
ACM Computing Surveys, 28 (4), December 1996, also available as http://www.cs.duke.edu/~jsv/report.ps.

Copyright c
 1996 by the Association for Computing Machinery, Inc.

Report of the Working Group on

Storage I/O for Large-Scale Computing

ACM Workshop on Strategic Directions in Computing Research

Edited by Garth A. Gibson (CMU), Je�rey Scott Vitter (Duke), and John Wilkes (HP Labs)

With participation from Alok Choudhary (Northwestern), Peter Corbett (IBM), Thomas H. Cor-

men (Dartmouth), Carla Schlatter Ellis (Duke), Michael T. Goodrich (Johns Hopkins), Peter High-

nam (Schlumberger), David Kotz (Dartmouth), Kai Li (Princeton), Richard R. Muntz (UCLA),

Joseph Pasquale (UCSD), M. Satyanarayanan (CMU), and Darren Erik Vengro� (Delaware).

Abstract. We discuss the strategic directions and challenges in the management and use of

storage systems|those components of computer systems responsible for the storage and retrieval

of data. The performance gap between main and secondary memories shows no imminent sign of

vanishing, and thus continuing research into storage I/O will be essential to reap the full bene�t

from the advances occurring in many other areas of computer science. In this report we identify a

few strategic research goals and possible thrusts to meet those goals.

Categories and Subject Descriptors. B.4.0 [Input/Output and Data Communications]: Gen-

eral; C.0 [Computer Systems Organization]: General - System architectures, Systems speci�cation

methodology; D.4.2 [Operating Systems]: Storage Management - Allocation/deallocation strategies,

Secondary Storage, Storage hierarchies; D.4.3 [Operating Systems]: File Systems Management -

File organization, Maintenance; D.4.4 [Operating Systems]: Communications Management - In-

put/Output; D.4.5 [Operating Systems]: Reliability - Fault-tolerance; D.4.6 [Operating Systems]:

Security and Protection - Access controls, Authentication; D.4.8 [Operating Systems]: Performance

- Modeling and prediction, Monitors; E.2 [Data Storage Representations]: Contiguous representa-

tions; E.5 [Files]: Sorting/searching; H.2.7 [Database Management]: Database Administration;

K.6.2 [Management of Computing and Information Systems]: Installation Management - Comput-

ing equipment management, Pricing and resource allocation; K.6.4 [Management of Computing

and Information Systems]: System Management.

General Terms. Algorithms, Design, Management, Measurement, Performance, Reliability.

Additional Key Words and Phrases. I/O, communication, disk drives, secondary memory,

storage management, RAID, disk arrays, programming environments, network-attached storage,

tertiary storage, metadata, service class, virtual device interface, caching, prefetching, scheduling.

1 Introduction

In this report we discuss the strategic directions and challenges in the management and use of

storage systems|those components of computer systems responsible for the storage and retrieval

of data. Typical large-scale storage systems include the following components of secondary and

tertiary storage:

� rigid or hard magnetic disks;

� parallel disk arrays;

� optical disks, which come in several variants: read-only (such as CD-ROM and Digital Video

Disk (DVD)), write-once (WORM), and rewritable (magneto-optical or phase change);

� magnetic tape, such as 4mm (DAT), 8mm, and Digital Linear Tape (DLT);

� autochangers, which combine storage devices with racks of tape cartridges or optical disk

platters that can be moved to and from the drives by robotics.

Complete storage systems also include software to manage and orchestrate the storage compo-

nents. Such software includes management and con�guration utilities for storage devices, logical

volume managers that tie multiple physical devices together as one, and �le systems to arrange

layout of data on storage devices.

Storage systems represent a vital and growing market. Their primary components are magnetic

and optical disk drives, magnetic tapes, and large-capacity robotic assemblies of drives and car-

tridges. Storage hardware sales in 1995 topped $40 billion, including more than 60,000 terabytes of

hard disk storage. In recent years, the amount of storage sold has been almost doubling each year;

in the near future it is expected to sustain an annual growth of about 60 percent. This enormous

growth rate has been accompanied by a 50 percent per year decrease in the cost per byte of storage.

These growth trends exceed those of the personal computer market.

The focus of this report is on secondary storage systems, and primarily magnetic disk drives,

since these are the dominant storage devices commercially. Many of the issues discussed here arise

also in tertiary storage systems that use tape drives and autochangers, where there is an even

greater disparity between main memory performance and tertiary device access times. For more

information on this area, we refer the reader to the proceedings of the IEEE Symposia on Mass

Storage Systems and work elsewhere that touches on the integration of tertiary storage systems

into an overall storage hierarchy (e.g., [34, 37, 47, 66]).

In the next section we discuss the issues and problems in large-scale storage. An important set

of broad strategic goals are identi�ed in Section 3, and relevant research directions are outlined in

Section 4. We make some concluding remarks in Section 5.

2 Storage Challenges

To what use is the growing amount of storage being put? Storage capacity is being consumed in

several ways:

� Cached data. Local copies of data and applications provide privacy, speed and availability.

For example, almost all personal computers contain a hard disk that holds a local copy of the

operating system and many, if not all, of the applications used.

� Historical data. In the past it was often the case that only the most recent, active data could

be stored. Nowadays it is frequently cost-e�ective to store historical data (including audit

trails) on-line, so as to allow operations such as data mining and trend analysis.

1

� Multimedia. The recent increase in the generation, capture, and storing of digital multime-

dia (video, images, and sound) is consuming a disproportionate amount of storage capacity

because of the relatively large sizes of these data types. For example, it is estimated that

the fraction of the total available storage allocated to digital multimedia will grow from 10

percent in 1995 to 50 percent by 2005.

� Scienti�c data. The amount of large-scale scienti�c (especially geometric) data from geo-

graphic information systems (GIS), seismic databases, and satellite imagery is also growing

rapidly. NASA's EOS project will collect petabytes (thousands of terabytes) of spatial data

and imagery.

As the ubiquity of data storage has grown, so too have user expectations for it. It is no longer

enough simply to store data. High performance access to data must be provided, regardless of the

location of the data and users or of the nature of faults that may be interfering with access.

Unprecedented levels of reliability are needed for modern storage systems, re
ecting the growing

importance of information as a commercial and national asset. Businesses in particular are coming

to rely on their stored information to an ever-increasing degree. As recent
oods and other natural

disasters have demonstrated, companies that are suddenly unable to access their information base

can have considerable di�culty surviving.

Not only is stored data becoming more crucial, but the applications that use the data are

becoming both more heterogeneous and more demanding in their needs. For example, applications

often expect to be able to make greater demands for higher bandwidth, increased capacity, and

lower latency than was the case in even the recent past. New algorithms and architectures put

di�erent demands on the I/O subsystem.

Although the range of issues that storage system designers face is wide and varied, as we hope

to show in this report, it is possible to isolate four primary problems|performance, persistence

and reliability, scale, and ease of use|that arise in several settings.

Performance. A typical disk drive is a factor of 105{106 times slower in performing a random

access than is the main memory of a computer system. Much of the di�culty and complexity in

storage system design results from attempts to �nd ways of masking this enormous discrepancy

in access time. Although disk performance is improving, it is doing so unevenly. Bandwidths

have recently been increasing at about 40 percent per year after a long period of stasis, but the

positioning time (the time needed to get the disk head and media to the right place) has seen

much smaller improvements because it is largely caused by mechanical motions that are subject

to physical bounds on inertia, acceleration, and arm sti�ness. The result is that the performance

discrepancy between disk and main memory access times, typically called the access gap, will likely

be with us for quite a long time to come.

Amdahl's law tells us that I/O performance must track compute performance if I/O is not to

become the bottleneck in high performance computation. There are really only four techniques

available for solving the performance problems:

� increasing storage device parallelism, so as to increase bandwidth between storage I/O devices

and main memory;

� more e�ective caching and, more generally, reorganizing data within the storage system to

exploit locality, thereby reducing the cost of accessing data;

� overlapping I/O with computation (for example, by prefetching data before it is needed) in

order to reduce the time that an application spends waiting for data to be input from or

output to a slow storage device; and

2

� more e�ective scheduling and, more generally, reducing or rearranging the accesses made to

data, possibly by changing the applications themselves.

The complexity of hiding the access gap is exacerbated by the need to provide some applications

with guarantees on latency or continuous bandwidth. Examples of such needs arise in continuous

media data types such as digital video. The bandwidth requirement allows a video stream to be

kept running without having to slow down the replay; the latency requirement bounds the amount

of bu�er space needed to avoid dropping frames.

Persistence and Reliability. Storage systems are expected to be persistent, by which we mean

that the data they store survives across system restarts. Storage systems are also expected to be

reliable|that is, not lose data|across a multitude of failures, such as software errors, processor,

network and power supply outages, storage device failures, operator error, and complete site out-

ages. The data must be made available to users and applications whenever it is needed, despite

these potential failure modes. The primary technique here is the use of full or partial redundancy

for data, the processors that access it, and the connections among components.

A related property, usually the shared responsibility of storage and application systems, is the

integrity of data, that is, the degree to which the contents of data (the bits and their meaning)

are not damaged by having been stored and retrieved. For example, it is usually an application's

responsibility to eliminate the dangling pointers that can be created when memory structures are

stored and accessed in distinct pieces [79].

Scale. Large systems bring new problems and exacerbate old ones. The multitude of devices

needed for large storage systems are hard to con�gure, monitor, and manage. Examples of very large

scale include multi-terabyte global information systems, geographic information systems (GIS),

grand challenge datasets, and digital libraries. Capacity is not the only problem, however. There are

enormous bandwidth needs for applications running on massively parallel high-end supercomputers,

large-scale workstation clusters, multimedia servers, and data-mining systems. It is very di�cult

to coordinate the storage, network, and computation resources needed to meet the bandwidth and

latency needs of hundreds or thousands of concurrent users in such large-scale systems.

An increasingly important issue of scale for storage is locating, or naming, desired information.

Large capacity in storage systems usually implies a large number of named data collections. Col-

lections of storage systems often share a common namespace, and in the case of the world wide

web, data managed by diverse machines, applications, and access technologies all share the same

fast-growing namespace. This problem is compounded by on-line tertiary archives; not only must

a name be found for the data sought, but the properties of its storage, such as its physical media

and logical representation, need to be retrieved and the proper conversions must be identi�ed.

Namespace support, such as access-control security and type, keyword/tag or full-text search, is

becoming a generic need of storage systems, not something that should be provided separately in

each application domain.

Ease of Use. The user and programming abstractions provided for storage systems must mask

the complexity of hiding the access gap and managing scale. At the same time they need to

provide opportunities for applications or users to disclose additional information to the storage

system when doing so can signi�cantly improve performance. Many applications handle massive

data sets that are many times larger than main memory. Practical|let alone optimal|execution

of such algorithms often involves careful choreography of multiple concurrent data movements. To

increase the number of such applications, this data movement needs to be speci�ed in a high-level

way so that the applications become easier to write.

The above four issues cannot be addressed independently; they often impact one another. For

example, making storage I/O systems easier to use via high-level abstractions can hurt performance.

3

Much of the complexity in storage systems stems from attempting to meet the goals of persistence

and reliability at the same time as the performance goals. For example, writing updates lazily

to disk can reduce I/O tra�c and allow better device scheduling through request reordering, yet

it exposes data to loss from power or component failures, and it can allow partial, inconsistent

updates to occur.

The �eld of storage systems spans a wide range of disciplines, providing a common ground on

which these di�erent disciplines meet, as illustrated in Figure 1. We distinguish the �eld of storage

systems from the �eld of information systems and from speci�c application domains by their degree

of structure: Storage systems operate on collections of largely uninterpreted data bytes, whereas

information systems and application domains generally understand and interpret the information

that they maintain. As systems evolve, storage systems are beginning to deal with structured data,

and there is a continuum of degree of content understanding from the I/O system to the application

system. Work in storage systems therefore bene�ts from and signi�cantly enriches the theory and

practice of a multitude of �elds. Some of the relevant �elds, together with illustrative examples of

the areas and techniques that overlap with storage I/O, are the following:

� databases and information systems: geographic information systems (GIS), digital libraries,

B-trees, object stores, transactions, journaling, query optimization, data mining;

� fault-tolerance: mirroring, RAID, multi-pathing;

� computer architecture: buses/channels, I/O processors;

� real-time/multimedia systems: video servers, guaranteed bandwidth;

� parallel computing: out-of-core (external memory) applications, parallel �le systems, pre-

dictable access patterns, workstation clusters;

� algorithm theory: out-of-core (external memory) algorithms, parallel disk models, sorting and

searching, computation and access (co)scheduling;

� compiler and runtime systems: programming environments, data tiling and blocking;

� operating and �le systems: clustering, multi-level indexing, bu�er caches, readahead algo-

rithms, virtual memory paging, storage hierarchy access and control algorithms; and

� distributed systems: parallel, concurrent, mobile, non-local �le system designs.

Detailed discussions of the above �elds can be found in the reports of the respective working groups

of this workshop.

3 Strategic Research Directions

In this section we identify, in no particular order, some strategic long-term goals for the storage

systems of the future, which will be charged with meeting the challenges described in Section 2:

� unify I/O techniques;

� exploit storage metadata;

� self-manage storage;

� accommodate multiple service classes;

� rapidly develop new technologies and techniques.

4

Databases

Architecture

Realtime

Algorithms

Parallel ComputingFault Tolerance

Compiler
& Runtime
Systems

Distributed
Systems

Operating &
File Systems

Storage I/O

Figure 1: Storage I/O systems research exchanges ideas with, uses results from, and enriches many

other computing domains and techniques. This �gure displays a few such areas of overlap.

3.1 Unifying I/O techniques

The storage access and management techniques developed in diverse computing domains should

be codi�ed and uni�ed into a cogent body that can be retargeted as needed. Although related

to a standards e�ort that has been underway for the last decade [34], this strategic direction

is not necessarily about standards; the goal of uni�cation of I/O techniques is to enable new

I/O intensive applications to build on the successful techniques developed speci�cally for other

application domains. Emerging data access applications dealing with the world wide web or mobile

computing should be within the scope of these techniques.

3.2 Exploiting storage metadata

Structural information (or metadata) describing stored data should be acquired and broadly ex-

ploited. Existing type information should be recognized and algorithms developed to use this infor-

mation to meet type-speci�c requirements. New metadata information types, such as for quality of

service for storage, and algorithms to exploit them, may be needed to meet emerging requirements.

3.3 Self-management

Storage management tasks such as (re)con�guration, backup, and capacity-balancing or load-

balancing are often performed by human administrators. These tasks should be extracted from

application systems and aggregated into the storage system. Wherever possible, management tech-

niques should statically and dynamically adapt to the available resources and mix of application

workloads.

5

3.4 Accommodating multiple service classes

The emerging requirements for high availability and for guarantees on access latency and bandwidth

are distinct from one another and from the existing requirements for maximum sustained bandwidth

and minimum access latency. Storage systems must accommodate these multiple classes of service.

Parallels with techniques in the networking community should be sought and exploited.

3.5 Rapid adoption of new technologies

New storage device technologies such as Digital Video Discs (DVD), holographic crystal arrays, and

micromechanical magnetic arrays, along with new software and management techniques needed for

their use, should be sought out and exploited to provide users a widening range of storage quality

trade-o�s and to reduce the access gap between main memory and existing storage technology

performance.

4 Technical Research Directions and Approaches

In this section we outline several promising technical approaches to address the strategic goals of

Section 3. These approaches include

� richer semantics and information hiding for various storage interfaces, via

{ virtual device interfaces,

{ new programmer abstractions;

� pushing or pulling customization information through these interfaces by

{ exploiting data types and access patterns,

{ quality of service negotiation;

� sophisticated prefetching, caching, and scheduling;

� infrastructure changes to allow e�cient implementations of the above approaches, such as

{ detailed performance and behavior models,

{ exploiting idle processing power,

{ application in
uence over operating system policies.

4.1 Virtual device interface

A virtual device interface is a programmatic interface that allows the hiding of one or more features

of the underlying storage system's implementation. It can be used for many purposes. For example,

in the Small Computer System Interface (SCSI), the physical characteristics of a hard disk such as

cylinder, track, and sector are hidden behind the virtual device interface provided by a linear block

address space. This indirection enables devices to pack more data onto outer tracks than �ts on

inner tracks and to distribute spare sectors so that a replacement sector can be near a faulty sector,

without having to modify the applications that use the device (in this case, operating systems

software).

Virtual device interfaces are used by disk arrays (commonly called Redundant Arrays of Inde-

pendent Disks, or RAID [9]) that provide full or partial redundancy for stored data to increase its

availability. By doing so, they are able to hide the details of the location of redundant information

6

and its relationship with non-redundant data (for example, which blocks are in a mirrored pair

or parity set) [42]. Furthermore, disk failures can be transparently identi�ed; the data from the

broken disks can be automatically reconstructed onto spare disks, and future accesses remapped to

the new devices [32].

Storage devices are typically burdened by long positioning times, and a virtual device can be

used to dynamically remap the physical location associated with a logical block, thus reducing the

current access latency [19, 23, 57, 58, 73]. Additionally, most modern disk drives perform dynamic

request reordering, in some cases taking advantage of low-level information available only inside

the storage device to optimize the request sequencing [35, 63].

Since there is no single redundant disk array organization that is optimal for all accesses, the

choice of redundancy scheme used to protect data can be dynamically selected so as to balance

competing demands for low cost, high throughput, and high availability [48, 61, 76].

Using a virtual device model, self-managing storage systems may migrate into the storage

system much of the low-level device-management functions that are traditionally exported into

client operating systems. This might allow, for example, a storage subsystem to accept new devices

or workload requirements and transparently (re)con�gure itself to utilize the resources of the new

device or meet the workload requirements [43, 30].

As these examples demonstrate, virtual device interfaces have already been exploited e�ectively

in several ways. The
exibility of virtual device interfaces ensures that they will play a major role

in emerging techniques for self-managing storage systems.

4.2 New programmer abstractions

There are a wide range of programmer abstractions for storage. The simplest abstraction, virtual

memory, o�ers the programmer a simple and elegant model that largely hides the notion of storage,

but can cause performance to su�er.

Most programming languages provide a single-dimensional character or block access interface,

called a read-write interface, that decouples data access from computation. While this inter-

face encourages programmers to organize data in �les that will be accessed sequentially (an ef-

�cient access pattern for most individual storage devices), it can also lead to access patterns and

load/compute/store cycles that cause excessive I/O, in some cases bring computation to a near

halt.

Techniques like caching are extremely e�ective when they can exploit common locality patterns

in data accesses to reduce access time. Nonetheless, there are I/O-intensive applications where

explicitly anticipating storage parallelism and coordinating the scheduling of memory and data

accesses are essential for overall performance. Much e�ort will be needed in designing I/O-e�cient

algorithms that use fundamentally new approaches than their internal-memory counterparts. Lin-

ear algebra methodologies are useful in designing I/O-e�cient algorithms that manipulate data

obliviously in regular patterns [16, 44], and techniques based on simulating parallel algorithms and

rearranging data by sorting have been successful for adaptive processing and irregularly structured

data [11]. Higher-level abstractions, perhaps implemented by compilers and runtime systems, will

be needed to provide storage access semantics and support for these new I/O-e�cient algorithms

and the applications that use them.

There are currently three classes of such high-level abstractions being pursued: extensions to

the access-oriented existing interfaces; language-embedded operations on speci�c types, mainly

array-oriented ; and a building block approach binding programmer-provided operations to access-

oriented interfaces, called framework-oriented interfaces. Access-oriented extensions to the read-

write interface typically include data type speci�cations and collective speci�cation of multiple

transfers, sometimes involving the memories of multiple processing nodes. These interfaces, possibly

7

integrated into parallel programming toolkits, preserve the programmer abstraction of explicitly

requesting data transfer [12, 13, 14, 62, 65].

Array-oriented (or type-oriented) interfaces [15, 69] de�ne compiler-recognized data types (typ-

ically arrays) and operations on these datatypes. Out-of-core computation is directly speci�ed and

no explicit I/O transfers are managed by programmers. Array-oriented systems are e�ective for

scienti�c computations that make regular strides through arrays of data.

Framework-oriented interfaces [70] extend access-oriented interfaces by providing a set of ef-

�cient high-level data access methods that manage the redistribution of storage data, requiring

programmers only to specify the operations to be done on the data as it is redistributed. Framework-

oriented interfaces can be e�ective for irregular memory access patterns.

By a similar extension of the storage abstraction, object-oriented storage (or object stores)

enhance the integrity of persistent data (that is, its resistance to loss of semantic meaning) through

type-safe, object-oriented computational models [8, 33, 45, 52, 64, 79].

The e�ciency of array-oriented, framework-oriented, and object-oriented storage systems de-

pends critically upon the appropriate mapping of the higher-level semantics to the functionality of

the lower levels of the I/O system. This means that I/O system architecture must in
uence the

structure of these abstractions, and perhaps vice-versa.

4.3 Exploiting data types and access patterns

A growing phenomenon is the \publication" of stored data, in which format and interpretation

conventions of data are made public, and applications can recognize and interpret the data they

�nd. Examples are diverse: MPEG is a video format, GIF is an image format, and HDF is a

hierarchical data format for scienti�c data sets. If storage systems could recognize and exploit this

structure information where it is useful, they could provide more e�ective application support.

Similarly, the access patterns of I/O-intensive applications, within and across �les, are increas-

ingly predictable [1, 17, 40]. For example, matrix subroutines often access data in regular patterns

called strides. Full text search sequentially processes each �le in a set. Incremental compilation

and linking generally operate on the same set of �les and library modules during each invocation.

An important approach to increased application customization is recognizing and exploiting these

predictable access patterns [20].

Data types and access patterns are closely related in that we can use a data type to anticipate

the data's access pattern. Wherever possible, transparent extraction of storage attributes or access

patterns of speci�c applications is desirable [31, 68]. Transparency reduces the impetus of program-

mers to specialize for particular storage capabilities, avoids the costs of retro�tting old codes and

retraining programmers, and avoids establishing new interdependencies between applications and

storage that may become inappropriate or ine�cient as technology changes. In some situations,

however, the information that can be extracted transparently comes too late, too inaccurately, or

at more cost than value. Alternatives to the transparent learning of types and access patterns

include analysis tools in compilers and explicit hints by applications. For example, a compiler for

code that processes a memory-mapped matrix structure has been shown to anticipate data needed

by future iterations as it processes current iterations [50]. Applications that plan accesses before

executing them, such as search, visualization, and query processing, are able to deliver the access

plan to their storage system; this approach lends itself to more detailed and accurate information

with less delay.

4.4 Quality of service negotiation

The quality of service abstraction developed in the networking community is appealing because it

addresses issues similar to ours, such as latency, bandwidth, and reliability [25]. If we group the

8

requirements of storage access and management into distinct classes of service, the most relevant

parameters of each class can be identi�ed and passed to storage as access is initiated or space

is allocated. A few distinct classes of service are already clear: best-e�ort high-throughput for

accessing large amounts of data, best-e�ort low-latency for accessing small amounts of data, highly

reliable veri�ed-update of valuable data, and guaranteed bandwidth for continuous media. In many

cases, a great deal of additional information is available to describe the goals or behaviors of clients.

Such needs can be captured by associating attributes with the storage or its accesses, and used

to drive selection of storage device, placement, and dynamic policies such as caching [26, 30, 77].

Research problems here include �nding the correct way to specify client needs and storage device

behaviors and how best to map one to the other.

Service quality speci�cation may be done interactively through an explicit negotiation step,

enabling the requesting application to modify its request based upon the capabilities o�ered by

the storage system. For example, a full-motion video viewer application may request a certain

guaranteed bandwidth for a stream. The storage system may refuse this, but instead counter-

o�er a guarantee if the application is willing to use a more appropriate request size. Similarly, a

best-e�ort access may inquire of the storage system the access size and alignment that leads to

highest throughput [5, 53]. The negotiation interface can be extended to handle dynamic changes

in the application requirements or the available resources that may nullify a pre-negotiated service

quality. Prefetching and caching policies on mobile computers with variable network connectivity

are expected to need such cooperative dynamic adaptation [51]. With a collaborative partnership

between applications and the storage system, individual applications can determine how best to

adapt, but the storage system can still monitor resources and enforce allocation decisions.

4.5 Sophisticated prefetching, caching, and scheduling

One of the primary uses of the expanded metadata provided by the above type, access-pattern,

and service-class acquisition techniques will be to customize storage-access scheduling and cache-

replacement decisions. Prefetching and write-behind can hide access latency by overlapping accesses

with computation or other accesses, increasing exploitation of parallel storage resources, and mi-

grating storage accesses to less busy periods [39].

Caching policies can lessen the cost of accessing storage and can help balance the load on

storage devices. Scheduling can improve device throughput by reordering accesses for lowered

positioning times, balance the use of resources over multiple requesting applications, and reduce

processing overheads by coalescing distinct accesses into a single larger access [38, 55]. For example,

algorithms have been developed for e�cient use of device parallelism and cache resources, given

su�cient access pattern information or hints [7, 36, 54]. Useful extensions would be to support

multiple active streams with di�erent information sources (type, access pattern, service parameter),

di�erent accuracies of advance knowledge, and di�erent service requirements.

Storage systems for continuous media, and the associated bandwidth and latency guarantees,

make heavy use of scheduling to maximize storage e�ciency while providing as much predictability

as possible [4, 56].

Network-resource scheduling theory may be helpful for advances in storage management, as

there are several parallels: In networking terms, advance knowledge of an access pattern is a

transfer speci�cation, each storage device and requesting application is a source or destination, and

the cache and interconnect resources of the storage subsystem must be scheduled to accommodate

concurrent classes of service.

9

4.6 Detailed performance and behavior models

To one degree or another, all of the strategic goals for storage systems bene�t from better models of

application behavior and subsystem capabilities. For example, self-management of the allocation of

guaranteed bandwidth objects onto disk devices requires detailed models of the expected demand for

each object, the expected behavior of each device faced with these demands, and the set of behaviors

that meet the given guarantees. Models of all levels of abstraction will be needed: workload

distributions, extensive application traces, device and subsystem simulations, mathematical models

of service class interactions, asymptotic behavior, and average-case and worst-case bounds [2, 10,

41, 59, 60, 71, 78]. Rapid progress in the modeling area is important to some strategic goals. For

example, the utility of speci�c data-type or access-pattern information depends upon the existence

of models exploiting this information. New storage subsystem designs such as HP AutoRAID or

StorageTek Iceberg have much more complex behavior than prior subsystems such as single hard

disks or RAID level 5 arrays [76]. When storage system technology is not advanced su�ciently for

a particular application's requirements, the existence of detailed models of storage system behavior

enables the application to take direct responsibility for satisfying its needs.

4.7 Exploiting idle processing power

With processor performance increasing and costs decreasing, as a result of low-cost microprocessors

and microcontrollers, there will be a profusion of computing power throughout the computing

system. Substantial additional processing power will be available not only in end-user processors

but also in server machines, storage devices and subsystems, and network devices. Putting this

additional processing power to work may be a powerful tool for meeting the strategic goals of

I/O systems [21, 27]. The computing power is local to the devices and can take advantage of

specialized and real-time knowledge. Subsystem processing can be used for on-the-
y modeling of

alternative storage con�gurations and dynamic recon�guration. It can also be used to execute more

complex, application-provided data operations and algorithms for resource scheduling, prefetching,

and caching. Subsystems are also likely to provide compression, search, timely delivery (for example,

of continuous media), and format translation. There are also opportunities for tight coupling with

network protocols. New directions in networking research, notably the ability to execute functions

in network devices, might be put to good use for meeting end-to-end application requirements from

storage access [74, 75]. In addition to exploiting the cycles of these idle machines in parallel and

distributed applications, storage systems can exploit idle cycles or memory resources for global

memory management [18, 24, 29].

4.8 Application in
uence over operating system policies

Although it is valid to say that operating systems were invented to hide storage access and manage-

ment from applications, their handling of storage systems is more generic than is appropriate for

many applications. Operating systems provide an uninterrupted, basic level of service to all applica-

tions, and thus code stability and generality are paramount. This also means that operating system

models of storage device and subsystem capabilities are often obsolete, and their customization to

application service requirements is usually minimal or total; that is, they may give the application

the choice of taking either no responsibility or full responsibility for device access and management.

Consequently, demanding applications such as database management systems prefer to take total

responsibility [67]. In the analogous case of the network interface, there is also much interest in

allowing applications to access devices directly and bear responsibility for management [6, 46, 72].

An important recent approach to application customization in operating systems can also be

applied to storage systems. This is the use of mechanisms that allow applications to help operating

10

systems make critical policy decisions [3, 22]. For example, applications and storage systems can

cooperate to provide optimizations speci�c to their access and management needs, such as better

memory management, reduced data copying, and parallel execution of simple �ltering functions

near the data [28, 49].

5 Concluding Remarks

Storage systems are a large and important component of computing systems, and they will continue

to play a vital role in the foreseeable future. The access gap shows no imminent sign of vanishing,

and thus continuing research into storage I/O will be essential to reap the full bene�t from the

advances occurring in many other areas of computer science. In the storage I/O area, we have

identi�ed a few strategic research thrusts, which we summarize here:

First, the techniques developed across the wide range of computing domains involving storage

management need to be collected into a coherent, reusable body of understanding, and brought

to bear as a group upon the data employed by emerging applications. Such data is becoming

increasingly structured and applications ever more interoperable and integrated; both are raising

new challenges and new opportunities to exploit additional information in the storage system.

Second, expensive, complicated, and important storage-management functions, which were long

left to users and administrators, should be made the responsibility of the storage subsystems.

Such functions should be made markedly more dynamic and adaptive, so that they can cope

automatically with changing needs.

Third, in customizing storage management to increasingly demanding applications, classes of

service for storage should be identi�ed, and integrated class resource scheduling should be devel-

oped.

Finally, the technological limitations of current storage devices are sorely felt. New device

technologies, as well as corresponding software and management techniques, should be sought and

rapidly adopted to expand the trade-o�s available to customers, and to reduce (or better cope with)

the access gap between the performances of main and secondary memories.

Acknowledgments. We wish to thank Anna Karlin, Edward Lee, David Patterson, Bernard

O'Lear, A. L. Narasimha Reddy, Daniel Reed, Liuba Shrira, and David Womble for several helpful

comments and suggestions.

References

[1] Acharya, A., Uysal, M., Bennett, R., Mendelson, A., Beynon, M., Hollingsworth, J. K.,

Saltz, J., and Sussman, A. Tuning the performance of I/O intensive parallel applications. In Fourth

Workshop on Input/Output in Parallel and Distributed Systems (Philadelphia, May 1996), pp. 15{27.

[2] Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirriff, K. W., and Ousterhout, J. K.

Measurements of a distributed �le system. In Proceedings of the 13th ACM Symposium on Operating

Systems Principles (October 1991), pp. 198{212.

[3] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M., Becker, D., Eggers,

S., and Chambers, C. Extensibility, safety and performance in the SPIN operating system. In

Proceedings of the 15th ACM Symposium on Operating Systems Principles (Copper Mountain, Colorado,

December 1995).

[4] Berson, S., Golubchik, L., and Muntz, R. R. Fault tolerant design of multimedia servers. In

Proceedings of the ACM SIGMOD International Conference on Management of Data (1995), pp. 364{

375.

11

[5] Brustoloni, J. C., and Steenkiste, P. E�ects of bu�ering semantics on I/O performance. In

Proceedings of the 1996 OSDI Conference (1996).

[6] Buzzard, G., Jacobson, D., Mackey, M., Marovich, S., and Wilkes, J. An implementation

of the Hamlyn sender-managed interface architecture. In Proceedings of the 1996 OSDI Conference

(Seattle, WA, October 1996), Usenix Association, Berkeley, CA.

[7] Cao, P., Felten, E. W., Karlin, A., and Li, K. Implementation and performance of integrated

application-controlled caching, prefetching and disk scheduling. ACM Transactions on Computer Sys-

tems (to appear). An earlier version available as Technical Report CS{TR{94{493, Princeton University.

[8] Carey, M. J., DeWitt, D. J., Franklin, M. J., Hall, N. E., McAuliffe, M. L., Naughton,

J. F., Schuh, D. T., Solomon, M. H., Tan, C. K., Tsatalos, O. G., White, S. J., and

Zwilling, M. J. Shoring up persistent applications. In Proceedings of the ACM SIGMOD International

Conference on Management of Data (1994), pp. 383{394.

[9] Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., and Patterson, D. A. RAID: high-

performance, reliable secondary storage. ACM Computing Surveys 26, 2 (June 1994), 145{185.

[10] Chen, S., and Towsley, D. A queueing analysis of RAID architectures. Tech. Rep. COINS 91{71,

University of Massachusetts, Department of Computer and Information Science, University of Mas-

sachusetts, September 1991.

[11] Chiang, Y.-J., Goodrich, M. T., Grove, E. F., Tamassia, R., Vengroff, D. E., and Vitter,

J. S. External-memory graph algorithms. In Proceedings of the Sixth Annual ACM-SIAM Symposium

on Discrete Algorithms (San Francisco, CA, January 1995), pp. 139{149.

[12] Corbett, P., Feitelson, D., Fineberg, S., Hsu, Y., Nitzberg, B., Prost, J.-P., Snir, M.,

Traversat, B., and Wong, P. Overview of the MPI-IO parallel I/O interface. In IPPS '95 Workshop

on Input/Output in Parallel and Distributed Systems (April 1995), pp. 1{15.

[13] Corbett, P. F., and Feitelson, D. G. The Vesta parallel �le system. ACM Transactions on

Computer Systems 14, 3 (August 1996), 225{264.

[14] Corbett, P. F., Feitelson, D. G., Prost, J.-P., Almasi, G. S., Baylor, S. J., Bolmarcich,

A. S., Hsu, Y., Satran, J., Snir, M., Colao, R., Herr, B., Kavaky, J., Morgan, T. R., and

Zlotek, A. Parallel �le systems for the IBM SP computers. IBM Systems Journal 34, 2 (January

1995), 222{248.

[15] Cormen, T. H., and Colvin, A. ViC*: A preprocessor for virtual-memory C*. Tech. Rep. PCS{

TR94{243, Dept. of Computer Science, Dartmouth College, November 1994.

[16] Cormen, T. H., and Wisniewski, L. F. Asymptotically tight bounds for performing BMMC per-

mutations on parallel disk systems. In Proceedings of the Fifth Symposium on Parallel Algorithms and

Architectures (June 1993), pp. 130{139.

[17] Curewitz, K., Krishnan, P., and Vitter, J. S. Practical prefetching via data compression. In

Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (May 1993),

pp. 257{266.

[18] Dahlin, M., Wang, R., Anderson, T., and Patterson, D. Cooperative caching: Using re-

mote client memory to improve �le system performance. In Proceedings of the 1996 OSDI Conference

(November 1994).

[19] de Jonge, W., Kaashoek, M. F., and Hsieh, W. C. The logical disk: A new approach to improving

�le systems. In Proc. of 14th ACM Symp. on Operating Systems Principles (December 1993).

[20] del Rosario, J. M., and Choudhary, A. High performance I/O for parallel computers: Problems

and prospects. IEEE Computer 27, 3 (March 1994), 59{68.

[21] Drapeau, A. L., Shirriff, K. W., Hartman, J. H., Miller, E. L., Sesha, S., Katz, R. H.,

Lutz, K., Patterson, D. A., Lee, E. K., Chen, P. M., and Gibson, G. A. Raid-ii: A high-

bandwidth network �le server. In Proc. 21st Annual International Symposium on Computer Architecture

(April 1994).

12

[22] Engler, D. R., Kaashoek, M. F., and O'Toole, Jr., J. Exokernel: An operating system ar-

chitecture for application-level resource management. In Proceedings of the 15th ACM Symposium on

Operating Systems Principles (Copper Mountain, CO, December 1995).

[23] English, R. M., and Stepanov, A. A. Loge: a self-organizing storage device. In Proceedings of the

USENIX Winter'92 Technical Conference (San Francisco, CA, January 1992), pp. 237{251.

[24] Feeley, M. J., Morgan, W. E., Pighin, F. P., Karlin, A. R., Levy, H. M., and Thekkath,

C. A. Implementing global memory management in a workstation cluster. In Proceedings of the 15th

ACM Symposium on Operating Systems Principles (Copper Mountain, Colorado, December 1995).

[25] Ferrari, D. Client requirements for real-time communication services. IEEE Communications Mag-

azine 28, 11 (Nov. 1990), 65{72.

[26] Gelb, J. P. System managed storage. IBM Systems Journal 28, 1 (1989), 77{103.

[27] Gibson, G. A., Nagle, D. P., Amiri, K., Chang, F. W., Feinberg, E., Lee, H. G. C., Ozceri,

B., Riedel, E., and Rochberg, D. A case for network-attached secure disks. Tech. Rep. CMU{CS{

96{142, Carnegie-Mellon University, October 1996.

[28] Gibson, G. A., Stodolsky, D., Chang, P. W., Courtright II, W. V., Demetriou, C. G.,

Ginting, E., Holland, M., Ma, Q., Neal, L., Patterson, R. H., Su, J., Youssef, R., and

Zelenka, J. The Scotch parallel storage systems. In Proceedings of 40th IEEE Computer Society

International Conference (San Francisco, Spring 1995), pp. 403{410.

[29] Golding, R., Bosch, P., Staelin, C., Sullivan, T., and Wilkes, J. Idleness is not sloth. In

Proceedings of Winter USENIX Technical Conference (Jaunary 1995), Usenix Association, Berkeley,

CA, pp. 201{212.

[30] Golding, R., Shriver, E., Sullivan, T., and Wilkes, J. Attribute-managed storage. InWorkshop

on Modeling and Speci�cation of I/O (San Antonio, TX, October 1995).

[31] Griffioen, J., and Appleton, R. Reducing �le system latency using a predictive approach. In Proc.

of 1994 Summer USENIX Conf. (Boston, MA, 1994).

[32] Holland, M., Gibson, G. A., and Siewiorek, D. P. Architectures and algorithms for on-line

failure recovery in redundant disk arrays. Journal of Distributed and Parallel Databases 2, 3 (July

1994), 295{335.

[33] Hurson, A., Pakzad, S. H., and bing Cheng, J. Object-oriented database management systems:

Evolution and performance issues. IEEE Computer (February 1993).

[34] IEEE Storage System Standards Working Group, Project 1244. Reference Model for Open

Storage Systems Interconnection, September 1994. See also http://www.arl.mil/IEEE/ssswg.html.

[35] Jacobson, D. M., and Wilkes, J. Disk scheduling algorithms based on rotational position. Tech.

Rep. HPL{CSP{91{7, Hewlett-Packard Laboratories, Palo Alto, CA, 24th February (revised 1st March)

1991.

[36] Kimbrel, T., Tomkins, A., Patterson, R. H., Bershad, B., Cao, P., Felten, E. W., Gibson,

G., Karlin, A. R., and Li, K. A trace-driven comparison of algorithms for parallel prefetching and

caching. In Proceedings of the 1996 OSDI Conference (1996).

[37] Kohl, J. T., and Staelin, C. HighLight: using a log-structured �le system for tertiary storage

management. In Proceedings of the Winter USENIX Technical Conference (San Diego, CA, January

1993), Usenix Association, Berkeley, CA, pp. 435{447.

[38] Kotz, D. Disk-directed I/O for MIMD multiprocessors. In Proceedings of the 1994 Symposium on

Operating Systems Design and Implementation (November 1994), pp. 61{74. Updated as Dartmouth

TR PCS{TR94{226 on November 8, 1994.

[39] Kotz, D., and Ellis, C. S. Prefetching in �le systems for MIMD multiprocessors. IEEE Transactions

on Parallel and Distributed Systems 1, 2 (April 1990), 218{230.

13

[40] Kotz, D., and Ellis, C. S. Practical prefetching techniques for multiprocessor �le systems. Journal

of Distributed and Parallel Databases 1, 1 (January 1993), 33{51.

[41] Lee, E. K., and Katz, R. H. An analytic performance model of disk arrays. In Proceedings of

SIGMETRICS (1993), pp. 98{109.

[42] Lee, E. K., and Katz, R. H. The performance of parity placements in disk arrays. IEEE Transactions

on Computers 42, 6 (June 1993), 651{664.

[43] Lee, E. K., and Thekkath, C. A. Petal: Distributed virtual disks. In Proceedings of the 1996

ASPLOS Conference (1996).

[44] Li, Z., Reif, J. H., and Gupta, S. K. S. Synthesizing e�cient out-of-core programs for block

recursive algorithms using block-cyclic data distributions. In Proceedings of the 1996 International

Conference on Parallel Processing (August 1996).

[45] Liskov, B., Maheshwari, U., and Ng, T. Partitioned garbage collection of a large stable heap. In

Proceedings of IWOOOS 1996 (Seattle, WA, 1996).

[46] Maeda, C., and Bershad, B. Protocol service decomposition for high-performance networking. In

Proceedings of the 14th ACM Symposium on Operating Systems Principles (December 1993), pp. 244{

255.

[47] Miller, E. L., and Katz, R. H. An analysis of �le migration in a Unix supercomputing environment.

In Proceedings of the Winter USENIX Technical Conference (San Diego, CA, January 1993), Usenix

Association, Berkeley, CA, pp. 421{433.

[48] Mogi, K., and Kitsuregawa, M. Dynamic parity stripe reorganizations for RAID5 disk arrays.

In Proceedings of the Third International Conference on Parallel and Distributed Information Systems

(September 1994), pp. 17{26.

[49] Mosberger, D., and Peterson, L. L. Making paths explicit in the Scout operating system. In

Proceedings of the 1996 OSDI Conference (1996).

[50] Mowry, T. C., Demke, A. K., and Krieger, O. Automatic compiler-inserted I/O prefetching for

out-of-core applications. In Proceedings of the 1996 OSDI Conference (1996).

[51] Noble, B., Price, M., and Satyanarayanan, M. A programming interface for application-aware

adaptation in mobile computing. In Proceedings of the Second USENIX Symposium on Mobile &

Location-Independent Computing (Ann Arbor, MI, April 1995).

[52] O'Toole, J., and Shrira, L. Opportunistic log: E�cient installation reads in a reliable object server.

In Proc of First Usenix Conference On Operating System Design and Implementation (Monterey, CA,

1994).

[53] Pasquale, J., Anderson, E., and Muller, P. K. Container shipping: Operating system support

for I/O-intensive applications. IEEE Computer (March 1994).

[54] Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., and Zelenka, J. Informed

prefetching and caching. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Prin-

ciples (December 1995), pp. 79{95.

[55] Purakayastha, A., Ellis, C. S., and Kotz, D. ENWRICH: a compute-processor write caching

scheme for parallel �le systems. In Fourth Workshop on Input/Output in Parallel and Distributed

Systems (May 1996), pp. 55{68.

[56] Reddy, A. N., and Wyllie, J. C. I/O issues in a multimedia system. IEEE Computer (March

1994).

[57] Rosenblum, M., and Ousterhout, J. K. The design and implementation of a log-structured �le

system. ACM Trans. on Computer Sys. 10, 1 (Feb. 1992).

[58] Ruemmler, C., and Wilkes, J. Disk shu�ing. Tech. Rep. HPL{91{156, Hewlett-Packard Laborato-

ries, Palo Alto, CA, October 1991.

14

[59] Ruemmler, C., and Wilkes, J. UNIX disk access patterns. In Proceedings of the Winter USENIX

Technical Conference (San Diego, CA, January 1993), pp. 405{420.

[60] Ruemmler, C., and Wilkes, J. An introduction to disk drive modelling. IEEE Computer 3, 27

(March 1994), 17{28.

[61] Savage, S., and Wilkes, J. AFRAID| a frequently redundant array of independent disks. In

Proceedings of the 1996 Winter USENIX Conference (January 1996), pp. 27{39.

[62] Seamons, K. E., Chen, Y., Jones, P., Jozwiak, J., and Winslett, M. Server-directed collective

I/O in Panda. In Proceedings of Supercomputing '95 (December 1995).

[63] Seltzer, M., Chen, P., and Ousterhout, J. Disk scheduling revisited. In Proceedings of Winter

USENIX Technical Conference (January 1990), p. 313 323.

[64] Shrira, L., Liskov, B., Castro, M., and Adya, A. How to scale transactional storage systems. In

Proceedings of SIGOPS European Workshop on Operating System Support for World Wide Applications

(Connemara, Ireland, 1996).

[65] Shriver, E. A. M., and Wisniewski, L. F. An API for choreographing data accesses. Tech. Rep.

PCS{TR95{267, Dartmouth College Department of Computer Science, October 1995.

[66] Sienknecht, T. F., Friedrich, R. J., Martinka, J. J., and Friedenbach, P. M. The im-

plications of distributed data in a commercial environment on the design of hierarchical storage y

management. Performance Evaluation 20, 1{3 (May 1994), 3{25.

[67] Stonebraker, M. Operating system support for database management. Communications of the ACM

7, 24 (July 1981).

[68] Tait, C. D., and Duchamp, D. Detection and exploitation of �le working sets. In Proceedings

of the 11th International Conference on Distributed Computing Systems (Arlington, TX, 1991), IEEE

Computer Society, Washington, DC, pp. 2{9.

[69] Thakur, R., Choudhary, A., Bordawekar, R., More, S., and Kuditipudi, S. Passion: Opti-

mized I/O for parallel applications. Computer (June 1996), 70{78.

[70] Vengroff, D. E., and Vitter, J. S. I/O-e�cient computation: The TPIE approach. In Proceedings

of the Goddard Conference on Mass Storage Systems and Technologies (College Park, MD, September

1996), NASA Conference Publication 3340, Volume II, pp. 553{570.

[71] Vitter, J. S., and Shriver, E. A. M. Algorithms for parallel memory, I: Two-level memories and

II: Hierarchical multilevel memories. Algorithmica 12, 2/3 (August and September 1994), 110{169.

[72] von Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K. E. Active messages: A

mechanism for integrated communication and computation. In Proceedings of the 19th ACM Interna-

tional Symposium on Computer Architecture (May 1992), pp. 256{266.

[73] Vongsathorn, P., and Carson, S. D. A system for adaptive disk rearrangement. Software|Practice

and Experience 20, 3 (March 1990), 225{242.

[74] Wetherall, D., and Tennenhouse, D. The ACTIVE IP option. In Proceedings of the 7th ACM

SIGOPS European Workshop (Connemara, Ireland, September 1996).

[75] Wilkes, J. DataMesh research project, phase 1. In Proceedings of the USENIX File Systems Workshop

(May 1992), pp. 63{69.

[76] Wilkes, J., Golding, R., Staelin, C., and Sullivan, T. The HP AutoRAID hierarchical storage

system. ACM Transactions on Computer Systems 14, 1 (February 1996), 108{136.

[77] Wilkes, J., and Stata, R. Specifying data availability in multi-device �le systems. In Operating

Systems Review (1991), vol. 25 of Position paper for 4th ACM SIGOPS European Workshop, pp. 56{59.

[78] Worthington, B. L., Ganger, G. R., Patt, Y. N., and Wilkes, J. On-line extraction of SCSI

disk drive parameters. In Proceedings of SIGMETRICS'95 (Ottawa, Canada, May 1995), pp. 146{156.

[79] Yong, V., Naughton, J., and Yu, J. Storage reclamation and reorganization in client{server

persistent object stores. In In Proceedings of Data Engineering Conference (Houston, TX, 1994).

15

