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Abstract

In this paper we give new techniques for designing

e�cient algorithms for computational geometry prob-

lems that are too large to be solved in internal mem-

ory. We use these techniques to develop optimal and

practical algorithms for a number of important large-

scale problems. We discuss our algorithms primarily

in the context of single processor/single disk machines,

a domain in which they are not only the �rst known

optimal results but also of tremendous practical value.

Our methods also produce the �rst known optimal al-

gorithms for a wide range of two-level and hierarchical

multilevel memory models, including parallel models.

The algorithms are optimal both in terms of I/O cost

and internal computation.

1 Introduction

Input/Output (I/O) communication between fast

internal memory and slower secondary storage is the

bottleneck in many large-scale information-processing

applications, and its relative signi�cance is increasing

as parallel computing gains popularity. In this paper

we consider the important application area of compu-

tational geometry and develop several paradigms for

optimal geometric computation using secondary stor-

age.
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Large-scale problems involving geometric data are

ubiquitous in spatial databases [24,32,33], geographic

information systems (GIS) [10,24,32], constraint logic

programming [19,20], object oriented databases [39],

statistics, virtual reality systems, and computer

graphics [32]. As an example, NASA's soon-to-be

petabyte-sized databases are expected to facilitate a

variety of complex geometric queries [10]. Important

operations on geometric data include range queries,

constructing convex hulls, nearest neighbor calcula-

tions, �nding intersections, and ray tracing, to name

but a few.

1.1 Our I/O model

In I/O systems, data are usually transferred in units

of blocks, which may consist of several kilobytes. This

blocking takes advantage of the fact that the seek time

is usually much longer than the time needed to trans-

fer a record of data once the disk read/write head is

in place. An increasingly popular way to get further

speedup is to use many disk drives and/or many CPUs

working in parallel [12,13,18,25,28,36]. We model such

systems, examples of which are shown in Figure 1, us-

ing the following four parameters:

M = # items that can �t in internal memory;

B = # records per block;

P = # CPUs (internal processors);

D = # disk drives.

For the problems we consider, we de�ne three gen-

eral parameters:

N = # items or updates in the problem instance;

K = # query operations in the problem instance;

T = # items in the solution to the problem.

We will assume that M < N , 1 � P � M= logM ,

and 1 � DB � M=2. The measures of performance



Figure 1: (a) The parallel disk model. Each of the D

disks can simultaneously transfer B records to and from
internal memory in a single I/O. The internal memory
can store M � DB records. (b) Multiprocessor gen-
eralization of the I/O model in (a), in which each of
the P = D internal processors controls one disk and
has an internal memory of size M=P . The P processors
are connected by some topology such as a hypercube or
an EREW PRAM and their memories collectively have
size M .

that we would like to minimize simultaneously are the

number of I/Os and the internal computation time.

The relevant terms that enter the formul� for the

I/O bounds are often in units of blocks, such as N=B,

M=B, and so on. For that reason we de�ne the fol-

lowing shorthand notation:

� =
N

B
; � =

M

B
; � =

K

B
; � =

T

B
:

In order to get across our techniques in the mini-

mum space, we illustrate our results in this paper for

the special case of the I/O model in which P = 1 and

D = 1. Even in this simpli�ed model, our results are

signi�cant since P = 1 and D = 1 accurately model

the vast majority of I/O systems currently installed

and being produced, and no I/O optimal algorithms

were previously known for the problems we discuss.

Our results are optimal in the parallel I/O model for

P � 1 and D � 1 and in the parallel hierarchy models

[27,38]. In particular, in the parallel I/O model, using

P processors reduces the internal computation time

by a factor of P and using D disks reduces the num-

ber of I/O steps by a factor of D. This generalization

is discussed in Section 7 and in greater detail in the

full version of this paper.

1.2 Our results

In this paper we present a number of general tech-

niques for designing external-memory algorithms for

computational geometry problems. These techniques

include the following:

� distribution sweeping : a generic method for exter-

nalizing plane-sweep algorithms;

� persistent B-trees: an o�-line method for construct-

ing an optimal-space persistent version of the B-tree

data structure. For batched problems this gives a

factor of B improvement over the generic persis-

tence techniques of Driscoll et al. [11];

� batch �ltering : a general method for performing

K simultaneous external-memory searches in data

structures that can be modeled as planar layered

dags and in certain fractional cascaded data struc-

tures;

� on-line �ltering : A technique based on the work of

Tamassia and Vitter [35] that allows I/O optimal

on-line queries in fractional cascaded data struc-

tures based on balanced binary trees.

� external marriage-before-conquest : an external-

memory analog to the well-known technique of

Kirkpatrick and Seidel [22] for performing output-

sensitive hull constructions.

We apply these techniques to derive optimal

external-memory algorithms for the following funda-

mental problems in computational geometry: com-

puting the pairwise intersection of N orthogonal seg-

ments, answering K range queries on N points, con-

structing the 2-d and 3-d convex hull of N points,

performing K point location queries in a planar sub-

division of size N , �nding all nearest neighbors for a

set of N points in the plane, �nding the pairwise in-

tersections of N rectangles, computing the measure of

the union of N rectangles, computing the visibility of

N segments from a point, performing K ray-shooting

queries in CSG models of size N , and several geomet-

ric dominance problems. Our results are summarized

in the following theorem, individual parts of which are

discussed in the remaining sections of the paper.

Theorem 1.1: Each of the problems mentioned in

the preceding paragraph can be solved in external mem-

ory using O((� + �) log� � + � ) I/Os. If D disks are

used in parallel, the number of I/Os required can be

reduced by a factor of D.

For problems in which there are no queries as part of

the problem instance, we use K = 0 (and thus � = 0);

if the output (solution) size is �xed, we use T = 1 (and

thus � = 1=B = o(1)).



2 Distribution sweeping

The well-known plane sweep paradigm [30] is a pow-

erful approach for developing computational geometry

algorithms that are e�cient in terms of internal com-

putation. In this section we develop a new plane sweep

approach that for the �rst time achieves optimal I/O

performance (and a subsequent improvement in prac-

tice) for a large number of large-scale o�-line problems

in computational geometry.

A typical internal memory plane sweep algorithm

proceeds by examining the geometric objects that

make up its input (e.g., points, line segments, vertices

of polygons, etc.) in sequence along a given dimen-

sion. As the scan proceeds, a dynamic data structure,

typically a search tree, is maintained. Each time a

new input object is processed, either an update, a

query, or both are performed in the dynamic data

structure. If each object results in only a constant

number of updates and/or queries, each of which can

be performed in time logarithmic in the number of ob-

jects, then the total running time of the algorithm is

O((N + K) logN + T ). For problems to which this

technique is typically applied, this performance is op-

timal. An example of this is the standard plane sweep

algorithm for orthogonal segment intersection, where

the dynamic data structure is an interval tree [30].

An obvious way of implementing algorithms of this

type in secondary memory is to replace the dynamic

search tree with a dynamic B-tree [6,9]. Unfortu-

nately, this requires �((N + K) log� �) = �(B(� +

�) log� �) I/O operations in the worst case, which is

prohibitive. Previous work using lazy batched updates

on the B-tree yielded algorithms with O((�+�) log
2
�)

I/Os [34].

Our new method uses an o�-line top-down imple-

mentation of the sweep, which is based upon a novel

application of the subdivision technique used in the

\distribution sort" algorithms of [3,27,37]. The cen-

tral idea is that we divide the input into O(�) strips,

each containing an equal number of input objects. We

then scan down these strips simultaneously, looking

for components of the solution involving interactions

between objects among di�erent strips. Once we have

done this, we are left with the problem of determining

the components of the solution involving interactions

completely within the strips, which we can solve re-

cursively. Because we sweep the strips and then dis-

tribute the data to recursive subproblems for solution,

we refer to our technique as distribution sweeping.

In Sections 2.1 and 2.2 we discuss optimal distribu-

tion sweeping algorithms for orthogonal segment inter-

section and all nearest neighbors respectively. There

are many other problems that this technique can be

applied to. These are mentioned in Section 2.3 and

discussed at length in the full version of this paper.

2.1 Orthogonal segment intersection re-
porting

The orthogonal segment intersection problem is

that of reporting all intersecting pairs from a set of

N orthogonal line segments. This problem is impor-

tant in graphics and VLSI design systems.

To solve this problem, we �st use an optimal sorting

algorithm, for example [27,37], to sort the endpoints

of all segments into two lists, one sorted by x and

the other by y. The list sorted by x is used to lo-

cate medians which we will use to split the input into

b�c vertical strips i. The list sorted by y is used to

perform the sweep, which moves from top to bottom.

Points encountered during the sweep are processed as

follows:

� If the top endpoint of a vertical segment is encoun-

tered, the segment is inserted into an active list Ai

associated with the strip i in which the segment

lies, and later, when the bottom endpoint is encoun-

tered, the segment is deleted from Ai.

� If the endpoints of a horizontal segment R are en-

countered, we consider the strips that R passes com-

pletely through and report all the vertical segments

in the active lists of those strips.

This process �nds all intersections except those be-

tween vertical segments and horizontal segments or

portions thereof that do not completely span vertical

strips. These are found when the problem is solved

recursively on each strip.

In constructing the recursive subproblems,R is only

distributed to the two strips containing its endpoints,

thus at each level of recursion each segment is repre-

sented only twice. This is the key to preventing the

total size of the subproblems at a given level of re-

cursion from exceeding the input size by more than a

constant factor. Once the number of points in a re-

cursive subproblem falls belowM , we simply solve the

problem in main memory.

Insertions and vertical segments can be processed

e�ciently using blocks. With the exception of deleting

segments from active lists, the total number of I/Os

performed by this method is optimal O(� log� � + � ),

where � = T=B and T is the number of intersections

reported. If \vigilant" deletion is used to delete each

segment as soon as the sweep line reaches the bottom

endpoint, a nonoptimalO(N ) = O(B�) term is added

to the I/O bound. Instead we use the following \lazy"



deletion approach: For each strip, we maintain Ai as

a stack. When a new segment is inserted, we simply

add it to the stack. We keep all but the B most re-

cently added elements of this stack in blocks of size

B in external memory. When we are asked to output

the active list, we scan the entire stack, outputting

the segments still current and removing the segments

whose deletion time has passed. A simple amortiza-

tion argument shows that this method achieves the

bound of Theorem 1.1.

2.2 All nearest neighbors

Given a set S of N points in the plane, the all

nearest neighbors problem is that of �nding, for each

point p 2 S, a nearest neighbor NN (p), i.e. a point in

Snfpg at least as close to p as any other. This problem
has many applications in answering basic proximity

questions on sets of objects. In this section we show

how the all nearest neighbors problem can be solved

by distribution sweeping.

To �nd the nearest neighbors of all points we will

solve two subproblems, one to �nd the nearest neigh-

bor above each point and the other to �nd the near-

est neighbor below it. These solutions can then be

compared to �nd the actual nearest neighbor of each

point. Without loss of generality we will discuss only

the method of �nding the nearest neighbor below each

point.

Just as we did for orthogonal segment intersection,

we initially sort the input points using an optimal sort-

ing algorithm [27,37] and then divide the set of points

into vertical strips 1; 2; : : : ; �=5.

For each point p in strip i we de�ne FN b(p) to be

the closest point to p that is below p and outside i.

We perform a downward sweep in which we produce,

for each point p, either the identity and location of

FN b(p) or a certi�cate Cb(p) that NN (p) lies in the

same strip i as p. The details of how these neigh-

bors and certi�cates are produced are presented in the

full version of this paper. An important point is that

just because a scan �nds FN b(p) does not mean that

FN b(p) is NN (p); a recursive step may �nd a point

within i that is closer. Thus FN b(p) is stored with

each p in order that a recursive step can compare so-

lutions it �nds with the best solution from any higher

level.

As we scan, we maintain an active set Ai for each

strip i. Ai is the set of points in i for which we do

not yet have either a certi�cate or a de�nite answer as

to the identity of FN b(p). The following lemma, due

to Atallah and Tsay [5] bounds the size of Ai.

Lemma 2.1 [5]: At all times during the sweep,

jAij � 4 for all i.

Although there can be no more than a constant

number (4) of points in Ai at a time, these are not re-

quired to be the last four points in i that the sweep

line passed. Nevertheless, since there are only a con-

stant number, we can keep the four or fewer blocks

of output in which they appear in main memory until

certi�cates or neighbors are found for them, at which

time those blocks can be reinserted into the output

stream.

Recursion continues until subproblems are small

enough to �t in main memory, at which point they

are solved directly. This gives us the optimal running

time O(� log� �).

2.3 Other applications of distribution
sweeping

Though space precludes a full exposition, the distri-

bution sweeping method can be used to solve a num-

ber of other o�-line problems in computational ge-

ometry that are traditionally solved by plane sweep

techniques. The resulting algorithms use an optimal

O((� + �) log� � + � ) I/Os. Problems in this category

include batched range queries, computing the visibil-

ity from a point in the plane, �nding pairwise rectan-

gle intersections, computing the measure of a union of

rectangles, and the 3-d maxima problem. These prob-

lems are discussed in greater detail in the full version

of this paper.

3 Persistent B-trees

The B-tree data structure [6,9] is a fundamental

structure for maintaining a dynamically-changing dic-

tionary in external memory. In some cases, however,

it may be advantageous to be able to access previous

versions of the data structure. Being able to access

such previous versions is known as persistence, and

there exist very general techniques for making most

data structures persistent [11]. Persistence can be im-

plemented either in an on-line fashion (i.e., where the

tree updates are coming on-line) or in an o�-line fash-

ion (i.e., where one is given the sequence of tree up-

dates in advance).

For the on-line case, the method of Driscoll et al.

Lspace [11] can be applied to hysterical B-trees as de-

scribed by Maier and Salveter [26]. Since it is on-line,

this structure requires O(N log� �) I/Os to construct,

which is optimal in an on-line setting. Unfortunately,

this is a factor of B away from optimal for the sort of



batch geometric problems we would like to consider.

For these we need an o�-line strategy that requires

only O(� log� �) I/Os. In the following section we de-

scribe just such a method.

3.1 O�-line persistence

In the o�-line case we can build a persistent tree

by the distribution sweep method. We slightly modify

our application of distribution sweeping for this con-

struction, however, in that we follow the recursive calls

on the sequences of suboperations by a non-recursive

\merge" step.

We begin by applying using the techniques of [3,37]

to divide the set X of elements mentioned in � into

s groups of size roughly N=s each, where s = dp�e.
This, of course, divides � into s subsequences, one for

each group. We then recursively construct a persistent

data structure for each subsequence. Each such recur-

sive call returns a list of \roots" of s-way trees, each of

which is marked with a time stamp that represents the

index in � when this root was created. We mark every

sth element in each list as a \bridge" element and we

merge these bridge elements into a single list Y. We

store pointers from each element y 2 Y to all its bridge

predecessors in the recursively-constructed lists. The

list Y, together with these pointers, de�nes the roots

of the persistent structure. Since we only choose every

sth element from each list as a bridge, it is easy to see

that total space needed is O(�) blocks, and the depth

of the resulting (layered dag) persistent structure is

O(log� �).

A search in the past, say at time position i, begins

by locating the root active for time i and searching

down in the structure from there, always searching in

nodes whose time stamp is the largest value � i. Per-

forming only one such search would not be an e�cient

strategy, however, unless s =
p
� is O(B). Never-

theless, as we show in the next section, this is a very

e�cient data structure (e.g., for point location) if it is

searched using the batched �ltering technique.

4 Batch �ltering

In this section we demonstrate how, for many query

problems in computational geometry, we can represent

a data structure of size N in � disk blocks in such a

way that K constant-sized output queries of the data

structure can be answered in O((� + �) log� �) I/O

operations. Because we represent the data structure

as a dag through which the K queries �lter down from

source to sinks, we call this technique batch �ltering.

Given a data structure that supports queries, we

can often model the processing of a query as the

traversal of a decision dag isomorphic to the data

structure. We begin at a source node in the dag, and

at each node we visit, we make a decision based on

the outcome of comparisons between the query value

and some number d of values stored at the node. We

then make a decision as to which of the node's O(d)

children to visit next. This process continues until we

reach a sink in the dag, at which point we report the

outcome of the query.

By restricting the class of such dags we are willing

to consider, we are able to prove the following lemma,

which will serve as a building block for optimal al-

gorithms to solve a number of important geometric

problems.

Lemma 4.1: Let G = (V;E) be a planar layered de-

cision dag with a single source such that the maximum

out degree of any node is �. Let the graph be repre-

sented in � blocks, with the nodes ordered by level and

the nodes within a level ordered from left to right. Let

N = jV j and let h be the height of G. We can �lter K

queries through G in O(� + h�) I/O operations.

Proof Sketch: We traverse the levels one by one,

sending all K inputs to the ith level before any are

sent to the (i + 1)st. We do this by maintaining two

FIFO queues, one for the current level and one for

the next level. Each queue is a left-to-right list of

edges between its level and the next one. If less than

B queries traverse an edge then they are explicitly

stored in the queue. If B or more traverse the edge,

then the queue contains a pointer to a linked list of

blocks storing them. Since the graph is planar, there

exists an e�ciently blocked method of producing one

queue from the previous queue. 2

Luckily, the restrictions imposed on the type of de-

cision dags we can handle with batch �ltering is not

too severe. In particular, many computations use de-

cision trees, which clearly constitute a special case of

the lemma. Often these trees are binary, but we can

divide a binary tree into layers of height O(log�) and

then store each node on a layer boundary along with

all its descendants in the layer below it as a single node

with branching factor �. This allows us to reduce h

by a factor of O(log�) yet still meet the conditions of

the lemma. We will see this approach used in solving

subproblems of the 3-d convex hull problem in Sec-

tion 6.3.

Another way of using batch �ltering, which we dis-

cuss in Section 4.1, is by structuring more complicated

decision dags as recursive constructions in order to get

around the planarity restrictions of the lemma.



4.1 Application: multiple-point planar
point location

Planar point location is one of the fundamental

problems of computational geometry. In the version of

the problem considered here, we are given a monotone

planar decomposition having N vertices, and a series

of K query points. For each query point, we are to

return the identi�er of the region in which it lies. In

main memory, this problem can be solved in optimal

timeO((N+K) logN ) using fractional cascading [7,8];

O(N logN ) is spent on preprocessing and O(K logN )

is needed to perform the queries.

We can apply the technique of Lemma 4.1 to the

main tree, but the bridge pointers connecting the cat-

alogs make the dag non-planar. To get around this, we

note that as queries traverse the edges between nodes

in the main tree, they are ordered by the catalog val-

ues they query. This ordering is established at the

root of the data structure, where a �-ary tree is used

to locate the queries in the �rst catalog. By relying

on this ordering, we can e�ciently process the queries

that arrive at each node of the main tree. The overall

complexity of this technique is thereby maintained at

O((� + �) log� �). Details of the construction appear

in the full version of the paper.

5 On-line �ltering

In the Section 4 we discussed batch �ltering, a tech-

nique which allows the e�cient processing of a batch

of queries. In some applications, this approach is not

suitable because the queries arrive one at a time and

must by processed individually. If we use batch �lter-

ing with a batch of size K = 1 for each query, this

would require O(�+ log� �) I/Os per query. More de-

sirable is a method for preprocessing the data struc-

ture so that individual queries can be answered with

an optimal O(logB �) I/Os. In this section we briey

describe how this can be done with a modi�ed version

of a parallel fractional cascading technique of Tamas-

sia and Vitter [35].

The method of Tamassia and Vitter [35] works with

data structures whose underlying graphs are balanced

binary trees. Preprocessing takes O(N ) work. Once

this is done, individual queries can be answered on a

p processor CREW PRAM in O(logp N ) time. The

access patterns of the processors during the search are

such that data is accessed in groups that can be con-

veniently put into blocks for I/O purposes. This tech-

nique, details of which are presented in the full version

of this paper, allows us to e�ectively replace a single

step of p processors by one I/O, thereby giving us a

search complexity of O(logB �) I/Os.

6 Convex hull algorithms

The convex hull problem is that of computing the

smallest convex polytope completely enclosing a set

of N points in d-dimensional space. This problem

has important applications ranging from statistics to

graphics to metallurgy. In this section we will ex-

amine the problem in external memory for two and

three dimensions. The three-dimensional case is par-

ticularly interesting because of the number of two-

dimensional geometric structures closely related to

it, such as Voronoi diagrams and Delaunay triangu-

lations. In fact, by well-known reductions [17], our

3-d convex hull algorithm immediately gives external-

memory algorithms for planar Voronoi diagrams and

Delaunay triangulations with the same I/O perfor-

mance.

In main memory the lower bound for computing

the convex hull of N points in dimension d = 2 and

d = 3 is 
(N logN ) [30]. In secondary memory, this

bound becomes 
(� log� �). In this section we give

optimal algorithms that match this lower bound. For

the two-dimensional case we show how to beat this

lower bound for the case when the output size T is

much smaller than N (in the extreme case, T = O(1)).

We develop an output-sensitive algorithm based upon

an external-memory version of the marriage-before-

conquest paradigm of Kirkpatrick and Seidel [22].

Our 3-d convex hull is somewhat esoteric, so we

also describe a simpli�ed version that, although not

optimal asymptotically, is simpler to implement and

is faster for the vast majority of practical cases.

6.1 A worst-case optimal two-dimen-
sional convex hull algorithm

For the two-dimensional case, a number of main

memory algorithms are known that operate in optimal

time O(N logN ) [30]. A simple way to solve the prob-

lem optimally in external memory is to modify one

of the main memory approaches, namely Graham's

scan [16]. Graham's scan requires that we sort the

points, which can be done in O(� log� �) I/O opera-

tions, and then scan linearly through them, at times

backtracking, but only over each input point at most

once. Clearly this scanning stage can be accomplished

in O(�) I/O operations, so the overall complexity of

the algorithm is O(� log� �).



6.2 An output-sensitive two-dimensional
convex hull algorithm

If the output size T is signi�cantly smaller than N

(for example, T can be O(1)) then we can do better

than the Graham scan approach. In this section we

show how to construct a two-dimensional convex hull

using a number of I/Os that is output-size sensitive in

a stronger sense than any of the algorithms discussed

thus far. Note that when T = o(N ), we actually do

better than Theorem 1.1 indicates. Our results are

optimal, as stated in the following theorem.

Theorem 6.1: The convex hull of a set S of N points

in the plane having T extreme points can be computed

in O(� log� � ) I/Os, which is optimal.

We omit details in this preliminary version, but the

main idea of our method is as follows: First, we ob-

serve that we may restrict our attention to the up-

per hull (i.e., edges with normals with positive y-

components) without loss of generality. We use the

techniques of [3,37] to divide the set of input points

into s = dp� e buckets divided by vertical lines.

We then use an external-memory implementation of

a method of Goodrich [15] for combining prune-and-

search bridge �nding [22] with the Graham scan tech-

nique [16] to �nd all the upper hull edges intersect-

ing our given vertical lines. Our implementation uses

O(�) I/Os. Given these hull edges we may then re-

curse on any buckets that are not completely spanned

by the hull edges we just discovered. Our analysis is

based on the fact that at least one of the following two

conditions holds in any such divide step:

1. Half of the s buckets are completely covered and

eliminated from further consideration, reducing the

number of points to consider by a constant fraction.

2. We discover s=2 hull edges that do not completely

cover a bucket.

This implies that the total number of I/Os is

O(� log� � ), which is optimal for any value of T .

6.3 Three-dimensional convex hulls

Even in main memory, space sweeping algorithms

fail to solve the 3-d convex hull problem, and we

must resort to more advanced divide and conquer ap-

proaches [29]. One idea is to use a plane to parti-

tion the points into equally sized sets, recursively con-

struct the convex hull for each set, and then merge

the recursive solutions together in linear time. Unfor-

tunately, we know no way of implementing an algo-

rithm of this type in secondary memory; the problem

Halfspace Intersection

Input: A set S of N halfspaces in 3-d space.

Output: The set of all halfspaces hi 2 S whose bounding
planes lie on the boundary of the intersection

T
hj2S0

hj

1. For j = 1 to �(log� �), take a random sample Sj of S,

where jSj j = N" for a constant 0 < " < 1.

2. Recursively solve the halfspace intersection problem on
each sample Sj , giving a set of solutions Ij .

3. Use polling ([31]) to estimate the size of the partition of

S� Sj that each sample solution Ij will induce. Let Sr
be the sample whose solution Ir generates the smallest

such partition.

4. For each cone Ci of Ir, compute Ri, the set of halfspaces
in S � Sr whose boundaries intersect Ci.

5. Eliminate redundant planes from each Ri, yielding R�
i .

6. Recursively solve the halfspace intersection problem on

each set R�
i .

Algorithm 6.1: An algorithm for computing the 3-d con-
vex hull of a set of points.

is that we cannot adequately anticipate all possible

paths through the recursive subsolutions that might

be traversed during the merging phase. Another ob-

stacle is that we need to be able to merge O(�") recur-

sive solutions in linear time, rather than just two. If

we use any fewer, then the depth of the recursion will

not be small enough to give us an optimal algorithm.

In order to get around the problems associated with

a merging approach, we use a novel formulation of the

distribution method. We consider the dual of the con-

vex hull problem, namely that of computing the inter-

section of N half spaces all of which contain the origin

[30]. Once we are dealing with the dual problem, we

can use a distribution based approach along the lines

of that proposed by Reif and Sen for computing 3-d

convex hulls in parallel [31].

Let S be a set of N halfspaces all of which contain

the origin. Let the boundary of halfspace hi 2 S be

denoted Pi. Suppose we have a subset S0 � S such

that jS0j = N ". Let I0 =
T
hj2S0

hj. A face of I0
might have up to N " edges. We can reduce this com-

plexity by trangulating each face, which can be done

by sorting the vertices of I0 along a vector not perpen-

dicular to any face and then sweeping a plane along

this sorted order. By Euler's law the size of the re-

sulting set of faces is at most O(N "). We can now

decompose I0 into O(N
") cones Ci, each of which has

one of these faces as a base and the origin as an apex.

An obvious way of distributing the halfspaces into sub-

problems is to create a subproblem for each cone Ci

consisting of �nding the intersection of all halfspaces



Figure 3: Parallel multilevel memory hierarchies. The
H hierarchies (of any of the types listed in Figure 2)
have their base levels connected by H interconnected
processors.

hj 2 SnS0 whose bounding planes Pj intersect Ci. Un-

fortunately, a given Pj may intersect many cones, so it

is not clear that we can continue to work through the

O(log logN ) required levels of recursion without caus-

ing a very large blow up in the total size of the sub-

problems. Luckily, using a form of random sampling

called polling and eliminating redundant planes from

within a cone prior to recursion [31], we can with high

probability get around this problem. (In this discus-

sion, the phrase \with high probability" means with

probability 1� N��, for some constant �.)

Algorithm 6.1 is the resulting distribution algo-

rithm for computing the intersection of all hi 2 S.

Step 1 can be completed with O(� log� �) I/Os by

making a linear pass through S for each sample, as

suggested by Knuth [23]. Step 2 consists of recursive

calls that will be considered later. In Step 3 we de-

compose each Sj into cones using a plane sweep. This

takes O((jSjj=B) log�(jSj j=B)) I/Os. We then take a

random sample from S � Sj for each Sj . This takes

O(� log� �) I/Os. Finally, we solve a tree structured

point location problem on all elements of the sam-

ple. This is done by batch �ltering as described in

Section 4. The number of I/O operations needed by

Step 4 is O( r
B
log�

r
B
), where r =

P
i jRij. In Step 5,

redundant planes are eliminated using a variant of the

3-d maximaalgorithm from Section 2 and a 2-d convex

hull algorithm. Both require O( r
B
log�

r
B
) I/O opera-

tions. Finally, Step 6 recursively solves the subprob-

lems.

By methods analogous to the approach of Reif and

Sen [31] for the parallel case, we can develop the fol-

lowing recurrence for the running time of our algo-

rithm:

T (N ) = O(� log� �) + T (N ") log� � +
X

i

T (jRij):

The �rst term on the right-hand side is the I/O cost

for sampling and partitioning, the second term is the

I/O cost for sorting the samples, and the last term is

for the recursive calls. In the recurrence the jSij terms

are actually random variables. It su�ces to use Karp's

method for solving probabilistic recurrence relations



[21] to get the optimal solution T (n) = O(� log� �)

with high probability.

The distribution approach used here is di�erent

from those of the distribution sort algorithms for the

various I/O and memory hierarchy models [3,27,37,38]

and the distribution sweeping algorithms discussed in

Section 2, but it has the same asymptotic I/O com-

plexity.

If desired, the randomization in our algorithm can

be removed by an external memory implementation of

the technique in [14]. Details are omitted for brevity.

In the full version of this paper we demonstrate

how, for problems of any reasonable practical size, we

can improve upon this algorithm by using samples of

size � instead of N ". The result is an algorithm that

has asymptotic I/O performance of O(� log2� �), but

is far simpler to implement than Algorithm 6.1 and

will generally perform better in practice. The main

reason for the increase in performance is that to do

polling e�ciently the algorithm requires " < 1=8 (see

[31]) and thus in most practical situations � < N ".

7 Parallel and multi-level extensions

Up to this point our discussion has centered on

the special case where D = 1 and P = 1. As has

been mentioned, even in this restricted case the re-

sults presented here have much practical importance.

More signi�cantly, the paradigms described in this pa-

per continue to work even when parallelism is added

and D and P increase. Furthermore, they can be

made to work optimally on hierarchical models hav-

ing more than two levels; these include the well known

HMM [1], BT [2], and UMH [4] (pictured in Fig-

ure 2), and their parallelizations [27,38] (pictured in

Figure 3).

Details of the algorithms for these models are dis-

cussed in the full version of this paper. To a large

extent they are based on modi�ed versions of two of

the main paradigms discussed above, namely distribu-

tion sweeping and batch �ltering. We can also rely on

the many-way divide-and-conquer approach of Atallah

and Tsay [5], which can be extended to the I/O model.

To implement distribution sweeping in these models

we take advantage of the practical and optimal de-

terministic distribution techniques recently developed

by Nodine and Vitter [27] for sorting. To implement

batch �ltering, we can use disk striping [28].

8 Conclusion

We have given a number of paradigms for external-

memory computational geometry that yield the �rst

known I/O optimal algorithms for several interesting

large-scale problems in computational geometry. Be-

cause they are simple and practical on most common

systems (P = 1, D = 1) as well as on the parallel I/O

systems likely to replace them in the not too distant

future (P � 1, D � 1), the methods are likely to gain

widespread use.

Nevertheless, there are a number of interesting

problems that remain open:

� Is there a data structure for 2-d on-line range

queries that achieves O(logB � + � ) I/Os for up-

dates and range queries using O(�) blocks of space?

(The o�-line version of the problem is solved op-

timally in this paper.) Updates and three-sided

range queries can be handled by metablock trees

[20] in O(logB �+logB+ � ) I/Os using O(�) space.

Two-sided range queries anchored on the diagonal

can be done in O(logB � + � ) I/Os per query and

O(logB � + (logB �)2=B) I/Os per (semidynamic)

insertion [20].

� Can an N -vertex polygon be triangulated using

O(N=B) I/Os? Under what conditions?

� Can we �nd all intersecting pairs of N non-

orthogonal segments using O(� log� � + � ) I/Os?
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