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COMPRESSED SUFFIX ARRAYS AND SUFFIX TREES WITH
APPLICATIONS TO TEXT INDEXING AND STRING MATCHING∗

ROBERTO GROSSI† AND JEFFREY SCOTT VITTER‡

Abstract. The proliferation of online text, such as found on the World Wide Web and in online
databases, motivates the need for space-efficient text indexing methods that support fast string
searching. We model this scenario as follows: Consider a text T consisting of n symbols drawn from
a fixed alphabet Σ. The text T can be represented in n lg |Σ| bits by encoding each symbol with
lg |Σ| bits. The goal is to support fast online queries for searching any string pattern P of m symbols,
with T being fully scanned only once, namely, when the index is created at preprocessing time.

The text indexing schemes published in the literature are greedy in terms of space usage: they
require Ω(n lgn) additional bits of space in the worst case. For example, in the standard unit cost
RAM, suffix trees and suffix arrays need Ω(n) memory words, each of Ω(lg n) bits. These indexes are
larger than the text itself by a multiplicative factor of Ω(lg|Σ| n), which is significant when Σ is of
constant size, such as in ascii or unicode. On the other hand, these indexes support fast searching,
either in O(m lg |Σ|) time or in O(m+ lgn) time, plus an output-sensitive cost O(occ) for listing the
occ pattern occurrences.

We present a new text index that is based upon compressed representations of suffix arrays and
suffix trees. It achieves a fast O(m/ lg|Σ| n + lgε|Σ| n) search time in the worst case, for any constant
0 < ε ≤ 1, using at most

(
ε−1 + O(1)

)
n lg |Σ| bits of storage. Our result thus presents for the first

time an efficient index whose size is provably linear in the size of the text in the worst case, and for
many scenarios, the space is actually sublinear in practice. As a concrete example, the compressed
suffix array for a typical 100 MB ascii file can require 30–40 MB or less, while the raw suffix array
requires 500 MB. Our theoretical bounds improve both time and space of previous indexing schemes.
Listing the pattern occurrences introduces a sublogarithmic slowdown factor in the output-sensitive
cost, giving O(occ lgε|Σ| n) time as a result. When the patterns are sufficiently long, we can use
auxiliary data structures in O(n lg |Σ|) bits to obtain a total search bound of O(m/ lg|Σ| n + occ)
time, which is optimal.
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1. Introduction. A great deal of textual information is available in electronic
form in online databases and on the World Wide Web, and therefore devising effi-
cient text indexing methods to support fast string searching is an important topic for
investigation. A typical search scenario involves string matching in a text string T
of length n [49]: given an input pattern string P of length m, the goal is to find
occurrences of P in T . Each symbol in P and T belongs to a fixed alphabet Σ of
size |Σ| ≤ n. An occurrence of the pattern at position i means that the substring
T [i, i + m − 1] is equal to P , where T [i, j] denotes the concatenation of the symbols
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in T at positions i, i + 1, . . . , j.
In this paper, we consider three types of string matching queries: existential,

counting, and enumerative. An existential query returns a Boolean value that indi-
cates whether P is contained in T . A counting query computes the number occ of
occurrences of P in T , where occ ≤ n. An enumerative query outputs the list of occ
positions, where P occurs in T . Efficient offline string matching algorithms, such as
that of Knuth, Morris, and Pratt [49], can answer each individual query in O(m+ n)
time via an efficient text scan.

The large mass of existing online text documents makes it infeasible to scan
through all the documents for every query, because n is typically much larger than
the pattern length m and the number of occurrences occ. In this scenario, text indexes
are preferable, as they are especially efficient when several string searches are to be
performed on the same set of text documents. The text T needs to be entirely scanned
only once, namely, at preprocessing time when the indexes are created. After that,
searching is output-sensitive, that is, the time complexity of each online query is
proportional to either O(m lg |Σ|+ occ) or O(m+ lg n+ occ), which is much less than
Θ(m + n) when n is sufficiently large.

The most popular indexes currently in use are inverted lists and signature files [48].
Inverted lists are theoretically and practically superior to signature files [72]. Their
versatility allows for several kinds of queries (exact, Boolean, ranked, and so on) whose
answers have a variety of output formats. They are efficient indexes for texts that
are structured as long sequences of terms (or words) in which T is partitioned into
nonoverlapping substrings T [ik, jk] (the terms), where 1 ≤ ik ≤ jk < ik+1 ≤ n. We
refer to the set of terms as the vocabulary. For each distinct term in the vocabulary,
the index maintains the inverted list (or position list) {ik} of the occurrences of that
term in T . As a result, in order to search efficiently, search queries must be limited
to terms or prefixes of them; it does not allow for efficient searching of arbitrary
substrings of the text as in the string matching problem. For this reason, inverted
files are sometimes referred to as term-level or word-level text indexes.

Searching unstructured text to answer string matching queries adds a new diffi-
culty to text indexing. This case arises with DNA sequences and in some Eastern
languages (Burmese, Chinese, Taiwanese, Tibetan, etc.), which do not have a well-
defined notion of terms. The set of successful search keys is possibly much larger than
the set of terms in structured texts, because it consists of all feasible substrings of T ;
that is, we can have as many as

(
n
2

)
= Θ(n2) distinct substrings in the worst case,

while the number of distinct terms is at most n (considered as nonoverlapping sub-
strings). Suffix arrays [55, 35], suffix trees [57, 68], and similar tries or automata [20]
are among the prominent data structures used for unstructured texts. Since they can
handle all the search keys in O(n) memory words, they are sometimes referred to as
full-text indexes.

The suffix tree for text T = T [1, n] is a compact trie whose n leaves represent the
n text suffixes T [1, n], T [2, n], . . . ,T [n, n]. By “compact” we mean that each internal
node has at least two children. Each edge in the tree is labeled with one or more
symbols for purposes of search navigation. The leaf with value � represents the suffix
T [�, n]. The leaf values in an in-order traversal of the tree represent the n suffixes
of T in lexicographic order. An example suffix tree appears in Figure 1.

A suffix array SA = SA[1, n] for text T = T [1, n] consists of the values of the
leaves of the suffix tree in in-order, but without the tree structure information. In
other words, SA[i] = � means that T [�, n] is the ith smallest suffix of T in lexicographic
order. The suffix array corresponding to the suffix tree of Figure 1 appears in Figure 2.
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Fig. 1. Suffix tree built on text T = abbabbabbabbabaaabababbabbbabba# of length n = 32,
where the last character is an end-of-string symbol #. The rightmost subtree (the triangle represent-
ing the suffixes of the form bb · · · #) is not expanded in the figure. The edge label a · · · # or b · · · #
on the edge leading to the leaf with value � denotes the remaining characters of the suffix T [�, n]
that have not already been traversed. For example, the first suffix in lexicographic format is the
suffix T [15, n], namely, aaabababbabbbabba#, and the last edge represents the 16-symbol substring
that follows the prefix aa.

To speed up searches, a separate array is often maintained, which contains auxiliary
information such as the lengths of the longest common prefixes of a subset of the
suffixes [55].

Suffix trees and suffix arrays organize the suffixes so as to support the efficient
search of their prefixes. Given a search pattern P , in order to find an occurrence
T [i, i + m − 1] = P , we can exploit the property that P must be the prefix of suf-
fix T [i, n]. In general, existential and counting queries take O(m lg |Σ|) time using
automata or suffix trees and their variations, and they take O(m + lg n) time using
suffix arrays along with longest common prefixes. Enumerative queries take an ad-
ditive output-sensitive cost O(occ). In this paper, we use the term “suffix array” to
denote the array containing the permutation of positions, 1, 2, . . . , n, but without the
longest common prefix information mentioned above. Full-text indexes such as suffix
arrays are more powerful than term-level inverted lists, since full-text indexes can also
implement inverted lists efficiently by storing the suffixes T [ik, n] that correspond to
the occurrences of the terms.

1.1. Issues on space efficiency. Suffix arrays and suffix trees are data struc-
tures with increasing importance because of the growing list of their applications.
Besides string searching, they also have significant use in molecular biology, data com-
pression, data mining, and text retrieval, to name but a few applications [7, 38, 55].
However, the sizes of the data sets in these applications can become extremely large,
and space occupancy is often a critical issue. A major disadvantage that limits the
applicability of text indexes based upon suffix arrays and suffix trees is that they
occupy significantly more space than do inverted lists.
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1 15 aaabababbabbbabba#

2 16 aabababbabbbabba#

3 31 a#

4 13 abaaabababbabbbabba#

5 17 abababbabbbabba#

6 19 ababbabbbabba#

7 28 abba#

8 10 abbabaaabababbabbbabba#

9 7 abbabbabaaabababbabbbabba#

10 4 abbabbabbabaaabababbabbbabba#

11 1 abbabbabbabbabaaabababbabbbabba#

12 21 abbabbbabba#

13 24 abbbabba#

14 32 #

15 14 baaabababbabbbabba#

16 30 ba#

17 12 babaaabababbabbbabba#

18 18 bababbabbbabba#

19 27 babba#

20 9 babbabaaabababbabbbabba#

21 6 babbabbabaaabababbabbbabba#

22 3 babbabbabbabaaabababbabbbabba#

23 20 babbabbbabba#

24 23 babbbabba#
...

...
...

32 25 bbbabba#

Fig. 2. Suffix array for the text T shown in Figure 1, where a < # < b. Note that the array
values correspond to the leaf values in the suffix tree in Figure 1 traversed in in-order.

We can illustrate this point by a more careful accounting of the space requirements
in the unit cost RAM model. We assume that each symbol in the text T is encoded by
lg |Σ| bits, for a total of n lg |Σ| bits.1 In suffix arrays, the positions of the n suffixes
of T are stored as a permutation of 1, 2, . . . , n, using n lg n bits (kept in an array
consisting of n words, each of lg n bits). Suffix trees require considerably more space:
between 4n lg n and 5n lg n bits (stored in 4n–5n words) [55]. In contrast, inverted
lists require only approximately 10% of the text size [58], and thus suffix arrays and
suffix trees require significantly more bits. From a theoretical point of view, if the
alphabet is very large, namely, if lg |Σ| = Θ(lgn), then suffix arrays require roughly
the same number of bits as the text. However, in practice, the alphabet size |Σ| is
typically a fixed constant, such as |Σ| = 256 in electronic documents in ascii or larger
in unicode format, and Σ = 4 in DNA sequences. In such cases in practice, suffix
arrays and suffix trees are larger than the text by a significant multiplicative factor
of Θ(lg|Σ| n) = Θ(lgn). For example, a DNA sequence of n symbols (with |Σ| = 4)
can be stored with 2n bits in a computer. The suffix array for the sequence requires
instead at least n words of 4 bytes each, or 32n bits, which is 16 times larger than
the text itself. On the other hand, we cannot resort to inverted files since they do not
support a general search on unstructured sequences.

1In this paper, we use the notation lgcb n = (logb n)c = (logn/ log b)c to denote the cth power of
the base-b logarithm of n. If no base b is specified, the implied base is 2.



382 ROBERTO GROSSI AND JEFFREY SCOTT VITTER

In [62], Munro, Raman, and Rao solve the open question raised by Muthukrishnan
by showing how to represent suffix trees in n lg n+O(n) bits while allowing O(m)-time
search of binary pattern strings of length m. This result highlights the conceptual
barrier of n lg n bits of storage needed for text indexing. In this paper, we go one step
further and investigate whether it is possible to design a full-text index in o(n lg n)
bits, while still supporting efficient search.

The question of space usage is important in both theory and practice. Prior to
our work, the state of the art has taken for granted that at least n lg n bits are needed
to represent the permutation of the text positions for any efficient full-text index. On
the other hand, if we note that each text of n symbols is in one-to-one correspondence
with a suffix array, then we can easily see by a simple information-theoretic argument
that Ω(n lg |Σ|) bits are required to represent the permutation. The argument is based
upon the fact that there are |Σ|n different text strings of length n over the alphabet Σ;
hence, there are that many different suffix arrays, and we need Ω(n lg |Σ|) bits to
distinguish them from one another. It is therefore an interesting problem to close this
gap in order to see if there is an efficient representation of suffix arrays that use nearly
n lg |Σ| + O(n) bits in the worst case, even for random strings.

In order to have an idea of the computational difficulty of the question, let us
follow a simple approach that saves space. Let us consider binary alphabets. We
bunch every lgn bits together into a word (in effect, constructing a large alphabet)
and create a text of length n/ lg n and a pattern of length m/ lg n. The suffix array
on the new text requires O((n/ lg n) lg n) = O(n) bits. Searching for a pattern of
length m must also consider situations when the pattern is not aligned at the precise
word boundaries. What is the searching cost? It appears that we have to handle
lg n situations, with a slowdown factor of lgn in the time complexity of the search.
However, this is not really so; we actually have to pay a much larger slowdown factor
of Ω(n) in the search cost, which makes querying the text index more expensive than
running the O(m + n)-time algorithms from scratch, such as in [49]. To see why, let
us examine the situation in which the pattern occurs k positions to the right of a
word boundary in the text. In order to query the index, we have to align the pattern
with the boundary by padding k bits to the left of the pattern. Since we do not know
the correct k bits to prepend to the pattern, we must try all 2k possible settings of
the k bits. When k ≈ lg n, we have to query the index 2k = Ω(n) times in the worst
case. (See the sparse suffix trees [47] cited in section 1.3 to partially alleviate this
drawback.)

The above example shows that a small reduction in the index size can make query-
ing the index useless in the worst case, as it can cost at least as much as performing
a full scan of the text from scratch. In section 1.3, we describe previous results moti-
vated by the need to find an efficient solution to the problem of designing a full-text
index that saves space and time in the worst case. No data structures with the func-
tionality of suffix trees and suffix arrays that have appeared in the literature to date
use Θ(n lg |Σ|) + o(n lg n) bits and support fast queries in o(m lg |Σ|) or o(m + lg n)
worst-case time. Our goal in this paper is to simultaneously reduce both the space
bound and the query time bound.

1.2. Our results. In this paper, we begin the study of the compressibility of
suffix arrays and related full-text indexes. We assume for simplicity that the alphabet
Σ is of bounded size (i.e., ascii or unicode/utf8). We recall that the suffix array SA
for text T stores the suffixes of T in lexicographic order, as shown in Figure 2. We
represent SA in the form of a permutation of the starting positions, 1, 2, . . . , n, of the
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suffixes in T . For all 1 ≤ i < j ≤ n, we have T
[
SA[i], n

]
< T

[
SA[j], n

]
in lexicographic

order. We call each entry in SA a suffix pointer.
Given a text T and its suffix array SA, we consider the problem of obtaining a

compressed suffix array from both T and SA so as to support the following two basic
operations:

1. compress(T,SA): Compress SA to obtain its succinct representation. After
that, text T is retained while SA can be discarded.

2. lookup(i): Given the compressed representation mentioned above, return
SA[i], which is the suffix pointer in T of the ith suffix T

[
SA[i], n

]
in lexicographic

order.
(More functionalities are introduced in [64].) The primary measures of performance
are the query time to do lookup, the amount of space occupied by the compressed
suffix array, and the preprocessing time and space taken by compress.

In this paper, we exploit the “implicit structure” underlying the permutation
of the suffix pointers stored in SA, which takes advantage of the fact that not all
permutations are valid suffix arrays. For any fixed value of 0 < ε ≤ 1, we show how
to implement operation compress in (1 + ε−1)n lg |Σ| + o(n lg |Σ|) bits so that each
call to lookup takes sublogarithmic worst-case time, that is, O(lgε|Σ| n) time. We can
also achieve (1 + 1

2 lg lg|Σ| n)n lg |Σ|+O(n) bits so that calls to lookup can be done in
O(lg lg|Σ| n) time. The preprocessing time is O(n lg |Σ|). Note that the auxiliary space
during preprocessing is larger, i.e., O(n lg n) bits, since our preprocessing requires the
suffix array in uncompressed form to output it in compressed form. Our findings have
several implications as follows:

1. When |Σ| = O
(
2o(lgn)

)
, we break the space barrier of Ω(n lg n) bits for a

suffix array while retaining o(lg n) lookup time in the worst case. We refer the reader
to the literature described in section 1.3.

2. We can implement a form of compressed suffix trees in 2n lg |Σ| + O(n) bits
by using compressed suffix arrays (with ε = 1) and the techniques for compact rep-
resentation of Patricia tries presented in [62]. They occupy asymptotically up to a
small constant factor the same space as that of the text string being indexed.

3. Our compressed suffix arrays and compressed suffix trees are provably as
good as inverted lists in terms of space usage, at least theoretically. In the worst case,
they require asymptotically the same number of bits.

4. We can build a hybrid full-text index on T in at most
(
ε−1 + O(1)

)
n lg |Σ|

bits by a suitable combination of our compressed suffix trees and previous tech-
niques [17, 45, 62, 59]. We can answer existential and counting queries of any pattern
string of length m in O(m/ lg|Σ| n + lgε|Σ| n) search time in the worst case, which is

o
(
min{m lg |Σ|,m + lg n}

)
, smaller than previous search bounds. For enumerative

queries, we introduce a sublogarithmic slowdown factor in the output-sensitive cost,
giving O(occ lgε|Σ| n) time as a result. When the patterns are sufficiently long, namely,
for m = Ω

(
(lg2+ε n)(lg|Σ| lg n)

)
, we can use auxiliary data structures in O(n lg |Σ|)

bits to obtain a total search bound of O(m/ lg|Σ| n + occ) time, which is optimal.
The bounds claimed in point 4 need further elaboration. Specifically, search-

ing takes O(1) time for m = o(lg n), and O(m/ lg|Σ| n + lgε|Σ| n) = o(m lg |Σ|) time
otherwise. That is, we achieve optimal O(m/ lg|Σ| n) search time for sufficiently
large m = Ω(lg1+ε

|Σ| n). For enumerative queries, retrieving all occ occurrences has
cost O(m/ lg|Σ| n + occ lgε|Σ| n) when both conditions m ∈

[
ε lg n, o(lg1+ε n)

]
and

occ = o(nε) hold, and cost O
(
m/ lg|Σ| n + occ + (lg1+ε n)(lg |Σ| + lg lgn)

)
otherwise.
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The results described in this paper are theoretical, but they also have substan-
tial practical value. The ideas described here, with the extensions described by
Sadakane [64], have been tested experimentally in further work discussed in section
1.3. Central to our algorithms is the definition of function Φ and its implications
described in section 2. This function is at the heart of many subsequent papers on
compressed text indexing (such as suffix links in suffix trees, binary search trees in
sorted dictionaries, and join operators in relational databases), thus is the major
by-product of the findings presented in this paper. Ultimately Φ is related to sorting-
based compression because it represents the inverse of the last-to-first mapping for
the Burrows–Wheeler transform [14]. We refer the interested reader to section 1.3 for
the state of the art in compressed text indexing and to section 2 for a discussion of
the function Φ.

1.3. Related work. The seminal paper by Knuth, Morris, and Pratt [49] pro-
vides the first string matching solution taking O(m+n) time and O(m) words to scan
the text. The space requirement was remarkably lowered to O(1) words in [33, 19].
The new paradigm of compressed pattern matching was introduced in [2] and explored
for efficiently scanning compressed texts in [3, 24]. When many queries are to be per-
formed on the same text, it is better to resort to text indexing. A relevant paper [68]
introduced a variant of the suffix tree for solving the text indexing problem in string
matching. This paper pointed out the importance of text indexing as a tool to avoid
a full scan of the text at each pattern search. This method takes O(m lg |Σ|) search
time plus the output-sensitive cost O(occ) to report the occurrences, where occ ≤ n.
Since then, a plethora of papers have studied the text indexing problem in several
contexts, sometimes using different terminology [10, 11, 18, 28, 50, 41, 57, 55, 67];
for more references see [7, 20, 38]. Although very efficient, the resulting index data
structures are greedy in terms of space, using at least n words or Ω(n lg n) bits.

Numerous papers faced the problem of saving space in these data structures, both
in practice and in theory. Many of the papers were aimed at improving the lower-order
terms, as well as the constants in the higher-order terms, or at achieving tradeoff
between space requirements and search time complexity. Some authors improved
the multiplicative constants in the O(n lg n)-bit practical implementations. For the
analysis of constants, we refer the reader to [6, 15, 34, 44, 53, 54, 55]. Other authors
devised several variations of sparse suffix trees to store a subset of the suffixes [5, 35,
47, 46, 56, 59]. Some of them wanted queries to be efficient when the occurrences
are aligned with the boundaries of the indexed suffixes. Sparsity saves much space
but makes the search for arbitrary substrings difficult and, in the worst case, it is as
expensive as scanning the whole text in O(m + n) time. Another interesting index,
the Lempel-Ziv index [45], occupies O(n) bits and takes O(m) time to search patterns
shorter than lgn with an output-sensitive cost for reporting the occurrences; for longer
patterns, it may occupy Ω(n lg n) bits. An efficient and practical compressed index
is discussed in [21], but its searches are at word level and are not full text (i.e., with
arbitrary substrings).

An alternative line of research has been built upon succinct representation of
trees in 2n bits, with navigational operations [42]. That representation was extended
in [16] to represent a suffix tree in n lg n bits plus an extra O(n lg lg n) expected
number of bits. A solution requiring n lg n+O(n) bits and O(m+lg lgn) search time
was described in [17]. Munro, Raman, and Rao [62] used it along with an improved
succinct representation of balanced parentheses [61] in order to get O(m lg |Σ|) search
time with only n lg n + o(n) bits. They also show in [62] how to get O(m) time and
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O(n lg n/ lg lg n) bits for existential queries in binary patterns.
The preliminary version of our results presented in [37] stimulated much further

work; according to a search on http.//www.scholar.google.com, as of May 2005 more
than 80 interesting results have appeared citing this work. A first question raised
concerns lower bounds. Assuming that the text is read-only and using a stronger
version of the bit-probe model, Demaine and López-Ortiz [22] have shown in the
worst case that any text index with alphabet size |Σ| = 2 that supports fast queries
by probing O(m) bits in the text must use Ω(n) bits of extra storage space. (See
also Gál and Miltersen [32] for a general class of lower bounds.) Thus, our index
is space-optimal in this sense. A second concerns compressible text. Ferragina and
Manzini [29, 30] have devised the Fast Minute index (FM-index), based upon the
Burrows–Wheeler transform [14], that asymptotically achieves the order-k empirical
entropy of the text and allows them to obtain self-indexing texts (i.e., the compressed
text and its index are the same sequence of bits). Sadakane [64] has shown that
compressed suffix arrays can be used for self-indexing texts, with space bound by
the order-0 entropy. (He also uses our Lemma 2 in section 3.1 to show how to store
the skip values of the suffix tree in O(n) bits [65].) The space of compressed suffix
arrays has been further reduced to the order-k entropy (with a multiplicative constant
of 1) by Grossi, Gupta, and Vitter [36] using a novel analysis based on a finite set
model. Both the compressed suffix array and the FM-index require O(n lg n) auxiliary
bits of space during preprocessing, so a third question arises concerning a space-
efficient construction. Hon, Sadakane, and Sung [40] have shown how to build both the
compressed suffix array and the FM-index with O(n lg |Σ|) bits of auxiliary space by
using the text alone and small bookkeeping data structures. Numerous other papers
have appeared as well, representing a recent new trend in text indexing, causing space
efficiency to no longer be a major obstacle to the large-scale application of index data
structures [71]. Ideally we’d like to find an index that uses as few as bits as possible
and supports enumerative queries for each query pattern in sublinear time in the worst
case (in addition to the output-sensitive cost).

1.4. Outline of the paper. In section 2 we describe the ideas behind our new
data structure for compressed suffix arrays, including function Φ. Details of our
compressed suffix array construction are given in section 3. In section 4 we show how
to use compressed suffix arrays to construct compressed suffix trees and a general
space-efficient indexing mechanism to speed up text search. We give final comments
in section 5. We adopt the standard unit cost RAM for the analysis of our algorithms,
as does the previous work with which we compare. We use standard arithmetic and
Boolean operations on words of O(lg n) bits. Each operation takes constant time;
each word is read or written in constant time.

2. Compressed suffix arrays. The compression of suffix arrays falls into the
general framework presented by Jacobson [43] for the abstract optimization of data
structures. We start from the specification of our data structure as an abstract data
type with its supported operations. We take the time complexity of the “natural” (and
less space efficient) implementation of the data structure. Then we define the class Cn

of all distinct data structures storing n elements. A simple information-theoretic
argument implies that each such data structure can be canonically identified by lg |Cn|
bits. We try to give a succinct implementation of the same data structure in O

(
lg |Cn|

)
bits, while supporting the operations within time complexity comparable with that of
the natural implementation. However, the information-theoretic argument alone does
not guarantee that the operations can be supported efficiently.
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We define the suffix array SA for a binary string T as an abstract data type that
supports the two operations compress and lookup described in the introduction. We
will adopt the convention that T is a binary string of length n− 1 over the alphabet
Σ = {a, b}, and it is terminated in the nth position by a special end-of-string symbol #,
such that a < # < b.2 We will discuss the case of alphabets of size |Σ| > 2 at the end
of the section.

The suffix array SA is a permutation of {1, 2, . . . , n} that corresponds to the
lexicographic ordering of the suffixes in T ; that is, SA[i] is the starting position in T
of the ith suffix in lexicographic order. The example below shows the suffix arrays
corresponding to the 16 binary strings of length 4:

a a a a # a a a b # a a b a # a a b b # a b a a # a b a b # a b b a # a b b b #

1 2 3 4 5 1 2 3 5 4 1 4 2 5 3 1 2 5 4 3 3 4 1 5 2 1 3 5 2 4 4 1 5 3 2 1 5 4 3 2

b a a a # b a a b # b a b a # b a b b # b b a a # b b a b # b b b a # b b b b #

2 3 4 5 1 2 3 5 1 4 4 2 5 3 1 2 5 1 4 3 3 4 5 2 1 3 5 2 4 1 4 5 3 2 1 5 4 3 2 1

The natural explicit implementation of suffix arrays requires O(n lg n) bits and
supports the lookup operation in constant time. The abstract optimization discussed
above suggests that there is a canonical way to represent suffix arrays in O(n) bits.
This observation follows from the fact that the class Cn of suffix arrays has no more
than 2n−1 distinct members, as there are 2n−1 binary strings of length n − 1. That
is, not all the n! permutations are necessarily suffix arrays.

We use the intuitive correspondence between suffix arrays of length n and binary
strings of length n − 1. According to the correspondence, given a suffix array SA,
we can infer its associated binary string T and vice versa. To see how, let x be the
entry in SA corresponding to the last suffix # in lexicographic order. Then T must
have the symbol a in each of the positions pointed to by SA[1], SA[2], . . . ,SA[x− 1],
and it must have the symbol b in each of the positions pointed to by SA[x + 1],
SA[x + 2], . . . ,SA[n]. For example, in the suffix array 〈45321〉 (the 15th of the 16
examples above), the suffix # corresponds to the second entry 5. The preceding entry
is 4, and thus the string T has a in position 4. The subsequent entries are 3, 2, 1,
and thus T must have bs in positions 3, 2, 1. The resulting string T , therefore, must
be bbba#.

The abstract optimization does not say anything regarding the efficiency of the
supported operations. By the correspondence above, we can define a trivial compress
operation that transforms SA into a sequence of n − 1 bits plus #, namely, string T
itself. The drawback, however, is the unaffordable cost of lookup. It takes Ω(n) time
to decompress a single suffix pointer in SA, as it must build the whole suffix array on
T from scratch. In other words, the trivial method proposed so far does not support
efficient lookup operations.

In this section we describe an efficient method to represent suffix arrays in O(n)
bits with fast lookup operations. Our idea is to distinguish among the permutations
of {1, 2, . . . , n} by relating them to the suffixes of the corresponding strings, instead
of studying them alone. We mimic a simple divide-and-conquer “deconstruction” of
the suffix arrays to define the permutation for an arbitrary (e.g., random) string T
recursively in terms of shorter permutations. For some examples of divide-and-conquer

2Usually, an end-of-symbol character is not explicitly stored in T , but rather is implicitly repre-
sented by a blank symbol �, with the ordering � < a < b. However, our use of # is convenient for
showing the explicit correspondence between suffix arrays and binary strings.
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construction of suffix arrays and suffix trees, see [8, 25, 26, 27, 55, 66]. We reverse
the construction process to discover a recursive structure of the permutations that
makes their compression possible. We describe the decomposition scheme in section
2.1, giving some intuition on the compression in section 2.2. We summarize the results
thus obtained in section 2.3.

2.1. Decomposition scheme. Our decomposition scheme is by a simple recur-
sion mechanism. Let SA be the suffix array for binary string T . In the base case,
we denote SA by SA0, and let n0 = n be the number of its entries. For simplicity in
exposition, we assume that n is a power of 2.

In the inductive phase k ≥ 0, we start with suffix array SAk, which is available
by induction. It has nk = n/2k entries and stores a permutation of {1, 2, . . . , nk}.
(Intuitively, this permutation is that resulting from sorting the suffixes of T whose
suffix pointers are multiples of 2k.) We run four main steps as follows to transform
SAk into an equivalent but more succinct representation:

Step 1. Produce a bit vector Bk of nk bits such that Bk[i] = 1 if SAk[i] is even
and Bk[i] = 0 if SAk[i] is odd.

Step 2. Map each 0 in Bk onto its companion 1. (We say that a certain 0 is
the companion of a certain 1 if the odd entry in SA associated with the 0 is 1 less
than the even entry in SA associated with the 1.) We can denote this correspondence
by a partial function Ψk, where Ψk(i) = j if and only if SAk[i] is odd and SAk[j] =
SAk[i] + 1. When defined, Ψk(i) = j implies that Bk[i] = 0 and Bk[j] = 1. It is
convenient to make Ψk a total function by setting Ψk(i) = i when SAk[i] is even (i.e.,
when Bk[i] = 1). In summary, for 1 ≤ i ≤ nk, we have

Ψk(i) =

{
j if SAk[i] is odd and SAk[j] = SAk[i] + 1;
i otherwise.

Step 3. Compute the number of 1’s for each prefix of Bk. We use function rankk

for this purpose; that is, rankk(j) counts how many 1’s are in the first j bits of Bk.
Step 4. Pack together the even values from SAk and divide each of them by 2. The

resulting values form a permutation of {1, 2, . . . , nk+1}, where nk+1 = nk/2 = n/2k+1.
Store them in a new suffix array SAk+1 of nk+1 entries and remove the old suffix array
SAk.

The following example illustrates the effect of a single application of Steps 1–4.
Here, Ψ0(25) = 16 as SA0[25] = 29 and SA0[16] = 30. The new suffix array SA1

explicitly stores the suffix pointers (divided by 2) for the suffixes that start at even
positions in the original text T . For example, SA1[3] = 5 means that the third
lexicographically smallest suffix that starts at an even position in T is the one starting
at position 2 × 5 = 10, namely, abbabaa . . . #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0: 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0

rank0: 0 1 1 1 1 1 2 3 3 4 4 4 5 6 7 8 9 10 10 10 11 11 12 12 12 12 13 14 14 15 16 16
Ψ0: 2 2 14 15 18 23 7 8 28 10 30 31 13 14 15 16 17 18 7 8 21 10 23 13 16 17 27 28 21 30 31 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11
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procedure rlookup(i, k):

if k = � then
return SA�[i]

else
return 2 × rlookup

(
rankk(Ψk(i)), k + 1

)
+ (Bk[i] − 1).

Fig. 3. Recursive lookup of entry SAk[i] in a compressed suffix array.

The next lemma shows that these steps preserve the information originally kept
in suffix array SAk.

Lemma 1. Given suffix array SAk, let Bk, Ψk, rankk, and SAk+1 be the result of
the transformation performed by Steps 1–4 of phase k. We can reconstruct SAk from
SAk+1 by the following formula for 1 ≤ i ≤ nk:

SAk[i] = 2 · SAk+1

[
rankk

(
Ψk(i)

)]
+ (Bk[i] − 1).

Proof. Suppose Bk[i] = 1. By Step 3, there are rankk(i) 1’s among Bk[1],
Bk[2], . . . , Bk[i]. By Step 1, SAk[i] is even, and by Step 4, SAk[i]/2 is stored in the
rankk(i)th entry of SAk+1. In other words, SAk[i] = 2·SAk+1

[
rankk(i)

]
. As Ψk(i) = i

by Step 2, and Bk[i] − 1 = 0, we obtain the claimed formula.
Next, suppose that Bk[i] = 0 and let j = Ψk(i). By Step 2, we have SAk[i] =

SAk[j]−1 and Bk[j] = 1. Consequently, we can apply the previous case of our analysis
to index j, and we get SAk[j] = 2 · SAk+1

[
rankk(j)

]
. The claimed formula follows by

replacing j with Ψk(i) and by noting that Bk[i] − 1 = −1.
In the previous example, SA0[25] = 2 · SA1[rank0(16)] − 1 = 2 · 15 − 1 = 29. We

now give the main ideas to perform the compression of suffix array SA and support
the lookup operations on its compressed representation.

Procedure compress. We represent SA succinctly by executing Steps 1–4 of
phases k = 0, 1, . . . , �− 1, where the exact value of � = Θ(lg lgn) will be determined
in section 3. As a result, we have � + 1 levels of information, numbered 0, 1, . . . , �,
which form the compressed representation of suffix array SA as follows:

1. Level k, for each 0 ≤ k < �, stores Bk, Ψk, and rankk. We do not store SAk,
but we refer to it for the sake of discussion. The arrays Ψk and rankk are not stored
explicitly, but are stored in a specially compressed form described in section 3.

2. The last level k = � stores SA� explicitly because it is sufficiently small to
fit in O(n) bits. The �th level functionality of structures B�, Ψ�, and rank � are not
needed as a result.

Procedure lookup (i). We define lookup(i) = rlookup(i, 0), where rlookup(i, k) is
the procedure described recursively for level k in Figure 3.

If k is the last level �, then it performs a direct lookup in SA�[i]. Otherwise, it
exploits Lemma 1 and the inductive hypothesis so that rlookup(i, k) returns the value
of 2 · SAk+1

[
rankk

(
Ψk(i)

)]
+ (Bk[i] − 1) in SAk[i].

2.2. Compressibility. As previously mentioned, Bk, rankk, and Ψk are the
key ingredients for representing a compressed suffix array. Storing Bk and rankk

succinctly, with constant-time access, can be done using previous work (see, e.g.,
[42]). Hence, we focus on function Ψk, which is at the heart of the compressed suffix
array since its compression is challenging.

Before giving some intuition on the compressibility, a few comments are in order.
When Ψ0(i) �= i, we observe that Ψ0 is the analogue of the suffix links in McCreight’s
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suffix tree construction [57]. (We recall that a suffix link for a node storing a nonempty
string cα, where c ∈ Σ, points to the node storing α.) This is clear when we consider
its extension, Φ0, defined in section 3.2 as follows:

Φk(i) =

{
j if SAk[i] �= nk and SAk[j] = SAk[i] + 1;
1 otherwise.

Indeed, if i is the position in SA for suffix T
[
SA[i], n

]
, then Φ0(i) returns j, which

is the position in SA for suffix T
[
SA[i] + 1, n

]
(when Φ0(i) is seen as a suffix link,

c = T
[
SA[i]

]
and α = T

[
SA[i] + 1, n

]
). Analogously, we can see Ψk and Φk as the

suffix links for the positions in SAk, for any k ≥ 0.
Functions Ψk and Φk can be seen as by-products of the suffix array construc-

tion. Let the inverse suffix array, SA−1, be the array satisfying SA−1
[
SA[i]

]
=

SA
[
SA−1[i]

]
= i. Note that SA−1 is well defined since SA stores a permutation

of 1, 2, . . . , n. When Φ0(i) �= 1, we have Φ0(i) = SA−1
[
SA[i] + 1

]
. An analogous

argument holds for any k ≥ 0.
In order to see why Ψ0 and Φ0 are compressible, we focus on Ψ0. If we consider

the values of Ψ0 in the example of section 2.1, we do not see any particular order.
However, if we restrict our focus to the positions i (1 ≤ i ≤ n) having (a) value of 0
in B0[i], and (b) the same leading character in the corresponding suffix, T

[
SA[i], n

]
,

we observe that the values of Ψ0 in those positions yield an increasing sequence.
For example, choosing a as the leading character in condition (b), we find that the
positions satisfying also condition (a) are i = 1, 3, 4, 5, 6, 9, 11, 12. Their corresponding
values are Ψ0(i) = 2, 14, 15, 18, 23, 28, 30, 31, respectively. The latter values form a
sorted sequence (called a list) that can be implicitly represented in several ways. We
clearly have to represent lists for all distinct characters that appear in the text (a list,
blist, . . . ).

In this paper, we represent the lists by relating them to the positions of the
companion 1’s in B0. Let the preceding character for position i in SA be T

[
SA[i]−1

]
for SA[i] �= 1; otherwise, let it be T [n]. We implicitly associate the preceding character
for position i with each entry of B0 containing 1. For example, in the case of the
a list, the positions corresponding to the 1’s in B0 and with preceding character a

are 2, 14, 15, 18, 23, 28, 30, 31, which are exactly the items in the a list itself! (The
motivation for this nice property is that the suffixes remain sorted in relative order,
even if interspersed with other suffixes, when we remove their leading character a.)
By exploiting this relation, we can implement constant-time access to Ψ0’s values
without needing to store them explicitly. Further details on how to represent rankk,
Ψk, and Φk in compressed form and how to implement compress and lookup(i) will
be given in section 3.

2.3. Results. Our main theorem below gives the resulting time and space com-
plexity that we are able to achieve.

Theorem 1 (binary alphabets). Consider the suffix array SA built upon a binary
string of length n− 1.

(i) We can implement compress in 1
2n lg lg n+ 6n+O(n/ lg lg n) bits and O(n)

preprocessing time, so that each call lookup(i) takes O(lg lg n) time.
(ii) We can implement compress in (1 + ε−1)n + O(n/ lg lg n) bits and O(n)

preprocessing time, so that each call lookup(i) takes O(lgε n) time, for any fixed value
of 0 < ε ≤ 1.

The coefficients on the second-order terms can be tweaked theoretically by a more
elaborate encoding. We also state the above results in terms of alphabets with |Σ| > 2.
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Theorem 2 (general alphabets). Consider the suffix array SA built upon a string
of length n− 1 over the alphabet Σ with size |Σ| > 2.

(i) We can implement compress in (1+ 1
2 lg lg|Σ| n)n lg |Σ|+5n+O(n/ lg lg n) =

(1 + 1
2 lg lg|Σ| n)n lg |Σ| + O(n) bits and O(n lg |Σ|) preprocessing time, so that each

call lookup(i) takes O(lg lg|Σ| n) time.
(ii) We can implement compress in (1 + ε−1)n lg |Σ| + 2n + O(n/ lg lg n) =

(1 + ε−1)n lg |Σ|+ o(n lg |Σ|) bits and O(n lg |Σ|) preprocessing time, so that each call
lookup(i) takes O(lgε|Σ| n) time, for any fixed value of 0 < ε ≤ 1. For |Σ| = O(1), the
space bound reduces to (1+ ε−1)n lg |Σ|+O(n/ lg lg n) = (1+ ε−1)n lg |Σ|+ o(n) bits.

We remark that Sadakane [64] has shown that the space complexity in Theo-
rem 1(ii) and Theorem 2(ii) can be restated in terms of the order-0 entropy H0 ≤ lg |Σ|
of the string, giving as a result ε−1H0 n + O(n) bits. Grossi, Gupta, and Vitter [36]
have shown how to attain order-h entropy, namely, Hh n + O(n lg lg n/ lg|Σ| n) bits,
where Hh ≤ H0.

The lookup process can be sped up when we need to report several contiguous
entries, as in enumerative string matching queries. Let lcp(i, j) denote the length of
the longest common prefix between the suffixes pointed to by SA[i] and SA[j], with
the convention that lcp(i, j) = −∞ when i < 1 or j > n. We say that a sequence i,
i+1, . . . , j of indices in SA is maximal if both lcp(i−1, j) and lcp(i, j+1) are strictly
smaller than lcp(i, j), as in enumerative queries. (Intuitively, a maximal sequence in
SA corresponds to all the occurrences of a pattern in T .)

Theorem 3 (batch of lookups). In each of the cases stated in Theorems 1 and 2,
we can use the additional space of O(n lg |Σ|) bits and batch together j−i+1 procedure
calls lookup(i), lookup(i + 1), . . . , lookup(j), for a maximal sequence i, i + 1, . . . , j,
so that the total cost is

(i) O
(
j−i+(lgn)1+ε(lg |Σ|+lg lgn)

)
time when lcp(i, j) = Ω(lg1+ε n), namely,

the suffixes pointed to by SA[i] and SA[j] have the same first Ω(lg1+ε n) symbols in
common, or

(ii) O(j − i + nα) time, for any constant 0 < α < 1, when lcp(i, j) = Ω(lg n),
namely, the suffixes pointed to by SA[i] and SA[j] have the same first Ω(lg n) symbols.

3. Algorithms for compressed suffix arrays. In this section we construc-
tively prove Theorems 1–3 by showing two ways to implement the recursive decompo-
sition of suffix arrays discussed in section 2.1. In particular, in section 3.1 we address
Theorem 1(i), and in section 3.2 we prove Theorem 1(ii). Section 3.3 shows how to
extend Theorem 1 to deal with alphabets of size |Σ| > 2, thus proving Theorem 2.
In section 3.4 we prove Theorem 3, showing how to batch together the lookup of sev-
eral contiguous entries in suffix arrays, which arises in enumerative string matching
queries.

3.1. Compressed suffix arrays in 1
2
n lg lg n + O(n) bits and O(lg lg n)

access time. In this section we describe the method referenced in Theorem 1(i) for
binary strings and show that it achieves O(lg lg n) lookup time with a total space usage
of O(n lg lg n) bits. Before giving the algorithmic details of the method, let’s continue
the recursive decomposition of Steps 1–4 described in section 2.1, for 0 ≤ k ≤ � − 1,
where � = 
lg lg n�. The decomposition below shows the result on the example of
section 2.1:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11
B1: 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0

rank1: 1 2 2 3 4 5 5 5 6 6 6 7 7 8 8 8
Ψ1: 1 2 9 4 5 6 1 6 9 12 14 12 2 14 4 5

1 2 3 4 5 6 7 8
SA2: 4 7 1 6 8 3 5 2
B2: 1 0 0 1 1 0 0 1

rank2: 1 1 1 2 3 3 3 4
Ψ2: 1 5 8 4 5 1 4 9

1 2 3 4
SA3: 2 3 4 1

The resulting suffix array SA� on level � contains at most n/ lg n entries and can
thus be stored explicitly in at most n bits. We store the bit vectors B0, B1, . . . , B�−1

in explicit form, using less than 2n bits, as well as implicit representations of rank0,
rank1, . . . , rank �−1, and Ψ0, Ψ1, . . . ,Ψ�−1. If the implicit representations of rankk

and Ψk can be accessed in constant time, the procedure described in Lemma 1 shows
how to achieve the desired lookup in constant time per level, for a total of O(lg lg n)
time.
All that remains, for 0 ≤ k ≤ �− 1, is to investigate how to represent rankk and Ψk

in O(n) bits and support constant-time access. Given the bit vector Bk of nk = n/2k

bits, Jacobson [42] shows how to support constant-time access to rankk using only
O
(
nk(lg lg nk)/ lg nk

)
extra bits, with preprocessing time O(nk).

We show next how to represent Ψk implicitly. First we explain the representation
by an example and then we describe it formally. In Lemma 3 we show that the space
used to represent Ψk is n(1/2 + 3/2k+1) + O(n/2k lg lg n) bits.

For each 1 ≤ i ≤ nk/2, let j be the index of the ith 1 in Bk. Consider the
2k symbols in positions 2k · (SAk[j] − 1), . . . , 2k · SAk[j] − 1 of T ; these 2k symbols
immediately precede the

(
2k · SAk[j]

)
th suffix in T , as the suffix pointer in SAk[j]

was 2k times larger before the compression. For each bit pattern of 2k symbols that
appears, we keep an ordered list of the indices j ∈ [1, n/2k] that correspond to it, and
we record the number of items in each list. Continuing the example above, we get the
following lists for level 0:

a list: 〈2, 14, 15, 18, 23, 28, 30, 31〉, |a list| = 8
b list: 〈7, 8, 10, 13, 16, 17, 21, 27〉, |b list| = 8

Level 1:

aa list: ∅, |aa list| = 0
ab list: 〈9〉, |ab list| = 1
ba list: 〈1, 6, 12, 14〉, |ba list| = 4
bb list: 〈2, 4, 5〉, |bb list| = 3

Level 2:

aaaa list: ∅, |aaaa list| = 0 baaa list: ∅, |baaa list| = 0
aaab list: ∅, |aaab list| = 0 baab list: ∅, |baab list| = 0
aaba list: ∅, |aaba list| = 0 baba list: 〈1〉, |baba list| = 1
aabb list: ∅, |aabb list| = 0 babb list: 〈4〉, |babb list| = 1
abaa list: ∅, |abaa list| = 0 bbaa list: ∅, |bbaa list| = 0
abab list: ∅, |abab list| = 0 bbab list: ∅, |bbab list| = 0
abba list: 〈5, 8〉, |abba list| = 2 bbba list: ∅, |bbba list| = 0
abbb list: ∅, |abbb list| = 0 bbbb list: ∅, |bbbb list| = 0
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Suppose we want to compute Ψk(i). If Bk[i] = 1, we trivially have Ψk(i) = i;
therefore, let’s consider the harder case in which Bk[i] = 0, which means that SAk[i]
is odd. We have to determine the index j such that SAk[j] = SAk[i] + 1. We can
determine the number h of 0’s in Bk up to index i by computing i − rankk(i), i.e.,
by subtracting the number of 1’s in the first i bits of Bk. Consider the 22k

lists
concatenated together in lexicographic order of the 2k-bit prefixes. We denote by Lk

the resulting concatenated list, which has |Lk| = nk/2 = n/2k+1 total items. What
we need to find now is the hth entry in Lk. For example, to determine Ψ0(25) in the
example above, we find that there are h = 13 0’s in the first 25 slots of B0. There are
eight entries in the a list and eight entries in the b list; hence, the 13th entry in L0 is
the fifth entry in the b list, namely, index 16. Hence, we have Ψ0(25) = 16 as desired;
note that SA0[25] = 29 and SA0[16] = 30 are consecutive values.

Continuing the example, consider the next level of the recursive call to rlookup,
in which we need to determine Ψ1(8). (The previously computed value Ψ0(25) =
16 has a rank0 value of 8, i.e., rank0(16) = 8, so the rlookup procedure needs to
determine SA1[8], which it does by first calculating Ψ1(8).) There are h = 3 0’s in
the first eight entries of B1. The third entry in the concatenated list L1 for aa, ab,
ba, and bb is the second entry in the ba list, namely, 6. Hence, we have Ψ1(8) = 6 as
desired; note that SA1[8] = 15 and SA1[6] = 16 are consecutive values.

We now describe formally how to preprocess the input text T in order to form the
concatenated list Lk on level k used for Ψk with the desired space and constant-time
query performance. We first consider a variant of the “inventories” introduced by
Elias [23] to get average bit efficiency in storing sorted multisets. We show how to
get worst-case efficiency.

Lemma 2 (constant-time access to compressed sorted integers). Given s integers
in sorted order, each containing w bits, where s < 2w, we can store them with at most
s(2 + w − lg s�) + O(s/ lg lg s) bits, so that retrieving the hth integer takes constant
time.

Proof. We take the first z = lg s� bits of each integer in the sorted sequence. Let
q1, . . . , qs be the integers so obtained, called quotients, where 0 ≤ qh ≤ qh+1 < s for
1 ≤ h < s. (Note that multiple values are allowed.) Let r1, . . . , rs be the remainders,
obtained by deleting the first z bits from each integer in the sorted sequence.

We store q1, . . . , qs in a table Q described below, requiring 2s+O(s/ lg lg s) bits.
We store r1, . . . , rs in a table R taking s(w − z) bits. Table R is the simple concate-
nation of the bits representing r1, . . . , rs.

As for Q, we use the unary representation 0i1 (i.e., i copies of 0 followed by 1) to
represent integer i ≥ 0. Then we take the concatenation of the unary representation
of q1, q2 − q1, . . . , qs − qs−1. In other words, we take the first entry encoded in
unary, and then the unary difference between the other consecutive entries, which
are in nondecreasing order. Table Q is made up of the binary string obtained by
the above concatenation S, augmented with the auxiliary data structure supporting
select operations to locate the position of the hth 1 in constant time [15, 42, 60].

Since S requires s+2z ≤ 2s bits, the total space required by Q is 2s+O(s/ lg lg s)
bits; the big-oh term is due to the auxiliary data structure that implements select . In
order to retrieve qh, we find the position j of the hth 1 in S by calling select(h), and
then compute the number of 0’s in the first j bits of S by returning j − h. As we can
see, this number of 0’s gives qh. The time complexity is constant.

In order to obtain the hth integer in the original sorted sequence, we find qh by
querying Q as described above, and we find ri by looking up the hth entry in R.
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We then output qh · 2w−z + rh as the requested integer by simply returning the
concatenation of the bit representations of qh and rh.

We now proceed to the implementation of Ψk.
Lemma 3. We can store the concatenated list Lk used for Ψk in n(1/2+3/2k+1)+

O(n/2k lg lg n) bits, so that accessing the hth entry in Lk takes constant time. Pre-
processing time is O(n/2k + 22k

).

Proof. There are d = 22k

lists, some of which may be empty. We number the lists
composing Lk from 0 to 22k − 1. Each integer x in list i, where 1 ≤ x ≤ nk, is trans-
formed into an integer x′ of w = 2k+lg nk bits by prepending the binary representation
of i to that of x−1. Given any such x′, we can obtain the corresponding x in constant
time. As a result, Lk contains s = nk/2 = n/2k+1 integers in increasing order, each
integer of w bits. By Lemma 2, we can store Lk in s(2 +w− lg s) +O(s/ lg lg s) bits,
so that retrieving the hth integer takes constant time. Substituting the values for s
and w, we get the space bound (nk/2)

(
2 + 2k + lg nk − lg(nk/2)

)
+ O(nk/ lg lg nk) =

(n/2k+1)(2k + 3) + O(n/2k lg lg n) = n(1/2 + 3/2k+1) + O(n/2k lg lg n).
A good way to appreciate the utility of the data structure for Ψk is to consider

the naive alternative. Imagine that the information is stored naively in the form of
an unsorted array of s = nk/2 entries, where each entry specifies the particular list
to which the entry belongs. Since there are d = 22k

lists, the total number of bits
needed to store the array in this naive manner is s lg d = (nk/2)2k = n/2, which is
efficient in terms of space. Let us define the natural ordering ≺ on the array entries,
in which we say that i ≺ j either if i < j or if i = j and the position of i in the array
precedes the position of j. The naive representation does not allow us to efficiently
look up the hth ≺-ordered entry in the array, which is equivalent to finding the hth
entry in the concatenated list Lk. It also doesn’t allow us to search quickly for the
gth occurrence of the entry i, which is equivalent to finding the gth item in list i.
In contrast, the data structure described in Lemma 3 supports both of these query
operations in linear space and constant time.

Corollary 1. Given an unsorted array of s entries, each in the range [0, d− 1],
we can represent the array in a total of s lg d+O(s) bits so that, given h, we can find
the hth entry (in ≺ order) in the array in constant time. We can also represent the
array in O(s lg d) bits so that, given g and i, we can find the gth occurrence of i in
the array in constant time. The latter operation can be viewed as a generalization of
the select operation to arbitrary input patterns.

Proof. The first type of query is identical to finding the hth item in the concate-
nated list Lk, and the bound on space follows from the construction in Lemma 3.
The corresponding values of s and w in the proof of Lemma 3 are s and lg d + lg s,
respectively.

The second type of query is identical to finding the gth entry in list i. It can be
turned into the first type of query if we can compute the value of h that corresponds
to g and i; that is, we need to find the global position h (with respect to ≺) of the
gth entry in list i. If d ≤ s, then we can explicitly store a table that gives for each
0 ≤ i < d the first location h′ in the concatenated list Lk that corresponds to an
entry in list i. We then set h = h′ + g − 1 and do the first type of query. (If list i
has fewer than g entries, which can be detected after the query is done, the value
returned by the first query must be nullified.) The total space used is d lg s, which
by the assumption d ≤ s is at most s lg d. If instead d > s, then we can use the same
approach as above, except that we substitute a perfect hash function to compute the
value h′. The space for the hash table is O(s lg s) = O(s lg d).
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Putting it all together. At this point, we have all the pieces needed to finish the
proof of Theorem 1(i). Given text T and its suffix array, we proceed in � = 
lg lg n�
levels of decomposition as discussed in procedure compress in section 2. The last
level � stores explicitly a reduced suffix array in (n/2�) lg n ≤ n bits. The other levels
0 ≤ k ≤ �− 1 store three data structures each, with constant time access as follows:

1. Bit vector Bk of size nk = n/2k, with O(nk) preprocessing time.
2. Function rankk in O

(
nk(lg lg nk)/ lg nk

)
bits, with O(nk) preprocessing time.

3. Function Ψk in n(1/2 + 3/2k+1) + O(n/2k lg lg n) bits, with O(nk + 22k

)
preprocessing time (see Lemma 3).

By summing over the levels, substituting the values � = 
lg lg n� and nk = n/2k,
we get the following bound on the total space:

n lg n

2�
+

�−1∑
k=0

n

(
1

2k
+ O

(
1

2k
lg lg(n/2k)

lg(n/2k)

)
+

1

2
+

3

2k+1
+ O

(
1

2k lg lg n

))

<
n lg n

2�
+ n

(
2 + O

(
lg lg n

lg n

)
+

1

2
� + 3 + O

(
1

lg lg n

))

=
n lg n

2�
+

1

2
�n + 5n + O

(
n

lg lg n

)
.(1)

It’s easy to show that (n lg n)/2� + 1
2�n ≤ 1

2n lg lg n + n, which combined with (1)
gives us the desired space bound 1

2n lg lg n + 6n + O(n/ lg lg n) in Theorem 1(i).

The total preprocessing time of compress is
∑�−1

k=0 O(nk + 22k

) = O(n). A call to
lookup goes through the � + 1 levels, in constant time per level, with a total cost of
O(lg lg n). This completes the proof of Theorem 1(i).

3.2. Compressed suffix arrays in ε−1n + O(n) bits and O(lgε n) access
time. In this section we give the proof of Theorem 1(ii). Each of the 
lg lg n� levels
of the data structure discussed in the previous section 3.1 uses O(n) bits, so one way
to reduce the space complexity is to store only a constant number of levels, at the
cost of increased access time. For example, we can keep a total of three levels: level 0,
level �′, and level �, where �′ = 
 1

2 lg lg n� and, as before, � = 
lg lg n�. In the previous
example of n = 32, the three levels chosen are levels 0, 2, and 3. The trick is to
determine how to reconstruct SA0 from SA�′ and how to reconstruct SA�′ from SA�.

We store the n�′ indices from SA0 that correspond to the entries of SA�′ in a
new dictionary D0, and similarly we store the n� indices from SA�′ that correspond
to the entries of SA� in a new dictionary D�′ . By using the efficient static dictionary
representation in [13, 63], we need less than O

(
lg
(

n
n�′

))
= O(n�′�

′) bits for D0 and

O
(
lg
(
n�′
n�

))
= O(n��) bits for D�′ . A dictionary lookup requires constant time, as

does a rank query to know how many smaller or equal indices are stored in the
dictionary [63].

We also have a data structure for k = 0 and k = �′ to support the function Ψ′
k,

which is similar to Ψk, except that it maps 1’s to the next corresponding 0. We
denote by Φk the resulting composition of Ψk and Ψ′

k, for 1 ≤ i ≤ nk:

Φk(i) =

{
j if SAk[i] �= nk and SAk[j] = SAk[i] + 1;
1 otherwise.

We implement Φk by merging the concatenated lists Lk of Ψk with the concatenated
lists L′

k of Ψ′
k. For example, in level k = 0 shown in section 3.1, we merge the a list
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of Lk with the a list of L′
k, and so on (we need also the singleton list for #). This is

better than storing Lk and L′
k separately. Computing Φk(i) amounts to taking the

ith entry in its concatenated list, and we no longer need the bit vector Bk.
Lemma 4. We can store the concatenated lists used for Φk in n + O(n/ lg lg n)

bits for k = 0, and n(1 + 1/2k−1) + O(n/2k lg lg n) bits for k > 0, so that accessing
the hth entry takes constant time. Preprocessing time is O(n/2k + 22k

).
Proof. For k > 0, the proof is identical to that of Lemma 3, except that s = nk

instead of s = nk/2. For k = 0, we have only the a list and the b list to store, with the
singleton # list handled a bit differently. Specifically, we encode a and # by 0 and b

by 1. Then, we create a bit vector of n bits, where the bit in position f is 0 if the list
for Φ0 contains either a or # in position f , and it is 1 if it contains b in position f . We
use auxiliary information to access the ith 1 of the bit vector in constant time by using
select(i) or the ith 0 by using select0(i). We also keep a counter c0 to know the total
number of 0’s in the bit vector (note that the single occurrence of 0 corresponding
to # in the bit vector is the c0th 0 in the bit vector as we assumed a < # < b ; it
is not difficult to treat the more common case # < a < b). The additional space
is O(n/ lg lg n) due to the implementation of select and select0. Suppose now that
we want to recover the hth entry in the list for Φ0. If h = c0, then we return the
position of # by invoking select0(c0). If h < c0, then we return the hth 0 (i.e., a) in
the bit vector by invoking select0(h). Otherwise, we invoke select(h − c0) to get the
position in the bit vector of the (h − c0)th 1 (i.e., b). In this way, we simulate the
concatenation of lists needed for L0. With n+O(n/ lg lg n) bits to implement Φ0, we
can execute Φ0(h) in constant time.

In order to determine SA[i] = SA0[i], we use function Φ0 to walk along indices i′,
i′′, . . . , such that SA0[i]+1 = SA0[i

′], SA0[i
′]+1 = SA0[i

′′], and so on, until we reach
an index stored in dictionary D0. Let s be the number of steps in the walk and r be
the rank of the index thus found in D0. We switch to level �′ and reconstruct the rth
entry at level �′ from the explicit representation of SA� by a similar walk until we find
an index stored in D�′ . Let s′ be the number of steps in the latter walk and r′ be the
rank of the index thus found in D�′ . We return (SA�[r

′] · 2� + s′ · 2�′ + s · 20), as this
is the value of SA0[i]. We defer details for reasons of brevity. The maximum length
of each walk is max{s, s′} ≤ 2�

′
< 2

√
lg n, and thus the lookup procedure requires

O(
√

lg n ) time.
To get the more general result stated in Theorem 1(ii), we need to keep a total

of ε−1 + 1 levels for constant 0 < ε ≤ 1. More formally, let us assume that ε� is an
integer. We maintain the ε−1 +1 levels 0, ε�, 2ε�, . . . , �. The maximum length of each
walk is 2ε� < 2 lgε n, and thus the lookup procedure requires O(lgε n) time.

By an analysis similar to the one we used at the end of section 3.1, the to-
tal space bound is given by (n/2�) lg n ≤ n plus a sum over the ε−1 indices k ∈
{0, ε�, 2ε�, 3ε�, . . . , (1 − ε)�}. We split the sum into two parts, one for k = 0 and the
other for the remaining ε−1 − 1 values of k > 0, and apply Lemma 4:

n lg n

2�
+ n + O

(
n

lg lg n

)
+

∑
k=iε�

1≤i<ε−1

n

(
1 +

1

2k−1
+ O

(
1

2k lg lg n

))

≤ (1 + ε−1)n + O

(
n

lg lg n

)
+ O

(
n

lgε n

)

= (1 + ε−1)n + O

(
n

lg lg n

)
.(2)
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We have to add the contribution of the space
∑

k |Dk| = O(nε� �) = O(n(lg lg n)/ lgε n)
taken by the dictionaries at the ε−1 levels, but this bound is hidden by the O(n/ lg lg n)
term in the above formula. The final bound is (1 + ε−1)n+O(n/ lg lg n), as stated in
Theorem 1(ii).

3.3. Extension to alphabets of size |Σ| > 2. We now discuss the case of
alphabets with more than two symbols. In this case, we encode each symbol by lg |Σ|
bits, so that the text T can be seen as an array of n entries, each of lg |Σ| bits, or
equivalently as a binary string that occupies n lg |Σ| bits. We describe how to extend
the ideas presented in sections 3.1–3.2. We redefine � to be 
lg lg|Σ| n�. The definitions
of suffix arrays SA and SAk, bit vector Bk, and functions rankk and Ψk are the same
as before. Their representation does not change, with the notable exception of Ψk, as
noted below in Lemma 5 (the analogue of Lemma 3).

Lemma 5. When |Σ| > 2, we can store the concatenated list Lk used for Ψk in
n
(
(1/2) lg |Σ| + 3/2k+1

)
+ O(n/2k lg lg n) bits, so that accessing the hth entry in Lk

takes constant time. Preprocessing time is O(n/2k + 22k

).
Proof. The extension of Lk with |Σ| > 2 is straightforward. For each of d =

|Σ|2k

= 22k lg |Σ| patterns of 2k symbols preceding the
(
2k · SAk[j]

)
th suffix in T ,

we keep an ordered list like the a list and b list described in section 3.1. Some of
these lists may be empty, and the concatenation of nonempty lists forms Lk. We
number these lists from 0 to 22k lg |Σ| − 1. Note that the number of entries in Lk

remains unchanged, namely, s = nk/2 = n/2k+1. Each integer x in list i, where
1 ≤ x ≤ nk, is transformed into an integer x′ of w = 2k lg |Σ| + lg nk bits, by
prepending the binary representation of i to that of x − 1. By Lemma 2, we can
store Lk in s(2 + w − lg s) + O(s/ lg lg s) bits, so that retrieving the hth integer
takes constant time. Substituting the values for s and w, we get the space bound
(nk/2)

(
2 + 2k lg |Σ|+ lg nk − lg(nk/2)

)
+O(nk/ lg lg nk) = n

(
(1/2) lg |Σ|+ 3/2k+1

)
+

O(n/2k lg lg n)
By replacing the space complexity of Ψk in formula (1) at the end of section 3.1,

we obtain

n lg n

2�
+

�−1∑
k=0

n

(
1

2k
+ O

(
1

2k
lg lg(n/2k)

lg(n/2k)

)
+

lg |Σ|
2

+
3

2k+1
+ O

(
1

2k lg lg n

))

<

(
1 +

1

2
lg lg|Σ| n

)
n lg |Σ| + 5n + O

(
n

lg lg n

)
,

as (n lg n)/2� + 1
2�n ≤ (1 + 1

2 lg lg|Σ| n)n lg |Σ|, thus proving Theorem 2(i).
To prove Theorem 2(ii), we follow the approach of section 3.2. We need dictio-

naries Dk and functions Φk for k ∈ {0, ε�, 2ε�, 3ε�, . . . , (1− ε)�}. Their definitions and
representations do not change, except for the representation of Φk, for which we need
Lemma 6 (the analogue of Lemma 4).

Lemma 6. We can store the concatenated lists used for Φk in n(lg |Σ|+1/2k−1)+
O(n/2k lg lg n) bits, so that accessing the hth entry takes constant time. Preprocessing
time is O(n/2k + 22k

). When |Σ| = O(1) and k = 0, we can store Φk in n lg |Σ| +
O(|Σ|n/ lg lg n) = n lg |Σ| + o(n) bits.

Proof. The proof is identical to that of Lemma 5, except that s = nk instead
of s = nk/2. When |Σ| = O(1), we can use a better approach for k = 0 as in the
proof of Lemma 4. We associate lg |Σ| bits with each character in Σ according to its
lexicographic order. Then we use a bit vector of n lg |Σ| bits to represent Φ0, in which
the fth chunk of lg |Σ| bits encoding a character c ∈ Σ represents the fact that the
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c list for Φ0 contains position f . We then implement |Σ| = O(1) versions of select ,
one version per character of Σ. The version for c ∈ Σ is in charge of selecting the
ith occurrence of c encoded in binary in the bit vector. To this end, it treats each
occurrence of the lg |Σ| bits for c in the bit vector as a single 1 and the occurrences of
the rest of the characters as single 0’s. It should be clear that the implementation of
each version of select can be done in O(n/ lg lg n) bits. To execute Φ0(h) in constant
time, we proceed as in Lemma 4, generalized to more than two characters.

By an analysis similar to the one we used in formula (2) at the end of section 3.2,
we obtain

n lg n

2�
+

∑
k=iε�

0≤i<ε−1

n

(
lg |Σ| + 1

2k−1
+ O

(
1

2k lg lg n

))

≤ (1 + ε−1)n lg |Σ| + 2n + O

(
n

lg lg n

)
.

When |Σ| = O(1), we can split the above sum for k = 0 and apply Lemma 6 to get
(1 + ε−1)n lg |Σ| + O(n/ lg lg n) bits, thus proving Theorem 2(ii).

3.4. Output-sensitive reporting of multiple occurrences. In this section
we prove Theorem 3 by showing how to output a contiguous set SA0[i], . . . ,SA0[j]
of entries from the compressed suffix array under the hypothesis that the sequence
i, i + 1, . . . , j is maximal (according to the definition given before Theorem 3) and
the corresponding suffixes share at least a certain number of initial symbols. This
requires adding further O(n lg |Σ|) bits of space to the compressed suffix array. One
way to output the j − i + 1 entries is via a reduction to two-dimensional orthogonal
range search [46]. Let D be a two-dimensional orthogonal range query data structure
on q points in the grid space [1 . . . U ] × [1 . . . U ], where 1 ≤ q ≤ U . Let P (q) be
its preprocessing time, S(q) the number of occupied words of O(lgU) bits each, and
T (q) +O(k) the cost of searching and retrieving the k points satisfying a given range
query in D.

Lemma 7. Fix U = n in the range query data structure D, and let n′ ≥ 1 be
the largest integer such that S(n′) = O(n/ lg n). If such an n′ exists, we can report
SA[i], . . . ,SA[j] in O

(
lg1+ε

|Σ| n+ (n/n′)(T (n′) + lg |Σ|) + j − i
)

time when the sequence
i, i+1, . . . , j is maximal and the suffixes pointed to by SA[i], . . . ,SA[j] have the same
first Ω(n/n′) symbols in common. Preprocessing time is P (n′)+O(n lg |Σ|) and space
is O(n lg |Σ|) bits in addition to that of the compressed version of SA.

Proof. Suppose by hypothesis that the suffixes pointed to by SA[i], . . . ,SA[j] have
in common at least l = 
n/n′� symbols. (This requirement can be further reduced to
l = Θ(n/n′).) We denote these symbols by b0, b1, . . . , bl−1, from left to right.

In order to define the two-dimensional points in D, we need to build the com-
pressed version of the suffix array SAR for the reversal of the text, denoted TR. Then
we obtain the points to keep in D by processing the suffix pointers in SA that are
multiples of l (i.e., they refer to the suffixes in T starting at positions l, 2l, 3l, . . . ).
Specifically, the point corresponding to pointer p = SA[s], where 1 ≤ s ≤ n and p
is a multiple of l, has first coordinate s. Its second coordinate is given by the po-
sition r of (T [1, p − 1])R in the sorted order induced by SAR. In other words, s is
the rank of T [p, n] among the suffixes of T in lexicographic order, and r is the rank
of (T [1, p−1])R among the suffixes of TR (or, equivalently, the reversed prefixes of T ).
Point 〈s, r〉 corresponding to p has label p to keep track of this correspondence.
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Since there are q ≤ n′ such points stored in D and we build the compressed suffix
array of TR according to Theorem 2(ii), space is S(n′)·O(lg n)+(ε−1+O(1))n lg |Σ| =
O(n lg |Σ|) bits. Preprocessing time is P (n′) + O(n lg |Σ|).

We now describe how to query D and output SA[i], . . . ,SA[j] in l stages, with
one range query per stage. In stage 0, we perform a range query for the points in
[i . . . j]× [1 . . . n]. For these points, we output the suffix pointers labeling them. Then
we locate the leftmost suffix and the rightmost suffix in SAR starting with bl−1 · · · b1b0.
For this purpose, we run a simple binary search in the compressed version of SAR,
comparing at most lg n bits at a time. As a result, we determine two positions g
and h of SAR in O(l lg |Σ| + lg1+ε

|Σ| n) time such that the sequence g, g + 1, . . . , h is
maximal for SAR and the suffixes of TR pointed to by SAR[g], . . . ,SAR[h] start with
bl−1 · · · b1b0.

Before proceeding with the next stages, we precompute some sequences of indices
starting from i, j, g, and h, respectively, as done in section 3.2. We use the function
Φ0 in the compressed version of SA = SA0 to walk along indices i0, i1, . . . , il−1, such
that i0 = i, SA0[i0] + 1 = SA0[i1], SA0[i1] + 1 = SA0[i2], and so on. An analogous
walk applies to j0 = j, j1, . . . , jl−1. In the same way, we use the function Φ0 in the
compressed version of SAR to obtain g0 = g, g1, . . . , gl−1 and h0 = h, h1, . . . , hl−1.
We then run the tth stage, for 1 ≤ t ≤ l − 1, in which we perform a range query for
the points in [it . . . jt]× [gl−t . . . hl−t]. For each of these points, we retrieve its label p
and output p− t.

In order to see why the above method works, let us consider an arbitrary suffix
pointer in SA[i], . . . ,SA[j]. By the definition of the points kept in D, this suffix pointer
can be written as p − t, where p is the nearest multiple of l and 0 ≤ t ≤ l − 1. We
show that we output p − t correctly in stage t. Let 〈s, r〉 be the point with label p
in D. We have to show that it ≤ s ≤ jt and gl−t ≤ r ≤ hl−t (setting border values
gl = 1 and hl = n). Recall that the suffixes pointed to by SA[i], p − t and SA[j] are
in lexicographic order by definition of the (compressed) suffix array and, moreover,
they share the first l symbols. If we remove the first t < l symbols from each of
them, the lexicographic order must be preserved because these symbols are equal.
Consequently, SA[i] − t, p, and SA[j] − t are still in lexicographic order, and their
ranks are ih, s, and jh, respectively. This implies it ≤ s ≤ jt. A similar property
holds for gl−t ≤ r ≤ hl−t, and we can conclude that p is retrieved in stage t giving p−t
as output. Finally, the fact that both i, i + 1, . . . , j and g, g + 1, . . . , h are maximal
sequences in their respective suffix arrays implies that no other suffix pointers besides
those in SA[i], . . . ,SA[j] are reported.

The cost of each stage is T (n′) plus the output-sensitive cost of the reported suffix
pointers. Stage 0 requires an additional cost of O((n/n′) lg |Σ|+lg1+ε n) to compute g
and h, and a cost of O(n/n′) to precompute the four sequences of indices, because
the length of the walks is l. The total time complexity is therefore O

(
(n/n′)(T (n′) +

lg |Σ|) + lg1+ε n + j − i
)
, where O(j − i + 1) is the sum of the output-sensitive costs

for reporting all the suffix pointers.
We use Lemma 7 to prove Theorem 3. We employ two range query data struc-

tures for D. The first one in [1] takes P (q) = O(q lg q) preprocessing time by us-
ing the perfect hash in [39], which has constant lookup time and takes O(q lg q)
construction time. Space is S(q) = O(q lgε q) words and query time is T (q) =
O(lg lg q). Plugging these bounds into Lemma 7 gives n′ = Θ(n/ lg1+ε n), and hence
O((lg1+ε n)(lg |Σ|+lg lgn)+ j− i) retrieval time for suffix pointers sharing Ω(lg1+ε n)
symbols. Preprocessing time is O(n lg |Σ|) and additional space is O(n lg |Σ|) bits.
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The second data structure in [9, 69] has preprocessing time P (q) = O(q lg q),
space S(q) = O(q), and query time T (q) = O(qβ) for any fixed value of 0 < β < 1.
Consequently, Lemma 7 gives n′ = Θ(n/ lg n) and O(nβ lg n + j − i) = O(nα + j − i)
retrieval time for suffix pointers sharing at least Ω(lgn) symbols (by choosing α > β).
Preprocessing time is O(n lg |Σ|) and additional space is O(n lg |Σ|) bits.

4. Text indexing, string searching, and compressed suffix trees. We
now describe how to apply our compressed suffix array to obtain a text index, called
a compressed suffix tree, which is very efficient in time and space complexity. We first
show that, despite their extra functionality, compressed suffix trees (and compressed
suffix arrays) require the same asymptotic space of Θ(n) bits as inverted lists in the
worst case. Nevertheless, inverted lists are space efficient in practice [72] and can be
easily maintained in a dynamic setting.

Lemma 8. In the worst case, inverted lists require Θ(n) bits for a binary text of
length n.

Proof. Let us take a De Bruijn sequence S of length n, in which each substring
of lgn bits is different from the others. Now let the terms in the inverted lists be
those obtained by partitioning S into s = n/k disjoint substrings of length k = 2 lg n.
Any data structure that implements inverted lists must be able to solve the static
dictionary problem on the s terms, and so it requires at least lg

(
2k

s

)
= Ω(n) bits

by a simple information-theoretic argument. The upper bound O(n) follows from
Theorem 1, and Theorem 4 below, since we can see compressed suffix arrays and
suffix trees as generalizations of inverted lists.

We now describe our main result on text indexing for constant size alphabets.
Here, we are given a pattern string P of m symbols over the alphabet Σ, and we are
interested in its occurrences (perhaps overlapping) in a text string T of n symbols
(where # is the nth symbol). We assume that each symbol in Σ is encoded by lg |Σ|
bits, which is the case with ascii and unicode text files when two or more symbols
are packed in each word.

Theorem 4. Given a text string T of length n over an alphabet Σ of constant
size, we can build a full text index on T in O(n lg |Σ|) time such that the index occupies(
ε−1 + O(1)

)
n lg |Σ| bits, for any fixed value of 0 < ε ≤ 1, and supports the following

queries on any pattern string P of m symbols packed into O(m/ lg|Σ| n) words:

(i) Existential and counting queries can be done in o
(
min{m lg |Σ|,m + lg n}

)
time; in particular, they take O(1) time for m = o(lg n), and O(m/ lg|Σ| n + lgε|Σ| n)
time otherwise.

(ii) An enumerative query listing the occ occurrences of P in T can be done in
O(m/ lg|Σ| n + occ lgε|Σ| n) time. We can use auxiliary data structures in O(n lg |Σ|)
bits to reduce the search bound to O

(
m/ lg|Σ| n+ occ +(lg1+ε n)(lg |Σ|+lg lgn)

)
time,

when either m = Ω(lg1+ε n) or occ = Ω(nε).
As a result, an enumerative query can be done in optimal Θ(m/ lg|Σ| n + occ)

time for sufficiently large patterns or number of occurrences, namely, when m =
Ω
(
(lg2+ε n) lg|Σ| lg n)

)
or occ = Ω(nε).

In order to prove Theorem 4, we first show how to speed up the search on com-
pacted tries in section 4.1. Then we present the index construction in section 4.2.
Finally, we give the description of the search algorithm in section 4.3. Let’s briefly
review three important data structures presented in [45, 59, 62] and that are needed
later on.

The first data structure is the Lempel-Ziv (LZ) index [45]. It is a powerful tool
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in searching for q-grams (substrings of length q) in T . If we fix q = ε lg n for any fixed
positive constant ε < 1, we can build an LZ index on T in O(n) time such that the
LZ index occupies O(n) bits and any pattern of length m ≤ ε lg n can be searched
in O(m + occ) time. In this special case, we can actually obtain O(1 + occ) time
by a suitable table lookup. (Unfortunately, for longer patterns, the LZ index may
take Ω(n lg n) bits.) The LZ index allows us to concentrate on patterns of length
m > ε lg n.

The second data structure is the Patricia trie [59], another powerful tool in text
indexing. It is a binary tree that stores a set of distinct binary strings, in which each
internal node has two children and each leaf stores a string. For our purposes, we can
generalize it to handle alphabets of size |Σ| ≥ 2 by using a |Σ|-way tree. Each internal
node also keeps an integer (called a skip value) to locate the position of the branching
character while descending toward a leaf. Each child arc is implicitly labeled with one
symbol of the alphabet. For space efficiency, when there are t > 2 child arcs, we can
represent the child arcs by a hash table of O(t) entries. In particular, we use a perfect
hash function (e.g., see [31, 39]) on keys from Σ, which provides constant lookup time
and uses O(t) words of space and O(t lg t) construction time, in the worst case.

Suffix trees are often implemented by building a Patricia trie on the suffixes of T
as follows [35]: First, text T is encoded as a binary sequence of n lg |Σ| bits, and
its n suffixes are encoded analogously. Second, a Patricia trie is built upon these
suffixes; the resulting suffix tree still has n leaves (not n lg |Σ|). Third, searching
for P takes O(m) time and retrieves only the suffix pointer in at most two leaves (i.e.,
the leaf reached by branching with the skip values, and the leaf corresponding to an
occurrence). According to our terminology, it requires only O(1) calls to the lookup
operation in the worst case.

The third data structure is the space-efficient incarnation of binary Patricia tries
in [62], which builds upon previous work to succinctly represent binary trees and
Patricia tries [16, 42, 60, 61]. When employed to store s out of the n suffixes of T , the
regular Patricia trie [59] occupies O(s lg n) bits. This amount of space usage is the
result of three separate factors [15, 16], namely, the Patricia trie topology, the skip
values, and the string pointers. Because of our compressed suffix arrays, the string
pointers are no longer a problem. For the remaining two items, the space-efficient
incarnation of Patricia tries in [62] cleverly avoids the overhead for the Patricia trie
topology and the skip values. It is able to represent a Patricia trie storing s suffixes
of T with only O(s) bits, provided that a suffix array is given separately (which in our
case is a compressed suffix array). Searching for query pattern P takes O(m lg |Σ|)
time and accesses O(min{m lg |Σ|, s}) = O(s) suffix pointers in the worst case. For
each traversed node, its corresponding skip value is computed in time O(skip value)
by accessing the suffix pointers in its leftmost and rightmost descendant leaves. In
our terminology, searching requires O(s) calls to lookup in the worst case.

4.1. Speeding up Patricia trie search. Before we discuss how to construct
the index, we first need to show that search in Patricia tries, which normally proceeds
one level at a time, can be improved to sublinear time by processing lgn bits of the
pattern at a time (maybe less if the pattern length is not a multiple of lgn).

Let us first consider the |Σ|-way Patricia trie PT outlined in section 4 for storing
s binary strings, each of length at least lgn. (For example, they could be some suffixes
of the text.) To handle border situations, we assume that these strings are (implicitly)
padded with lg|Σ| n symbols #. We will show how to reduce the search time for an
m-symbol pattern in PT from O(m lg |Σ|) to O(m/ lg|Σ| n + lgε|Σ| n). Without loss of
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generality, it suffices to show how to achieve O(m/ lg|Σ| n +
√

lg|Σ| n ) time, since this
bound extends from 1/2 to any exponent ε > 0. The point is that, in the worst case,
we may have to traverse Θ(m) nodes, so we need a tool to skip most of these nodes.
Ideally, we would like to branch downward, matching lgn bits (or equivalently, lg|Σ| n
symbols) in constant time, independently of the number of traversed nodes. For that
purpose, we use a perfect hash function h (e.g., see [31]) on keys each of length at
most 2 lg n bits. In particular, we use the perfect hash function in [39], which has
constant lookup time and takes O(k) words of space and O(k lg k) construction time
on k keys, in the worst case.

First of all, we enumerate the nodes of PT in preorder starting from the root,
with number 1. Second, we build hash tables to mimic a downward traversal from a
given node i, which is the starting point for searching strings x of length less than or
equal to lg|Σ| n symbols. Suppose that, in this traversal, we successfully match all the
symbols in x and we reach node j (a descendent of i). In general, there can be further
symbols to be added to equal the skip value in j; let b ≥ 0 be this number of symbols.
We represent the successful traversal in a single entry of the hash table. Namely, we
store pair 〈j, b〉 at position h(i, x), where the two arguments i and x can be seen as
a single key of at most 2 lg n bits. Formally, the relation between these parameters
must satisfy the following two conditions in the case of a successful search of x from
node i:

1. Node j is the node identified by starting out from node i and traversing
downward toward the nodes of PT according to the symbols in x;

2. b is the unique nonnegative integer such that the string corresponding to the
path from i to j has prefix x and length |x| + b; this condition does not hold for any
proper ancestor of j.

The rationale behind conditions 1–2 is that of defining shortcut links from certain
nodes i to their descendents j so that each successful branching takes constant time,
matches |x| symbols (with b further symbols to check), and skips no more than |x|
nodes downward. If the search is unsuccessful, we do not hash any pair.

The key mechanism that makes the above scheme efficient is that we adaptively
follow the trie topology of Patricia so that the strings that we hash are not all possible
substrings of lg|Σ| n (or

√
lg|Σ| n ) symbols, but only a subset of those that start at the

distinct nodes in the Patricia trie. Using an uncompacted trie would make this method
inefficient. To see why, let us examine a Patricia edge corresponding to a substring of
length l. We hash only its first lg|Σ| n (or

√
lg|Σ| n ) symbols because the rest of the

symbols are uniquely identified (and we can skip them). Using an uncompacted trie
would force us to traverse further b = l − lg|Σ| n (or b = l −

√
lg|Σ| n ) nodes.

In order to keep small the number of shortcut links, we set up two hash tables H1

and H2. The first table stores entries

H1

[
h(i, x)

]
= 〈j, b〉

such that all strings x consist of |x| = lg|Σ| n symbols, and the shortcut links stored
in H1 are selected adaptively by a top-down traversal of PT . Namely, we create all
possible shortcut links from the root. This step links the root to a set of descendents.
We recursively link each of these nodes to its descendents in the same fashion. Note
that PT is partitioned into subtries of depth at most lg|Σ| n.

We set up the second table H2 analogously. We examine each individual subtrie
and start from the root of the subtrie by using strings of length |x| =

√
lg|Σ| n symbols.

Note that the total number of entries in H1 and H2 is bounded by the number of nodes
in PT , namely, O(s).
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In summary, the preprocessing consists of a double traversal of PT followed by
the construction of H1 and H2, in O(s lg s + n) worst-case time and O(s) words of
space. In the general case, we go on recursively and build ε−1 hash tables, whose total
number of entries is still O(s). The preprocessing time does not change asymptotically.

We are now ready to describe the search of a pattern (encoded in binary) in
the Patricia trie PT thus augmented. It suffices to show how to match its longest
prefix. We compute hash function h(i, x) with i being the root of PT and x being
the concatenation of the first lg|Σ| n symbols in the pattern. Then we branch quickly
from the root by using H1

[
h(i, x)

]
. If the hash lookup in H1 succeeds and gives pair

〈j, b〉, we skip the next b symbols in the pattern and recursively search in node j
with the next lg|Σ| n symbols in the pattern (read in O(1) time). Instead, if the hash
lookup fails (i.e., no pair is found or fewer than lg|Σ| n symbols are left in the pattern),
we switch to H2 and take only the next

√
lg|Σ| n symbols in the pattern to branch

further in PT . Here the scheme is the same as that of H1, except that we compare√
lg|Σ| n symbols at a time. Finally, when we fail branching again, we have to match

no more than
√

lg|Σ| n symbols remaining in the pattern. We complete this task by
branching in the standard way, one symbol a time. The rest of the search is identical
to the standard procedure of Patricia tries. This completes the description of the
search in PT .

Lemma 9. Given a Patricia trie PT storing s strings of at least lg|Σ| n symbols
each over the alphabet Σ, we can preprocess PT in O(s lg s+n) time so that searching
a pattern of length m requires O(m/ lg|Σ| n + lgε|Σ| n) time.

Note that a better search bound in Lemma 9 does not improve the final search
time obtained in Theorem 4.

Finally, let us consider a space-efficient Patricia trie [62]. The speedup we need
while searching is easier to obtain. We need not skip nodes, but need only com-
pare Θ(lgn) bits at a time in constant time by precomputing a suitable table. The
search cost is therefore O(m/ lg|Σ| n) plus a linear cost proportional to the number of
traversed nodes.

A general property of our speedup of Patricia tries is that we do not increase the
original number of lookup calls originating from the data structures.

4.2. Index construction. We blend the tools mentioned so far with our com-
pressed suffix arrays of section 3 to design a hybrid index data structure, called the
compressed suffix tree, which follows the multilevel scheme adopted in [17, 62]. Be-
cause of the LZ index, it suffices to describe how to support searching of patterns of
length m > ε lg n. We assume that 0 < ε ≤ 1/2, as the case 1/2 < ε ≤ 1 requires
minor modifications.

Given text T in input, we build its suffix array SA in a temporary area, in
O(n lg |Σ|) time via the suffix tree of T . At this point, we start building the O(ε−1)
levels of the compressed suffix tree in top-down order, after which we remove SA as
follows:

1. At the first level, we build a regular Patricia trie PT 1 augmented with the
shortcut links as mentioned in Lemma 9. The leaves of PT 1 store the s1 = n/ lg|Σ| n
suffixes pointed to by SA[1], SA[1+lg|Σ| n], SA[1+2lg|Σ| n], . . . . This implicitly splits
SA into s1 subarrays of size lg|Σ| n, except the last one (which can be smaller).

Complexity. The size of PT 1 is O(s1 lg n) = O(n lg |Σ|) bits. It can be built in
O(n lg |Σ|) time by a variation of the standard suffix tree construction [51, 52] and
the preprocessing described in Lemma 9.

2. At the second level, we process the s1 subarrays from the first level, and create
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s1 space-efficient Patricia tries [62], denoted PT 2
1, PT 2

2, . . . ,PT 2
s1 . We associate the

ith Patricia PT 2
i with the ith subarray. Assume without loss of generality that the

subarray consists of SA[h + 1], SA[h + 2], . . . ,SA[h + lg|Σ| n] for a value of 0 ≤ h ≤
n − lg|Σ| n. We build PT 2

i upon the s2 = lg
ε/2
|Σ| n suffixes pointed to by SA[h + 1],

SA[h + 1 + lg
1−ε/2
|Σ| n], SA[h + 1 + 2lg

1−ε/2
|Σ| n], . . . . This process splits each subarray

into smaller subarrays, where each subarray is of size lg
1−ε/2
|Σ| n.

Complexity. The size of each PT 2
i is O(s2) bits without accounting for the suffix

array, and its construction takes O(s2) time [62]. Hence, the total size is O(s1s2) =
O(n/ lg1−ε

|Σ| n) bits and the total processing time is O(n lg |Σ|).
3. In the remaining 2ε−1 − 2 intermediate levels, we proceed as in the second

level. Each new level splits every subarray into s2 = lg
ε/2
|Σ| n smaller subarrays and

creates a set of space-efficient Patricia tries of size O(s2) each. We stop when we are
left with small subarrays of size at most s2. We build space-efficient Patricia tries on
all the remaining entries of these small subarrays.

Complexity. For each new level thus created, the total size is O(n/lgε|Σ| n) bits
and the total processing time is O(n lg |Σ|).

4. At the last level, we execute compress on the suffix array SA, store its com-
pressed version in the level, and delete SA from the temporary area.

Complexity. By Theorem 2, the total size is
(
ε−1 + O(1)

)
n lg |Σ| bits; accessing

a pointer through a call to lookup takes O(lg
ε/2
|Σ| n) time; the cost of compress is

O(n lg |Σ|) time. (Note that we can fix the value of ε arbitrarily when executing
compress.)

By summing over the levels, we obtain that the compressed suffix tree of T takes
O(n lg |Σ|) bits and O(n lg |Σ|) construction time. Temporary storage is O(n lg n) bits.

4.3. Search algorithm. We now have to show that searching for an arbitrary
pattern P in the text T costs O(m/ lg|Σ| n + lgε|Σ| n) time. The search locates the
leftmost occurrence and the rightmost occurrence of P as a prefix of the suffixes
represented in SA, without having SA stored explicitly. Consequently, a successful
search determines two positions i ≤ j such that the sequence i, i+1, . . . , j is maximal
(according to the definition given before Theorem 3) and SA[i], SA[i + 1], . . . ,SA[j]
contain the pointers to the suffixes that begin with P . The counting query returns j−
i+1, and the existence checks whether there are any matches at all. The enumerative
query executes the j − i + 1 queries lookup(i), lookup(i + 1), . . . , lookup(j) to list all
the occurrences.

We restrict our discussion to finding the leftmost occurrence of P ; finding the
rightmost is analogous. We search at each level of the compressed suffix tree in
section 4.2. We examine the levels in a top-down manner. While searching in the
levels, we execute lookup(i) whenever we need the ith pointer of the compressed SA.
We begin by searching P at the first level. We perform the search on PT 1 in the
bounds stated in Lemma 9. As a result of the first search, we locate a subarray at the
second level, say, the i1th subarray. We go on and search in PT 2

i1 according to the
method for space-efficient Patricia tries described at the end of section 4.1. We repeat
the latter search for all the intermediate levels. We eventually identify a position at
the last level, namely, the level which contains the compressed suffix array. This
position corresponds to the leftmost occurrence of P in SA.

The complexity of the search procedure is O(m/ lg|Σ| n+ lgε|Σ| n) time at the first
level by Lemma 9. The intermediate levels cost O(m/ lg|Σ| n + s2) time each, giving
a total of O(m/ lg|Σ| n + lgε|Σ| n). We have to account for the cost of the lookup
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operations. These calls originated from the several levels. In the first level, we call
lookup O(1) times; in the 2ε−1−1 intermediate levels we call lookup O(s2) times each.

Multiplying these calls by the O(lg
ε/2
|Σ| n) cost of lookup as given in Theorem 1 (using

ε/2 in place of ε), we obtain O(lgε|Σ| n) time in addition to O(m/ lg|Σ| n + lgε|Σ| n).
Finally, the cost of retrieving all the occurrences is the one stated in Theorem 3,
whose hypothesis is satisfied because the suffixes pointed to by SA[i] and SA[j] are,
respectively, the leftmost and rightmost sharing m = Ω(lg n) symbols. Combining
this cost with the O(lgε|Σ| n) cost for retrieving any single pointer in Theorem 1, we
obtain O(m/ lg|Σ| n + occ lgε|Σ| n) time when both conditions m ∈

[
ε lg n, o(lg1+ε n)

]
and occ = o(nε) hold, and in O

(
m/ lg|Σ| n + occ + (lg1+ε n)(lg |Σ| + lg lgn)

)
time

otherwise. This argument completes the proof of Theorem 4 on the complexity of our
text index.

5. Conclusions. We have presented the first indexing data structure for a text
T of n symbols over alphabet Σ that achieves, in the worst case, efficient lookup time
and linear space. For many scenarios, the space requirement is actually sublinear in
practice. Specifically, our algorithm uses o

(
min{m lg |Σ|,m + lg n}

)
search time and(

ε−1+O(1)
)
n lg |Σ| bits of space (where T requires n lg |Σ| bits). Our method is based

upon notions of compressed suffix arrays and suffix trees. Given any pattern P of m
symbols encoded in m lg |Σ| bits, we can count the number of occurrences of P in T in
o
(
min{m lg |Σ|,m+lg n}

)
time. Namely, searching takes O(1) time when m = o(lg n),

and O(m/ lg|Σ| n + lgε|Σ| n) time otherwise. We achieve optimal O(m/ lg|Σ| n) search
time for sufficiently large m = Ω(lg1+ε

|Σ| n). For an enumerative query retrieving all
occ occurrences with sufficiently long patterns, namely, m = Ω

(
(lg2+ε n) lg|Σ| lg n

)
, we

obtain a total search bound of O(m/ lg|Σ| n+occ), which is optimal. Namely, searching

takes O(m/ lg|Σ| n+occ lgε|Σ| n) time when both conditions m ∈
[
ε lg n, o(lg1+ε n)

]
and

occ = o(nε) hold, and O
(
m/ lg|Σ| n + occ + (lg1+ε n)(lg |Σ| + lg lg n)

)
time otherwise.

Crucial to our results are functions Ψk and Φk (see section 2), which are the building
blocks of many other results in compressed text indexing.

An interesting open problem is to improve upon our O(n)-bit compressed suffix
array so that each call to lookup takes constant time. Such an improvement would
decrease the output-sensitive time of the enumerative queries to O(occ) also when
m ∈

[
ε lg n, o(lg1+ε n)

]
and occ = o(nε). Another possibility for that is to devise a

range query data structure that improves the data structures at the end of section
3.4. This, in turn, would improve Theorems 3 and 4. A related question is to char-
acterize combinatorially the permutations that correspond to suffix arrays. A better
understanding of the correspondence may lead to more efficient compression methods.
Additional open problems are listed in [62]. The kinds of queries examined in this
paper are very basic and involve exact occurrences of the pattern strings. They are
often used as preliminary filters so that more sophisticated queries can be performed
on a smaller amount of text. An interesting extension would be to support some
sophisticated queries directly, such as those that tolerate a small number of errors in
the pattern match [4, 12, 35, 70].
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