisons follow in Section 3.) In this paper, we
deeply consider the problem of storing the empirical
statistical model, without any assumption on the size
of σ and h. This investigation may lead to a clear
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understanding of the best way to encode the bwt.
We present a nearly tight analysis on the encod-

ing length of the bwt. Our encoding scheme can
be encoded or decoded in linear time, is strongly
motivated by current text indexing techniques, and
we present our results to validate the current di-
rection of text indexes. In particular, we present
an encoding scheme for the bwt that can be en-
coded or decoded in O(n) time and requires nHh +
min{g′h lg(n/g′h + 1), H∗

hn + lg n + g′′
h} bits of space,

where g′h = O(|Σ|h+1) and g′′h = O(|Σ|h+1 lg |Σ|h+1)
do not depend on the text length n, while H∗

h ≥ Hh

is the modified hth-order empirical entropy of T . No-
tice that we have bounded the encoding of the em-
pirical model cost (everything but nHh in the above
bound) by the entropy of the underlying text T . In
other words, encoding the empirical statistics does
not seem to be a trivial cost!

To show that our encoding is nearly tight with
the lower bound encoding length of the bwt, we
describe a class of texts, called δ-resilient texts, for
which our encoding achieves nearly tight bounds.
One could view the class of δ-resilient texts as one
of the hardest to compress using the bwt. A
consequence of this result is the observation that one
can, without fear of incurring significant overhead,
separate the encoding of the underlying data from the
representation of the empirical statistical model. In
this paper, we explain how this separation naturally
occurs in the text indexing setting.

We also present a novel subset encoding scheme
that addresses some of the weaknesses of well-known
results from combinatorial enumeration [Knu05,
Rus05]. Our approach applies a quasi-arithmetic
coder to a set of empirical probability estimates gen-
erated by a random sampling technique [Vit84] to
avoid operations on large integers. In particular, our
subset encoding for a set of t items out of a universe
of size n can be decoded using O(t) operations on
small integers (of size O(lg n) bits).

2 Preliminaries

We formulate our analysis of the space complexity in
terms of the high-order empirical entropy of a text T
of n symbols drawn from alphabet Σ = {1, 2, . . . , σ}.
In this section, we discuss entropy from both an
empirical probability model and a finite set model.
We also review the bwt and its connection to suffix
arrays.

2.1 Empirical Probabilistic Entropy We pro-
vide terminology for the analysis and explore em-
pirical probability models. For each symbol y ∈ Σ,
let ny be the number of its occurrences in text T .
With symbol y, we associate its empirical probabil-
ity, Prob[y] = ny/n, of occurring in T . (By defi-

nition, n =
∑

y∈Σ ny, so the empirical probability
is well defined.) Following Shannon’s definition of
entropy [Sha48], the 0th-order empirical entropy is
H0 = H0(T ) =

∑

y∈Σ −Prob[y] × lg Prob[y]. Since
nH0 ≤ n lg σ, the previous expression simply states
that an efficient variable-length coding of text T
would encode each symbol y based upon its frequency
in T rather than simply lg σ bits. The number of bits
assigned for encoding an occurrence of y would be
− lgProb[y] = lg(n/ny).

We can generalize the definition to higher-order
empirical entropy, so as to capture the dependence
of symbols upon their context, made up of the
h previous symbols in the text.1 For a given h,
we consider all possible h-symbol sequences x that
appear in the text. (They are a subset of Σh,
the set of all possible h-symbol sequences over the
alphabet Σ. The last h− 1 incomplete sequences are
easily stored within the bounds we give in this paper;
we defer these technical details until the full paper.)
We denote the number of occurrences in the text of
a particular context x by nx, with n =

∑

x∈Σh nx

as before, and we let nx,y denote the number of
occurrences in the text of the concatenated sequence
yx (meaning that y precedes x).

Manzini [Man01] gives a definition of the hth-
order empirical entropy Hh in terms of H0. For any
given context x, let wx be the concatenation of the
symbols y that appear in the text immediately before
context x. We denote its length by |wx| and its 0th-
order empirical entropy by H0(wx), thus defining Hh

as

(2.1) Hh =
1

n

∑

x∈Σh

|wx|H0(wx).

An important observation to note is that Hh+1 ≤
Hh ≤ lg σ for any integer h ≥ 0. Hence, the previous
expression states that a better variable-length coding
of text T would encode each symbol y based upon
the joint and conditional empirical frequency for any
context x of y.

One potential difficulty with the definition of
Hh is that the inner terms of the summation could
equal 0 (or an arbitrarily small constant), which can
be misleading when considering the encoding length
of a text T . (One relatively trivial case is when the
text contains n equal symbols, as no symbol needs to
be “predicted”.) Manzini introduced modified high-
order empirical entropy H∗

h to address this point and
capture the constraint that the encoding of the text
must contain at least lg n bits for coding its length n.
Using a modified H∗

0 = H∗
0 (T ) = max{H0, (1 +

1The standard definition of conditional probability for text
documents considers the symbol y immediately after the
sequence x. It makes no difference, since we could use this
definition on the reversed text as discussed in [FGMS05].
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blg nc)/n} to make the change, Manzini defines the
H∗

h as

(2.2) H∗
h = H∗

h(T ) =
1

n
min
Ph

∑

x∈Ph

|wx|H∗
0 (wx).

Here, we let Ph be a prefix cover, namely, a set of
substrings having length at most h such that every
string from Σh has a unique prefix in Ph.

Immediate consequences of this encoding-
motivated entropy measure are that H∗

h ≥ Hh and
nH∗

h ≥ lg n, but nHh can be a small constant. Let
the optimal prefix cover P ∗

h be the prefix cover that
minimizes H∗

h in (2.2). Thus, (2.2) can be equiva-
lently stated as H∗

h = 1
n

∑

x∈P∗

h
|wx|H∗

0 (wx).2 The

empirical probabilities that are employed in the defi-
nition of the high-order empirical entropy can be ob-
tained from the number of occurrences nx,y, where
∑

x∈P∗

h
,y∈Σ nx,y = n. Indeed, ny =

∑

x∈P∗

h
nx,y and

nx =
∑

y∈Σ nx,y. This discussion motivates the fol-
lowing definition, which will guide us through our
high-order entropy analysis.

Definition 1. The empirical statistical model for
a text T is composed of two parts stored using
M(T, Σ, h) bits:

i. The partition of Σh induced by the contexts of
the prefix cover P ∗

h .
ii. The sequence of non-negative integers,

nx,1, nx,2, . . . , nx,σ, where x ∈ P ∗
n . (Recall

that nx,y is the number of occurrences of yx as
a substring of T .)

We denote the number of bits used to store the
information in parts (i)–(ii) by M(T, Σ, h), as n
increases.

2.2 Finite Set Entropy We provide a new defi-
nition of high-order empirical entropy H ′

h, based on
the finite set model rather than on conditional prob-
abilities, to avoid dealing with empirical probabili-
ties explicitly. We show that our new definition is
Hh − O(|P ∗

h | lg n) ≤ H ′
h ≤ Hh ≤ H∗

h, so that we can
provide bounds in terms of H ′

h.
For ease of exposition, we “number” the lexico-

graphically ordered contexts x as 1 ≤ x ≤ σh. Let the
multinomial coefficient

(
n

m1,m2,...,mp

)
= n!

m1! m2!···mp!

represent the number of partitions of n items into p
subsets of size m1, m2, . . . , mp. In this paper, we de-
fine 0! = 1. (Note that n = m1 + m2 + · · · + mp.)
When m1 = t and m2 = n − t, we get precisely the
binomial coefficient

(
n
t

)
. We define

(2.3) H ′
0 = H ′

0(T ) =
1

n
lg

(
n

n1, n2, . . . , nσ

)

,

2A minor technical note: h now refers to the length of the
longest substring in P ∗

h
, since no larger value of h can yield a

more succinct entropy measure.

which counts the number of possible partitions of n
items into σ unique buckets, i.e. the alphabet size.
We use the optimal prefix cover P ∗

h in (2.2) to define
alternative high-order empirical entropy3

(2.4)

H ′
h = H ′

h(T ) =
1

n

∑

x∈P∗

h

lg

(
nx

nx,1, nx,2, . . . , nx,σ

)

.

Theorem 2.1. For any text T and context length
h ≥ 0, we have H ′

h ≤ Hh.

Proof. It suffices to show that nH ′
0 ≤ nH0 for

all alphabets Σ, since then lg
(

nx

nx,1,nx,2,...,nx,σ

)
≤

|wx|H0(wx).
The bound nH ′

0 ≤ nH0 trivially holds when
σ = 1. We first prove this bound for an alphabet Σ
of σ = 2 symbols. Let t and n− t denote the number
of occurrences of the two symbols in T . We want
to show that nH ′

0 = lg
(
n
t

)
≤ nH0 = t lg(n/t) +

(n − t) lg(n/(n − t)) by (2.3). The claim is true
by inspection when n ≤ 4 or t = 0, 1, n − 1. Let
n > 4 and 2 ≤ t ≤ n − 2. We apply Stirling’s double
inequality [Fel68] to obtain

(2.5)
nn

√
2πn

en− 1
12n+1

< n! <
nn

√
2πn

en− 1
12n

.

Taking logarithms and applying the inequality to
lg

(
n
t

)
= lg(n!) − lg(t!) − lg((n − t)!), we have

nH ′
0 = lg

(
n

t

)

< nH0 −
1

2
lg

t(n − t)

n

− lg e

[
1

12t + 1
+

1

12(n − t) + 1
− 1

12n

]

− lg
√

2π.

Since t(n−t) ≥ n and 1/(12t+1)+1/(12(n−t)+1)≥
1/(12n) by our assumptions on n and t, it follows that
nH ′

0 ≤ nH0, proving the result when σ = 2.
Next, we show the claimed bound for the general

alphabet (σ ≥ 2 and h = 0) and by using induction
on the alphabet size (with the base case σ = 2 as
detailed before). We write
(2.6)

lg

(
n

n1, n2, . . . , nσ

)

= lg

[(
n − nσ

n1, n2, . . . , nσ−1

)

×
(

n

nσ

)]

.

We use induction for the right-hand side of (2.6) to
get

(2.7) lg

(
n − nσ

n1, n2, . . . , nσ−1

)

≤
σ−1∑

y=1

ny lg
n − nσ

ny
,

(2.8) lg

(
n

nσ

)

≤ nσ lg
n

nσ
+ (n − nσ) lg

n

n − nσ
.

3Actually, it can be defined for any prefix cover Ph,
including Ph = Σh.
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Original Sorted Mappings

Q F L i LF (i) Φ(i)

mississippi# i ppi#missis s 1 8 7
#mississippi i ssippi#mis s 2 9 10
i#mississipp i ssissippi# m 3 5 11
pi#mississip i #mississip p 4 6 12
ppi#mississi m ississippi # 5 12 3

ippi#mississ p i#mississi p 6 7 4
sippi#missis p pi#mississ i 7 1 6
ssippi#missi s ippi#missi s 8 10 1
issippi#miss s issippi#mi s 9 11 2
sissippi#mis s sippi#miss i 10 2 8
ssissippi#mi s sissippi#m i 11 3 9
ississippi#m # mississipp i 12 4 5

Table 1: Matrix Q for the bwt containing the cyclic
shifts of text T = mississippi# (column ‘Original’).
Sorting of the rows of Q, in which the first (F ) and
last (L) symbols in each row are separated (column
‘Sorted’). Functions LF and Φ for each row of the
sorted Q (column ‘Mappings’).

Summing (2.7) and (2.8), we obtain
∑σ

y=1 ny lg n
ny =

nH0, thus proving the claim for any alphabet size σ.

Corollary 2.1. For any given text T and context
length h ≥ 0, we have Hh − O((1/n)|P ∗

h | lg n) ≤ H ′
h.

The above discussion justifies our use of H ′
h

in later analysis, but we continue to state bounds
in terms of Hh since it represents more standard
notation. The key point is that we can derive
equations in terms of multinomial coefficients without
worrying about the empirical probability of symbols
appearing in text T .

2.3 The BWT and Suffix Arrays We now give
a short description of the bwt in order to ex-
plain its salient features. Consider the text T =
mississippi# in the example shown in Table 1,
where i < m < p < s < # and # is an end-
of-text symbol. The bwt forms a conceptual ma-
trix Q whose rows are the cyclic (forward) shifts
of the text in sorted order and stores the last col-
umn L = ssmp#pissiii written as a contiguous
string. Note that L is an invertible permutation of
the symbols in T . In particular, LF (i) = j in Ta-
ble 1 indicates for any symbol L[i], the correspond-
ing position j in F where L[i] appears. For instance,
LF (8) = 10 since L[8] = s occurs in position 10 of F
(as the third s among the four appearing consecu-
tively in F ).

Using L and LF , we can recreate the text T
in reverse order by starting at the last position n
(corresponding to #mississippi), writing its value
from F , and following the LF function to the next
value of F . Continuing the example from before,
we follow the pointers from LF (n): LF (12) = 4,

F [4] = i; LF (4) = 6, F [6] = p; LF (6) = 7, F [7] = p;
and so on. In other words, the LF function gives
the position in F of the preceding symbol from the
original text T . Thus one could store L and recreate
T , since we can obtain F by sorting L and the LF
function can be derived by inspection. Note that L is
compressible using 0th-order compressors, boosting
them to attain high-order entropy [FGMS05]. Now,
we connect the bwt with L.

We introduce the neighbor function Φ, which is
used to represent the compressed suffix array (csa)
in [GV05]. The Φ function can be thought of as
the FL mapping, and can represent the bwt much
like the LF mapping. The neighbor function Φ
is the inverse of the LF mapping, in other words,
Φ = LF−1.

We partition the Φ (LF ) mapping into Σ-lists.
Given a symbol y ∈ Σ, the list y is the set of positions
in L such that for any position p in list y, L[p] = y.
The fundamental property of these Σ lists is that
each list is an increasing series of positions. The
concatenation of the lists y for y = 1, 2, . . . , σ yields
the Φ function (as shown in Table 1). Thus, the
value of Φ(i) is just the ith nonempty entry in the
concatenation of the lists, and belongs to some list y.

3 A Nearly Space-Optimal Burrows-Wheeler

Transform

We now show our major upper bound result; we de-
scribe a nearly optimal analysis of the compressibil-
ity of the Burrows-Wheeler transform with respect to
high-order empirical entropy, exploiting the proper-
ties of the bwt illustrated in Section 2.3.

Let P ∗
h be the optimal prefix cover as defined in

Section 2, and let nx,y be the corresponding values in
equation (2.4), where x ∈ P ∗

h and y ∈ Σ. (See also
Definition 1.) We denote by |P ∗

h | ≤ σh the number of
contexts in P ∗

h . We describe our main upper bound
result in the following theorem.

Theorem 3.1. (Nearly Space-Optimal BWT)
The Burrows-Wheeler transform for a text T of n
symbols drawn from an alphabet Σ can be com-
pressed using nHh + M(T, Σ, h) bits for the best
choice of context length h and prefix cover P ∗

h ,
where the number of bits required for encoding the
empirical statistical model for P ∗

h is M(T, Σ, h) ≤
min {g′h lg(1 + n/g′

h), H∗
hn + lg n + g′′

h}, where
g′h = O(σh+1) and g′′h = O(σh+1 lg σh+1) do not
depend on the text length n.

Using Theorem 3.1, we can compare our analysis
with the best bounds from previous work. When
compared to the additive term of O(n lg lg n/ lgn) in
the analysis of the Lempel-Ziv method in [KM99],
we obtain an O(log n) additive term for σ = O(1)
and h = O(1), giving strong evidence why the
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bwt is better than the Lempel-Ziv method. Since
M(T, Σ, h) ≤ g′

h lg(n/g′h + 1), our bound becomes
nHh + O(lg n) when h = O(1) and σ = O(1), thus
exponentially reducing the additive term of n of the
Hh-based analysis in [FGMS05].

In this case, our bound closes the gap in the
analysis of the bwt, since it matches the lower bound
of nHh + Ω(lg lg n) up to lower-order terms. The
latter comes from the lower bound of nH∗

0 +Ω(lg lg n)
bits, holding for a large family of compressors (not
necessarily related to bwt), as shown in [FGMS05];
the only (reasonable) requirement is that any such
compressor must produce a codeword for the text
length n when it is fed with an input text consisting of
the same symbol repeated n times. Since Hh ≤ H∗

0 ,
we easily derive the lower bound of nHh + Ω(lg lg n)
bits, but a lower bound of nHh + Ω(lg n) probably
exists since nH∗

0 ≥ lg n while nHh can be zero.
For the modified hth-order empirical entropy, we

show that Theorem 3.1 can be upper bounded by
n(Hh + H∗

h) + lg n + g′′
h bits. Since Hh ≤ H∗

h, our
bound is strictly smaller than 2.5nH∗

h + lg n + gh

bits in [FGMS05], apart from the lower-order terms.
Actually, our bound is definitively smaller in some
cases. For example, while a bound of the form
nH∗

h + lg n + gh bits is not always possible [Man01],
there are an infinite number of texts for which nHh =
0 while nH∗

h 6= 0. In these cases, our bound is
nH∗

h + lg n + g′′
h bits.

We devote the rest of Sections 3–5 to the proof
of Theorem 3.1. We describe our analysis for an
arbitrary prefix cover Ph, so it also holds for the
optimal prefix cover P ∗

h as in equation (2.4). We make
use of the basic idea from [GGV03] to partition each
list y further into sublists 〈x, y〉 by contexts x ∈ Ph.
Intuitively, sublist 〈x, y〉 stores the positions such
that the symbols that follow F [y] are x. For context
length h = 1, if we continue the example in Table 1,
we break the Σ lists by context (in lexicographical
order i, m, p, s, and #, and numbered from 1 up
to |Ph|). The list for y = i is 〈7, 10, 11, 12〉, and
is broken into sublist 〈7〉 for context x = p, sublist
〈10, 11〉 for context x = s, and sublist 〈12〉 for x = #.

For any context x ∈ Ph, if we encode its sub-
lists using nearly lg

(
nx

nx,1,nx,2,...,nx,σ

)
bits, we auto-

matically achieve the hth-order empirical entropy as
seen in equation (2.4). For example, context x = i

should be represented with nearly lg
(

4
1,1,2

)
bits, since

two sublists contain one entry each and one sublist
contains two entries. The empirical statistical model
should record the partition induced by Ph, record
which sublists are empty, and encode the lengths of
all nonempty sublists using M(T, Σ, h) bits.

Encoding: We run the boosting algorithm
from [FGMS05] on the bwt to find the optimal value
of context order h and the optimal prefix cover P ∗

h us-

ing the cost of nH ′
h + M(T, Σ, h) according to equa-

tion (2.4). Once we know h and set Ph = P ∗
h , we

can cleanly separate the contexts and encode the Φ
function. Thus, we follow the two steps below:

1. We encode the empirical statistical model given
in Definition 1.

2. For each context x ∈ Ph, we separately encode
the sublists 〈x, y〉 for y ∈ Σ to capture high-order
entropy. Each of these sublists is a subset of the
integers in the range [1, nx]. These sublists form
a partition of the integers in the interval [1, nx].

The storage for step 1 is M(T, Σ, h), the number
of bits required for encoding the model. (See Def-
inition 1.) The storage required for step 2 should

use nearly lg
(

nx

nx,1,nx,2,...,nx,σ

)
bits per context x, and

should not exceed a total of nHh bits plus lower-
order terms, once we determine P ∗

h , as stated in The-
orem 3.1.

Decoding: We retrieve the empirical statistical
model encoded in step 1 above, which tells us which
sublists are nonempty and their lengths. (Note that
the values of n and nx can be obtained from these
lengths.) Next, we retrieve the sublists encoded in
step 2 since we know their lengths. At this point, we
have recovered the Φ function and we can decode the
bwt.

4 Encoding Sublists in High-Order Entropy

In this section, we discuss how to encode the sublists
in step 2. This is the first part of the proof of
Theorem 3.1.

One simple method for encoding the sublists
would be to simply encode each sublist 〈x, y〉 as a
subset of t = nx,y items out of a universe of n′ =
nx items. We can use t-subset encoding, requiring

the information-theoretic minimum of dlg
(
n′

t

)
e bits,

with O(t) operations on large integers, according
to [Knu05, Rus05]. All the t-subsets are enumerated
in some canonical order (e.g. lexicographic order) and
the subset occupying rank r in this order is encoded

by the value of r itself, which requires dlg
(
n′

t

)
e bits.

In this way, the t-subset encoding can also be seen as
the compressed representation of an implicit bitvector
of length n′: If the subset contains 1 ≤ s1 < s2 <
· · · < st ≤ n′, the sith entry in the bitvector is 1, for
1 ≤ i ≤ t; the remaining n′ − t bits are 0s. Thus,
we can use subset rank (and unrank) primitives for
encoding (and decoding) sublist 〈x, y〉 as a sequence

r of dlg
(

nx

nx,y

)
e bits.

Instead, we will encode sublists one context
at a time. In other words, we encode the sub-
lists 〈x, 1〉, 〈x, 2〉, . . . , 〈x, σ〉 at once. We encode each
context x by encoding the string wx (from Sec-
tion 2.1), which consists of the symbols y that pre-
cede x, concatenated together in bwt order. One
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simple method to encode wx that we can use is a
quasi-arithmetic coder from [HV94] (Theorem 1), re-

quiring lg
(

nx

nx,1,nx,2,...,nx,σ

)
+ 2 bits of space.

Lemma 4.1. (Quasi-Arithmetic Coder [HV94])
Suppose we know the values of nx and
nx,1, nx,2, . . . , nx,σ for each context x. We can
encode all contexts using one quasi-arithmetic coder
for each context x taking just nHh + O(σh) bits
of space. Decoding any context requires O(nx)
operations on integers of size O(σ).

4.1 The Wavelet Tree In this section, we detail
an alternate method of encoding each context x,
motivated by applications to text indexing. We
review the wavelet tree data structure, which is a
binary tree structure that reduces the compression
of a string from alphabet Σ to the compression of σ
binary strings. We direct the reader to [GGV03] for
more details and examples.

We will store one wavelet tree data structure
for each context x, built on the string wx, as used
earlier. Recall that wx is a string with alphabet Σ
of length nx. Each leaf represents one of the tx

nonempty sublists (equivalently, one of the tx distinct
symbols appearing in wx) from context x. We
implicitly consider each left branch to be associated
with a 0 and each right branch to be associated with
a 1. Each internal node u is a t-subset data structure
with the elements in its left subtree stored as 0, and
the elements in its right subtree stored as 1. For
instance, the root node conceptually stores a single
bitvector B of length nx represented by a t-subset
data structure. If B[p] = 0, then the pth symbol in
wx is one of 1, . . . , σ/2. B[p] = 1 otherwise.

The key observation is to note that each of the
tx − 1 internal nodes represents elements relative to
its subtrees. To decode any particular sublist in
a wavelet tree, a query would only need to access
O(lg tx) internal nodes in a balanced wavelet tree. In
particular, to recover the entries of any sublist 〈x, y〉,
we start from the leaf corresponding to sublist 〈x, y〉
and examine the t-subsets in its ancestors.

Lemma 4.2. (Wavelet Tree Compression)
Suppose we know the values of nx and
nx,1, nx,2, . . . , nx,σ for each context x. We can
encode all contexts using one wavelet tree for each
context x taking just nHh + O(σh+1) bits of space.

One problem with our current implementation
of the wavelet tree is its use of subset encoding
using t-subsets, requiring O(t) operations on large
integers [Knu05, Rus05]. To solve this problem, we
introduce our subset encoder in Section 4.2, which is a
data structure of independent interest. It will replace
the t-subsets in the wavelet tree, without adding any
additional space.

4.2 Subset Encoding With Small Integers In
this section, we describe a technique for subset en-
coding, storing a set S of t items out of a universe
of size n such that it can be encoded or decoded us-
ing O(t) operations on small integers (of size O(lg n)
bits). As we described in Section 4, we can think of a
t-subset as a succinct way to store an implicit bitvec-
tor. We could encode this bitvector using arithmetic
(or quasi-arithmetic) coding, but encoding/decoding
would require O(n) operations.

Another approach is to encode the gaps between
the items s1, s2, . . . , st that appear in the set S. (The
ith gap is formally si−si−1, where s0 = 1.) To encode
the items, we associate a probability distribution
for the different gap values, and encode each gap
according to its probability using any of a number
of techniques (say, for instance, the quasi-arithmetic
coder from [HV94]). Using this method, the items
are decoded sequentially using O(t) operations.

We will generate the gaps sequentially. For this
section, we redefine t to be the number of items left
to encode out of a remaining universe of size n. In
other words, the values of n and t will scale as we
sequentially generate gaps. (As described in [Vit84],
this won’t be a problem.) We define X to be the
random variable that determines the length of the
next gap value to be generated. Note that the range
of X is the set of integers in the interval 0 ≤ x ≤ n−t.
We will restrict gaps to a length of at most n/t and
aggregate the probabilities of larger gaps into a single
escape gap. If we need to encode an escape gap
of length g > n/t, we reset n = n − g − 1 and
continue processing. In other words, the range for
X is 0 ≤ x ≤ n/t.

One approach is to generate the gap X using the
exact probabilities f(x). The probability distribution
function (pdf) for f(x) is

f(x) =







α1
t
n

(n−x−1)t−1

(n−1)t−1 if 0 ≤ x < n/t;

α2
(n−n/t−1)t

nt if x = n/t;
0 otherwise,

where we use the notation ab to denote the falling
power a(a − 1) . . . (a − b + 1) = a!/(a − b)!. The
constants α1, α2 are normalization factors so that
f(x) sums up to 1. Generating gaps according to
this pdf requires large integer computations. Instead,
we use a probability estimate g(x) from [Vit84]
that is easy to compute using the built-in logarithm
functions. We define g(x) as

g(x) =







β1
t
n (1 − x

n )t−1 if 0 ≤ x < n/t;
β2e

−1 if x = n/t;
0 otherwise,

where β1 and β2 are normalization factors so that
g(x) sums up to 1. Here, X can be generated
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quickly with only one uniform or exponential random
variable [Vit84]. We will use this probability estimate
in the quasi-arithmetic coder to generate the gaps
using only O(t) operations on small integers (of
size O(lg n) bits). However, we may spend additional
bits to encode each gap, since our probabilities are
only estimates for pdf f(x). We address this point
in the following lemma, showing that the worst-
case difference between the encodings is quite small.
The complete proof of this result is somewhat more
technical and involves two probability estimates; we
defer these details until the full paper.

Lemma 4.3. The number of extra bits needed to en-
code a gap X = x using a probability estimate g(x)
instead of f(x) is at most O(1/n). Summed over all
gaps, the total encoding cost is at most O(1) bits of
additional space using an arithmetic coder.

Proof. We provide a sketch of the proof in this
abstract. The details will be in the full version of
the paper.

We look at the worst case where we encode a
gap X = x using the probability estimate g(x) rather
than f(x). The extra bits needed to encode any gap
is lg(1/g(x))− lg(1/f(x)) = lg(f(x)/g(x)). We write

lg(f(x)/g(x)) ≤ lg

(
n − x − 1

(n − 1)(1 − x/n)

)t−1

= lg

(

1 +
x

n(n − x − 1)

)1−t

.

The worst-case ratio of f(x)/g(x) occurs when x =
n/t. Substituting and using simple algebra, we arrive
at the result when t ≤

√

(n). In the full version of the
paper, we describe a second estimate with the same
result when t >

√

(n), thus showing the result.

We also need several other properties so that
we can use a quasi-arithmetic coder; we defer this
discussion until the full version of the paper. Putting
together the details, we arrive at Theorem 4.1, which
describes our subset-encoding scheme.

Theorem 4.1. (Small Integer Subsets)
Suppose each of the t items is drawn from [1..n],
where we already know t and n (and do not need to
encode them). Then, there exists an encoding of a
subset S of t items drawn from [1..n] that requires
lg

(
n
t

)
+ O(1) bits of space and can be encoded or

decoded in O(t) operations on small integers, of
size O(lg n) bits.

5 The Empirical Statistical Model

In this section, we present the second part of the proof
of Theorem 3.1. In Section 3, we described a method
of storing the bwt using nHh + M(T, Σ, h) bits.

Our scheme was divided into two components: the
encoding of a series of small disjoint subtexts, one for
each context x, and the encoding of the length of each
subtext, together with the statistics of each subtext.
We did not analyze the cost required to store this
empirical statistical information. We briefly recap
now:
• For each context x, the storage for step 2

uses fewer than lg
(

nx

nx,1,nx,2,...,nx,σ

)
+ tx bits by

Lemma 4.1 and 4.2. We use equation (2.4)
and Theorem 2.1 to bound the above term by
nH ′

h + |P ∗
h |σ for all contexts x ∈ P ∗

h in the worst
case. Since |P ∗

h | ≤ σh, we bound the space re-
quired to store the bwt by nHh + σh+1 bits.

• To decode step 2, we need to know the number
of symbols of each type stored in each subtext
for context x. Collectively, this information
maintains the empirical statistical model used to
achieve hth order entropy. We call its encoding
length M(T, Σ, h) (in bits), and we are interested
in discovering how succinctly this information
can be stored. Thus, the storage for step 1 is
M(T, Σ, h) bits.4

Our storage of the bwt requires nHh +
σh+1 + M(T, Σ, h) bits, and bounding the quan-
tity M(T, Σ, h) may help in understanding the com-
pressible nature of the bwt. We will devote the rest
of this section to developing two bounds for the stor-
age of the empirical statistical model. One benefit of
pursuing bounds in this framework is that it simpli-
fies the burden of analysis: namely, it translates the
overhead costs of the bwt into the cost for encoding
the integer lengths nx,y.

5.1 Definitions and a Simple Bound In this
section, we describe a simple encoding for the empir-
ical statistical model, which takes M(T, Σ, h) bits to
encode. Recall from Definition 1 in Section 2.1 that
the empirical statistical model encodes two items:
the partition of Σh induced by the optimal prefix
cover P ∗

h , and the sequence of lengths nx,y of the sub-
lists. The partition is easily stored using a bitvector
of length σh (or a subset encoding of the partition

using
⌈
lg

(
σh

|P∗

h
|

)⌉
≤ σh bits). To store the sequence

of lengths nx,y, we simply store the concatenation of
the gamma codes for each length nx,y and bound its
length.

We briefly review Elias’ gamma and delta
codes [Eli75] before detailing the proof. The
gamma code for a positive integer ` represents `
in two parts: the first encodes 1 + blg `c in unary,
followed by the value of ` − 2blg `c encoded in bi-
nary, for a total of 1 + 2blg `c bits. For exam-
ple, the gamma codes for ` = 1, 2, 3, 4, 5, . . . are

4In this section, we will show that M(T, Σ, h) ≥ σh+1.
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1,010,011,00100,00101, . . ., respectively. The
delta code requires fewer bits asymptotically by en-
coding 1 + blg `c via the gamma code rather than
in unary. For example, the delta codes for ` =
1, 2, 3, 4, 5, . . . are 1,0100,0101,01100,01101, . . .,
and require 1 + blg `c + 2blg lg 2`c bits. Now, we de-
scribe a simple upper bound on encoding the empir-
ical statistical model.

Lemma 5.1. The empirical statistical model re-
quires M(T, Σ, h) = O

(
σh+1 lg(1 + n/σh+1)

)
bits.

Proof. In this encoding, we represent the lengths us-
ing the gamma code. We obtain a bitvector Z by con-
catenating the gamma codes for nx,1, nx,2, . . . , nx,σ

for x = 1, 2, . . . , |P ∗
h |. The bitvector Z contains

O(
∑

x∈P∗

h
,y∈Σ lg nx,y) bits; this space is maximized

when all lengths nx,y are equal to Θ(n/(|P ∗
h |×σ)+1)

by Jensen’s inequality [CT91]. Since |P ∗
h | ≤ σh, we

bound the total space by O
(
(|P ∗

h |×σ) lg
(
1+n/(|P ∗

h |×
σ)

))
= O

(
σh+1 lg(1+n/σh+1)

)
bits. We do not need

to encode n as it can be recovered from the sum of
the sublists lengths.

The result of Lemma 5.1 is interesting, but it car-
ries a dependance on n, unlike the bounds in related
work, which are related only to σ and h [FGMS05]. In
Section 5.2, we show an alternate analysis that reme-
dies this problem and relates the encoding costs to
the modified entropy nH∗

h, as defined in Section 2.1.

5.2 Nearly Tight Upper Bound on M(T, Σ, h)
In this section, we describe a nearly tight upper
bound for encoding the empirical statistical model.
As we described in Section 5.1, we can easily store
the partition of Σh induced by the optimal prefix
cover P ∗

h using at most σh bits. We provide a new
analysis for storing the sequence of lengths nx,y in
Theorem 5.1.

Theorem 5.1. The empirical statistical model re-
quires at most M(T, Σ, h) ≤ nH∗

h + lg n +
O

(
σh+1 lg σh+1

)
bits of space.

The results of Theorem 5.1 highlight a remark-
able property of the Burrows-Wheeler Transform,
namely that maintaining the statistics of the text re-
quires more space than the actual encoding of the
information.

To prove Theorem 5.1, we have to encode the
sequence of sublist lengths nx,1, nx,2, . . . , nx,σ, where
x = 1, 2, . . . , |P ∗

h | and
∑

x∈P∗

h
,y∈Σ nx,y = n. We use

the following encoding scheme for each context x:
• If context x contains a single nonempty sub-

list y, we use σ bits to mark the yth sublist as
nonempty. Then, we store the length nx,y = nx.

• If context x contains two or more nonempty sub-
lists, we again use σ bits to mark the nonempty

sublists. To describe the rest of the method, let
n′

1 = nx and n′
j = nx − ∑j−1

i=1 nx,i be a scaled
universe where j ≥ 2. We use σ bits for con-
text x, one bit per sublist. The bit for sublist y
is 1 if and only if nx,y > n′

y/2; in this case, we
set ty = n′

y − nx,y. Otherwise, we set the bit
for sublist y to 0 and set ty = nx,y. Notice that
ty ≤ n′

y/2 in both cases. Now, we encode t using
its delta code. Given n′

y and ty, we can recover
the value of nx,y as expected.

Lemma 5.2. We can encode the sublist
lengths nx,1, nx,2, . . . , nx,σ for any context x with
two or more nonempty sublists using at most
γnxH∗

0 (wx) + O(σ) bits, where 0 < γ < 1/2 is a
constant.

Proof. Our scheme requires 2σ bits to store auxiliary
information. Now we bound the total size of encoding
the values t1, t2, . . . , tσ using the delta code for each
nonempty sublist. Our approach is to amortize
the cost of writing the delta code of ty with the
encoding of its associated sublist y. We introduce
some terminology to clarify the proof. For any
arbitrarily fixed constant γ with 0 < γ < 1/2, let
tγ > 0 be constants such that for any integer t > tγ ,
lg t + 2 lg lg(2t) + 1 < γ(2t − lg t − 1).

Then, for nonempty sublists y with ty ≤ tγ , the
delta code for ty will take O(lg tγ) = O(1) bits of
space. Summing these costs for all such sublists,
we would require at most O(σ lg tγ) = O(σ) bits for
context x.

For nonempty sublists y with ty > tγ , we use at
most γ(2ty − lg ty − 1) bits to write the delta code of
ty using the observation above.

Now, we will use the fact that ty ≤ n′
y/2 for

each sublist y in our scheme to bound the encod-
ing length of sublist y, and then amortize accord-
ingly. In general, for any 1 < t < n/2, lg

(
n
t

)
≥

lg
(
2t
t

)
≥ lg(22t/2t) = 2t − lg t − 1. Since each

sublist y with ty > tγ satisfies this condition by
the construction of our scheme, we can bound the

delta code of ty by γ lg
(n′

y

ty

)
bits. Summing over all

such sublists for context x, we would require at most
γ lg

(
nx

nx,1,nx,2,...,nx,σ

)
+ σ = γnxH∗

0 (wx) + σ bits us-
ing the analysis from Section 4.1, thus proving the
lemma.

The above scheme requires us to store the
length nx of each context x, since the sum of the
ty values we store may be less than nx. (For the
case with a single nonempty context, nx is the size
of the only sublist.) For example, suppose for some
context x, nx = 20, nx,1 = 11, nx,2 = 3, nx,3 = 5,
nx,4 = 1. According to our scheme, we would store
the ty values 9, 3, 1, and 1, which sum up to 14 < 20.
To determine the value of nx,1, we must therefore
compute nx − t; thus, we must know the value of nx.

198

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 



The storage of nx is a subtle but important
point, and it is a key component in understanding
the lower bound on encoding length for the bwt,
which we discuss more in Section 6. In Lemma 5.3,
we describe a technique to store the sequence of
lengths nx for x = 1, 2, . . . , |P ∗

h | using lg nx bits, plus
some small additional costs. We use this result to give
a simple bound on the space of our encoding scheme
in Lemma 5.4.

Lemma 5.3. The sequence of lengths nx for x =
1, 2, . . . , |P ∗

h | can be stored using
∑

x∈P∗

h
lg nx +lg n+

O(σh+1 lg σh+1) bits of space.

Proof. For each context x with nx entries, we encode
its length nx in binary using b(x) = blg nxc + 1
bits. These b(x) bits do not permit a decoding of
nx by themselves, since they are not prefix codes.
We describe how to fix this problem. We permute
the contexts x so that they are sorted by their b(x)
values. Now, contexts requiring the same number of
bits b(x) to store their lengths are contiguous. In
other words, we know that for any two consecutive
contexts x and x′ in the sorted order, either b(x) =
b(x′) or b(x) < b(x′). What remains is the storage
of the positions where b(x) < b(x′). We store this
information using |P ∗

h | bits.
To remember which lengths b(x) actually occur,

we observe that the number of distinct lengths is at
most lg n + 1, since 1 ≤ b(x) ≤ lg n + 1. We store
a bitvector of length lg n + 1 bits to keep track of
this information. Finally, we store the permutation
to restore the original order of the contexts using
O(lg |P ∗

h |!) = O(σh+1 lg σh+1) bits, thus proving the
lemma.

Lemma 5.4. The empirical statistical model requires
at most (1 + γ)nH∗

h + lg n + O(σh+1 lg σh+1) for all
contexts x, where 0 < γ < 1/2 is a constant.

Proof. Using the definition of modified hth-order
empirical entropy in equation (2.2), we bound the
first term in Lemma 5.3 by

∑

x∈P∗

h
lg nx ≤ nH∗

h.

According to our scheme, storing the length nx along
with σ bits is sufficient to encode any context x with a
single nonempty sublist. For the remaining contexts,
we apply Lemma 5.2 to achieve the desired result.

We can further improve our bound by amortizing
the cost of storing the length nx for context x with the
encoding of its sublists. The technique is reminiscent
of the one we used in Lemma 5.2. We change our
encoding scheme as follows.
• If context x contains a single nonempty sub-

list y, we use σ bits to mark the yth sublist as
nonempty. Then, we store the length nx,y = nx.

• If context x contains two or more nonempty
sublists, we use the scheme below.

• Let tγ be defined as in Lemma 5.2. For any
arbitrarily fixed constant γ with 0 < γ < 1/2,
let nγ > 0 be a constant such that for any
integer n > nγ and t > tγ with t ≤ n/2,
(
n
t

)
≥ n(n−1)...(n−d1/γe)

(d1/γe+1)! > nd1/γe.

• Instead of encoding nx,1 as the first sublist length
for context x, we use σ bits to indicate that we
encode nx,yb first, where tb = min{nx,yb , nx −
nx,yb} satisfies the condition

(
nx

tb

)
> (nx)γ−1

. If
no such yb exists, we encode nx,1 as before.

Lemma 5.5. We can encode the sublist
lengths nx,1, nx,2, . . . , nx,σ along the context length nx

for any context x with two or more nonempty sublists
using at most nxH∗

0 (wx) + O(σ) bits.

Proof. The cost for encoding the sublist lengths is
analyzed using Lemma 5.2. We focus on bounding
the cost for lg nx. If any sublist yb satisfies the
constraint in our scheme, we know that lg nx <
γ lg

(
nx

tb

)
, which is the same upper bound on the

number of bits required to encode tb. Thus, encoding
both nx,yb and nx will take 2γ lg

(
nx

tb

)
+ O(σ) bits

of space. The encoding size for the rest of the
new sequence remains the same as we observed in
Lemma 5.2, thus we require at most 2γnxH∗

0 (wx) +
O(σ) bits. Since γ < 1/2, this shows the bound for
contexts x that satisfy the constraint.

If no sublist satisfied the constraint, then we
know that each ti ≤ tγ(1 ≤ i ≤ σ) so the delta
code for each ti takes O(lg tγ) = O(1) bits, which
take at most O(σ) bits overall. Then, the lg nx bits
for encoding nx can be bounded by nxH∗

0 (wx) as
in Lemma 5.4, since nxH∗

0 (wx) ≥ lg nx. This case
will contribute at most nxH∗

0 (wx) + O(σ) bits to the
bound, thus proving the bound.

Combining Lemma 5.5 with our encoding for
the singleton context, we prove Theorem 5.1 and
Theorem 3.1.

6 Nearly Tight Bounds for the BWT

Manzini conjectures that the bwt cannot be com-
pressed to just nH∗

h + lg n + gh bits of space, where
gh = O(σh+1 lg σ). However, in Section 5.2, we pro-
vide an analysis that gives an upper bound of n(Hh+
H∗

h) + lg n + g′′
h bits, where g′′

h = O(σh+1 lg σh+1).
Since there are an infinite number of strings where
nHh = 0 but nH∗

h 6= 0, our bound is nHh +
M(T, Σ, h) ≤ nH∗

h + lg n + g′′
h in these cases, match-

ing Manzini’s conjectured lower bound (but not for
all strings).

In this section, we will explore other classes of
strings that help establish a non-trivial lower bound
on the compressibility of the bwt. Surprisingly, the
encoding of the bwt requires an amount of space very
close to our encoding length for the upper bound. In
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particular, we will prove the following theorem, which
shows that our upper bound analysis is nearly tight.

Theorem 6.1. For any chosen positive con-
stants δ ≤ 1 and k > d1/δe = d, there exists
an infinite family of strings such that for any
string of length n in the family, its encoding
length nHh + M(T, Σ, h) satisfies the following two
relations:
(6.9)

nH∗
h +

k − 1

k
δnHh−O(poly(kd)) ≤ nHh+M(T, Σ, h)

(6.10) nHh +M(T, Σ, h) ≤ nH∗
h +δnHh +lg n+g′′

h.

When δ > 1, we use Theorem 3.1 as the upper
bound for (6.10). To prove inequality (6.10), we
give a tighter analysis of the space-intensive part of
the encoding scheme from Section 5. To capture
the primary challenge from Section 5, we define a
δ-resilient text. Let bwt(T ) denote the result of
applying the bwt to the text T . For any given
constant δ such that 0 < δ ≤ 1, the text T is δ-
resilient if the optimal partition induced by P ∗

h for
bwt(T ) satisfies maxy∈Σ{nx,y} ≤ nx − d1/δe for
every context x ∈ P ∗

h . In other words, no partition x
of bwt(T ) induced by P ∗

h contains more than nx −
d1/δe identical symbols. We define d = d1/δe. Now,
we apply Theorem 5.1 to δ-resilient texts and achieve
the following lemma.

Lemma 6.1. For any constant δ with 0 < δ ≤ 1 and
any δ-resilient text T of n symbols over Σ, we have
nHh + M(T, Σ, h) ≤ n(δHh + H∗

h) + lg n + g′′
h.

To prove our lower bound inequality (6.9) from
Theorem 6.1, we describe a construction scheme
that takes user-defined parameters and creates a δ-
resilient text T of length n. We will then count the
total number of δ-resilient texts that our construction
scheme generates, and use a combinatorial argument
to bound the space required to distinguish between
these texts.

6.1 Constructing δ-resilient Texts In this sec-
tion, we describe how to construct δ-resilient texts
using a generalized construction scheme; then, we
will use the resulting class of texts to prove inequal-
ity (6.9) of Theorem 6.1. First, we define some ter-
minology that will help clarify the discussion. Let
d = d1/δe, where 0 < δ ≤ 1 is a constant. Let Ts be
a support text of length ns composed of an alpha-
bet Σ = {a1, a2, . . . , ak, b, c1, c2, . . . , ck, #}, where
k = O(polylg(n)) > d is a fixed positive integer. We
assume that ai < ai+1 < b < cj < cj+1 < # for all i
and j. We define Ts as

Ts = (a1c1)
`1

︸ ︷︷ ︸

r1

(a2c2)
`2

︸ ︷︷ ︸

r2

. . . (akck)`k

︸ ︷︷ ︸

rk

,

where each length parameter `i ≥ d. We define
a run ri as the sequence of `i substrings of the
form aib

∗ci. In Ts, b never appears. The length
of the support string Ts is ns = 2

∑k
i=1 `i. We now

prove the following lemma.

Lemma 6.2. The bwt(Ts) is

bwt(Ts) =

B1

︷ ︸︸ ︷

ck(c1)
`1−1

︸ ︷︷ ︸

P1

c1(c2)
`2−1

︸ ︷︷ ︸

P2

. . . ck−1(ck)`k−1

︸ ︷︷ ︸

Pk

B2

︷ ︸︸ ︷

(a1)
`1

︸ ︷︷ ︸

Q1

(a2)
`2

︸ ︷︷ ︸

Q2

. . . (ak)`k

︸ ︷︷ ︸

Qk

,

where B1 = P1P2 . . . Pk as the first block of the
bwt transform, and B2 = Q1Q2 . . .Qk as the second
block. Here, Pi refers to the positions of the bwt
corresponding to strings that start with symbol ai, and
Qi refers to positions of the bwt corresponding to
strings that start with symbol ci.

Proof. Consider the strings in the bwt matrix M ,
sorted in lexicographical order. According to the rank
of symbols in alphabet Σ, all strings beginning with
ai will precede strings before ai+1. Similarly, strings
beginning with ci will precede strings beginning with
ci+1. Finally, all strings beginning with ai will
precede strings beginning with c1. Also, there are
exactly `i strings that begin with ai and ci. We now
focus on the strings that begin with ci.

Each string beginning with ci has the symbol ai

preceding it (or equivalently, at the end of the string)
in all cases. Thus, the part of the bwt corresponding
to strings beginning with ci is (ai)

`i . Collectively, we
call this block B2.

Each string beginning with ai has the symbol ci

preceding it (or at the end of the string, since it’s
cyclic), except the string corresponding to the first
ai in run ri. This string is lexicographically the first
string among all of the strings beginning with ai and
is preceded by ci−1 or ck if i = 1. Thus, the part
of the bwt corresponding to strings beginning with
ai is ci−1(ci)

`i−1. If i = 1, ci−1 is replaced with ck.
Collectively, we call this block B1.

Thus, the lemma is proved.

Now, we introduce d = d1/δe partition vec-
tors vi = 〈vi[1], vi[2], . . . vi[k]〉 which will generate a δ-
resilient property for B2; B1 remains unchanged, but
will implicitly encode the length of the corresponding
portions of B2. We augment Ts as follows: for each
entry of vi for all i, we replace the vi[j]th occurrence
of the string ajcj with ajbcj . We will make d such
replacements in each of the k partitions. We call this
augmented text T ′

s, of length n′
s = ns + dk.
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Lemma 6.3. The bwt(T ′
s) is

bwt(T ′
s) =

B1

︷ ︸︸ ︷

P ′
1P

′
2 . . . P ′

k

A
︷ ︸︸ ︷

(a1)
d(a2)

d . . . (ak)d

B2

︷ ︸︸ ︷

Q′
1Q

′
2 . . .Q′

k,

where P ′
i is composed of symbols preceding strings

that start with ai, A is composed of symbols preceding
strings that start with b, and Q′

i is composed of
symbols preceding strings that start with ci.

Proof. This proof is similar to Lemma 6.2, where each
string in Pi precedes strings in Pi+1. Here, all strings
in P ′

i precede strings in P ′
i+1, strings in Q′

i precede
strings in Q′

i+1, and strings in P ′
i precede strings

beginning with b (called A) and strings in A precede
strings in Q′

1.
Then, P ′

i is a string of length `i similar to Pi, but
the single occurrence of ci−1 (or ck if i = 1) could
be in any of the `i positions. Also, Q′

i is a string
of length `i where d positions contain the symbol b,
and all others are ai. Block A consists of exactly
d occurrences of each ai sorted in lexicographical
order, since all d strings beginning with bci precede
all strings beginning with bci+1, thus finishing the
proof.

A simple verification will show that blocks A
and B2 are δ-resilient portions of T ′

s. Furthermore,
block A is deterministic once the parameters d and
k have been chosen; block B1 encodes the length of
each Q′

i. To have a fully δ-resilient text, we want
B1 to have the same property, so we generate the
string T = T ′

s(Ts)
d−1#. This will include d − 1

occurrences of a different symbol inside each P ′
1. Note

that |T | = n = dns + dk + 1.

Lemma 6.4. The bwt(T ) is

bwt(T ) =

B1

︷ ︸︸ ︷

P ′′
1 P ′′

2 . . . P ′′
k A

B2

︷ ︸︸ ︷

Q′′
1Q′′

2 . . . Q′′
k ck,

where P ′′
i is composed of symbols preceding strings

that start with ai, A is composed of symbols preceding
strings that start with b, and Q′′

i is composed of
symbols preceding strings that start with ci.

Proof. The strings P ′′
i and Q′′

i are of length d`i.
Similar to the arguments in Lemma 6.3, P ′′

1 consists
of the symbol c1 in all but d`1 − d positions; one
position contains # and the other d − 1 positions
contain ck. P ′′

i consists of the symbol ci in all but
d`i − d positions; the other d positions contain ci−1.
Each Q′′

i is similar to the previous case, except its
length is now d`i. Q′′

i still contains only d occurrences
of b.

Finally, the last ck is the symbol preceding #

in the text, which is lexicographically the largest
symbol, and therefore the last string represented in
the bwt, thus finishing the proof.

6.2 Encoding a δ-resilient Text In this section,
we analyze the space required to store a δ-resilient
text T . Since B1 and A are deterministic once d and
k are chosen, we focus only on the encoding cost of
B2. First, we prove the following lemma.

Lemma 6.5. For any set of p objects, at least half of
them will take at least lg p − 1 bits to encode so that
the objects can be distinguished from one another.

Proof. Since one can distinguish at most 2j objects
from one another using j bits, the most succinct
encoding would greedily store two objects using one
bit each, four objects using two bits each, and so on.
Thus, we need to make sure that

∑j
i 2i ≥ p. Thus,

j + 1 ≥ lg p, and the lemma follows.

Let Λ be the set of all possible choices λ of
length parameters `1, `2, . . . , `k used to generate δ-
resilient texts in Section 6.1. By construction, |Λ| =
(
ns/2−dk+k−1

k−1

)
. For a given choice λ of parameters,

we choose d positions in each partition Q′′
i that will

contain a b. However, we are only choosing from the
first `i positions for each run ri (i.e. the positions that
correspond to the entries in T ′

s). Once these positions
are chosen, we perform the steps described in our
construction scheme. Since the bwt is a reversible
transform, we have

(
`i

d

)
possible partitions Q′′

i and
our construction scheme generates one of

X =
∑

λ∈Λ

(
`1

d

)(
`2

d

)

. . .

(
`k

d

)

different texts. We let an adversary encode the X
texts in any way he wishes. Then, we use Lemma 6.5
to consider only half of these texts, namely the ones
that take at least lg X − 1 bits to encode. Now we
analyze the quantity lg X − 1.

To help analyze lg X − 1, we divide Λ into two
sets Y and Z of equal cardinality, such that for any
texts y ∈ Y and z ∈ Z, the product p(y) ≤ p(z),

where p(T ) =
∏k

1

(
`i

d

)
. In words, Y contains the

texts T where p(T ) is smaller, and Z contains the ones
where p(T ) is larger. We take a single arbitrary text S
from set Y and determine which choice λ∗ of length
parameters `i was used. We separate the k terms
corresponding to λ∗ from lg X − 1 and analyze their
cost separately. The terms are

∑k
1 lg

(
`i

d

)
= nH ′

1(S),
by our definition of finite set empirical entropy. Since
nH ′

h(S) ≤ nH ′
1(S), the contribution of this part of

lg X − 1 is at least nH ′
h(S) bits. We translate this

into a bound in terms of nH∗
h using the following

lemma.
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Lemma 6.6. For a δ-resilient text, nH∗
h−Θ(k lg d) ≤

nH ′
h.

Proof. It suffices to show that nH∗
0 − Θ(lg d) ≤ nH ′

0

for each partition Q′′
i in a δ-resilient text, since there

are at most 2k + 1 partitions. We apply Stirling’s
double inequality to the expression lg

(
`i

d

)
and find

that

lg

(
li
d

)

> `iH0 +
1

2
lg

`i

d(`i − d)
− O(1)

> `iH0 +
1

2
lg

1

d
− O(1),

thus proving the lemma.

Thus, the total contribution of the part of lg X−1
corresponding to the text S is at least nH∗

h(S) −
Θ(k lg d) bits. Now we bound the term X to figure
out the entire cost of encoding the string S. We will
lower bound X by the sum for just the set Z and
obtain

X ≥
∑

z∈Z

k∏

1

(
`i

d

)

≥
∑

z∈Z

p(S)

=
1

2

(
ns/2 − dk + k − 1

k − 1

)

p(S).

Taking logs, we require nH∗
h(S)+lg

(
ns/2−dk+k−1

k−1

)
−1

bits of space.
To finish the proof, we analyze the contribution

of the term lg
(
ns/2−dk+k−1

k−1

)
. For ease of notation,

let g = ns/2 − dk + k − 1. We want to show that
(k − 1) lg g/(k − 1) ≤ lg

(
g

k−1

)
. The claim is true

by inspection when g ≤ 4 or k − 1 is 0, 1, or g − 1.
For the remainder of the cases, we apply Stirling’s
inequality as in Theorem 2.1 to verify the claim.
Now, (k − 1) lg g/(k − 1) ≥ (k − 1) lg ns/2 − (k −
1) lg(dk)− (k − 1) lg k. Thus, the contribution of this
part of lg X − 1 is at least (k − 1) lg n − Θ(k lg(dk))
bits, proving inequality (6.9) and Theorem 6.1 for any
arbitrary δ-resilient text S.
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