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Abstract. We present a framework to dynamize succinct data struc-
tures, to encourage their use over non-succinct versions in a wide variety
of important application areas. Our framework can dynamize most state-
of-the-art succinct data structures for dictionaries, ordinal trees, labeled
trees, and text collections. Of particular note is its direct application to
XML indexing structures that answer subpath queries [2]. Our framework
focuses on achieving information-theoretically optimal space along with
near-optimal update/query bounds.

As the main part of our work, we consider the following problem
central to text indexing: Given a text T over an alphabet Σ, construct a
compressed data structure answering the queries char (i), rank s(i), and
select s(i) for a symbol s ∈ Σ. Many data structures consider these queries
for static text T [5, 3, 16, 4]. We build on these results and give the best
known query bounds for the dynamic version of this problem, supporting
arbitrary insertions and deletions of symbols in T .

Specifically, with an amortized update time of O(nε), any static suc-
cinct data structure D for T , taking t(n) time for queries, can be con-
verted by our framework into a dynamic succinct data structure that
supports rank s(i), select s(i), and char (i) queries in O(t(n) + log log n)
time, for any constant ε > 0. When |Σ| = polylog(n), we achieve O(1)
query times. Our update/query bounds are near-optimal with respect to
the lower bounds from [13].

1 Introduction

The new trend in indexing data structures is to compress and index data in one
shot. The ultimate goal of these compressed indexes is to retain near-optimal
query times (as if not compressed), yet still take near-optimal space (as if not
an index). A few pioneer results are [6, 5, 3, 15, 4, 2]; there are many others. For
compressed text indexing, see Navarro and Mäkinen’s excellent survey [11].

Progress in compressed indexing has also expanded to more combinatorial
structures, such as trees and subsets. For these succinct data structures, the
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emphasis is to store them in terms of the information-theoretic (combinatorial)
minimum required space with fast query times [15, 9, 7]. Compressed text index-
ing makes heavy use of succinct data structures for set data, or dictionaries.

The vast majority of succinct data structuring work is concerned largely with
static data. Although the space savings is large, the main deterrent to a more
ubiquitous use of succinct data structures is their notable lack of support for
dynamic operations. Many settings require indexing and query functionality on
dynamic data: XML documents, web pages, CVS projects, electronic document
archives, etc. For this type of data, it can be prohibitively expensive to rebuild
a static index from scratch each time an update occurs. The goal is then to
answer queries efficiently, perform updates in a reasonable amount of time, and
still maintain a compressed version of the dynamically-changing data.

In that vein, there have been some results on dynamic succinct bitvectors
(dictionaries) [14, 8, 12]. However, these data structures either perform queries in
far from optimal time (in query-intensive environments), or allow only a limited
range of dynamic operations (“flip” operations only). Here, we consider the more
general update operations consisting of arbitrary insertion and deletion of bits,
which is a central challenge in dynamizing succinct data structures for a variety of
applications. We define the dynamic text dictionary problem: Given a dynamic
text T of n symbols drawn from an alphabet Σ, construct a data structure
(index) that allows the following operations for any symbol s ∈ Σ:
– ranks(i) tells the number of s symbols up to the ith position in T ;
– selects(i) gives the position in T of the ith s;
– char (i) returns the symbol in the ith position of T ;
– inserts(i) inserts s before the position i in T ;
– delete(i) deletes the ith symbol from T .

When |Σ| = 2, the above problem is called the dynamic bit dictionary prob-
lem. For the static case, [15] solves the bit dictionary problem using nH0 + o(n)
bits of space and answers rank and select queries in O(1) time, where H0 is the
0th order empirical entropy of the text T . The best known time bounds for the
dynamic problem are given by [12], achieving O(log n) for all operations.3

The text dictionary problem is a key tool in text indexing data structures.
For the static case, Grossi et al. [5] present a wavelet tree structure that answers
queries in O(log |Σ|) time and takes nH0 + o(n log |Σ|) bits of space. Golynski
et al. [4] improve the query bounds to O(log log |Σ|) time, although they take
more space, namely, n log |Σ|+o(n log |Σ|) bits of space. Nevertheless, their data
structure presents the best query bounds for this problem.

Developing a dynamic text dictionary based on the wavelet structure can be
done readily using dynamic bit dictionaries (as is done in [12]) since updates to a
particular symbol s only affect the data structures for O(log |Σ|) groups of sym-
bols according to the hierarchical decomposition of the alphabet Σ. The solution
to this problem is given by Mäkinen and Navarro [12], with an update/query
bound of O(log n log |Σ|). These bounds are far from optimal, especially in query-
intensive settings. On the other hand, the best known query bounds for static

3 There is another data structure proposed in [8], requiring non-succinct space.



text dictionaries are given by [4], which treats each symbol in Σ individually;
an update to symbol s could potentially affect Σ different data structures, and
thus may be hard to dynamize.

We list the following contributions of our paper:
– We develop a general framework to dynamize many succinct data structures

like ordinal trees, labeled trees, dictionaries, and text collections. Our frame-
work can transform any static succinct data structure D for a text T into
a dynamic succinct data structure. Precisely, if D supports rank s, selects,
and char queries in O(t(n)) time and takes s(n) bits of space, the dynamic
data structure supports queries in O(t(n) + log log n) time and updates in
amortized O(nε) time and takes just s(n) + o(n) bits of space.

– Our results represent near-optimal tradeoffs for update/query times for the
dynamic text (and bit) dictionary problem. (For lower bound, see [13].)

– We provide the first succinct data structure for the dynamic bit dictionary
problem. Our data structure takes nH0 + o(n) bits of space and requires
O(log log n) time to support rank s, selects, and char queries while supporting
updates to the text T in amortized O(nε) time.

– We provide the first near-optimal result for the dynamic text dictionary prob-
lem on a dynamic text T . Our data structure requires n log |Σ|+o(n log |Σ|)
bits of space and supports queries in O(log log n) time and updates in O(nε)
time. When |Σ| = polylog(n), we can improve our query time to O(1).

– Our framework can dynamize succinct data structures for labeled trees, text
collections, and XML documents.

2 Preliminaries

We summarize several important static structures that we will use in achieving
the dynamic results. The proofs of their construction are omitted due to space
constraints. In the rest of this paper, we refer to a static bit or text dictionary D,
that requires s(n) bits and answers queries in t(n) time.

Lemma 1 ([15]). For a bitvector (i.e., |Σ| = 2) of length n, there exists a
static data structure D called RRR solving the bit dictionary problem support-
ing rank, select, and char queries in t(n) = O(1) time using s(n) = nH0 +
O(n log log n/ logn) bits of space, while taking only O(n) time to construct. ut

Lemma 2 ([5]). For a text T of length n drawn from alphabet Σ, there exists a
static data structure D called the wavelet tree solving the text dictionary problem
supporting rank s, selects, and char queries in t(n) = O(log |Σ|) time using
s(n) = nH0 + o(n log |Σ|) bits of space, while taking O(nH0) time to construct.
When |Σ| = polylog(n), we can support queries in t(n) = O(1) time. ut

Lemma 3 ([4]). For a text T of length n drawn from alphabet Σ, there exists
a static data structure D called GMR that solves the text dictionary problem
supporting selects queries in t1(n) = O(1) time and rank and char queries in
t2(n) = O(log log |Σ|) time using s(n) = n log |Σ| + o(n log |Σ|) bits of space,
while taking O(n log n) time to construct. ut



We also use the following static data structure called prefix-sum (PS) as a
building block for achieving our dynamic result. Suppose we are given a non-
negative integer array A[1..t] such that

∑

i A[i] ≤ n. We define the partial

sums P [i] =
∑i

j=1 A[i]. Note that P is a sorted array, such that 0 ≤ P [i] ≤
P [j] ≤ n for all i < j. A prefix-sum (PS) structure on A is a data structure that
supports the following operations:
– sum(j) returns the partial sum P [j];
– findsum(i) returns the index j such that sum(j) ≤ i < sum(j + 1).

Lemma 4. Let A[1 . . . t] be a non-negative integer array such that
∑

i A[i] ≤
n. There exists a data structure PS on A that supports sum and findsum in
O(log log n) time using O(t log n) bits of space and can be constructed in O(t)
time. In the particular case where x ≤ A[i] ≤ cx for all i, where x is a positive
integer and c ≥ 1 is a positive constant integer, sum and findsum can be answered
in O(1) time. ut

We also make use of a data structure called the Weight Balanced B-tree
(WBB tree), which was used in [14, 8]. We use this structure with Lemma 4
to achieve O(1) time. A WBB tree is a B-tree defined with a weight-balance
condition. A weight-balance condition means that for any node v at level i, the
number of leaves in v’s subtree is between 0.5bi + 1 and 2bi − 1, where b is the
fanout factor. Insertions and deletions on the WBB tree can be performed in
amortized O(logb n) time while maintaining the weight-balance condition.

We use the WBB tree since it ensures that x ≤ A[i] ≤ cx where c is a positive
constant integer, thus allowing constant-time search at each node. However, a
simple B-tree would require O(log log n) time in this situation. Also, WBB trees
are a crucial component of the onlyX structure, described in Section 3.3. WBB
trees are also used in Section 3.1 (although B-trees could be used here).

3 Data Structures

Our solution is built with three main data structures:
– BitIndel : bitvector supporting insertion and deletion, described in Section 3.1;
– StaticRankSelect : static text dictionary structure supporting rank s, selects,

and char on a text T ;
– onlyX : non-succinct dynamic text dictionary, described in Section 3.3

We use StaticRankSelect to maintain the original text T ; we can use any
existing structure such as GGV or GMR mentioned in Section 2. For ease of
exposition, unless otherwise stated, we shall use GMR [4] in this section. We keep
track of newly inserted symbols N in onlyX such that after every O(n1−ε log n)
update operations performed, updates are merged with the StaticRankSelect
structure. Thus, onlyX never contains more than O(n1−ε log n) symbols. We
maintain onlyX using O(n1−ε log2 n) = o(n) bits of space. Finally, since merging
N with T requires O(n log n) time, we arrive at an amortized O(nε) time for
updating these data structures. BitIndel is used to translate positions pt from
the old text T to the new positions pt̂ from the current text T̂ . (We maintain T̂
implicitly through the use of BitIndel structures, StaticRankSelect, and onlyX.)



3.1 Bitvector Dictionary with Indels: BitIndel

In this section, we describe a data structure (BitIndel) for a bitvector B of
original length n that can handle insertions and deletions of bits anywhere in B
while still supporting rank and select on the updated bitvector B ′ of length n′.
The space of the data structure is n′H0 + o(n′). When n′ = O(n), our structure
supports these updates in O(nε) time and rank and select queries in O(log log n)
time. (In [8], Hon et al. propose a non-succinct BitIndel structure taking n′+o(n′)
bits of space.)

Formally, we define the following update operations that we support on the
current bitvector B′ of length n′: insertb(i) inserts the bit b in the ith position,
delete(i) deletes the bit located in the ith position, and flip(i) flips the bit in
the ith position.

We defer the details until the full paper. The idea is to use a B-tree over
Θ(nε)-sized chunks of the bitvector, which are stored using an RRR structure.
This B-tree is constant-height and needs prefix-sum data structures in its internal
nodes for fast access.

Lemma 5. Given a bitvector B′ with length n′ and original length n, we can
create a data structure that takes n′H0 + o(n′) bits and supports rank and select
in O((logn n′) log log n) time, and indel in O(nε logn n′) time. When n′ = O(n),
our time bounds become O(log log n) and O(nε) respectively. ut

The prefix sum data structure used inside the B-tree is the main bottleneck
to query times, allowing us only O(log log n) time access. However, if we store
three WBB-trees, then separately in each of them the special condition from
Lemma 4 can be met allowing us O(1) queries on prefix sum structures. This
allows us to obtain the following lemma.

Lemma 6. Given a bitvector B′ with length n′ and original length n, we can
create a data structure that takes 3n′H0 +o(n′) bits and supports rank and select
in O(logn n′) time, and indel in O(nε logn n′) amortized time. When n′ = O(n),
our time bounds become O(1) and O(nε) respectively. ut

If we change our BitIndel structure such that the bottom-level RRR [15]
data structures are built on [log2 n, 2 log2 n] bits each and set the B-tree fanout
factor b = 2, we can obtain O(log n) update time with O(log n) query time. In
this sense, our BitIndel data structure is a generalization of [12].

3.2 Insert-X-Delete-any: inX

Let x be a symbol other than those in alphabet Σ. In this section, we describe
a data structure on a text T of length n supporting rank s and selects that can
handle delete(i) and insertx(i). That is, only x can be inserted to T , while any
characters can be deleted from T . Notice that insertions and deletions will affect
the answers returned for symbols in the alphabet Σ. For example, T may be
abcaab, where Σ = {a, b, c}. Here, ranka(4) = 2 and selecta(3) = 5. Let T̂
be the current text after some number of insertions and deletions of symbol x.
Initially, T̂ = T . After some insertions, the current T̂ may be axxxbcaxabx.



Notice that ranka(4) = 1 and selecta(3) = 9. We represent T̂ by the text T ′, such
that when the symbols of the original text T are deleted, each deleted symbol
is replaced by a special symbol d (whereas if x is deleted, it is just deleted from
T ′). Continuing the example, after some deletions of symbols from T , T ′ may
be axxxddaxabx. Notice that ranka(4) = 1 and selecta(3) = 7.

We define an insert vector I such that I [i] = 1 if and only if T ′[i] = x.
Similarly, we define a delete vector D such that D[i] = 1 if and only if T ′[i] = d.
We also define a delete vector Ds for each symbol s such that Ds[i] = 1 if and
only if the ith s in the original text T was deleted. The text T ′ is merely a
conceptual text: we refer to it for ease of exposition but we actually maintain T̂
instead.

To store T̂ , we store T using the StaticRankSelect data structure and store
all of the I , D, Ds bitvectors using the constant time BitIndel structure. Now,
we describe T̂ .insertx(i), T̂ .delete(i), T̂ .ranks(i), and T̂ .selects(i):

T̂ .insertx(i). First, we convert position i in T̂ to its corresponding position i′

in T ′ by computing i′ = D.select0(i). Then we must update our various vectors.
We perform I.insert1(i′) on our insert vector, and D.insert0(i′) on our delete
vector.

T̂ .delete(i). First, we convert position i in T̂ to its corresponding position i′ in
T ′ by computing i′ = D.select0(i). If i′ is newly-inserted (i.e., I [i′] = 1), then we
perform I.delete(i′) and D.delete(i′) to reverse the insertion process from above.
Otherwise, we first convert position i′ in T ′ to its corresponding position i′′ in T
by computing i′′ = I.rank0(i′). Let s = T.char (i′′). Finally, to delete the symbol,
we perform D.flip(i′) and Ds.flip(j), where j = T.rank s(i

′′).

T̂ .ranks(i). First, we convert position i in T̂ to its corresponding position i′ in
T ′ by computing i′ = D.select0(i). If s = x, return I.rank1(i′). Otherwise, we
first convert position i′ in T ′ to its corresponding position i′′ in T by computing
i′′ = I.rank0(i′). Finally, we return Ds.rank0(j), where j = T.ranks(i

′′).

T̂ .selects(i). If s = x, compute j = I.select1(i) and return D.rank0(j). Oth-
erwise, we compute k = Ds.select0(i) to determine i’s position among the s
symbols from T . We then compute k′ = T.selects(k) to determine its original
position in T . Now the position k′ from T needs to be mapped to its appropriate
location in T̂ . Similar to the first case, we perform k′′ = I.select0(k′) and return
D.rank0(k′′), which corresponds to the right position of T̂ .

T̂ .char(i). First, we convert position i in T̂ to its corresponding position i′

in T ′ by computing i′ = D.select0(i). If I [i′] = 1, return x. Otherwise, we
convert position i′ in T ′ to its corresponding position i′′ in T by computing
i′′ = I.rank0(i′) and return T.char (i′′).

Space and Time. As can be seen, each of the rank and select operations
requires a constant number of accesses to BitIndel and StaticRankSelect struc-
tures, thus taking O(1) time to perform. The indel operations require O(nε)
update time, owing to the BitIndel data structure. The space required for the
above data structures comes from the StaticRankSelect structure, which requires
s(n) = O(n log |Σ|+o(n log |Σ|)) bits of space, and the many BitIndel structures,



whose space can be bounded by 3 log
(

n′

n

)

+ 6 log
(

n′

n′′

)

+ o(n′) + O((n′/nε) log n′)
bits where n′′ is number of deletes. If n′′ and n′ − n are bounded by n1−ε, then
this expression is o(n) bits.

Theorem 1. Let T be a dynamic text of original length n and current length n′,
with characters drawn from an alphabet Σ. Let n′′ be the number of deletions. If
the number of updates is O(n1−ε), We can create a data structure using GMR
that takes n log |Σ|+o(n log |Σ|) bits of space and supports rank s(i) and selects(i)
in O(1) time and insertx(i) and deletes(i) in O(nε) time.

3.3 onlyX-structure

Let T be the dynamic text that we want to maintain, where symbols of T
are drawn from alphabet Σ. Let n′ be the current length of T , and we as-
sume that n′ = O(n). In this section, we describe a data structure for main-
taining a dynamic array of symbols that supports rank s and selects queries in
O((logn n′)(t(n) + log log n)) time, for any fixed ε with 0 < ε < 1; here, we
assume that the maximum number of symbols in the array is O(n). Our data
structure takes O(n′ log n) bits; for each update (i.e., insertion or deletion of a
symbol), it can be done in amortized O(nε) time.

We describe how to apply the WBB tree to maintain T while supporting
ranks and selects efficiently, for any s ∈ Σ.4 In particular, we choose ε < 1 and
store the symbols of T in a WBB W with fanout factor b = nδ where δ = ε/2
such that the ith (leftmost) leaf of W stores T [i]. Each node at level 1 will
correspond to a substring of T with O(b) symbols, and we will maintain a static
text dictionary for that substring so that rank s and selects are computed for that
substring in t(n) = O(log log |Σ|) time. In each level-` node v` with ` ≥ 2, we
store an array size such that size[i] stores the number of symbols in the subtree
of its ith (leftmost) child. To have fast access to this information at each node,
we build a PS structure to store size . Also, for each symbol s that appears in the
subtree of v`, v` is associated with an s-structure, which consists of three arrays:
poss, nums, and ptrs. The entry poss[i] stores the index of v`’s ith leftmost child
whose subtree contains s. The entry nums[i] stores the number of s in v`’s ith
leftmost child whose subtree contains s. The entry ptrs[i] stores a pointer to the
s-structure of v`’s ith leftmost child whose subtree contains s.

The arrays in each s-structure (sizes, poss, and nums) are stored using a
PS data structure so that we can support O(log log n)-time sum and findsum
queries in sizes or nums, and O(log log n)-time rank and select queries in poss.
(These rank and select operations are analogous to sum and findsum queries,
but we refer to them as rank and select for ease of exposition.) The list ptrs is
stored in a simple array.

4 One may think of using a B-tree instead of a WBB-tree. However, in our design, a
particular node in the WBB tree will need to store auxiliary information about every
symbol in the subtree under that node. In the worst case, this auxiliary information
will be as big as the size of the subtree. If we use a B-tree, the cost of updating a
particular node cannot bounded by O(nε) time in the amortized case.



We also maintain another B-tree B with fanout nδ such that each leaf `s

corresponds to a symbol s that is currently present in the text T . Each leaf
stores the number of (nonzero) occurrences of s in T , along with a pointer to its
corresponding s-structure in the root of W . The height of B is O(lognε |Σ|) =
O(1), since we assume |Σ| ≤ n.

Answering char(i). We can answer this query in O(log log n) time by main-
taining a B-tree with fanout b = nδ over the text. We call this tree the text
B-tree.

Answering rank s(p). Recall that rank s(p) tells the number of occurrences of
s in T [1..p]. We first query B to determine if s occurs in T . If not, return 0.
Otherwise, we follow the pointer from B to its s-structure. We then perform
r.sizes.findsum(p) to determine the child ci of root r from W that contains T [p].
Suppose that T [p] is in the subtree rooted at the ith child ci of r. Then, rank s

consists of two parts: the number of occurrences m1 = r.nums.sum(j) (with
j = r.poss.rank(i − 1)) in the first i − 1 children of r, and m2, the number
of occurrences of s in ci. If r.poss.rank(i) 6= j + 1 (ci contains no s symbols),
return m1. Otherwise, we retrieve the s-structure of ci by its pointer r.ptr[j + 1]
and continue counting the remaining occurrences of s before T [p] in the WBB
tree W . We will eventually return m1 + m2.

The above process either (i) stops at some ancestor of the leaf of T [p] whose
subtree does not contain s, in which case we can report the desired rank, or
(ii) it stops at the level-1 node containing T [p], in which case the number of
remaining occurrences can be determined by a rank s query in the static text
dictionary in t(n) = O(log log |Σ|) time. Since it takes O(log log n) time to check
the B-tree B at the beginning, and it takes O(log log n) time to descend each of
the O(1) levels in the WBB-tree to count the remaining occurrences, the total
time is O(log log n).

Answering selects(j). Recall that selects(j) tells the number of symbols (in-
clusive) before the jth occurrence of s in T . We follow a similar procedure
to the above procedure for rank s. We first query B to determine if s occurs
at least j times in T . If not, we return −1. Otherwise, we discover the ith
child ci of root r from W that contains the jth s symbol. We compute i =
r.poss.select(r.nums.findsum(j)) to find out ci.

Then, selects consists of two parts: the number of symbols m1 = r.size .sum(i)
in the first i − 1 children of r, and m2, the number of symbols in ci before the
jth s. We retrieve the s-structure of ci by its pointer r.ptr[r.nums.findsum(j)]
and continue counting the remaining symbols on or before the jth occurrence of
s in T . We will eventually return m1 + m2. The above process will stop at the
level-1 node containing the jth occurrence of s in T , in which case the number
of symbols on or before it maintained by this level-1 node can be determined by
a selects query in the static text dictionary in t(n) = O(log log |Σ|) time. With
similar time analysis as in rank s, the total time is O(log log n).

Updates. We can update the text B-tree in O(nε) time. We use a naive ap-
proach to handle updates due to the insertion or deletion of symbols in T : For
each list in the WBB-tree and for each static text dictionary that is affected,



we rebuild it from scratch. In the case that no split, merge, or merge-then-split
operation occurs in the WBB-tree, an insertion or deletion of s at T [p] will affect
the static text dictionary containing T [p], and two structures in each ancestor
node of the leaf containing T [p]: the size array and the s-structure corresponding
to the inserted (deleted) symbol. The update cost is O(nδ log n) = O(nε) for the
static text dictionary and for each ancestor, so in total it takes O(nε) time.

If a split, merge, or merge-then-split operation occurs at some level-` node
v` in the WBB-tree, we need to rebuild the size array and s-structures for all
newly created nodes, along with updating the size array and s-structures of the
parent of v`. In the worst case, it requires O(n(`+1)ε log n) time. By the property
of WBB trees, the amortized update takes O(nε) time.

In summary, each update due to an insertion or deletion of symbols in T can
be done in amortized O(nε) time.

Space complexity. The space for the text B-tree is O(n log |Σ| + n1−ε log n)
bits. The total space of all O(n1−ε) static text dictionaries can be bounded by
s(n) = O(n log |Σ|) bits.

For the space of the s-structures, it seems like it is O(|Σ|n1−ε log n) bits at
the first glance, since there are O(n1−ε) nodes in W . This space however is not
desirable, since |Σ| can be as large as n. In fact, a closer look of our design reveals
that each node in W only maintains s-structures for those s that appears in its
subtree. In total, each character of T contributes to at most O(1) s-structures,
thus incurring only O(log n) bits. The total space for s structures is thus bounded
by O(n log n) bits.

The space for the B-tree B (maintaining distinct symbols in T ) is O(|Σ| log n)
bits, which is at most O(n log n) bits. In summary, the total space of the above
dynamic rank-select structure is O(n log n) bits.

Summarizing the above discussions, we arrive at the following theorem.

Theorem 2. For a dynamic text T of length at most O(n), we can maintain a
data structure on T using GMR to support rank s, selects, and char O(t(n) +
log log n) = O(log log n) time, and insertion/deletion of a symbol in amortized
O(nε) time. The space of the data structure is O(n log n) bits. ut

Theorem 3. Suppose that |Σ| = polylog(n). For a dynamic text T of length at
most O(n), we can maintain a data structure on T using the wavelet tree to sup-
port rank s, selects, and char in O(t(n)) = O(1) time, and insertion/deletion of a
symbol in amortized O(nε) time. The space of the data structure is O(|Σ|n log n)
bits, and the working space to perform the updates at any time is O(nε) bits. ut

3.4 The Final Data Structure

Here we describe our final structure, which supports insertions and deletions of
any symbol. To do this, we maintain two structures: our inX structure on T̂
and the onlyX structure, where all of the new symbols are actually inserted and
maintained. After every O(n1−ε log n) update operations, the onlyX structure
is merged into the original text T and a new T is generated. All associated
data structures are also rebuilt. Since this construction process could take at



most O(n log n) time, this cost can be amortized to O(nε) per update. The
StaticRankSelect structure on T takes s(n) = n log |Σ| + o(n log |Σ|) bits of
space. With this frequent rebuilding, all of the other supporting structures take
only o(n) bits of space.

We augment the above two structures with a few additional BitIndel struc-
tures. In particular, for each symbol s, we maintain a bitvector Is such that
Is[i] = 1 if and only if the ith occurrence of s is stored in the onlyX structure.
With the above structures, we quickly describe how to support rank s(i) and
selects(i).

For rank s(i), we first find j = inX.ranks(i). We then find k = inX.rankx(i)
and return j + onlyX.ranks(k). For selects(i), we first find whether the ith oc-
currence of c belongs to the inX structure or the onlyX structure. If Is[i] =
0, this means that the ith item is one of the original symbols from T ; we
query inX.selects(j) in this case, where j = Is.rank0(i). Otherwise, we com-
pute j = Is.rank1(i) to translate i into its corresponding position among new
symbols. Then, we compute j ′ = onlyX.selects(j), its location in T̂ and return
inX.selectx(j′).

Finally, we show how to maintain Is during updates. For delete(i), compute
T̂ [i] = s. We then perform Is.delete(inX.ranks(i)). For inserts(i), after inserting
s in T̂ , we insert it into Is by performing Is.insert1(inX.ranks(i)). Let nx be the
number of symbols stored in the onlyX structure. We can bound the space for
these new BitIndel data structures using RRR [15] and Jensen’s inequality by

dlog
(

n′

nx

)

e + o(n′) = O(n1−ε log2 n) + o(n) = o(n) bits of space. Thus, we arrive
at the following theorem.

Theorem 4. Given a text T of length n drawn from an alphabet Σ, we create
a data structure using GMR that takes s(n) = n log |Σ|+ o(n log |Σ|) + o(n) bits
of space and supports rank s(i), selects(i), and char (i) in O(log log n + t(n)) =
O(log log n+log log |Σ|) time and insert(i) and delete(i) updates in O(nε) time.

ut

For the special case when |Σ| = polylog(n), we may now use [10] as the
StaticRankSelect structure, and the Constant Time BitIndel as the BitIndel
structure. For the onlyX structure, we can use a similar improvement (using
separate select structures for each symbol s ∈ Σ) as with BitIndel to achieve
O(1) time queries. The space required is o(n) if merging is performed every
O(n1−ε) update operations. We defer the details of this modification until the
full paper. Then, we achieve the following theorem.

Theorem 5. Given a text T of length n drawn from an alphabet Σ, with |Σ| =
polylog(n), we create a data structure using the wavelet tree that takes s(n) +
o(n) = nH0 + o(n log |Σ|) + o(n) bits of space and supports rank s(i), selects(i),
and char (i) in O(t(n)) = O(1) time and insert(i) and delete(i) updates in O(nε)
time. ut

We skip the details about the memory allocation issues for our dynamic
structures and rebuilding space issues. However, the overhead for these issues
can be shown to be o(n) bits of additional space.



4 Dynamizing Ordinal Trees, Labeled Trees, and the XBW

Transform

In this section, we describe applications of our BitIndel data structure and our
dynamic multi-symbol rank/select data structure to dynamizing ordinal trees,
labeled trees, and the XBW transform [2].

Ordinal Trees. An ordinal tree is a rooted tree where the children are ordered
and specified by their rank. An ordinal tree can be represented by the Jacob-
son’s LOUDS representation [1] using just rank and select . Thus, we can use
our BitIndel data structure to represent any ordinal tree with the following op-
erations: v.parent(), which returns the parent node of v in T ; v.child (i), which
returns the ith child node of v; v.insert(k), which inserts the kth child of node v;
and v.delete(k), which removes the kth child of node v.

Lemma 7. For any ordinal tree T with n nodes, there exists a dynamic represen-
tation of it that takes at most 2n+O(n log log n/ log n) bits of space and supports
updates in amortized O(nε) time and navigational queries in O(log log n) time.
Alternatively, we can take 6n + O(n log log n/ log n) bits of space and support
navigational queries in just O(1) time. ut

Labeled Trees, Text Collections, and XBW. A labeled tree T is a tree
where each of the n nodes is associated with a label from alphabet Σ. To ease
our notation, we will also number our symbols from [0, |Σ|−1] such that the sth
symbol is also the sth lexicographically-ordered one. We’ll call this symbol s. We
are interested in constructing a data structure such that it supports the following
operations in T : insert(P ), which inserts the path P into T ; v.delete(), which
removes the root-to-v path for a leaf v; subpath(P ), which finds all occurrences
of the path P ; v.parent(), which returns the parent node of v in T ; v.child (i),
which returns the ith child node of v; and v.child (s), which returns any child
node of v labeled s.

Ferragina et al. [2] propose an elegant way to solve the static version of
this problem by performing an XBW transform on the tree T , which produces
an XBW text S. They show that storing S is sufficient to support the desired
operations on T efficiently, namely navigational queries in O(log |Σ|) time and
subpath(P ) queries in O(|P | log |Σ|) time.

In the dynamic case when we want to support insert or delete of a path of
length m, we observe that either operation corresponds to an update of this XBW
text S at m positions. Using our dynamic framework, we can then maintain a
dynamic version of this text S and achieve the following result using GMR.

Theorem 6 (Dynamic XBW). For any ordered tree T , there exists a dynamic
succinct representation of it using the XBW transform [2] that takes at most
s(n)+2n = n log |Σ|+o(n log |Σ|)+2n bits of space, while supporting navigational
queries in O(t(n) + log log n) = O(log log n) time. The representation can also
answer a subpath(P ) query in O(m(t(n) + log log n)) = O(m log log n) time,
where m is the length of path P . The update operations insert(P ) and delete()



at node u for this structure take O(nε + m(t(n) + log log n)) amortized time,
where m is the length of the path P being inserted or deleted. ut
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