
* Logarithms in this paper are in base 2 unless otherwise stated.

A Practical Implementation of Compressed Suffix
Arrays with Applications to Self-indexing

Hongwei Huo*+, Longgang Chen*, Jeffrey Scott Vitter+ and Yakov Nekrich+

*Xidian University
No.2 Taibai South Road

Xi’an, Shaanxi 710071, China
{hwhuo,lgchen}@mail.xidian.edu.cn

+The University of Kansas
1450 Jayhawk Blvd.

Lawrence, KS 66045, USA
{jsv, yakov}@ittc.ku.edu

Abstract: In this paper, we develop a simple and practical storage scheme for
compressed suffix arrays (CSA). Our CSA can be constructed in linear time and
needs 2nHk + n + o(n) bits of space simultaneously for any k c ݈݃ ݊ െ 1
and any constant c <1, where Hk denotes the k-th order entropy. We compare the
performance of our method with two established compressed indexing methods,
viz. the FM-index and the Sad-CSA. Experiments on the Canterbury Corpus and
the Pizza&Chili Corpus show significant advantages of our algorithm over two
other indices in terms of compression and query time. Our storage scheme
achieves better performance on all types of data present in these two corpora,
except for evenly distributed data, such as DNA. The source code for our CSA is
available online.

1. Introduction

Suffix trees[9,10] and suffix arrays[1] are versatile data structures playing a key role
in numerous string processing applications in such areas as string matching, information
retrieval, genome analysis, and text compression. Both the suffix tree and the suffix
array support pattern matching queries in optimal or almost-optimal time and use linear
space of O(n log n) bits. However in practice these data structures occupy 5 to 20 times
more space than the raw string data; the latter needs only n log σ bits of space, where σ
denotes the alphabet size.

The compressed suffix array (CSA) [2,11,12,7,8] and the FM-index [4,13,14]
overcome the space limitation by exploiting the text compressibility and index
regularities, while supporting the functionalities of suffix arrays and suffix trees. A
powerful concept is that of a self-index, which requires space close equal to the space
occupied by the input data in compressed format.

Grossi and Vitter [2,11] introduced the compressed suffix array (GV-CSA), which
uses O(n log) bits* of space and answers string matching queries in o(p/log n + occ
log n) time, where p is the length of the query pattern P and occ denotes the number of
times P occurs in the source string. Sadakane [7,8] showed how to convert the GV-CSA
into a self-index and the resulting index, called Sad-CSA, needs భ

nH0 + O(n loglog) +
 log bits of space and answers queries in O(p log n + occ log n) time, where 0 <
1 is an arbitrary constant. Henceforth Hk for k ≥ 0 denotes the k-th order empirical
entropy of the source string T. Ferragina and Manzini designed the FM-index that relies
on the Burrows-Wheeler transform (BWT) [15] and the backward searching
approach[3,4]. Their original index uses at most 5nHk(T) + o(n log) bits of space for k

2

log(n /log n) (1) and retrieves the occ occurrences of a pattern P within a text T in
O(p + occ log1+ n) time for any 0 < < 1.

Grossi et al. [3] gave the first self-index that provably achieves asymptotic space
optimality, i.e., with constant factor of 1 in the leading term. It uses nHk(T) + o(n) bits of
space and achieved O(p log + occ(log4 n)/((log2 log n) log)) query time. The analysis
also applies to the FM-index. Foschini et al. [16] reported on a new method of storage for
entropy-compressed suffix arrays; their method retains the theoretical performance of
previous works and achieves good results in practice. Ferragina et al. [17] investigated
the existing implementations of compressed indexes from a practitioner’s point of view.
Many further results and considerable improvements appeared in the literature; we refer
the reader to the survey of Navarro and Mäkinen [18].

In this article we develop a practical representation of compressed suffix arrays that
uses 2nHk+n+o(n) bits of space simultaneously for any k c log ݊ െ 1 and any constant
c <1. Moreover, we present a linear time construction algorithm for our storage scheme.
We evaluate our CSA using compression ratio, compression time, and query time as
performance measures. Our results are compared with the FM-index [4,14] and the Sad-
CSA [7,8] on the Canterbury Corpus and the Pizza&Chili Corpus. The source code for
our CSA is available at https://sites.google.com/site/compressedsa/.

It turns out that the distribution of alphabet symbols is more important than the
alphabet size for comparative performance of our method. All three algorithms suit well
for dealing with text data and metadata, such as English texts, sources, and XML, but our
CSA shows the best performance. For more evenly distributed data, such as DNA and
protein sequences, the FM-index performs best. For all types of data, our CSA
outperforms the SAD-CSA in terms of compression rate. For counting and locating
queries, our CSA has a significant advantage over the FM-index. For counting queries,
our CSA outperforms the Sad-CSA. For locating queries, our CSA has a slight advantage
over the Sad-CSA, except for the DNA and sources.

This paper is organized as follows. In section 2, we describe the basic ideas behind
the compressed representation of suffix arrays, including the function . Details of our
structure for the representation of function are given in section 3. In section 4 we show
how to build our compressed index. In section 5, we give a technique to access in
almost-constant time. Algorithms for answering counting and locating queries are also
described in this section. In section 6, we evaluate the performance of our CSA compare
it with the FM-index and Sad-CSA.

2. Preliminary

2.1 Suffix arrays

Let text T be a (long) string of length n and pattern P a (comparatively short) string
of length m, both over alphabet of size . A prefix of T is a substring of the form T[1..j],
where 1 j n, and a suffix of T is a substring of the form T[k..n], where 1 k n. A
suffix array, denoted SA, is a permutation of all the suffixes of T so that the suffixes are
lexicographically sorted. SA[i] = j means that the suffix T[j..n] starting at the position j in
T ranks the i-th smallest among all the n suffixes. All the suffixes prefixed by P occupy a

3

contiguous range in the sorted array SA. Thus we can search for the interval [L, R] of SA
containing the suffixes prefixed by P by two binary searches on SA, which is what
necessary for counting and locating queries.

2.2 Compressed suffix arrays

Grossi and Vitter [2,11] introduced the compressed suffix array (GV-CSA), which
settled the open problem of whether it is possible to simultaneously achieve fast query
performance and break the (n log n)-space barrier. GV-CSA use a hierarchical
decomposition of SA based on the neighbor function defined as follows.

(i) = j, if SA[j] = (SA[i] + 1) mod n (1)

In GV-CSA structure, the major challenge is how to efficiently represent and store .
Based on the following observations we propose a practical representation of .

We conceptually group all the suffixes based on the 1-symbol prefix, say x, of each
of the suffixes, so that all suffixes within a group start with character x. We call this
conceptual group an x-group. For the example in Figure 1, the first four smallest suffixes
correspond to the a-group, since these suffixes have the first character a. Obviously, the
1-symbol prefix, x, of the suffixes corresponding to the x-group does not contribute to the
relative order of the suffixes. If we remove the 1-symbol prefix x from the suffixes in an
x-group, then the relative order of the resulting suffixes is not changed, though they may
be no longer in a contiguous segment. We call the collection of the resulting suffixes
obtained from the x-group an x-list. In other words, if an x-group contains suffix positions
k = SA[i] and h = SA[i+1] (corresponding to suffixes T[k..n] and T[h..n] respectively, and
T[k] = T[h] = x), and T[SA[p]..n] = T[k+1..n] and T[SA[q]..n] = T[h+1..n], then p < q. For
example, in Figure 1, the a-group contains four suffixes with ranks 0, 1, 2, 3, respectively.
All these suffixes start with a. We remove a from these suffixes and obtain four new
suffixes, whose rankings form an increasing sequence of positions, namely, 6, 14, 17 and
23. The collection of these x-lists is exactly the lists introduced by Grossi and Vitter
[2,11].

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

T a b f g d b f b g d f c c b g a c e f c e g c d e f g b f c a d b g a f

SA 0 15 30 34 5 27 1 13 32 7 29 12 11 22 16 19 4 31 23 9 17 24 20 35 6 28 10 18 25 2 14 33 26 21 3 8

 6 14 17 23 24 25 2930 31 35 2 7 11 18 20 22 4 8 21 26 27 28 33 0 9 10 12 15 32 34 1 3 5 13 16 19

Figure 1: Suffix array SA and neighbor function

3. A Simple CSA Structure

3.1 Representing neighbor function

Grossi et al.[3] gave the first self-index that provably achieved asymptotic space
optimality. They used the notion of lists (hereafter known as x-lists) that partition the
suffixes and associated values of according to their prefixes. These x-lists can be
obtained by partitioning the suffix pointers according to their prefixes of length 2k for k =
0,1,… . While Grossi et al. .[3] apply this approach recursively, in our case only the first
level of recursion is used. Our partitioning is always based on prefixes of length 1. The

4

simple concatenation of these x-lists is exactly what is needed to represent neighbor
function . Recall that maps a position i in SA, such that SA[i]=p for some p, into the
position j, such that SA[j]= p +1.

As we discussed in section 2.2, each x-list forms an increasing sequence of positions
from text. Thus, compression is achieved since we can encode the lengths of gaps.
Following in order to facilitate the discussion, we use the neighbor function and the
array alternatively.

Inspired by the context-based partition scheme of GGV[3] (here the 1-symbol prefix
plays the role of a context) and directory methods [5,19], our idea is to partition the x-lists
into equal size superblocks and blocks; this partitioning is combined with sampling of
and Elias gamma encoding, to represent neighbor function . The following three main
steps are employed to obtain a succinct representation of :

Step 1. We partition the array Φ of size n into superblocks of size a = O(log3n) each.
Step 2. Then we divide each superblock into r contiguous blocks of size b = O(log2n).
Step 3. We encode the differences (i) (i1) of two adjacent entries using Elias

gamma encoding, except for the first entry in each block, which is assumed to be 0 for
the sake of gamma coding; see Figure 2. We build S by concatenating the differential
Elias gamma encodings of all T’s blocks. In other words, S is the string obtained by
encoding the gap sequence via Elias gamma encoding and simple concatenation of the
Elias gamma encoding representation.

However, we also have to handle the case when gap is negative, that is, gap = [i]
[i 1] < 0. In this case, we set gap = [i] [i 1] + n, since (x z) mod n = (x + n z)
mod n, where x and z are nonnegative integers.

To provide access to the encoded sequence S and to ensure their decoding, we keep
three table structures SB, B and SAM. SB[0,

ೌ
1] stores the starting position of the

encoding of each superblock in S, i.e., the total number of bits in superblocks preceding
the current superblock. B[0,

್
1] stores the starting position in S of the encoding of every

block relative to the beginning of its enclosing superblock. SAM[0,
್
1] contains

sampling values of , so that the first value in each block is stored. An example in Figure
2 illustrates the representation of Φ by the three above structures and an encoded
sequence S. The gap sequence is conceptual, it is used only for illustration purposes. In
Figure 2, the text size n = 36, the superblock size a = 9, the number of blocks in a
superblock r = 3 and the block size b = 3.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

 6 14 17 23 24 25 2930 31 35 2 7 11 18 20 22 4 8 21 26 27 28 33 0 9 10 12 15 32 34 1 3 5 13 16 19

gap 0 8 3 0 1 1 0 1 1 0 3 5 0 7 2 0 18 4 0 5 1 0 5 3 0 1 2 0 17 2 0 2 2 0 3 3

S 0001000011 11 11 01100101 00111010 00001001000100 001011 00101011 1010 000010001010 010010 011011

SB 0 14 43 61

B 0 10 12 0 8 16 0 6 14 0 12 18

SAM 6 23 29 35 11 22 21 28 9 15 1 13

Figure 2: The representation of (n = 36, a = 9, r = 3 and b = 3)

5

All suffixes in each x-list of have the same 1-symbol prefix and the values of
within a list form an increasing sequence of positions. gap is obtained by calculating the
difference between two consecutive entries [i] and [i 1] relative to a block. That is,
gap[i] = [i] [i 1] if [i] [i1] and [i] [i 1] + n otherwise. We do not
need to store the difference value for the first entry of each block, marked with 0, since
the first entry is stored in SAM. Notice that special cases occur in the 4-th, 6-th and 8-th
blocks, where the difference is negative. In the example of the 4-th block, we assign 3 to
gap[10], since 235 +36 = 3. Thus the corresponding encoding is 011.

SB represents the starting position of the encoding of every superblock in S, and also
the offset relative to the superblock in S. For example, the encoding of the second
difference 3 (as the first is sampled and does not have to be stored) in the second
superblock has the offset 14 in S, since SB[1] = 14.

To access [i], we first query SB and B to determine the position of the block in S,
then, decode the corresponding sequence of S. We obtain the final value of [i] by
adding the sampling of the block, SAM[i] to the value of decoding. The formula is given
in (2).

Φሾ݅ሿ ൌ ൬ܵܯܣඌ

ඐ൨ ݏݏ݁ݎ݉ܿ݁݀ ቀܵ, ඌܤܵ

ඐ൨ ඌܤ

ඐ൨, ݅ mod ܾቁ൰ mod ݊ (2)

where a and b is the superblock size and block size, respectively. The operation
decompress performs decoding of the encoded sequence S. The starting position for
decoding is determined by the second parameter SB[i/a] + B[i/b] of decompress, the
beginning position for the i-th value in that block. i mod b is the number of gaps to be
decoded.

To retrieve Φ[20] in the example of Figure 2, we find that SAM[20/b] = SAM[6] =
21. We have SB[20/a] + B[20/b] = SB[2] + B[6] = 43 and 20 mod 3 = 2. Thus we start
at the 43-th position of S, decode two successive gaps, and add them to SAM[6] to get the
desired result. The first and second gaps are 5 and 1. Thus, Φ[20] = (21 + 5 + 1) mod 36
= 27.

3.2 Space Occupancy

Let gj be the length of the j-th gap within an x-list, and nx the number of entries in the
list. By the definition of the x-list, we know that nx is exactly the number of occurrences
of the character x in the text. We use Elias gamma coding to encode gj = (j+1) (j).
The length of the encoding has 2log gj +1 bits. Thus the overall length of the gaps
within the list can be bounded by

∑ |ሺ݆ 1ሻ െ ሺ݆ሻ|ೣିଵ
ୀଵ n (3)

Thus the space required to encode all the gaps inside a list is bounded by
∑ ሺ2logሺሺ݆ 1ሻ െ ሺ݆ሻሻೣିଵ

ୀଵ +1) in bits, which is 2nxlog(n/nx) + nx in the worst case,

where nx = nx1.

By summing over all the lists, we get the following bound on the space within all the
lists

∑ ሺ2݊௫logሺ݊/݊௫ሻ ݊௫ሻ௫ (4)

6

which is 2nH1 + n in bits, since each x-list corresponds to suffixes which are preceded
with x, where n = n .

We can obtain a better bound by a more careful analysis of encoding the gaps within
lists using the method from [16,20]. Let the k-context of ሺ݅ሻ denote the length k prefix
of SA[ሺ݅ሻ]. Every list can be subdivided into at most k sublists according to k-contexts.
It can be shown that ∑ log ሺሺ݆ 1ሻ െ ሺ݆ሻሻ ݊ܪ, where the sum is taken over all gaps
that are within the same list and within the same context. The number of gaps that are not
within the same context can be bounded by k+1. The total length of encoding all gaps
within the same context is bounded by 2nHk + n and the total length of encoding all other
gaps is bounded by 2k+1log n. It is worth to be mentioned that this analysis holds for any
k simultaneously. We refer to [16] for details.

However, we have to deal with one case. There are some gaps (the first entry in each
block) that we do not need to encode, because they are sampled. We need to remove
space occupied by these gaps. The space occupied sums to

್
(2log gi + 1), which is

bounded by o(n) bits, where block size b = log2 n.

Let us now consider the space required by tables SB, B, and SAM. Suppose that the
superblock size a = log3 n and block size b = log2 n. Note that the starting position of
each superblock is not larger than |S| = O(

ೌ
logሺ݊ܪሻ), where H is the average number of

bits per symbol using Elias gamma coding to the gap sequence, whereas the relative
position of each block within its superblock is |b| = O(log3n). We also need to store O(

್
)

=
ౢౝమ

 absolute samples of , each of log n bits. Consequently, the overall space required

by tables SB, B, and SAM is O(
ೌ
log|S| +

್
log |ܾ| +

್
log ݊) bits. Substituting the values a

= log3 n and b = log2 n, we get the following bound on the space:

O(
ౢౝయ

log(
ౢౝయ

logሺ݊ܪሻ) +
ౢౝమ

logሺlogଷ݊ሻ +

୪୭మ
 log n) = o(݊)

Now we put the space for each piece all together and get the following bound on the
total space: 2nHk + n + 2k+1log n + o(n). Then we have the following theorem:

Theorem 1. Our representation for requires at most 2nHk + n + o(n) bits in the
worst case for any k c ݈݃ ݊ െ 1 and any constant c <1, where Hk denotes the k-th
order entropy.

3.3 Character frequency statistics

Character frequency statistics are used to support the self-index. We create the table
C with entries corresponding to alphabet symbols in lexicographical order, so that C[x] is
the sum of the number of occurrences of characters a, satisfying a < x in T. In other
words, C[x] represents the ranking of the smallest suffix among the suffixes with 1-
symbol prefix x in the lexicographic order.

For the example given in Figure 1, we show C in table 1. For convenience, we add
one more entry at the end of the table and write in n.

Table 1. The table C
C a b c d e f g

 0 4 10 16 20 23 30 36

7

Notice that all the suffixes SA[C[c]+1...C[c+1]] start with character c. It is obvious to
see that the space required by the table C is log n.

With the function and the table C, we can restore the suffix T[SA[i]…n1]
corresponding to SA[i]. Thus the text can be discarded. Because the first characters
T[SA[i]] of the suffixed T[SA[i]..n] for i = j, [j], [[j]]…, are in alphabetic order in SA,
T[SA[i]] must be the character c such that C[c] < i C[c+1].Thus each T[SA[i]] can be
found by an O(log)-time binary search on C.

4. Index Construction

We build our compressed suffix arrays in O(n) time in the following four steps.

Step 1. (Preprocessing). Computing C, and SA.
Step 2. (Constructing). Using C, SA, T to construct , discarding T after that.
Step 3. (Sampling). Sampling SA and SA-1 at regular step, c, discarding SA after that.
Step 4. (Encoding). Sampling and encoding . Using S, SB, B, and SAM to

represent , discarding after that.

In the following, we explain how each of the last three steps work. We omit Step 1
because the suffix array can be constructed using a standard method and the rest of Step 1
is trivial.

4.1 Constructing neighbor function

The pseudocode of the algorithm constructPhi for the construction of is given
below.

constructPhi(C, SA, T,)
Input: C, SA, T
Output:
1 temp C[lastchar]
2 for i 0 to n 1 do
3 pos SA[i]
4 if pos = 0 then
5 h i
6 else
7 c T[pos 1]
8 [C[c]] i
9 C[c] C[c] + 1
10 [temp] h

Line 1 keeps the ranking of the suffix T[n1] in temp, i.e., SA[temp] = n 1, where
lastchar is the last character in T. Lines 4–5 keep the value of i satisfying SA[i] = 0 in h.
By (1), [temp] = h, since SA[h] = (SA[temp] + 1) mod n = 0. In the example of Figure 1,
[23] = 0, because h = 0 since SA[0] = 0 and temp = 23 since C[lastchar] = C[f] = 23.
Obviously, constructPhi runs in O(n) time. The constructPhi algorithm is based on the
following observations. Suppose we traverse the suffix array and reach SA[i] = j. If c =
T[j 1] and c precedes a suffix for the k-th time, then c-list[k] = i, i.e., [C[c]] = i. In

8

the pseudocode description we assume that the array C[] is a local variable and values of
C are re-set when constructPhi is finished.

4.2 Sampling suffix arrays

The sampled SAs, denoted SAl, are used to restore the unsampled SAs. During the
sampling, SAl and SA-1

l are built, where SAl and SA-1
l are the sampling points for SA and

the inverse SA, respectively. Let the sampling steps for SA and SA-1 are c and d,
respectively. The pseudocode of the sampling algorithm is given as follows.

samplingSA(SA, c, SAl, SAl
-1)

Input: SA, c
Output: SAl, SAl

-1
1 k (n1)/c
2 for i 0 to k1 do
3 SAl[i] SA[ci]
4 for i 0 to n 1 do
5 if (SA[i] mod d) = 0 then
6 SAl

-1[SA[i]/d] i

Lines 2–3 build SAl by sampling the suffix array at regular text position intervals,
that is, they collect all entries SA[ci] in which its index is a multiple of c, given a
sampling step c. SAl is used to determine SA[i] when we perform a locating query, which
is described in section 5.2.

Lines 4–6 build SAl
-1 by sampling the inverse suffix array, which is used to support

extract(start, len), returning T[start..start+len1]. According to section 3.3, given a
ranking of a suffix, it is not hard to restore the suffix. So how to transform the position
start into the ranking i becomes the only hurdle. We first determine the ranking i of
start/d, and then perform i = [i] repeatedly. After obtaining the ranking, we can restore
T[start .. start + len 1] by the solution mentioned in section 3.3.

4.3 Encoding neighbor function

codingPhi initializes the four structures of S, SB, B and SAM. Assume that the
superblock size and block size are a and b respectively, where a is a multiple of b. The
pseudocode of the algorithm is given as follows.

codingPhi(, S, SB, B, SAM)
Input:
Output: S, SB, B, SAM
1 Initialize index1, index2, index3, len1, and len2 to be 0
2 for i 0 to n 1 do
3 if (i mod a) = 0 then
4 len2 len1
5 SB[index3] len2
6 index3 index3 + 1
7 if (i mod b) = 0 then
8 SAM[index1] [i]

9

9 index1 index1 + 1
10 B[index2] len1 len2
11 index2 index2 + 1
12 pre [i]
13 else
14 gap [i] pre
15 if gap < 0 then
16 gap gap + n
17 pre [i]
18 len1 len1 + 2bl(gap) 1
19 append(gap, S)

When the if condition holds in line 3, it corresponds to a sampling point of a
superblock and we need to compute the number of bits in its previous superblocks in the
gamma-encoded sequence relative to the current superblock. index3 is the index of
superblocks. When the if condition holds in line 7, it corresponds to a sampling point of a
block and the value of at the sampling point is kept in SAM. This can be done in line 8.
Also we need to compute the point’s offset relative to its superblock, and in fact it is len1
 len2, where len1 is the length (number of bits) of current S and len2 is the absolute offset
that the sampling point belongs to the superblock. Lines 12 and 17 perform the update on
pre, which represents the previous value of . Lines 12–17 compute gap and encode ,
where bl(gap) expresses the length of binary coding for gap. The operation append is
responsible for appending the Elias gamma encoding of gap to S. Obviously, the
algorithm codingPhi runs in O(n) time.

5. Pattern Matching

In this section, we consider two types of string matching queries: counting and
locating. A counting query computes the number of occurrences of P in T, where P is a
pattern string of length m. Essentially a counting query identifies the range [L,R] of
suffixes that start with P. Once a counting query is answered, we can find the starting
position of every single suffix in [L,R] by answering a locating query. Thus each locating
query reports the position where P occurs in T. We first describe the key operation of fast
access to . We omit the description of the extracting query because of space limitation.

5.1 Accelerating access to

Suppose we are given an encoded sequence S and the decoding starting position p.
For a block of size O(log n), we need O(log n) time to access in the worst case. By
maintaining a precomputed table R of width W = ౢౝ

మ
 bits, we can access in almost-

constant time. The table consists of four parts, denoted R1, R2, R3 and R4. R1 stores the
number of consecutive zeros that start from the leftmost in a bit sequence of length W. R2
represents the number of gaps contained in a bit sequence of length W being decoded
properly. R3 represents the number of bits in a bit sequence of length W to be decoded
properly. R4 is the cumulative sum of decoded values correctly.

10

We can store R1, R2, and R3 in a total of 32WlogW bits, since the entries in R1, R2,
and R3 are in the range [1, W] and require log W bits each. Substituting W with ౢౝ

మ
 in the

space occupancy above, we obtain 3√݊(loglog n 1) bits required by the three parts. We
can store R4 in (1/4)√݊(log n) bits, since its entries are at most 2W/2. In this case, the bit
sequence consists of the first W/21 0s, following W/2 1s, ending with a 0 or 1. The
second row in Table 2 shows an example of this case. Therefore, the total space required
by the precomputed table is 3√݊(loglog n 1) + (1/4)√݊(log n) = o(n) bits.

Table 2. The precomputed table R (W = 16)
index R1 R2 R3 R4

… … … … …

0000000111111110 7 1 15 255

…

0010101110100110 2 5 15 14

0010110010101110 2 5 15 15

…

1010101001111001 0 7 13 11

…

1111111111111111 0 16 16 16

Table 2 gives an example of the precomputed table R for W = 16. For instance, along
the fourth row of the table for index = 0010101110100110, the number of gaps to be
decoded completely in the bit sequence is 5, so we have R2 = 5. The total number of bits
being decoding of these gaps is R3 = 15, and the cumulative decoded value, R4 = 14, since
there are five complete gaps in the first fifteen bits of the bit sequence and its
corresponding sum of decoded values is 14. The rest of the bit sequence is not a complete
gamma encoding.

Suppose that the sequence S is to be decoded and the current starting decoding
position is at p, and the number of gaps to be decoded is 10. The decoding process using
a precomputed table is given as follows.

p p+13
S =…1 010 1 010 011 1 1 00101 011 1 010 011 00100 00111 01001100100 1…

Starting from the position p, we extract 16 bits from S and find that there are seven
gaps to decode by querying R2 (the seventh row). That is, the extracted bit sequence
contains seven complete gamma encodings. Then we obtain the cumulative sum of these
decoding values, 11, by querying R4 and the number of bits to be decoded correctly, 13,
by querying R3. Next, we start decoding from the position p + 13 and the remaining
number of gaps to decode is 3(107). The newly extracted bit sequence is 00101 011 1
010 011 0. We find that there are five gaps to decode in the bit sequence by querying R2,
but the number of gaps to be decoded is 3. In this case, we decode the newly extracted bit
sequence three times and obtain three values of 5, 3, and 1, adding these values to 11,
giving the 20 as a result of decompress(S, p, 10) in (2). So the access to for each block
of size O(log n) takes almost-constant time.

11

5.2 Search algorithms

Given the sampling suffix array SAl and inverse suffix array SA-1
l, combined with the

table C described in section 3.3, our compressed suffix array can support three types of
pattern matching queries: counting, locating queries, and extracting queries.

Counting query, denoted count, returns [L, R] that contains all the occurrences of P
in T, i.e., RL+1. Locating query, denoted locate, reports occurring positions of P in T.
Extracting query, denoted extract, displays the text substring T[start, start + len-1] given
start and len.

Count. The count uses the table C and neighbor function to perform backward
searching [6] of the pattern, given below.

count(P, L, R)
Input：P
Output：L, R
1 c P[len 1]
2 L C[c]
3 R C[c+1] 1
4 for i m 2 downto 0 do
5 c P[i]
6 LL C[c]
7 RR C[c+1] 1
8 newL min{j: j[LL, RR] and [j][L, R]}
9 newR max{j: j[LL, RR] and [j][L, R]}
10 L newL
11 R newR
12 if L > R then
13 return “pattern does not exist”
14 return L and R

Notice that the algorithm performs comparisons against P backwards. It is easy to
see that the algorithm maintains the following invariant: after comparing the k-th
character, [L, R] contains suffixes prefixed by the last k characters of P.

Initialization: the algorithm runs lines 1–3. Obviously, at this time, L corresponds to
the first entry in c-list and R corresponds to the last entry in c-list. Thus [L, R] is exactly
the interval of c-list and all suffixes in the interval have prefix c, so we are done.

Maintenance: Next, we show that each iteration maintains the loop invariant. Let us
first suppose that the algorithm is in its k-th iteration and [L, R] contains all suffixes that
are prefixed by the last k1 characters of P. The algorithm determines [LL, RR] for c in
lines 6–7 and the values in the interval form an increasing sequence. In fact, these
values are exactly the rankings of suffixes obtained by removing 1-symbol prefix from
the suffixes in [LL, RR]. If T contains the pattern P, i.e., there is plen-kplen-k+1plen-k+2…plen-1
in T, then there must exist a contiguous segment [newL, newR] in [LL, RR] in which all
values are in [L, R]. This is because the suffixes in [L, R] are prefixed by plen-k+1plen-

12

k+2…plen-1. Thus, after the iteration, [L, R] = [newL, newR], i.e., [L, R] contains suffixes
prefixed by the last k characters of P.

Termination: we are done when the algorithm returns in line 14. Otherwise, the
pattern does not exist in T.

We can perform binary searches on the absolute sampling values, SAMc, of within
the range [LL, RR], since the suffixes in [LL, RR] start with c and thus these sampling
values form a monotone increasing sequence. Assume that the interval corresponding to
these sampling values is [ls, rs]. If we find a minimum s [ls, rs] such that SAMc[s] [L,
R] during the binary search, then we are done (similar fashion for line 9). Otherwise,
when the binary search ends, there must exist a range of size b (between two consecutive
sampling values) in which the [i] is in. Then we decode the corresponding values using
the precomputed table until finding the wanted entry. The binary search on the sampling
values runs in O(log(n /log2 n)) time, since there are at most n /log2 n sampling values.
The time needed to decode [i] on b using the precomputed table is log n for the block
size b = O(log2 n). Thus the count algorithm runs in O(m log n) time.

Theorem 2. The counting query of a pattern of length m can be answered in O(m log
n) time, at the extra cost of log n bits of space for C, except for the space required by
representing given in Theorem 1, where is the alphabet size.

We use pattern P = “bga” as an example to illustrate the above counting process.

After initialization in lines 1–3, we have L = C[a] = 0, R = C[a + 1] 1 = C[b] 1 =
3. Suffixes in [0, 3] start with a, corresponding to a-list. For the first iteration of the while
loop, LL = C[g] = 30, RR = C[g + 1] 1 = 35, Suffixes in [30, 35] are prefixed with g and
the corresponding values are {1, 3, 5, 13, 16, 19} for which [30] = 1 and [31] = 3
in [0, 3]. So, [newL, newR] = [30, 31]. We update [L, R] = [30, 31] in lines 10–11. The
suffixes therefore in this interval are prefixed with ga. For the second iteration, LL = C[b]
= 4, RR = C[b + 1] 1 = 9, the values in [4, 9] are {24, 25, 29, 30, 31, 35} in which
[7] = 30 and [8] = 31 in [30, 31]. So, [newL, newR] = [7, 8] and updating L and R in
lines 10–11.

locate. To locate the occurring positions, we proceed as follows: The counting query
gives an interval in the suffix array to be reported. Now, given each position i within this
interval, we use getpos to find the corresponding text position SA[i].

The pseudocode of the algorithm locate is given as follows.

locate(P, ans)
Input: P
Output: ans
1 count(P, L, R)
2 ans[0.. R L] 0
3 for i L to R do
4 ans[i L] getpos(i)
5 return ans
getpos(i)
1 step 0

13

2 while (i mod c) 0 do
3 step step + 1
4 i [i]
5 i i/c
6 return (SAl[i] step) mod n

Starting from a certain point i[L, R], getpos determines SA[i] by using function to
walk along indices i([i]), i([i]),…, such that SA[i]+1 = SA[i], SA[i]+1 = SA[i],
and so on, until it reaches an index stored in sampled SAl. Let step be the number of steps
in the walk, we return SAl[i] step, as this is the value of SA[i]. The maximum length of
each walk is at most O(log n). The access to [i] is in O(log n) time using the
precomputed table, as the block size b = O(log2n) and the number of times to access the
precomputed table is O(log n). Thus locate runs in O(occlog2 n) time.

Theorem 3. Given the locating interval, the locating query of a pattern of length m
can be answered in O(occlog2 n), at the extra cost of n bits of space for SAl, except for the
space required by representing given in Theorem 1, where occ is the number of
occurrences of P in T.

We continue to have pattern bga as an example to see how locate works. As we have
seen, locate first calls count to return [L, R] = [7, 8] that contains all the occurrences of
bga in T shown in Figure 1 and then invokes getpos for i = 7, 8 to obtain SA[7] and SA[8].
We illustrate this in the case of SA[8] for c = 3, the sampling step for SA. Initializing step
= 0, i = 8, then (8 mod 3) 0, updating i = [8] = 31 and step = 1, continuing the next
iteration, (31 mod 3) 0, updating i = [31] = 3 and step = 2. Finally, loop ends at (3
mod 3) = 0. At the time, i = 3/3 =1 and return SAl[i] 2 = 34 2 = 32 as the value of
SA[8].

6. Results and Discussion

6.1 Experimental setup and environment

We used g++ 4.4.1 with the -O3 option to build the executables of all the source code
in our experiments without parallelism. The experiments were conducted on an HP Z400
with a 2.53 GHz dual-core Intel Xeon W3503. The machine runs 32-bit Ubuntu12.04
LTS OS and has 4 GB internal memory. We used the data from the Pizza&Chili Corpus
(http://pizzachili.dcc.uchile.cl/indexes.html) and the Canterbury Corpus
(http://corpus.canterbury.ac.nz/) to test the efficiency and usability of our method.

We fully implemented our algorithm in C++. We implemented all the parts of the
algorithm except the suffix array construction. We use Veli Mäkinen and R. González’s
C code(SAu.tgz)[21] to build suffix arrays. Our implementation is generic and ready for
public use; it is available at https://sites.google.com/site/compressedsa/.

The compression ratio is defined as the ratio of the size of the CSA structures to the
size of original text; bps, that stands for bits per symbol, is obtained by multiplying the
compression ratio by 8. The space of our CSA also includes what is necessary for
counting, locating and extracting, in addition to that required by S, SB, B, and SAM. We
omit all experiments related to extracting queries due to lack of space.

14

6.2 Results for the Canterbury Corpus

In this and the following sections we evaluate the performance of our CSA based on
the compression ratio, compression time, and query time. We compare our results with
FM-index [4,14] and Sad-CSA [7,8] on the Canterbury Corpus and the Pizza&Chili
Corpus. Table 3 summarizes some general characteristics of selected files from the
Canterbury Corpus site.

Table 3. General statistics for our indexes files
Text paper1 news book1 world192 bible E.coli
Size 52KB 368KB 752KB 2.35MB 3.85MB 4.42MB

Alphabet size 95 98 82 94 63 4

We set block size b = 128, superblock size a = 18b, and sampling size for suffix
arrays c = 32 in the experiments. We compare our algorithm with FM-index and Sad-
CSA on compression rate on Canterbury Corpus, shown in Figures 3. Implementations of
FM-index and Sad-CSA can be downloaded from
http://pizzachili.dcc.uchile.cl/indexes.html.

Figure 3: Compression ratio of our CSA compared Figure 4: Construction time of our CSA

with FM-index and Sad-CSA compared with FM-index and Sad-CSA

Table 4. The fraction of gaps with length 1 or 2 for different files
Text paper1 news book1 world192 bible E.coli
Ratio 0.650496 0.641727 0.599657 0.791822 0.738635 0.47226

We can see from Figure 3 that our CSA outperforms Sad-CSA on the compression
ratio; it is also better than the FM-index except for E.coli.txt. This is because we use Elias
gamma coding to encode the gap sequence, which performs well when the small values
are much more frequent than large values in the sequence. For the E.coli data, we can see
from Table 4 that the fraction of gaps with lengths 1 or 2 is 0.4722, which is much
smaller compared to that of world192 and bible that is in the range from 0.7386 to 0.7918.
Figure 4 shows construction times for files from the Canterbury Corpus. We can see that
our algorithm runs faster than Sad-CSA and about 25% slower than FM-index.

We searched for 10,000 patterns of length 20, randomly chosen from the indexed text,
for a total of 10,000 count and locate operations. Search time is measured in
microseconds. We show the counting and locating query times for the three algorithms in
Figures 5 and 6, respectively. Our CSA is the fastest among the three algorithms in
answering counting and locating queries, significantly outperforming FM-index in terms
of the query time.

15

Figure 5: Counting query of our CSA compared Figure 6: Locating query of our CSA compared

with FM-index and Sad-CSA with FM-index and Sad-CSA

6.3 Results for the Pizza&Chili Corpus

In this set of experiments, we used two collections of files with different sizes from
the Pizza&Chili Corpus. One is with size 50M each and the other with size 100M each.
We show some statistics on a set of those files with size 50M in Table 5. The data for the
set of files with size 100M is the same, except for the English texts, which has the
alphabet size 215.

Table 5. General statistics for our indexes files (50M)
Text DNA protein XML sources English

Alphabet size 16 25 96 227 176

Figures 7–8 compare our algorithm with FM-index and Sad-CSA with respect to
compression rate and construction time on the data from the Pizza&Chili Corpus. Our
CSA performs better than FM-index and Sad-CSA, except for the DNA and protein data
for the former. The results show that the distribution of values of has more effect on
the compression ratio than the alphabet size. We can see from Table 6 that the fraction of
gaps with length 1 or 2 for the DNA and protein data is much smaller compared to that of
XML and sources, in which the gap values distribution concentrates on the small values.
They show a better compression ratio.

Figure 7: Compression ratio of our CSA compared Figure 8: Compression time of our CSA

with FM-index and Sad-CSA compared with FM-index and Sad-CSA

16

Consider an extreme case, suppose that there is only one symbol, say c, in text T of
length n, then the integers contained in the c-list are in the range [1..n] and form an
increasing sequence. The gap sequence only consists of 1’s and we use only 1 bit to
represent each integer, resulting in a compression ratio 0.125 for our CSA. The aaa.txt
from the Canterbury Corpus is consistent with our analysis.

Table 6. The fraction of gaps with length 1 or 2 for different files
Text dna.50 pro.50 xml.50 sou.50 eng.50 dna.100 pro.100 xml.100 sou.100 eng.100
Ratio 0.5382 0.4047 0.8748 0.7980 0.7224 0.5415 0.4430 0.8782 0.8036 0.7066

It is easy to see from Figure 8 that the construction time of our algorithm is faster
than that of Sad-CSA and slower than that of the FM-index.

We show the counting and locating query time for the three algorithms in Figures 9
and 10 respectively. Our CSA is the fastest among the three algorithms on counting
queries. Our CSA performs better than the FM-index on locating queries.

Figure 9: Counting queries of our CSA compared Figure 10: Locating queries of our CSA
 with FM-index and Sad-CSA compared with FM-index and Sad-CSA

Summing up, the distribution of data is more important than the alphabet size for
performance of our method. The three algorithms are all suitable for dealing with text and
source code data, like English texts, sources, and XML, but our CSA performs best. For
more evenly distributed data, such as DNA, the FM-index shows better performance. No
matter what type of data is stored in an index, our CSA has a compression rate better than
Sad-CSA. For counting and locating queries, our CSA has a significant advantage over
the FM-index. For counting queries, our CSA outperforms Sad-CSA. For locating queries,
our CSA has a slight advantage over Sad-CSA, except for the DNA and sources.

7. Conclusion

In this paper, we develop a practical representation for representing compressed
suffix arrays within 2nHk + n+o(n) bits of space simultaneously for any k, such that k c
log n 1 and c <1 is a constant. Experiments on standard corpora show that our method
achieves competitive compression ratios. Moreover, we show how our CSA can be built
in linear time. We evaluated our storage scheme using compression ratio, compression
time, and query time as performance measures. Our results were compared with the FM-
index and Sad-CSA on the Canterbury Corpus and the Pizza&Chili Corpus. The
experiments indicate that our CSA has a significant advantage over the other two
algorithms in terms of compression ratio and times needed to answer counting and

17

locating queries. Our method is competitive on various types of data, except for the
evenly distributed data, such as DNA. The reason for this is that, relative to the alphabet
size, the distribution of the data itself primarily determines the comparative performance
of our algorithms. Our CSA performs well on data with biased distribution.

ACKNOWLEDGMENT. The authors would like to thank Kunihiko Sadakane and
Bojian Xu for their quick answer to our questions. This research was supported in part
by the National Natural Science Foundation of China (61173025 and 61373044) and the
Fundamental Research Funds for the Central Universities (K5051303032). Hongwei
Huo and Jeffrey S. Vitter are the corresponding authors.

References
[1] U. Manber and G. Myers, “Suffix arrays: a new method for on-line search,” SIAM

Journal on Computing, vol. 22, pp. 935–948, 1993.
[2] R. Grossi and J. S. Vitter, “Compressed suffix arrays and suffix trees with

applications to text indexing and string matching,” SIAM Journal on Computing, vol.
35, no. 2, pp. 378–407, 2005.

[3] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed text indexes,”
In SODA, pages 841–850, 2003.

[4] P. Ferragina and G. Manzini, “Opportunistic data structures with applications,” in
FOCS, pages 390–398, 2000.

[5] G. Jacobson, “Space-efficient static trees and graphs,” in FOCS, pages 549–554, 1989.
[6] Veli Mäkinen, Gonzalo Navarro, and Kunihiko Sadakane, “Advantages of Backward

Searching — Efficient Secondary Memory and Distributed Implementation of
Compressed Suffix Arrays,” Algorithms and Computation Lecture Notes in Computer
Science, vol.3341, pp. 681–692, 2005.

[7] Kunihiko Sadakane, “Compressed text databases with efficient query algorithms
based on the compressed suffix array,” In ISAAC, Lecture Notes in Computer Science,
vol. 1969pages 410–421, 2000.

[8] Kunihiko Sadakane, “New text indexing functionalities of the compressed suffix
arrays, ” J. Alg. vol.48, no. 2, pp. 294–313, 2003.

[9] E. M. McCreight, “A space-economical suffix tree construction algorithm,” J. ACM,
vol. 23, pp. 262–272, 1976.

[10] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol.14, pp. 249–
260, 1995.

[11] R. Grossi and J. S. Vitter, “Compressed suffix arrays and suffix trees with
applications to text indexing and string matching (extended abstract),” in STOC,
pages 397–406, 2000.

[12] S. Srinivasa Rao, “Time-space trade-offs for compressed suffix arrays,” Information
Processing Letters, vol. 82, Issue 6, pp. 307-311, 2002.

[13] P. Ferragina and G. Manzini, “An experimental study of an opportunistic index,” In
SODA, pages 269–278, 2001.

[14] P. Ferragina and G. Manzini, “Indexing compressed texts,” Journal of the ACM,
vol.52, no. 4, pp.552–581, 2005.

[15] M. Burrows, D.J. Wheeler, “A block sorting lossless data compression algorithm,”
Tech. Rep. 124, Digital Equipment Corporation,1994.

18

[16] L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter, “When indexing equals
compression: Experiments on suffix arrays and trees,” ACM Transactions on
Algorithms, vol. 2, no.4, pp.611–639, 2006.

[17] Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Venturini,
“Compressed text indexes: From theory to practice,” Journal of Experimental
Algorithmics, vol. 13, no. 12, 1.12, 2008.

[18] Gonzalo Navarro and Veli Mäkinen, “Compressed full-text indexes,” ACM
Computing Surveys, vol. 39, Issue 1, Article No. 2, 2007.

[19] Rajeev Raman, Venkatesh Raman, S. Srinivasa Rao, “Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets,” In SODA, pages 233–242,
2002.

[20] L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter. “Fast Compression with a Static
Model in High-Order Entropy,” In DCC, pages 62–71, 2004.

[21] http://pizzachili.dcc.uchile.cl/indexes/Suffix_Array/

