International Journal of Computational Geometry & Applications
Vol. 9, No. 2 (1999) 207-217
© World Scientific Publishing Company

THE OBJECT COMPLEXITY MODEL
FOR HIDDEN-SURFACE REMOVAL

EDWARD F. GROVE*
946, Tamarack Lane #13
Sunnyvale, CA 94086, U.S.A.
E-mail: eddie@math.uri.edu

T. M. MURALI

Center for Geometric Computing
Department of Computer Science, Duke University
Bozx 90129, Durham, NC 27708-0129, U.S.A.
E-mail: tmaz@cs.duke.edu

and

JEFFREY SCOTT VITTER?

Center for Geometric Computing
Department of Computer Science, Duke University
Boz 90129, Durham, NC 27708-0129, U.S.A.
E-mail: jsv@cs.duke.edu

Received 10 June 1997
Revised 16 February 1998
Communicated by H. Imai

ABSTRACT

We define a new model of complexity, called object complezity, for measuring the

performance of hidden-surface removal algorithms. This model is more appropriate for
predicting the performance of these algorithms on current graphics rendering systems
than the standard measure of scene complexity used in computational geometry.
We also consider the problem of determining the set of visible windows in scenes con-
sisting of n axis-parallel windows in R3. We present an algorithm that runs in opti-
mal ©(nlogn) time. The algorithm solves in the object complexity model the same
problem that Bern® addressed in the scene complexity model.

Keywords: Object complexity, hidden-surface removal, window visibility, segment tree,
computational geometry, computer graphics.

*This work was done when the author was at Duke University. Support was provided by Army
Research Office grant DAAH04-93-G-0076.

TThis author is affiliated with Brown University. Support was provided in part by National
Science Foundation research grants CCR-9007851 and CCR~-9522047, by Army Research Office
grant DAAL03-91-G-0035, and by Army Research Office MURI grant DAAH04-96-1-0013.

¥Support was provided in part by National Science Foundation research grants CCR-9007851
and CCR-9522047, by Army Research Office grant DAAH04-93-G-0076, and by Army Research
Office MURI grant DAAH04-96-1-0013.

207

208 E. F. Grove, T. M. Murali & J. S. Vitter

1. The Object Complexity Model

How to render a set of opaque or partially transparent objects in R® quickly and
in a visually realistic way is a fundamental problem in computer graphics.!:?0 A
central component of rendering is hidden-surface removal: given a set of objects,
a viewpoint, and an image plane, compute the scene visible from the viewpoint as
projected onto the image plane.

Various hidden surface algorithms have been proposed in the computational ge-
ometry literature. Such algorithms typically compute the wisibility map, which is a
partition of the image plane into regions with the property that in each region, at
most one object is visible. The size of the visibility map is often called the scene com-
plexity. Worst-case optimal algorithms are presented by Dévai and McKenna.%!3
The running time of more recent algorithms depends on the input size and the scene
complexity.3:7-8:12:17:18,19 The fastest known algorithm for hidden-surface removal
takes time O(n2?/3+¢k2/3 4 nplte€) where n is the size of the input and k is the scene
complexity.!

The computer graphics community, which is the source of the problem, has also
studied hidden-surface removal extensively. Sutherland, Sproull and Schumacker?®
survey early hidden surface removal algorithms used in graphics. More recently,
algorithms have been developed for walkthrough systems.?:6:21 The aim here is to
visually simulate the experience of walking inside an environment like a building
using an architectural model of the building. The simulation achieves realism when
20-30 scenes are generated and displayed per second.

A conceptually simple solution to the hidden-surface removal problem is the z-
buffer algorithm.*!! This algorithm sequentially processes the input objects; for
each object, it updates the pixels of the image plane covered by the object, based
on the distance information stored in the z-buffer. Assuming that the input objects
are triangles, the time taken by the z-buffer algorithm is proportional to the number
of triangles processed by it, except in the atypical case where the triangles are
extremely large, when the processing cost is dominated by the number of pixels
covered by the triangles.

A very fast hidden-surface removal algorithm can be obtained by implementing
the z-buffer in hardware. For example, the Silicon Graphics InfiniteReality system
is capable of rendering more than seven million triangles per second.!® Fast as the z-
buffer is, datasets are becoming so huge that even the fastest z-buffer cannot render
them in real time. Some aircraft models consist of tens of millions of triangles, and
submarine models may have a billion triangles. This problem is compounded for
interactive real-time applications like walkthrough systems.??! In such applications,
new scenes need to be generated about 20-30 times a second. Processing all the
input through the z-buffer at these rates is currently not possible. If the visible scene
is to be displayed in real time, it is imperative that the z-buffer should process only
(a small superset of) the visible triangles. This strongly motivates the development
of provably-fast algorithms for determining a small superset of the visible triangles
(a.k.a. “occlusion culling”) so that the requirements on z-buffers are eased.

Conceptually, algorithms that compute the visibility map are ideal for culling

The Object Complexity Model for Hidden-Surface Removal 209

away invisible objects since they determine the exact set of visible objects. In
practice, however, they are not appropriate for use with the z-buffer since their
running time depends on scene complexity. The scene complexity for n objects can
be Q(n?) in the worst-case; in such cases, it is likely that the z-buffer can process the
original n objects much faster than it can process the Q(n?) faces of the visibility
map.

Motivated by this disparity between the theoretical model of scene complexity
and the performance characteristics of current graphics rendering hardware, we
propose a more realistic model of complexity, called object complezity, in which the
size of a scene is measured in terms of the number of objects visible in the scene.
Object complexity is always at most n, the number of objects in the input and hence
can be much less than the scene complexity (which can be (n?)). This happens,
for example, when the viewpoint is at z = +o0o and the scene contains n/2 thin
rectangles parallel to the z-axis lying directly above n/2 thin rectangles parallel
to the y-axis. See Figure 1. Algorithms whose running time depends on scene
complexity can be used trivially to determine visible objects by outputting all the
objects that contain segments in the view. However, in the worst case, this technique
might entail spending Q(n?) time to output only O(n) distinct objects.

n/2+2

n/2+1

1 2 n/2
Fig. 1. A set of n objects with object complexity n and scene complexity
Q(n2). Vertices of the visibility map are indicated by black dots.

Thus, in the object complexity model, our goal is to develop efficient algorithms
for hidden-surface removal whose running time depends on the input size and the
object complexity of the scene.

2. Hidden-Surface Elimination in Static Scenes

Our model of object complexity is relevant not only for dynamic scenes as men-
tioned above but also for static scenes like the one we address in this paper. Most
machines do not have z-buffers and must resort to software z-buffers, or else they
have hardware z-buffers that perform at a fraction of the speed of a state-of-the-
art z-buffer like the InfiniteReality. In such cases, the speed of the rendering process
is considerably heightened by a fast and efficient software algorithm which culls all
but a small superset of the visible triangles and feeds only these to the z-buffer.
Even in machines with state-of-the-art z-buffers, faster CPUs can put the bottle-
neck of rendering back on the z-buffer. Thus, an effective culling algorithm can

210 E. F. Grove, T. M. Murali & J. S. Vitter

produce a resulting speedup in rendering by decreasing the load on the z-buffer.
In this paper, we study the problem of finding the exact set of rectangles visible
from the point z = +00 in a set of n rectangles with sides parallel to the z- and y-
axes. We solve this problem in optimal ©(nlogn) time. Bern3 addresses this
problem for the standard scene complexity model. Our algorithm is novel because
we cannot afford to maintain information about all the visible segments explicitly
(like he does). We maintain this information implicitly by using the segment tree
in a clever manner. The following sections describe our technique. Section 3 defines
the problem and proves a lower bound. The algorithm is described in Section 4.
Section 5 contains the proof of correctness and the analysis of the running time. An
improved, optimal algorithm is described in Section 6. Section 7 concludes.

3. Window Visibility Problem

Our input consists of n rectangles, each with sides parallel to the z- and y-axes.
‘We want to report the set of rectangles visible from the point z = +o00. This problem
arises in windowing systems where windows are drawn on the screen according to
a priority assigned to each window.

Each rectangle R is specified by five numbers, R.z1, R.z2, R.y;, R.y2, and R.z
such that R = [z1, 2] X [y1,y2] X [2,2], where 21 < z2 and y1 < yo. If two edges
belonging to different rectangles have different z-coordinates but project to the same
segment in the zy-plane, the edge with larger z-coordinate is considered to obscure
the edge with smaller z-coordinate.

Theorem 1 In the algebraic decision tree model, any algorithm that determines
which of n rectangles with sides parallel to the x- and y-azes are visible from z = +o0
requires Q(nlogn) tests.

Proof. It is well known that the problem of determining whether all the
members of a set of n real numbers are distinct has a lower bound of Q(nlogn).1°

Suppose we are given a set S of n real numbers. For every element = of S we
create a square of side z whose top left corner is at (z,z). These squares are assigned
distinct heights. See Figure 2. The point (a,a) on the square corresponding to an
element a of S can be obscured only by another square with top left corner at (a, a).
Hence, the members of S are distinct if and only if the algorithm to determine the
visible rectangles reports n rectangles. m]

y-axis

T-axis
Fig. 2. The rectangle with top left corner (a,a) is not obscured by any other
rectangle.

The Object Complexity Model for Hidden-Surface Removal 211

4. Algorithm

We sweep a plane perpendicular to the z-axis from £ = —oc0 to £ = +00. Event
points of the sweep are the coordinates of the vertical edges (the edges parallel to
the y-axis) of the rectangles. If more than one vertical edge share the same z-
coordinate, they are processed in decreasing order of z-coordinate with right edges
processed before left edges.®? The intersections of the rectangles with the sweep
plane are stored in a segment tree 7. which we define below. In what follows, the
left and right children of node v in the segment tree are u and w, respectively.

Let Y be the set of y-coordinates of the endpoints of the horizontal edges (the
edges parallel to the z-axis) of the n input rectangles. The elements of Y U{—o00, 00}
partition the y-axis into at most 2n+ 1 intervals of the form [y;, yiy1),1 <7 < 2n+1,
where y;,1 < i < 2n+2, is the ith smallest element in Y U {—o00,00}. The segment
tree 7 is a height balanced binary tree constructed on the elements of Y U{—o00, 00}.
Each node v of T is associated with an interval called its basic segment, denoted
by b,. If v is the ith leaf of 7 (counting from left to right), then b, is [y, ¥i+1)-
If v is an internal node of 7, then b, = b, U b,,. See the books by Mehlhorn!* and
Preparata and Shamos!® for more details on segment trees.

A cross-section is the one-dimensional intersection of a rectangle with the sweep
plane. Each such cross-section is stored as O(logn) basic segments in 7.1 The
following fields are stored at each node v in 7.

(i) by: the basic segment associated with v.

(ii) vmiq: the midpoint of b,.

(iii) H,: a heap storing the cross-sections stored at v sorted in decreasing order
of z. Each element of #, has a flag unrep which is true if and only if that
element has not been reported as visible so far. The query top(#,) returns
the cross-section of maximum 2z coordinate stored in the heap.

(iv) ly: the height of the lowest visible cross-section stored in the subtree rooted
at v. If there is no such cross-section, then l, is —oo. Here, visibility is with
respect to the cross-sections stored in the subtree rooted at v. Given the value
of I, and [, l, can be calculated as follows:

l, = max{min{ly,l,},top(H,).2}

(v) hy: the height of the highest visible unreported cross-section (which must be
the top of the heap of some node) in the subtree rooted at v. Again, visibility
is with respect to the cross-sections stored in the subtree rooted at v. If there
is no such cross-section, h, is —oo. The h, field can be calculated as follows.
hy =max{hy,hy};
if (top(#H,).unrep = false) and (top(H,).z > h,) then

hv = —00;
else

hy = max{h,,top(Hy).z};

aFor a rectangle [z1,z2] X [y1,y2] X [2,2], the left edge is the edge with z-coordinate z; and
the right edge is the edge with z-coordinate z».

212 E. F. Grove, T. M. Murali & J. S. Vitter

At each event point, the algorithm performs the following two actions:

(i) If an event point corresponds to the left edge of a rectangle R, the correspond-
ing cross-section is inserted into 7 using procedure LEFT-INSERT (described
below) and each basic segment it is divided into is checked for visibility.

(ii) If an event point corresponds to the right edge of a rectangle R, the cor-
responding cross-section is deleted from 7 using procedure RIGHT-DELETE
(described below) and cross-sections which become visible as a result of this
deletion are reported.

LEFT-INSERT(R, S, root), where S is the background rectangle (that is, S.z = —o0)
and root is the root of 7, inserts the cross-section of a rectangle R into 7 by dividing
it into O(logn) cross-sections. At each node where the cross-section of R is stored,
it is checked for visibility.

procedure LEFT-INSERT(R: rectangle, S: rectangle, v: segment tree node)

if [R.yl,R.y2] g b.,, then

insert R into H, and set the unrep field of R in #, to true;

if (R.z > 1,) and (R.z > S.z) then

report R as visible and set the unrep field of R in H, to false;

else

if (S.z < top(H,).z) then S = top(H,);

if (R.y1 < Umiq) then LEFT-INSERT(R, S, u);

if (vmia < R.y2) then LEFT-INSERT(R, S, w);
update [, and h,;

RIGHT-DELETE(R, S, root), where S and root are as defined in LEFT-INSERT, deletes
the cross-section of rectangle R from 7. RIGHT-REPORT is called at each node where
a visible cross-section of R is deleted.

procedure RIGHT-DELETE(R: rectangle, S: rectangle, v: segment tree node)
if [R.y1, R.y2] C b, then
delete R from H,;
update hy, l;
if ((S.unrep = true) and (S.z > 1,))
report S as visible;
set the unrep field of S in T to false;
else
if (R.z >1,) and (R.z > S.z) then
RIGHT-REPORT(S, v);
else
if (S.z < top(H,).2) then S = top(H,);
if (R.y1 < Umiq) then RIGHT-DELETE(R, S, u);
if (mia < R.y2) then RIGHT-DELETE(R, S, w);
update I, and h,;

RIGHT-REPORT(S, v) is called by RIGHT-DELETE at a segment tree node v where
a visible cross-section of a just-deleted rectangle R was stored. RIGHT-REPORT
reports all previously unreported cross-sections that become visible as a result of
the deletion of R.

The Object Complezity Model for Hidden-Surface Removal 213

procedure RIGHT-REPORT(S: rectangle, v: segment tree node)
if (h, < S.z) return;
if (S.z < top(Hy).2) then
if (top(Hy).unrep = true) and (top(Hy).z > ly)
report top(H,);
top(H,).unrep = false;
S = top(Ho);
RIGHT-REPORT(SS, u);
RIGHT-REPORT(S, w);
update hy;

5. Correctness and Analysis

Lemma 1 The algorithm reports all and only visible cross-sections.

Proof. The algorithm maintains the invariant that a cross-section s stored at
a node v is obscured by the cross-sections stored in the subtree rooted at v iff s.z is
less than l,. The segment tree has the property that for any node v of T, b, C b,
when u is an ancestor of v in 7 and b, D b, when u is a descendent of v in 7. This
property implies that the highest cross-section s stored at a node v is invisible if
and only if

(i) there exists a cross-section r stored at an ancestor of v such that s.z < r.z or
(i) s.z < 1,.
In the procedures LEFT-INSERT, RIGHT-DELETE and RIGHT-REPORT, when we are
visiting node v, the rectangle S is the highest rectangle stored at an ancestor of v.
Since the checks implied by the above statements are made using S and the [,
field before a cross-section is reported as visible, the algorithm reports only visible
cross-sections.

A visible rectangle R has either its left edge visible or a portion of its interior
visible. It is easy to see if R’s left edge is visible, R is reported as visible when it
is inserted into 7. If only an interior portion of R is visible, this portion must first
become visible during the sweep when some visible rectangle S above R is deleted.
Then a call to RIGHT-REPORT at some node in 7 where a cross-section of S is stored
will report R as visible. This implies that all visible rectangles are reported. It is
also clear that the unrep field ensures that each visible cross-section is reported only
once. m]

The analysis of the running time depends on the following key lemma. We say
that a node is marked if a rectangle is reported as visible when the node is visited
by RIGHT-REPORT.

Lemma 2 Let U be the subtree of T explored by a single call to RIGHT-REPORT. If
two leaves of U are siblings and unmarked, then their parent is marked.

Proof. Let the two unmarked leaves be © and w, and let v be their parent.
Let S,, Sy and Sy, be the values of S when RIGHT-REPORT visits v,z and w respec-
tively. To show that v is marked we need to show that top(#,,) is reported as visible
when v is visited by RIGHT-REPORT. We can do this if we show that the following
three facts are true:

214 E. F. Grove, T. M. Murali & J. S. Vitter

(i) top(Ho)-z > Sy.2,
(if) top(H,).unrep is true, and
(iii) top(Hy)-z > ly.
Since both u and w are leaves of U, we know from the pseudo-code for RIGHT-
REPORT that

hy < Sy.z and hy < Sy.2. 1)

We also know from the pseudo-code for RIGHT-REPORT that
Su.z = Sy.z = max{S,.z,top(Hy)}. (2)
Since v is not a leaf of U, h, > S,.z > —oco. Hence, the definition of h, implies that
hy = max{hy, hy,top(H,).2}. 3)

Now we are ready to prove that top(H,).z > S,.z. Since v is not a leaf of U, we
know that

hy > Sy.2. 4)

By (3), we have that h, = h, (the case h, = h,, is symmetric) or that h, =
top(Hy).z. We first prove that h, = top(H,).z by showing that assuming h, = h,,
leads to a contradiction. If h, = h,, then (3) implies that

hu 2 top(Ho)-2. (5)
Now, (2) implies that S,.z = S,.z (i.e., Sy.z > top(H,).z) or Sy.z = top(H,).z
(i-e., Sy.z > Sy.z). We consider each case in turn.

(i) Sy.z = Sy.z > top(Hy).z: Using (1) and (4), we get a contradiction since
hy = hy < Sy.z = Sy.2 < hy.

(il) Sy.z = top(H,).z > S,.z: Using (5) and (1), we get a contradiction since
top(Hy).z < hy < Sy.z = top(Hy).2.

Hence h, = top(#,).z. By (4), hy, > Sy.z. Hence, we have
top(Hy) > Sy.2. (6)
(6) and (2) now imply that S,.z = S,,.z = top(H,). Combining with (1), we obtain
top(Hy) > max{hy, hy}.

Since h, > —oo (otherwise v would have been a leaf of /), the definition of h,
implies that either top(#,).unrep is true or top(H,).z < max{hy, hy}. We just
showed that top(#H,) > max{hy, h,}. Hence top(H,).unrep is true.

To complete the proof, we show that

top(Hy).z > L.

The Object Complezity Model for Hidden-Surface Removal 215

By the definition of h, and l,, it is clear that h, > [,. Similarly, h, > [l,, and h,, > [,,.
Since top(H,) > max{hy, hy}, it follows that top(H,) > max{ly,lw}. From the
definition of [, we know that

l, = max{min{l,, l, },top(H,).2},

which implies that I, = top(#,).z. O
It is now an easy exercise to show that if a subtree traversed by a call to RIGHT-
REPORT has k marked nodes, then the subtree has O(klogn) nodes.

Theorem 2 The rectangles visible from z = +00 in a set of n rectangles with sides
parallel to the z- and y-azes can be reported in O(nlog®n) time. The space used
is O(nlogn).

Proof. The space taken by 7 is clearly O(nlogn) because each cross-section
is stored at O(logn) nodes in T.

Each of the O(n) calls to LEFT-INSERT and RIGHT-DELETE takes O(log” n) time
since O(logn) nodes are visited in each call and O(logn) time is spent at each
node in updating the heap stored at that node. Hence the total time spent in calls
to LEFT-INSERT and RIGHT-DELETE is O(nlog®n). Lemma 2 implies that RIGHT-
REPORT will traverse a tree of size O(llogn) to report [previously unreported cross-
sections. Since each visible rectangle is reported O(logn) times, calls to RIGHT-
REPORT take O(klog® n) time, where k is the number of visible rectangles. Since &
is at most n, the total time is O(n log® n). o

6. An Improved Algorithm

In this section, we improve the running time of the algorithm to O(nlogn).
When a rectangle is reported for the first time by the above algorithm, in O(logn)
time all cross-sections corresponding to it can be marked as reported (using the
unrep field). Since these cross-sections are the leaves of a subtree of 7 of size O(logn),
the h, values in the tree can be updated to reflect the changes to 7 in O(logn)
time. This reduces the O(k log? n) component of the running time (which is hidden
by O(nlog® n) in Theorem 2) to O(klogn).

To reduce the time taken by the rest of the algorithm to O(nlogn), we use Bern’s
trick.® He notes that anytime a node v of 7 is visited, it is enough to know just the
value of top(#,) rather than what is stored in the entire heap. At each node v of
the segment tree, the modified algorithm stores a list of values of top(#,). Each
entry in the list has a range of = values for which it is valid. The modified algorithm
simulates the old algorithm exactly except that no insertions and deletions are made
into the heaps and whenever the value at the top of a heap is needed, the correct
value is taken from the corresponding list.

Once the skeleton of 7 and the event schedule have been determined, for all
nodes v in T, we calculate a sorted list of R.z values for all rectangles R ever stored
at v. We can do this in O(nlogn) time. We also keep a sorted list of R.x; and R.z»
values for each node corresponding to the insertions and deletions made at that
node.

216 E. F. Grove, T. M. Murali & J. S. Vitter

For a single node v, we can represent the sorted list of R.z values by ranks
between 1 and m, where m is the total number of rectangles stored at v. Computing
the list of top(H,) values now is an off-line “extract-maximum” problem. Bern
shows how a sequence of O(m) insert, delete and find-max operations on integers
between 1 and m can be processed in O(m) time.

The total length of all top(H,) lists is O(nlogn) since each rectangle is stored
at O(logn) nodes. The computation of each list requires time linear in the length
of the list. Combining with Theorem 1, we have the following theorem.

Theorem 3 The rectangles visible from z = +00 in a set of n rectangles with sides
parallel to the z- and y-azes can be reported in ©(nlogn) time. The space used
is O(nlogn).

7. Conclusions

We have developed a new model of complexity for measuring the performance of
hidden-surface removal algorithms. This model, called the object complexity model,
is motivated by the characteristics of graphics rendering hardware like the z-buffer.
Our model is appropriate for both dynamic and static hidden-surface elimination.
We believe that this model measures the performance of a hidden-surface elimina-
tion algorithm much more realistically than the standard computational geometry
model of scene complexity.

We have also presented a simple, easy-to-implement algorithm under this new
model to report the set of rectangles visible from the point z = +o00. All these
rectangles are parallel to the zy-plane and have sides parallel to the z- and y-axes.
This algorithm runs in ©(nlogn) time and uses O(nlogn) space.

References

1. P. K. Agarwal and J. Matousek, “Ray shooting and parametric search,” SIAM J.
Comput., 22 (1993), 794-806.

2. J. M. Airey, “Increasing Update Rates in the Building Walkthrough System with Au-
tomatic Model-space Subdivision and Potentially Visible Set Calculations,” Ph.D.
Thesis, Dept. of Computer Science, University of North Carolina, Chapel Hill, 1990.

3. M. Bern, “Hidden surface removal for rectangles,” J. Comput. Syst. Sci., 40 (1990),
49-69.

4. E. Catmull, “A Subdivision Algorithm for Computer Display of Curved Surfaces,”
Ph.D. Thesis, Computer Science Dept., University of Utah, Salt Lake City, 1974.

5. S. Coorg and S. Teller, “Temporally coherent conservative visibility,” Proc. 12th
Annu. ACM Sympos. Comput. Geom., 1996, pp. 78-87.

6. S. Coorg and S. Teller, “Real-time occlusion culling for models with large occluders,”
Proc. 1997 Symp. on Interactive 3D Graphics, 1997, pp. 83-90.

7. M. de Berg, “Generalized hidden surface removal,” Comput. Geom. Theory Appl.,
5 (1996), 249-276.

8. M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld, “Efficient
ray shooting and hidden surface removal,” Algorithmica, 12 (1994), 30-53.

9. F. Dévai, “Quadratic bounds for hidden line elimination,” Proc. 2nd Annu. ACM

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

The Object Complezity Model for Hidden-Surface Removal 217

Sympos. Comput. Geom., 1986, pp. 269-275.

D. P. Dobkin and R. J. Lipton, “On the complexity of computations under varying
sets of primitives,” J. Comput. Syst. Sci., 18 (1979), 86-91.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics:
Principles and Practice, (Addison-Wesley, Reading, 1990).

M. J. Katz, M. H. Overmars, and M. Sharir, “Efficient hidden surface removal for
objects with small union size,” Comput. Geom. Theory Appl., 2 (1992), 223-234.

M. McKenna, “Worst-case optimal hidden-surface removal,” ACM Trans. Graph.,
6 (1987), 19-28.

K. Mehlhorn, Data Structures and Algorithms, (Springer-Verlag, Berlin, 1984), Vol-
umes 1-3.

J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal, “InfiniteReality: A
Real-Time Graphics System,” Proc. SIGGRAPH 97, in Comput. Graph. Proc.,
Annual Conference Series, (ACM SIGGRAPH, New York, 1997), pp. 293-302.

F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
(Springer-Verlag, New York, 1985).

F. P. Preparata and J. S. Vitter, “A simplified technique for hidden-line elimination
in terrains,” Proc. 9th Sympos. Theoret. Aspects Comput. Sci., in Lecture Notes
Comput. Sci., Vol. 577, (Springer-Verlag, Berlin, 1992), pp. 135-146.

F. P. Preparata, J. S. Vitter, and M. Yvinec, “Output-sensitive generation of the
perspective view of isothetic parallelepipeds,” Algorithmica, 8 (1992), 257-283.

J. H. Reif and S. Sen, “An efficient output-sensitive hidden-surface removal algo-
rithms and its parallelization,” Proc. 4th Annu. ACM Sympos. Comput. Geom.,
1988, pp. 193-200.

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, “A characterization of ten
hidden-surface algorithms,” ACM Comput. Surv., 6 (1974), 1-55.

S. J. Teller, “Visibility Computations in Densely Occluded Polyhedral Environ-
ments,” Ph.D. Thesis, Dept. of Computer Science, University of California, Berke-
ley, 1992.

