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Abstract

We consider a central problem in text indexing: Given a text T over an alphabet Σ, construct a
compressed data structure answering the queries char (i), rank s(i), and selects(i) for a symbol s ∈ Σ.
Many data structures consider these queries for static text T [GGV03, FM01, SG06, GMR06]. We
consider the dynamic version of the problem, where we are allowed to insert and delete symbols at
arbitrary positions of T . This problem is a key challenge in compressed text indexing and has direct
application to dynamic XML indexing structures that answer subpath queries [FLMM05].

We build on the results of [RRR02, GMR06] and give the best known query bounds for the dynamic
version of this problem, supporting arbitrary insertions and deletions of symbols in T . Specifically,
with an amortized update time of O((1/ε)nε), we suggest how to support rank s(i), selects(i), and
char (i) queries in O((1/ε) log log n) time, for any ε < 1. The best previous query times for this
problem were O(log n log |Σ|), given by [MN06]. Our bounds are competitive with state-of-the-art
static structures [GMR06]. Some applicable lower bounds for the partial sums problem [PD06] show
that our update/query tradeoff is also nearly optimal. In addition, our space bound is competitive
with the corresponding static structures. For the special case of bitvectors (i.e., |Σ| = 2), we also show
the best tradeoffs for query/update time, improving upon the results of [MN06, HSS03, RRR02].

Finally, our focus on fast query/slower update is well-suited for a query-intensive XML indexing
environment. Using the XBW transform [FLMM05], we also present a dynamic data structure that
succinctly maintains an ordered labeled tree T and supports a powerful set of queries on T .
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1 Introduction

The new trend in text indexing data structures is to compress and index data in one shot. The ultimate
goal of these compressed text indexes is to retain near-optimal query times (as if not compressed), yet
still take near-optimal space (as if not an index). A few of the pioneer results in this area are [GV00,
FM00, FM01, GGV03]; there are many others.

Progress in compressed text indexing has gone hand-in-hand with exploring similar goals for more
combinatorial structures (like trees and subsets). For these succinct data structures, the emphasis is
to store them in terms of the information-theoretic (combinatorial) minimum required space. Again,
these structures aim to retain fast query time [RRR02, Jac89, BM99, Pag99, HMP00]. Compressed
text indexing makes heavy use of succinct data structures for set data, or dictionaries. A recent result
by [FLMM05] combines a succinct data structure for trees with a Burrows-Wheeler text compression
scheme and achieves a compressed data structure for querying ordered labeled trees. This result has
direct applications in XML compression and indexing [FLMM06].

To date, most compressed text indexing work is largely concerned with static data. However, many
environments actually need compressed indexing functionality on dynamic data: XML documents and
web pages, CVS projects, electronic document archives, etc. In these settings, we require a compressed
dynamic index that is able to answer queries efficiently and still perform updates in a reasonable amout
of time.

In that vein, there have been some results on dynamic succinct bitvectors (dictionaries) [RRR01,
HSS03, MN06]. However, these data structures either perform queries in far from optimal time (in
query-intensive environments), or allow only a limited range of dynamic operations (“flip” operations
only). In this paper, we develop a compressed dynamic data structure called BitIndel that supports fast
queries and and arbitrary insertion and deletion of bits. Our update/query tradeoffs are nearly optimal
for indexing bitvectors. We define the dynamic bit dictionary problem: Given a dynamic bitvector B of
length n, we allow the following operations for a bit s ∈ {0, 1}:
• rank s(i) tells the number of s bits up to the ith bit in B;
• selects(i) gives the position in B of the ith s bit;
• inserts(i) inserts s before the position i in B;
• delete(i) deletes the ith bit from B.

For the static case, [RRR02] solves the bit dictionary problem using nH0 + o(n) bits of space and an-
swers rank and select queries in O(1) time, where H0 is the 0th order empirical entropy of the bitvector B
(considered as a string). The best known time bounds for the dynamic problem are given by [MN06],
achieving O(log n) for all operations. In this paper, we introduce a new dynamic bit dictionary (called
BitIndel) that takes O((1/ε) log log n) time for queries, while supporting updates in O((1/ε)nε) amortized
time.

Our main problem is a generalization of the bit dictionary problem to a larger alphabet Σ called
the text dictionary problem. The queries supported are rank s, selects, and char , where s is any symbol
in Σ. The text dictionary problem is a key tool in text indexing data structures. For the static case,
Grossi et al. [GGV03] present a wavelet tree structure that answers queries in O(log |Σ|) time and takes
nH0 + o(n log |Σ|) bits of space. Golynski et al. [GMR06] improve the query bounds to O(log log |Σ|)
time, although they take more bits, namely, n log |Σ| + o(n log |Σ|) of space. Nevertheless, their data
structure presents the best query bounds for this problem.

Developing a dynamic text dictionary based on the wavelet structure can be done readily using dy-
namic bit dictionaries (as is done in [MN06]) since updates to a particular symbol s only affect O(log |Σ|)
groups of symbols according to the hierarchical decomposition of the alphabet Σ. On the other hand,
[GMR06] essentially treats each symbol in Σ individually; an update to symbol s could potentially af-
fect every symbol in the alphabet. The only known solution to this problem is given by Makinen and
Navarro [MN06], with an update/query bound of O(log n log |Σ|). These bounds are far from optimal,
especially in query-intensive settings.

In this paper, we develop a general framework that achieves amortized dynamic bounds and can
dynamize any static text dictionary structure. Our approach collects all of the updates into a new data
structure (called the onlyX structure in Section 3.4) and later merges this with a static text dictionary
on the original text T . The interface and translation of positions from the static dictionary to our onlyX
structure is handled by a suite of dynamic bit dictionaries. We use these structures to answer queries on
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the fly; to do so, we combine the information we have stored to give the correct answer.
Using our framework, we can achieve near-optimal tradeoff for update/query times for the dynamic

text dictionary problem. In particular, we achieve a dynamic text dictionary with O((1/ε) log log n) query
time with an O((1/ε)nε) amortized update time. To the best of our knowledge, this is the best-known
bound for the dynamic text dictionary problem.

Our emphasis on frequent queries and few updates is motivated by theoretical and practical conse-
quences. Theoretically speaking, the lower bounds of [PD06] on prefix sums problem (which can be seen
as a particular case of this problem) suggest that O(log log n) time bounds (or any non-trivial sublog-
arithmic bound) cannot be achieved with just O(polylog(n)) update times. In practice, many XML
indexing scenarios demand frequent query access, but the underlying data stays (relatively) static.

We list following contributions of this paper:

• We provide the first nearly-optimal result for the dynamic text dictionary problem on a dynamic
text T . Our data structure requires O((1/ε) log log n) time to support rank s, selects, and char
queries while supporting updates to the text T in amortized O((1/ε)nε) time. Our data structure
is also compressed, taking just n log |Σ|+ o(n log |Σ|) bits of space

• Our results improve the query bounds of previous work, as well as highlight a near-optimal up-
date/query tradeoff.

• Furthermore, our results provide a general framework to dynamize any static text dictionary with
near-optimal update/query tradeoffs.

• We apply our dynamic results to the important problem of XML indexing. Using the XBW
transform [FLMM05], we show how to perform navigational queries and insertion and deletion
of paths (and subtrees) on an ordered tree T . We support these operations in O((1/ε log log n) time
with an amortized update bound of O((1/ε)(nε + h log log n)) time, where h is the depth of the
insertion or deletion in T . We also support the powerful subpath(P ) query in O((m/ε) log log n)
time, where m = |P |.

1.1 Outline

In Section 2, we describe the RRR data structure [RRR02] and the static text dictionary of Golyinski et
al. [GMR06] and some brief construction bounds. Section 3.2 describes our BitIndel data structure, which
maintains a bitvector over insertions and deletions while supporting fast queries. Section 3.3 describes
the first part of our dynamic text dictionary; we describe inX, which keeps track of where the original
text T has been updated. In Section 3.4, we then describe onlyX, which actually stores the updates
themselves. We conclude in Section 5.

2 Preliminaries

Suppose we are given a text T with n symbols drawn from an alphabet Σ. For s ∈ Σ, the following
operations are useful in several applications.
• T.rank s(i) returns the number of symbols s up to position i in T ;
• T.selects(`) returns the position of the `th symbol s in T ;
• T.char (`) returns the symbol s located in the `th position of T .

One important result for the case of bitvectors is [RRR02], which is a static bit dictionary supporting
rank s and selects (and thus, char ) queries in O(1) time using nH0 + O(n log log n/ log n) bits of space.
The RRR [RRR02] data structure can be constructed in O(n) time. We summarize these important
results in the following lemma.

Lemma 1 (RRR). For a bitvector (i.e., |Σ| = 2) of length n, there exists a static data structure that
supports rank, select, and char queries in O(1) time using nH0 +O(n log log n/ log n) bits of space, while
taking only O(n) time to construct.

Proof. The space bound and the query times follow directly from [RRR02]. For construction, a straight-
forward approach requires O(n/ log n + t) = O(n) time at most, where t is the number of 1s in the
bitvector.
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For the static text dictionary problem, Grossi et al. [GGV03] present a wavelet tree structure that
answers queries in O(log |Σ|) time and takes nH0 + o(n) bits of space. In the special case where |Σ| =
O(polylog(n), [NFMM04] achieve O(1) time for the queries. Golynski et al. [GMR06] improve the query
bounds to O(log log |Σ|) time, although they take more bits n log |Σ|+o(n log |Σ|) of space. In this paper,
we will make heavy use of GMR. We summarize its results below

Lemma 2 (GMR). For a text T of length n drawn from alphabet Σ, there exists a static data structure
that supports select s in O(1) time and rank and char queries in O(log log |Σ|) time using n log |Σ| +
o(n log |Σ|) bits of space space, while taking O(n log n) time to construct.

Proof. The space and time bounds are discussed in [GMR06]. We defer the construction proof until the
full version of the paper.

2.1 Prefix-sum (PS) structure

Suppose we are given an non-negative integer array A[1..t] such that
∑

i A[i] ≤ n for which we wish to
devise a prefix sum structure. First, we calculate all the partial sums P [i] =

∑i
j=1 A[i]. We can regard

P as a sorted array of prefix sums, such that 0 < P [i] ≤ P [j] ≤ n for all i < j. We describe a data
structure based on van Emde Boas called PS that allows us to support the queries sum and findsum on
P in O(log log n) time using O(t log n) bits. We define these operations below:
• sum(j) returns the partial sum P [j];
• findsum(i) returns the index j such that sum(j) ≤ i < sum(j + 1).

We can construct this PS in O(t) time. To support sum , we simply store array P explicitly, requiring
O(t log n) bits of space.

To support findsum , we take the t prefix sums and cluster them into consecutive groups of size
O(log n). Within a group, we use a balanced binary search tree to support findsum in O(log log n) time
in the standard way. Now we must determine which group to search for a given query. From each of the
O(t/ log n) groups, we store the largest prefix sum using a hashing implementation of a van Emde Boas
(VEB) data structure. For the hashing, we use [Pagh, Theorem 1.1; Melhorn, Vishkin, Theorem A],
so that we can construct the hash table deterministically in O((t/ log n) log n) = O(t) time and taking
O((t/ log n) log n) = O(t) bits of space. Along with each entry in the hash table, we also store a pointer
to its associated group to search further. To answer findsum(i), we search the VEB structure to find
the right group in O(log log n) time. We then follow the pointer to the binary search tree and spend an
additional O(log log n) time.

3 Data structures

There are several data structures that support rank s and selects queries. They are broadly based on two
different approaches: logarithmic, which create a binary search tree of height log |Σ| with each symbol’s
occurences stored in the leaves; and log-logarithmic, which are based on predecessor search and VEB.
Despite the faster access of the log-logarithmic approach, it is difficult to update since each symbol s ∈ Σ
is treated separately and updates affect all other symbols. In contrast logarithmic approaches need only
manage updates in a particular root-to-leaf path of their binary search tree, i.e., at most O(log |Σ|)
internal nodes.

3.1 Overview of our data structure

Our solution is built with three main data structures:
• BitIndel bitvector supporting insertion and deletion;
• StaticRankSelect static structure supporting rank s, selects, and char on a text T ;
• DynamicRankSelect dynamic rank and select structure taking more space than StaticRankSelect.

We use StaticRankSelect to maintain the original text T ; we implement StaticRankSelect using
GMR [GMR06] and merge updates with this structure every O(n1−ε log n) update operations. We keep
track of the newly inserted symbols N in DynamicRankSelect and merge N with T as we have just
described. Thus, DynamicRankSelect never contains more than O(n1−ε log n) symbols. We maintain
DynamicRankSelect using O(n1−ε log2 n) = o(n) bits of space. Finally, since merging N with T requires
O(n log n) time, we arrive at an amortized O((1/ε)nε) time for updating these data structures. BitIndel
is used to translate positions pt from the old text T to the new positions pn from the current text T̂ . (We
maintain T̂ implicitly through the use of BitIndel structures, StaticRankSelect, and DynamicRankSelect.)
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3.2 Bit-vector dictionary with Indels: BitIndel

In this section, we describe a data structure (BitIndel) for a bitvector B of original length n that can
handle insertions and deletions of bits anywhere in B while still supporting rank and select on the
updated bitvector B ′ of length n′. Our structure supports these updates in O(nε) time and rank and
select queries in O((1/ε) log log n) time. This is comparable to the problem considered by [MN06], where
they support all of the above operations in O(log n) time.

Formally, we define the following update operations that we support on the current bitvector B ′ of
length n′:
• insert b(i) inserts the bit b in the ith position;
• delete(i) deletes the bit located in the ith position;
• flip(i) flips the bit in the ith position.

For bitvector B ′, we construct a B-tree (T ) with fanout between [nε, 2nε]. The leaves of T maintain
contiguous chunks of B ′ ranging from [nε, 2nε] in size, such that the `th (leftmost) leaf corresponds to
the `th chunk of B ′. Each leaf ` maintains an RRR [RRR02] data structure `.R that answers rank and
select queries on its O(nε)-sized chunk in O(1) time. Each internal node v of T maintains three arrays:
count0, count1, and size. Let cj denote the jth child node of v. The entry count 0[j] is the number of
0s in the part of the bitvector in the subtree of cj . The entry count1[j] is the number of 1s in the part
of the bitvector in the subtree of cj . The entry size[j] is the total number of bits in the subtree of cj .
To have fast access to this information at each node, we build a PS structure on this information. (We
don’t actually store count0, count1, and size explicitly; rather, we store a PS structure for each array.)

The height of this tree is O((1/ε) logn n′). To traverse down to a leaf for any operation, we use the
PS structure at a node (using O(log log n) time) to determine the next node to visit on the root-to-leaf
path. Then, we query our RRR [RRR02] data structure `.R at leaf ` and return the answer. Now we
describe our operations in more detail. (Note that rank 0(i) = i− rank1(i).)

function v.rank1(i) {
if (leaf (v)) return v.R.rank1(i);
j ← v.size .findsum(i);
return v.count1.sum(j)+

cj+1.R.rank1(i− v.size .sum(j));
}

function v.selects(i) {
if (leaf (v)) return v.R.selects(i);
j ← v.counts.findsum(i);
return v.size .sum(j)+

cj+1.R.selects(i− v.counts.sum(j));
}

Time Bounds. Each of the above queries requires O(log log n) time per node traversed in the B-
tree T . Since there are at most O((1/ε) logn n′) such nodes before encountering a leaf, the total time is
O((1/ε) logn n′) log log n).

Updates. The flip(i) operation can be supported by performing a constant number of insert , delete,
and rank operations. At every update operation, we traverse the B-tree as before. The prefix-sum data
structures in each internal node along the path are rebuilt in O(nε) time per node. At the leaf, R is
rebuilt. If the leaf node manages more than 2nε symbols or less than nε, we invoke the standard B-tree
merge/split routines, propagating them up the tree as appropriate. In the worst case, updates take
O((1/ε)nε logn n′). The amortized time is easily bounded by O((1/ε)(logn n′ + nε)). Furthermore, we
rebuild the entire data structure every O(n1−ε) updates.

Space. There are at most O(n′/n2ε) internal nodes, each taking O(nε log n′) bits bits. Thus, the total
space for the internal nodes is O((n′/nε) log n′). Let n1 be the number of 1s in B ′. The space for the

bottom-level R structures can be bounded by dlog
(n′

n1

)

e+ o(n′) bits.

Lemma 3. Given a bitvector B ′ with length n′ and original length n, we can create a data structure that
takes O((n′/nε) log n′) + dlog

(n′

n1

)

e + o(n′) bits and supports rank and select in O(log log n)) time, and
indel in O((1/ε)(logn n′ + nε)) amortized time.

3.3 Insert-X-Delete-any: inX

Let x and d be symbols other than those in alphabet Σ. In this section, we describe a data structure on
a text T of length n supporting rank s and selects that can handle delete(i) and insert x(i). Notice that
insertions and deletions affect the answers returned for symbols in the alphabet Σ. For example, T may
be abcaab, where Σ = {a, b, c}. Here, ranka(4) = 2 and selecta(3) = 5. Let T̂ be the current text after
some number of insertions and deletions of symbol x. Initially, T̂ = T . After some insertions, the current
T̂ may be axxxbcaxabx. Notice that ranka(4) = 1 and selecta(3) = 9. We represent T̂ by the text T ′,
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in which the symbols from the original text T are never deleted, but are instead replaced by a special
symbol d. Continuing the example, after some deletions of symbols from T , T ′ may be axxxddaxabx.
Notice that ranka(4) = 1 and selecta(3) = 7.

We define an insert vector I such that I[i] = 1 if and only if T ′[i] = x. Similarly, we define a delete
vector D such that D[i] = 1 if and only if T ′[i] = d. We also define a delete vector Ds for each symbol s
such that Ds[i] = 1 if and only if the ith s in the original text T was deleted. The text T ′ is merely a
conceptual text: we refer to it for ease of exposition but we actually maintain T̂ instead.

To store T̂ , we store T using the StaticRankSelect data structure and store all of the I, D, Ds bitvec-
tors using the BitInDel structure. Now, we show how to perform T̂ .insert x(i), T̂ .delete(i), T̂ .rank s(i) and
T̂ .select s(i):

T̂ .insertx(i). First, we convert position i in T̂ to its corresponding position i′ in T ′ by computing i′ =
D.select0(i). Then we must update our various vectors. We perform I.insert 1(i

′) on our insert vector,
and D.insert0(i

′) on our delete vector.

T̂ .delete(i). First, we convert position i in T̂ to its corresponding position i′ in T ′ by computing i′ =
D.select0(i). If i′ is newly-inserted (i.e., I[i′] = 1), then we perform I.delete(i′) and D.delete(i′) to
reverse the insertion process from above. Otherwise, we first convert position i ′ in T ′ to its corresponding
position i′′ in T by computing i′′ = I.rank0(i′). Let s = T.char (i′′). Finally, to delete the symbol, we
perform D.flip(i′) and Ds.flip(j), where j = T.rank s(i

′′).

T̂ .ranks(i). First, we convert position i in T̂ to its corresponding position i′ in T ′ by computing i′ =
D.select0(i). If s = x, return I.rank 1(i′). Otherwise, we first convert position i′ in T ′ to its corresponding
position i′′ in T by computing i′′ = I.rank0(i′). Finally, we return Ds.rank0(j), where j = T.rank s(i

′′).

T̂ .selects(i). If s = x, compute j = I.select1(i) and return D.rank 0(j). Otherwise, we compute k =
Ds.select0(i) to determine i’s position among the s symbols from T . We then compute k ′ = T.selects(k)
to determine its original position in T . Now the position k ′ from T needs to be mapped to its appropriate
location in T̂ . Similar to the first case, we perform k ′′ = I.select0(k′) and return D.rank 0(k′′), which
corresponds to the right position of T̂ .

T̂ .char(i). First, we convert position i in T̂ to its corresponding position i′ in T ′ by computing i′ =
D.select0(i). If I[i′] = 1, return x. Otherwise, we convert position i′ in T ′ to its corresponding position i′′

in T by computing i′′ = I.rank 0(i
′) and return T.char (i′′).

Space and Time. As can be seen, each of the rank and select operations requires a constant number
of accesses to BitIndel and StaticRankSelect structures, thus taking O((1/ε)(logn n′) log log n) time to
perform. The indel operations require O(nε) update time, owing to the BitIndel data structure. The
space required for the above data structures comes from the StaticRankSelect structure, which requires
O(n log |Σ|+ o(n log |Σ|)) bits of space, and the many BitIndel structures, whose space can be bounded

by log
(n′

n

)

+ 2 log
(n′

n′′

)

+ o(n′) where n′′ is number of deletes.

Theorem 1. Given a text T of length n drawn from an alphabet Σ, we create a data structure that takes
n log |Σ + o(n log |Σ|) + log

(n′

n

)

+ 2 log
(n′

n′′

)

+ o(n′) bits of space and supports rank s(i) and select s(i) in
O((1/ε)(logn n′) log log n) time. We can also support insert x(i) and deletes(i) in O((1/ε)nε) time. If n′′

and n′ − n are less than n1−ε, we require n log |Σ|+ o(n log |Σ|) + o(n) bits of space.

3.4 onlyX-structure

In this section, we describe a data structure for maintaining a dynamic array of symbols that supports
rank s and selects queries in O((1/ε)(logn n′) log log n) time, for any ε with 0 < ε < 1; here, we assume
that the maximum number of symbols in the array is n. Our data structure takes O(n ′ log n) bits, where
n′ is the current number of symbols; for each update (i.e., insertion or deletion of a symbol), it can be
done in amortized O((1/ε)nε) time.

In the following, we first review a previous data structure result called the Weight Balanced B-tree
(WBB tree) that was also used in [RRR01, HSS03]. Then, we show that our data structure can be
implemented by a simple instantiation of the WBB tree.

3.4.1 Weight Balanced B-tree (WBB Tree)

We define a weight balanced B-tree as follows: all leaves of the WBB tree are considered to be at level 0.
A level-i node is connected to its parent node at level i + 1. We define a weight-balance condition, such
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that for any node v at level i, the number of leaves in v’s subtree is between 0.5bi + 1 and 2bi − 1, where
b is the fanout factor. Thus, the degree of an internal node is Θ(b) (from b to 4b), such that the height
of the tree is Θ(logb n′), where n′ is the number of leaves in the current tree.

After a leaf is inserted into the tree, the weight-balance condition of some level-i ancestor of the leaf,
say v, may be violated. Precisely, this case happens when the number of leaves in v’s subtree is 2b i. In
this case, v will be split into two new nodes at the same level (called a split operation), each of them
becoming the root of a perfect subtree with bi leaves. (This split could cause a restructuring of the entire
subtree that was split, but this follows standard techniques.)

On the other hand, in case a leaf is deleted, the weight-balance condition of v at level i may be
violated; that is, the number of leaves in v’s subtree becomes 0.5bi. In this case, v is merged with one of
its neighboring siblings, and there will be two cases:

(i) if the total number of leaves after merging is less than 1.5bi, the update finishes (called a merge
operation);

(ii) otherwise, the merged node is further split into two nodes, each of them becoming the root of a
subtree with half the number of leaves (called a merge-then-split operation).

Based on the above updating process, we have the following lemma and corollary.

Lemma 4. Except the root, when a node v at level i violates the weight-balance condition, at least Θ(b i)
leaves are inserted or deleted v’s subtree since the creation of v.

Proof. A node is created when there is either a split, merge, or merge-then-split event. As a result, node
v contains at least 0.75bi leaves (by merge-then-split) and at most 1.5bi leaves at its creation. Thus, at
least 0.25bi leaves are deleted or at least 0.5bi leaves are inserted before v can violate the weight-balance
condition.

Corollary 1. Suppose that ci is the maximum cost of a split, a merge, or a merge-then-split operation
when a level-i node violates the weight-balance condition. The amortized cost for supporting the above
operations due to an insertion or deletion of a leaf is at most Θ(

∑h
i=1 ci/b

i), where h denotes the current
height of the tree.

Proof. We prove this result by a simple accounting method. A node is created with zero tokens; when a
leaf is inserted or deleted, it gives each of its level-i ancestors Θ(ci/b

i) tokens (precisely, 4ci/b
i tokens for

deletion and 2ci/b
i tokens for insertion). Thus, the total number of tokens given is Θ(

∑h
i=1 ci/b

i) during
an insertion or deletion operation. It is easy to verify that there are at least ci tokens when a node at
level i violates the weight-balance condition. In other words, an amortized cost of Θ(

∑h
i=1 ci/b

i) for leaf
insertion or deletion is enough to support split, merge, or merge-then-split operations.

3.4.2 Dynamic Rank-Select Structure based on WBB Tree

Let T be the dynamic text that we want to maintain, and where symbol of T is drawn from alphabet Σ
Let n′ be the length of T , and we assume that n′ is never more than some pre-defined value n.

We describe how to apply the WBB Tree to maintain T while supporting rank s and selects efficiently,
for any s ∈ Σ. In particular, we choose ε < 1 and store the symbols of T in a WBB W with fanout
factor b = nδ where δ = ε/2 such that the ith (leftmost) leaf of W stores T [ib]. Each node at level 1
will correspond to a substring of T with O(b) symbols, and we will maintain a GMR-structure for that
substring so that rank s and selects are computed for that substring in O(log log |Σ|) time. In each level-`
node v` with ` ≥ 2, we store an array size such that size[i] stores the number of symbols in the subtree of
its ith (leftmost) child. To have fast access to this information at each node, we build a PS structure to
store size. Also, for each symbol s that appears in the subtree of v`, v` is associated with an s-structure,
which consists of three arrays:
• poss: poss[i] stores the index of v`’s ith leftmost child whose subtree contains s;1

• nums: nums[i] stores the number of s in v`’s ith leftmost child whose subtree contains s;3

• ptrs: ptrs[i] stores a pointer to the s-structure of v`’s ith leftmost child whose subtree contains s.

1For example, if the 2nd, 4th, 5th, and 7th children are the only children of v` whose subtree contains s, we have
poss[1] = 2, poss[2] = 4, poss[3] = 5, poss[4] = 7.

3Continuing with the example for poss, if the 2nd, 4th, 5th, and 7th children of v` contain respectively 11, 23, 4, and 6
occurrences of s in their subtrees, we have nums[1] = 11, nums[2] = 23, nums[3] = 4, nums[4] = 6.
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The arrays in each s-structure (sizes, poss, and nums) are stored using a PS data structure so that
we can support O(log log n)-time sum and findsum queries in size s or nums, and O(log log n)-time rank
and select queries in poss. (These rank and select operations are analagous to sum and findsum queries,
but we refer to them as rank and select for ease of exposition.) The list ptrs is stored in a simple array.

We also maintain another B-tree B with fanout nδ such that each leaf `s corresponds to a symbol s that
is currently present in the text T . Each leaf stores the number of (nonzero) occurrences of s in T , along
with a pointer to its corresponding s-structure in the root of W . The height of B is O(lognε |Σ|) = O(1/ε),
since we assume |Σ| ≤ n.

Answering char(i). We can answer this query in O((1/ε) log log n) time by maintaining a B-tree with
fanout b = nδ over the text. We call this tree the text B-tree.

Answering rank s(p). Recall that rank s(p) tells the number of occurrences of s in T [1..p]. We first
query B to determine if s occurs in T . If not, return 0. Otherwise, we follow the pointer from B to its
s-structure. We then perform r.sizes.findsum(p) to determine the child ci of root r from W that contains
T [p]. Suppose that T [p] is in the subtree rooted at the ith child ci of r. Then, rank s consists of two parts:
the number of occurrences m1 = r.nums.sum(j) (with j = r.poss.rank (i − 1)) in the first i − 1 children
of r, and m2, the number of occurrences of s in ci. If r.poss.rank (i) 6= j + 1 (ci contains no s symbols),
return m1. Otherwise, we retrieve the s-structure of ci by its pointer r.ptr[j + 1] and continue counting
the remaining occurrences of s before T [p] in the WBB tree W . We will eventually return m1 + m2.

The above process either (i) stops at some ancestor of the leaf of T [p] whose subtree does not
contain s, in which case we can report the desired rank, or (ii) it stops at the level-1 node containing
T [p], in which case the number of remaining occurrences can be determined by a rank s query in the
GMR-structure in O(log log |Σ|) time. Since it takes O(log log n/ε) time to check the B-tree B at the
beginning, and it takes O(log log n) time to descend each of the O(1/ε) levels in the WBB-tree to count
the remaining occurrences, the total time is O(log log n/ε).

Answering select s(j). Recall that select s(j) tells the number of symbols (inclusive) before the jth
occurrence of s in T . We follow a similar procedure to the above procedure for rank s. We first query B
to determine if s occurs at least j times in T . If not, we return −1. Otherwise, we discover the ith child c i

of root r from W that contains the jth s symbol. We compute i = r.poss.select(r.nums.findsum(j)) to
find out ci.

Then, select s consists of two parts: the number of symbols m1 = r.size .sum(i) in the first i − 1
children of r, and m2, the number of symbols in ci before the jth s. We retrieve the s-structure of ci by
its pointer r.ptr[r.nums.findsum(j)] and continue counting the remaining symbols on or before the jth
occurrence of s in T . We will eventually return m1 +m2. The above process will stop at the level-1 node
containing the jth occurrence of s in T , in which case the number of symbols on or before it maintained
by this level-1 node can be determined by a select s query in the GMR-structure in O(log log |Σ|) time.
With similar time analysis as in rank s, the total time is O(log log n/ε).

Updates. We can update the text B-tree in O((1/ε)nε) time. We use a naive approach to handle updates
due to the insertion or deletion of symbols in T : For each list in the WBB-tree and for each GMR-structure
that is affected, we rebuild it from scratch. In the case that no split, merge, or merge-then-split operation
occurs in the WBB-tree, an insertion or deletion of s at T [p] will affect the GMR-structure containing
T [p], and two structures in each ancestor node of the leaf containing T [p]: the size array and the s-
structure corresponding to the inserted (deleted) symbol. The update cost is O(nδ log n) = O(nε) for the
GMR-structure and for each ancestor, so in total it takes O((1/ε)nε) time.

If a split, merge, or merge-then-split operation occurs at some level-` node v` in the WBB-tree, we
need to rebuild the size array and s-structures for all newly created nodes, along with updating the
size array and s-structures of the parent of v`. In the worst case, it requires O(n(`+1)ε log n) time. By
Corollary 1, the amortized update takes O(nε/ε) time.

In summary, each update due to an insertion or deletion of symbols in T can be done in amortized
O(nε/ε) time.

Space complexity. The space for the text B-tree is O(n log |Σ|+n1−ε log n) bits. The total space of all
O(n1−ε) GMR-structures can be bounded by O(n log |Σ|) bits. The space for the B-tree B (maintaining
distinct symbols in T ) is O(|Σ| log n) bits. The total number of words to store all arrays in the internal
nodes is linear to the total number of entries, so the total space for these arrays is O(n log n/ε) bits. (In
particular, each of the n symbols from the text T contributes O((1/ε) log n) bits of space to maintain
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information about itself; in total, the bound is as above.) In summary, the total space of the above
dynamic rank-select structure is O(n log n/ε) bits.

Summarizing the above discussions, we conclude this section by the following theorem.

Theorem 2. For a dynamic text T of length at most n, we can maintain a data structure on T to support
rank s, selects, and char O(log log n/ε) time, and insertion/deletion of a symbol in amortized O(nε/ε)
time. The space of the date structure is O(n log n/ε) bits.

3.5 The final data structure

Here we describe our final structure, which supports insertions and deletions of any symbol. To do
this, we maintain two structures: our inX structure on T̂ and the onlyX structure, where all of the new
symbols are actually inserted and maintained. After every O(n1−ε log n) update operations, the onlyX
structure is merged into the original text T and a new T is generated. All associated data structures
are also rebuilt. Since this construction process could take at most O(n log n) time, this cost can be
amortized to O((1/ε)nε) per update. The StaticRankSelect structure on T takes n log |Σ| + o(n log |Σ|)
bits of space. With this frequent rebuilding, all of the other supporting structures take only o(n) bits of
space.

We augment the above two structures with a few additional BitIndel structures. In particular, for
each symbol s, we maintain a bitvector Is such that Is[i] = 1 if and only if the ith occurence of s is
stored in the onlyX structure. With the above structures, we quickly describe how to support rank s(i)
and selects(i).

For rank s(i), we first find j = inX.rank s(i). We then find k = inX.rank x(i) and return j +
onlyX.rank s(k). For select s(i), we first find whether the ith occurence of c belongs to the inX structure
or the onlyX structure. If Is[i] = 0, this means that the ith item is one of the original symbols from T ;
we query inX.select s(j) in this case, where j = Is.rank 0(i). Otherwise, we compute j = Is.rank 1(i) to
translate i into its corresponding position among new symbols. Then, we compute j ′ = onlyX.select s(j),
its location in T̂ and return inX.selectx(j′).

Finally, we show how to maintain Is during updates. For delete(i), compute T̂ [i] = s. We then
perform Is.delete(inX.rank s(i)). For insert s(i), after inserting s in T̂ , we insert it into Is by performing
Is.insert1(inX.rank s(i)). Let nx be the number of symbols stored in the onlyX structure. We can
bound the space for these new BitIndel data structures using RRR [RRR02] and Jensen’s inequality by

dlog
(n′

nx

)

e+ o(n′) = O(n1−ε log2 n)+ o(n) = o(n) bits of space. Thus, we arrive at the following theorem.

Theorem 3. Given a text T of length n drawn from an alphabet Σ, we create a data structure that takes
n log |Σ+o(n log |Σ|)+o(n) bits of space and supports rank s(i), select s(i), and char (i) O((1/ε) log log n+
log log |Σ|) time and insert(i) and delete(i) updates in O((1/ε)nε) time.

4 XBW and Dynamic XML Indexing

In this section, we describe an application of our dynamic multi-symbol rank/select data structure to
dynamizing the XBW transform [FLMM05] for an arbitrary ordered tree T where each of the n nodes
in T has a label drawn from alphabet Σ. To ease our notation, we will also number our symbols from
[0, |Σ|−1] such that the sth symbol is also the sth lexicographically-ordered one. We’ll call this symbol s.
Our dynamic XBW structure supports several operations in T
• v.insert(P ), which inserts the path P at node v;
• v.delete(), which removes the root-to-v path for a leaf v
• subpath(P ), which finds all occurrences of the path P ;
• v.parent (), returns the parent node of v in T ;
• v.child (i), returns the ith child node of v;
• v.child (s), returns any child node of v labeled s.

Before explaining our data structure, we first give a brief description of the XBW transform [FLMM05].
For a node v in T , let `[v] = 1 if and only if v is the rightmost child of its parent in T . Let α[v] be the
label of v, and π[v] be the string obtained by concatenating the labels on the upward path from v.parent ()
to the root of T . We further assume that the node labels can be separated into two disjoint sets Σi and
Σl of labels for internal nodes and leaves (respectively). We also let ni be the number of internal nodes
of T and n` be the number of leaves of T . We then construct a set S of n triplets, one for each tree node:
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• Visit T in pre-order. For each visited node v add the triplet s[v] = 〈`[v], α[v], π[v]〉 into S;
• Stable-sort S according to the π component of each triple.

The (output of the) XBW transform consists of the arrays S` and Sα, where these refer to the first
and second components of each triplet (respectively) after the stable sort has been performed. Ferragina,
et al show in [?] that the tree T can be reconstructed by storing these arrays. The above transform is
reminiscent of the Burrows-Wheeler Transform (BWT) for text documents. Their structure supports
navigational queries (parent , child) operations, as well as a subpath(P ) search, which finds the nodes v
such that the reversed path rev(P ) is a prefix of the concatenated string α[v]π[v]. In summary, they
achieve the following theorem for the static ordered trees T :

Theorem 4 (Static XBW REF). For any ordered tree T with node labels drawn from an alphabet Σ,
there exists a static succinct representation of it using the XBW transform [FLMM05] that takes at
most nH0(Sα) + 2n + o(n) bits of space, while supporting navigational queries in O(log |Σ|) time. The
representation can also answer a subpath(P ) query in O(m log |Σ|) time, where m is the length of path P .

The full details of the result can be found in [FLMM05]. Here, we briefly recap the data structures
used in their solution. For our result, we will show that replacing these structures with their dynamic
counterpart is sufficient to achieve a powerful facility to update ordered trees (such as XML trees). For
S`, [FLMM05] use an RRR [RRR02] data structure to maintain the bitvector of length n containing ni

1s in log
(

n
ni

)

+ o(n) bits of space. For Sα, [FLMM05] keep two data structures: F , a structure that
keeps track of the number of occurences of each symbol s in Σ. F is (conceptually) a bitvector of length
n + |Σ| storing |Σ| 1s such that select1(i)− select1(i− 1)− 1 indicates the number of occurrences of the
ith label s in T . Finally, Sα is stored using a wavelet tree [GGV03].

For our dynamic XBW data structure, we replace the static implementations of S` and F with our
BitIndel data structure, supporting rank and select in O(log log n) time and updates in O((1/ε) logn n′ +
nε) amortized time. Then, we replace the Sα data structure with our “final structure” that allows rank s

and selects in O((1/ε) log log n) time and supports insertions and deletions in O((1/ε)nε) time. We use the
same algorithms for parent and child operations as [FLMM05]. Since these algorithms require a constant
number of queries to the above data structures, we can now support these operations in O((1/ε) log log n)
time. For subpath(P ), we again use the same algorithm, taking O((m/ε) log log n) time, where m is the
length of P .

For insert(P ) and delete(), these operations will be defined on the original tree T for some node u
where we want to begin inserting or deleting. We describe a method to translate any node u into a
corresponding position v such that the triplet S[v] in the XBW transform [FLMM05] corresponds to
node u in T . For a path from root r to a node u in T , say P = (u0, u1, u2, · · · , uh−1, uh) with u0 = r and
uh = u, we describe a sequence of child indices Cu = c1c2 . . . ch, where ci indicates that ui is the cith
child of ui−1. To translate u into the corresponding position v in the XBW transform [FLMM05], we
perform the following convert operation.

function convert(Cu) {
v ← 1; // v is the root
for (i = 1; i ≤ h; i++)

v ← v.child (ci);
return v;
}

The above operation takes O((h/ε) log log n) time to perform with our dynamic data structures, where
h + 1 is the depth of the node to be modified. Our later operations will take this much additional time.
We state the following lemma.

Lemma 5. For any node u at depth h + 1 in tree T , we can find its corresponding position in the XBW
transform [FLMM05] in O(ht(n)) time, where t(n) is the amount of time taken by a data structure storing
the XBW transform to perform a child (i) navigational operation.

We now describe how to support v.insert(P ) and v.delete() for node v in the XBW transform [FLMM05].
For convenience, we rewrite P = p1p2 · · · pm as the concatenation of its m symbols. Furthermore, we
assume that node v refers to its position in the XBW transform (easily done with convert(cv)). For
v.insert(P ), we begin at v and find v’s last child. We then insert the next symbol in P after this child,
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making the appropriate changes to S` and Sα. We also update F so that it maintains the correct count
of alphabet symbols. For v.delete(), note that it’s sufficient to simply know the leaf node l = v of the
path we wish to delete. To execute a deletion, we remove this leaf l and propagate to l’s parent, making
the appropriate changes to F , S`, and Sα. We terminate if l’s parent has more than one child.

The above process can be expanded to also include routines for subtree insertion and deletion (tinsert ,
tdelete). Notice that the above algorithms require O(m) queries to our dynamic data structures to insert
or delete a path of length m. Thus, we arrive at the following theorem.

Theorem 5 (Dynamic XBW). For any ordered tree T , there exists a dynamic succinct represen-
tation of it using the XBW transform [FLMM05] that takes at most n log |Σ| + o(n log |Σ|) + 2n bits
of space, while supporting navigational queries in O((1/ε) log log n) time. The representation can also
answer a subpath(P ) query in O((m/ε) log log n) time, where m is the length of path P . The update
operations insert(P ) and delete() at node u for this structure take O((1/ε)(nε + h log log n)) amortized
time, where h is the depth of node u in T .

5 Conclusions and Implications of Our Result

We conclude with following discussion on results that can be readily obtained by tweaking our framework.
We show many instances where our results are nearly tight against the previously best-known results.
Some of our observations are results of independent interest; however, in the interest of maintaining a
focused exposition, we defer the detailed description of these results to the full paper.

Memory Allocation Issues. As with any space-compact dynamic data structure, there are issues
with memory allocation and fragmentation. In the results we describe in this paper, we only count the
space that is actively used by the data structure: We do not count the wasted space due to memory
fragmentation. However, this additional space overhead can be bounded by o(n) bits if we manage
memory in pages containing nε/2 items. In this case, the space required for the virtual memory translation
table can also be bounded by o(n) bits.

O(1) Query Time BitIndel. In this paper, we have only described a BitIndel data structure that takes
O((1/ε) log log n) time to answer queries, since this was sufficient to achieve our final result. However, we
can modify BitIndel to perform O(1) query time by taking three times as much space, i.e., 3nH0 + o(n)
bits. We briefly describe how this is done.

Instead of a single B-tree, we store three WBB trees, weight balanced by size, count 0, and count 1.
For the partial sum problem, O(1) query time can be achieved if each array entry A[i] is between x and
2x for some non-negative integer x [HSS03]. rank queries can be answered using the WBB for size, while
selects can be answered with the WBB for count s. Since the size of all these BitIndel structures is strictly
o(n) in our main structure, the space bound doesn’t change. Still, despite such a BitIndel structure, the
main bottleneck on time is in the onlyX structure, where we still need O(log log n) time.

Special Cases of our BitIndel Framework. If we change our BitIndel structure such that the bottom-
level RRR [RRR02] data structures are built on [log2 n, 2 log2 n] bits each and set the B-tree fanout
factor b = 2, we can obtain O(log n) update time with O(log n) query time. Thus, our BitIndel data
structure is a generalization of [MN06].

Alternatives to GMR [GMR06]. Our choice to use the GMR structure to store StaticRankSelect
was due to its best known query times. We present two cases where alternative choice leads to interesting
results:
• To achieve entropy compression, we use the wavelet tree [GGV03] instead of [GMR06] and get

query times of O(log |Σ|+ log log n).
• When |Σ| = O(polylog(n)), we can achieve O(log log n) query time by using [NFMM04].

Tightness of Our Result. For the case when |Σ| = O(polylog(n)), we can modify the OnlyX structure
by using separate select structures for each symbol s to achieve O(1) queries. This modification is similar
to the one we made for our O(1) BitIndel structure. In this case, our space becomes O(|Σ|n log n/ε) and
each update has to be carried out in all of the |Σ| structures, thus taking O((1/ε)nε|Σ|) time for updates.

When |Σ| = O(polylog(n)), the space overhead is still o(n) and the update time can still be considered
O(nε). Using [NFMM04], we now have O(1) query time for StaticRankSelect, and thus an overall O(1)
query time. When |Σ| = Ω(nε) our O((1/ε) log log n) bound is equivalent to the best known static bound
of O(log log |Σ|) given by GMR.
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