
Online Perfect Matching and Mobile Computing

Edward F. Grove?, Ming-Yang Kao??, P. Krishnan???, and Je�rey Scott Vittery

Department of Computer Science, Duke University, Durham NC 27708, USA

Email:fefg,kao,pk,jsvg@cs.duke.edu

Abstract. We present a natural online perfect matching problem moti-

vated by problems in mobile computing. A total of n customers connect

and disconnect sequentially, and each customer has an associated set of

stations to which it may connect. Each station has a capacity limit. We

allow the network to preemptively switch a customer between allowed

stations to make room for a new arrival. We wish to minimize the total

number of switches required to provide service to every customer. Equiv-

alently, we wish to maintain a perfect matching between customers and

stations and minimize the lengths of the augmenting paths. We measure

performance by the worst case ratio of the number of switches made to

the minimum number required.

When each customer can be connected to at most two stations:

{ Some intuitive algorithms have lower bounds of
(n) and
(n= log n).

{ When the station capacities are 1, there is an upper bound of O(
p
n).

{ When customers do not disconnect and the station capacity is 1, we

achieve a competitive ratio of O(log n).

{ There is a lower bound of 
(
p
n) when the station capacities are 2.

{ We present optimal algorithms when the station capacity is arbitrary

in special cases.

? Support was provided in part by Army Research O�ce grant DAAH04{93{G{0076.
?? Support was provided in part by NSF grant CCR-9101385.
??? Support was provided in part by an IBM Fellowship, by NSF research grant CCR{

9007851, by Army Research O�ce grant DAAH04-93-G-0076, and by Air Force Of-

�ce of Scienti�c Research grant F49620{94{1{0217. The author is currently visiting

Duke University from Brown University.
y Support was provided in part by NSF research grant CCR{9007851 and by Army

Research O�ce grant DAAH04{93{G{0076.



1 Introduction

We present an online problem related to the emerging �eld of mobile comput-

ing [AwP, DKM, IDJ, USE, Wei]. Current trends suggest that in the near future

there will be many customers with portable computing boxes, trying to connect

to a huge network of services. The most probable way this will happen will be

for the customers to connect to a local \station" through a cellular connection

or a wireless LAN, using infrared technology or radio frequency [Dav], and then

access the sites of their choice via wired links, e.g., the Internet.

The bottleneck in the mobile interconnection process is the wireless link

connecting a customer to a mobile support station (MSS). As customers come

into the system, the decision of which station they should connect to must be

made online. A customer who wants to leave the system disconnects from the

system. The physical moving of a customer in the world can be modeled by a

disconnection at its present site followed by a connection at its new location.

As more customers get connected to a station, the response-time performance

of the system degrades.

In this paper, we use the standard de�nition of competitiveness to analyze

online algorithms. An algorithm A is said to be C-competitive if there exists a

constant b such that for every sequence � of customer connects and disconnects,

CostA(�) � C � CostOPT (�) + b;

where OPT is the optimal o�ine algorithm, and CostX(�) is the expected cost

of running X on �.

Azar et al. [ABK, AKP, ANR] studied the problem of load balancing, mo-

tivated by the cellular phone system. They place no limit on the maximum

number of customers that can be connected to a station and try to minimize the

maximum number of customers connected to any station. In [ANR], the authors

assume that customers do not disconnect, and show that the greedy algorithm is

strongly competitive with a competitive ratio of �(logn). In [ABK], customers

are allowed to disconnect, and the greedy algorithm is shown to be �(n2=3) com-

petitive, with a lowerbound of 
(
p
n) on the competitive ratio for the problem.

This gap is closed in [AKP] by an algorithm that is O(
p
n) competitive. In [ABK,

AKP, ANR], a customer, once connected to a station, cannot be preempted.

Should preemptive scheduling be allowed? It is clear that in some cases it

would be advantageous for the system to move a customer from a heavily loaded

MSS to another MSS with a lighter load. Preemption adds overhead and makes

the system more complicated. We would like to know whether the gains of pre-

emptive scheduling are substantial enough to make it worthwhile. In this paper

we �x the maximum number of customers that can be connected to a station.

We focus our attention on the problem of online perfect matching, where we

maintain a perfect matching of customers to stations, and the cost of connecting

a customer is the number of customers that are switched to make room for the

new customer (in essence, the length of the augmenting path). In order to get

results, we make strong simplifying assumptions. We hope to generate interest



in this version of online matching. Deep results will be required to answer the

basic questions of mobile computing that motivate the problems.

Consider the case in which each customer can be connected to at most

two stations. When the station capacities are 1, we achieve a competitive ra-

tio of O(
p
n). We show that intuitive algorithms have lower bounds of 
(n) and


(n= logn). If, in addition, we do not allow customers to disconnect, we achieve

a competitive ratio of O(log n). We can derive a lower bound of 
(
p
n) when

the station capacities are 2. We also present algorithms with optimal competitive

factors when station capacity is arbitrary in some special cases.

2 Preemptive Scheduling: Model and Algorithms

Model: Each station has a capacity, which is the maximum number of customers

that can be connected to the station. Customers arrive and depart sequen-

tially. When a customer enters the system, it announces a set of stations to

which it may be connected. While the customer remains in the system, it

must be connected to one of those stations, but the system has the power

to switch the customer from of these stations to another. A station is called

full if the number of customers connected to it is equal to its capacity. A

customer is denied service if and only if the stations to which it may connect

remain full no matter how customers presently in the system are switched

around. Connected customers cannot be disconnected to make room for new

customers. A connection costs 1, a disconnection costs 1, a switch costs 1,

and there is no cost for denying service.

Our goal is to develop algorithms which do not need to do too much switching

in order to connect the incoming customers.

This paper concentrates on the case when each customer can be connected

to at most two stations. For this case, there is a graph-based representation that

is simpler than the de�nition above.

Simpli�ed Model: The stations and customers are represented by a graph.

We denote by G = (S;E) the graph on the set of stations S. Let n = jSj
be the number of stations. The customers appear on the edges or on the

nodes of G. A customer appearing on edge (vi; vj) 2 E can be connected

either to station vi or to station vj . A customer appearing at node vi can be

connected only to station vi. A customer on edge (vi; vj) who is connected

to station vi can be switched at a cost of 1 to be connected to station vj .

If the capacity of every station is 1, there can be at most two customers on

each edge (vi; vj). Let the capacity of each station be 1. An edge (vi; vj) is said

to point towards station vi if there is one customer on edge (vi; vj) and it is

connected to station vi. We say that an edge (vi; vj) is unaligned for algorithms

A and B, if edge (vi; vj) points towards station vi for algorithm A, and towards

station vj for algorithm B. An edge (vi; vj) is aligned for algorithms A and B,

if edge (vi; vj) points towards the same station for both A and B. An edge that



is neither aligned nor unaligned is irrelevant. A maximal path (vi1 ; vi2 ; : : : ; vik )

in G is called a directed chain if for all 1 � j � k � 1, edge (vij ; vij+1) points

towards station vij+1 ; station vik is called the head of the chain, and station vi1
is the tail of the chain. Two chains are said to be (un)aligned for algorithms

A and B if all the edges on the chain are (un)aligned for algorithms A and B.

A directed chain (vi1 ; vi2 ; : : : ; vik ) can be switched to get the directed chain

(vik ; vik�1 ; : : : ; vi1). A switch that is not required to provide connection to a new

customer is called a useless switch.

Algorithm Greedy: Assigns a new customer to a station that minimizes the

number of switches, choosing arbitrarily if there is a tie.

Algorithm AssignLeft: (valid for trees, and circles of stations) De�ne a uni-

form preferred direction \left" on the edges of the graph of stations (e.g.,

anti-clockwise on a circle, and towards the root for a tree). Assign the new

customer on edge (v1; v2) to the station along the preferred direction (switch-

ing existing customers, if necessary) unless that is impossible.

Algorithm Rand: When switches have to be made to connect an incoming

customer, switch a chain with a probability inversely proportional to the

length of the chain.

3 When Customers Never Disconnect

When the station capacities are all 1, the \pointing" of edges essentially de�nes

a matching of edges to vertices. Also, each edge is in at most one chain. If a

new customer appears on edge (vi; vj) and stations vi, vj are full, there are at

most two possible chains (the chains with vi and vj as their heads) that can be

switched to accommodate the new customer, assuming no useless switches are

made. Irrelevant edges are those with 0 or 2 customers.

Theorem1. There is a a lower bound of 
(logn) on the competitive ratio of

any deterministic algorithm when there are no disconnections. A graph with

O(n logn) edges achieves this lower bound.

Proof. (Sketch) The lower bound is achieved on a complete graph where each

station has a capacity of 1. The lower bound holds when stations have �nite

capacities greater than 1, since for each station v of capacity cap(v) we can force

cap(v)� 1 customers to connect to station v, leaving a graph where each station

has capacity 1 to play our game.

Given two complete subgraphs on 2k stations each, we can \combine" these

two subgraphs while maintaining the following invariants: On each subgraph

with 2k stations:

1. The adversary forces the online con�guration to be a chain.

2. The adversary can have its chain either aligned or unaligned with the on-

line's.



3. The adversary incurs a cost of at most 2k � 1, while the online incurs a cost

of at least k2k�2.

Condition 3 of the invariant implies that a complete graph on n nodes will force

a competitive ratio of 
(log n) between the costs of the online algorithm and

the adversary. The construction can be improved to use only O(n logn) edges

(details omitted from this abstract). ut
Theorem2. When the capacity of every station is 1 and there are no discon-

nections, Greedy is O(log n)-competitive.

Proof. (Sketch) Let us de�ne a component to be the set of nodes connected by

edges on which there are customers. Initially, each node is a component by itself.

As connection requests arrive, two things can happen:

1. A component becomes \dead" when a cycle is formed (i.e., a chain (vi1 ; : : : ; vi1)),

or when a customer appears at a station (rather than an edge adjacent to

the station). Once this happens, the nodes of the component don't a�ect

anything in the future.

2. Two components C1 and C2 join. In this case, there are two chains c1 2 C1

and c2 2 C2 that can be switched. Greedy switches the smaller of the two

chains. We charge the cost of switching the smaller chain uniformly to the

edges of the chain of the smaller component. (This implies that each edge is

assigned a cost of at most 1.)

Any edge (vi; vj) is charged a total cost of at most O(logn), since the size of the

component to which (vi; vj) belongs at least doubles each time it is charged. The

adversary incurs 
(n) cost for the connections. Greedy is therefore O(logn)

competitive. ut
The proof of Theorem 2 does not hold when the capacities of the stations

are arbitrary since Item 1 above is not true when station capacities are greater

than 1. However, we show that AssignLeft is 2-competitive when the graph

is a tree and or a cycle of stations even when the capacities on the nodes are

arbitrary.

Theorem3. When disconnections are not allowed, AssignLeft is 2-competitive

against trees and circles of stations with arbitrary capacities.

Proof. (Sketch) If a customer is assigned or switched to a station against the

preferred direction, it will not be switched again. Assigning or switching to a

station against a preferred direction can happen only because the station in the

preferred direction is full. Since there are no disconnections, full stations remain

full. The algorithm �rst tries to assign a customer to the preferred direction. It

follows that any customer can be switched at most once. Notice that the proof

is valid for any graph with exactly one path between any two nodes.

The lower bound of 2 is obtained easily when the capacity on every station

is 1 by forcing a chain for the online algorithm and forcing a switch of the chain

by placing a connect request at the head of the chain. ut



A B
C C C2 1 3

stations

Fig. 1. Proof of Theorem 6. Lower bound of Greedy.

4 When Customers Disconnect

The lower bounds are achieved by a circle of stations with capacity 1. Theorem 1

implies the following lemma.

Lemma4. There is a lower bound of 
(logn) on the competitive ratio of any

deterministic algorithm even when there are disconnections.

A lazy algorithm does not perform switches if it can connect the customer with-

out making any switches. For the lower bounds we will discuss in this section,

we need to let the adversary set a speci�c initial con�guration for use against

lazy online algorithms. The following simple observation says that any desired

con�guration can be obtained at nominal costs.

Lemma5. Given a lazy algorithm, an adversary can achieve any desired legal

assignment of customers to stations with O(n) cost, when the capacity of each

station is constant.

We now show that some intuitive algorithms have high lower bounds on the

competitive ratio. It is interesting that we do not need complicated graphs to

prove these lower bounds. All of the lower bounds can be obtained using circles

of stations or path-graphs with capacity 1 on the stations.

Theorem6. Greedy has a lower bound of 
(n) on its competitive ratio. This

lower bound is achieved on a circle of stations with capacity 1 each.

Proof. We �rst force the con�guration shown in Figure 1 for both the online and

the adversary. Let jC1j < jC2j = jC3j. We repeat the following sequence: connect

at A, disconnect at A, connect at B, disconnect at B. On the �rst connect at A,

the online switches chain C1 but the adversary switches chain C2. On the �rst

request at B, the online switches chain C1 while the adversary switches chain C3.

In every future request, the online switches chain C2 back and forth, while the

adversary satis�es the requests without any switches. The competitive ratio is

asymptotically jC1j � n=3. ut

Theorem7. AssignLeft has a lower bound of 
(n) on its competitive ratio.

This lower bound is achieved on a circle of stations with capacity 1 each.

Notice that Theorem 7 taken in conjunction with Theorem 3 gives a clear in-

dication of the power of allowing disconnections in the model. The AssignLeft



a a

aa a a a a0 23567

1 2

a1 ak

c ccc0 123

x

online adversary

(a)

(b)

(c)

4a

Fig. 2. Proof of Lemma 8. Lower bound of the weighted greedy algorithm.

algorithm, which is 2-competitive without disconnections on a circle of stations,

has a lower bound of 
(n) on a circle of stations when deletions are allowed.

Greedy andAssignLeft have bad competitive ratios because the adversary

makes them repeatedly switch the same chain. Does it help to try to avoid this

behavior?

Algorithm WeightedGreedy: Amongst all chains along which to switch cus-

tomers to accommodate a new request, choose the one along which the total

number of switches already made is minimum.

Unfortunately, WeightedGreedy also has a high lower bound on its compet-

itive ratio.

Lemma8. There is a lower bound of 
(n= logn) on the competitive ratio for

WeightedGreedy. This lower bound is achieved on a circle of stations with

capacity 1 each.

Proof. We �rst force the con�guration shown in Figure 2a for the online and the

adversary (without switching any customers). By Lemma 5, this set-up phase

costs O(n) for both the online and the adversary. Now repeat the following

\routine:" disconnect the customer between a0 and ak, a3 and a4, a5 and a6,

: : : , where, jc1j = jc0j; jc2j = 2jc1j � 1; jc3j = 2jc2j � 1; : : :. The situation is as

shown in Figure 2b. Make a request at a0. Both the online and the adversary

switch chain c0. Delete the customer at a0 and make a request at x. The weighted

greedy algorithm will switch chain c1 (since the customers on chain c0 have been

switched more times than the ones on chain c1), while the adversary switches

chain c0. For every subsequent request at (a2i�1; a2i) the online switches chain ci,

while the o�ine does O(1) work. (The length of the chains have been adjusted to

make this happen.) Now the chains look as in Figure 2c. Disconnect the customer

at x and force the online to switch and get aligned on all edges with the o�ine.

For the requests made in the \routine," the adversary does O(logn) work

while the online does O(n) work. Asymptotically, this implies a lower bound of


(n= logn) on the competitive ratio. ut



n/2 n/2 online

adversarybreakpoint

1/3
n breakpoints

n
2/3

(a)

(b)

Fig. 3. Proof of Theorem 9. Lower bound of Rand.

We have seen that intuitive deterministic algorithms have a bad competitive

ratio. We can do better if we use randomization. We will now analyze Rand.

Theorem9. There is a lower bound of 
(
p
n ) on the competitive ratio of Rand

against an adaptive adversary, and a lower bound of 
(n1=3) on the competitive

ratio of Rand against an oblivious adversary. These lower bounds are achieved

on a circle of stations of capacity 1.

Proof. (Sketch) We �rst get the con�guration for the online and the adaptive

adversary as in Figure 3a with �(n) cost (see Lemma 5). Delete the customers

that are at distance
p
n to the left and right of the \break point" and make

a request at the break point. The adversary incurs a cost of 1 and the online

incurs a cost of
p
n to connect this new customer, and the break point moves.

Repeat this process until the break point reaches one of the ends. By the theory

of random walks, the break point takes an expected �(n) times before it reaches

one of the ends.

The expected cost of the online algorithm is �(n) (for the setup) + �(n
p
n ),

while the adversary's cost is O(n) (for the setup) + �(n), giving a lower bound

of 
(
p
n ) on the competitive ratio.

Against an oblivious adversary, we do not know where the break point is.

We divide the chain into n1=3 sub-chains of length n
2=3 each thereby de�ning

n
1=3 breakpoints as shown in Figure 3b. We place a request at each of these

n
1=3 breakpoints and repeat this n2=3 times (the expected time for Rand to

align with the adversary). The online does a total of 
(n4=3) work, while the

adversary does O(n) work, giving a lower bound of 
(n1=3) for the competitive

ratio. ut
We are now ready to upper bound Rand. The proof uses an interesting

potential function derived from the random walk idea used in the lower bound

proof of Theorem 9.

Theorem10. For any graph with station capacity 1, Rand is O(
p
n )-competitive.

Proof. (Sketch) A customer can appear either on an edge between two stations,

or at a station. An adversary can generate a customer connect request at a



adversary

online

adversary

online
u

u - u u

x y

x-x x y y-y

11

1 1 1 1

new customer

existing customer

(a)

(b)

(c)

Fig. 4. Proof of competitiveness of Rand. (a) Ways in which forced moves happen. (b)

Forced move scenario. (c) Unforced move scenario.

station which forces a lot of switches and then disconnect the customer. However,

intuitively, such forced switches make the online paths more aligned with the

adversary's. We use a potential function that accurately captures the gain from

such switches for the future.

Let D be the number of unaligned edges between Rand and OPT, and let S

be the number of aligned edges between Rand and OPT. We de�ne our potential

function as

� = k1D
p
n+

k2DSp
n
; (1)

where k1 and k2 are constants to be determined. Intuitively, the �rst part of

the potential function, �1 = k1D
p
n, accounts for the situation when switches

are forced. The second part, �2 = k2DS=
p
n accounts for the cost of doing a

random walk before aligning with the adversary. Let Won be the cost of the

online algorithm to service a connection or disconnection request, and let Wadv

be the cost for the adversary. To show an O(
p
n ) competitive ratio, we need to

show that
P
Won � c

p
n
P
Wadv. It su�ces to show that for each (connection

or disconnection) request,

Won +�� � c
p
n�Wadv ; (2)

since summing (2) over all requests will give us our result.

It is easy to see that for a disconnection, the potential always drops (i.e.,

�� < 0) and so (2) is satis�ed. The case when a connection can be satis�ed

without any switches is also easily veri�ed. The hard part is when a connection

forces switches. We divide our analysis into two cases.

1. In forced moves, the online algorithm does not have a choice of which chain

of customers to switch. Forced moves happen because of the situations given

in Figure 4a. The forced move scenario is given in Figure 4b. In this case,

Won = u, and u1 edges along the chain are aligned between the online

algorithm and the adversary, 0 � u1 � u. We have Wadv � u1. Clearly,

�D = �(u� u1), and �S = u� u1. Hence, �� = �k1
p
n(u� u1) + k2(u�

u1)(D�S�u+u1)=
p
n. Since (D�S�u+u1) � n, it can be veri�ed that

(2) holds as long as k1 � k2.



2. In unforced moves, the online algorithm has a choice between two chains

of customers to switch. The situation is as depicted in Figure 4c, where

0 � y1 � y, and 0 � x1 � x. In this case, the online algorithm switches the

chain of length x with a probability of y=(x+ y), and the chain of length y

with a probability of x=(x + y) incurring an expected cost of 2xy=(x + y).

Without loss of generality, assume that the adversary switches the chain of

length y1; hence Wadv = y1 + 1. We need to verify that (2) holds.

If the online algorithm switches the chain of length y, �D = �(y � y1),

and �S = y� y1 +1. If the online algorithm switches the chain of length x,

�D = 2x1�x+y1+1, and �S = x�2x1�y1. Substituting and simplifying,
we get

��1 � 2k1
p
ny(x1 � x)

x+ y
; (3)

��2 � k2y(x� x1)(2D + 4x1)p
n(x+ y)

+
2k2yS(x1 � x)

(x+ y)
p
n

� k2xyp
n
: (4)

In simplifying to get the above expressions, we ignored terms of value less

than or equal to c3
p
n(y1 + 1). For an appropriately large c, terms of value

� c3
p
n(y1+1) appearing on the lhs of (2) will be \paid for" byWadv on the

rhs of (2). The constant c3 is independent of c. Note that ��1 � 0. Since

2D + 4x1 = O(n) and x � 0, the �rst term of ��2 is non-negative but is

\paid for" by ��1, if k1 � 3k2. The second term of ��2 is negative and can

be ignored. The third term of ��2 (i.e., �k2xy=
p
n) \pays" for the online

cost of 2xy=(x+y), if k2 > 2 and x+y � p
n. If x+y <

p
n, the adversary's

cost pays for the online cost.

ut

Theorem11. There is a lower bound of 
(
p
n ) on the competitive ratio of any

algorithm (if randomized, against an adaptive adversary) when the capacities of

the stations are 2. This lower bound is achieved by a tree of stations.

Proof. (Sketch) Consider the tree of stations in Figure 5. The capacity on

each station is 2. The idea of the proof is to force an initial con�guration with all

chains pointing towards the root. The adversary then places a connect request

at the root, and the online switches a chain Ci with some leaf li as the tail

of the chain. It then disconnects the new customer and forces the online to

switch the chain Ci again by placing a request at li. Divide the request sequence

into minimal blocks, such that for every block the online switches all the
p
n

chains. For the block Bj of requests, let Cj;1 be the �rst chain switched by the

online algorithm and let Cj;m be the last chain switched by the online algorithm,

m � p
n. For the �rst request in block Bj , the adversary switches chain Cj;m

incurring a cost of O(
p
n ). For every connect request except the �rst in the

block, the online incurs a cost of 
(
p
n ), while the adversary incurs a cost of 1.

The net ratio of the cost of the online to the adversary for any block of connect

requests is 
(
p
n ). ut



n
ll2l1

C1 C2

Fig. 5. Lower bound of 
(
p
n) for a tree.

Theorem12. Rand is O(
p
n )-competitive on a circle of stations with arbitrary

capacities.

Like the proof of Theorem 10, this proof is based on a potential function that

measures a random walk, but it is of a rather di�erent form. For brevity, the

proof is omitted from this abstract.

5 Conclusions

We have presented in this paper a model of mobile connectivity. There are some

very challenging questions that arise from our model. The most obvious open

question is: Is there an O(
p
n )-competitive algorithm for general graphs when

disconnections are allowed, and the capacities are arbitrary? We have a general-

ization of Rand that we believe is O(
p
n )-competitive. When the capacities are

arbitrary, the main di�culty is that there can be many non-disjoint augmenting

paths for a new connect request. Our generalization of Rand de�nes a resis-

tive network [CDR] of the augmenting paths and switches a path proportional

to the current that would ow through it when a unit voltage is placed at the

new connect request point. We expect that the online algorithms discussed in

this paper will do better when the capacities of the stations are larger, and the

degree of each customer is greater than 2, because intuitively, more paths help

the algorithm more than adversary.



References

[AwP] B. Awerbuch and D. Peleg, \Concurrent Online Tracking of Mobile Users," Pro-

ceedings of SIGCOMM 1991 .

[ABK] Y. Azar, A. Y. Broder, and A. R. Karlin, \On-line Load Balancing," Proceedings

of the 33rd Symposium on Foundations of Computer Science (October 1993),

218{225.

[AKP] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. R. Pruhs, and O. Waarts, \Online

Load Balancing of Temporary Tasks," Proceedings of the 1993 Workshop on

Algorithms and Data Structures (August 1993).

[ANR] Y. Azar, J. Naor, and R. Rom, \The Competitiveness of On-Line Assignments,"

Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms

(January 1992).

[CDR] D. Coppersmith, P. Doyle, P. Raghavan, M. Snir, \Random Walks on Weighted

Graphs and Applications to On-line Algorithms," Proceedings of the 22nd An-

nual ACM Symposium on Theory of Computing (May 1990, and 369{378), Also

appears as IBM Research Report RC 15840.

[Dav] D. W. Davis, \Wirless LANs broadcast their bene�ts over cable," Electronic

Business, May 1991.

[DKM] F. Douglis, P. Krishnan, and B. Marsh, \Thwarting the Power Hungry Disk,"

Proceedings of the 1994 Winter USENIX Conference (January 1994).

[IDJ] J. Ioannidis, D. Duchamp, and G. Macquire, Jr., \IP-based Protocols for Mobile

Internetworking," Proceedings of SIGCOMM '91 (September 1991), 235{245.

[USE] USENIX, \Proceedings of the USENIX Mobile and Location-Independent Com-

puting Symposium," Cambridge, MA, August 1993.

[Wei] M. Weiser, \The Computer for the 21st Century," Scienti�c American (Septem-

ber 1991), 94{104.

This article was processed using the LATEX macro package with LLNCS style


