
Practical Succinct Text Indexes in External Memory

Hongwei Huo∗, Xiaoyang Chen∗, Yuhao Zhao∗, Xiaojin Zhu∗, and Jeffrey Scott Vitter†

∗Xidian University †The University of Mississippi
Department of Computer Science Department of Computer & Information Science
Xi’an, Shaanxi, 710071, China University, MS 38677-1848, USA
hwhuo@mail.xidian.edu.cn jsv@OleMiss.edu

Abstract

Chien et al. [1, 2] introduced the geometric Burrows-Wheeler transform (GBWT) as the
first succinct text index for I/O-efficient pattern matching in external memory; it operates
by transforming a text T into point set S in the two-dimensional plane. In this paper
we introduce a practical succinct external memory text index, called mKD-GBWT. We
partition S into σ2 subregions by partitioning the x-axis into σ intervals using the suffix
ranges of characters of T and partitioning the y-axis into σ intervals using characters of T ,
where σ is the alphabet size of T . In this way, we can represent a point using fewer
bits and perform a query in a reduced region so as to improve the space usage and I/Os
of GBWT in practice. In addition, we plug a crit-bit tree into each node of string B-trees
to represent variable-length strings stored. Experimental results show that mKD-GBWT
provides significant improvement in space usage compared with the state-of-the-art indexing
techniques. The source code is available online [3].

I. Introduction

The explosive growth of textual big data — including text documents, email or text
messages, and genome sequences — imposes great challenges in data processing and
information retrieval systems. Full-text indexes provide an important solution for
retrieval and search in textual big data. A full-text index is a data structure that
stores a text string in preprocessed form so that it can support fast string matching
queries. As a popular full-text index, suffix arrays [4] can answer pattern matching
queries in optimal or almost optimal time; however for big data applications, the
space usage, which is Θ(n log n) bits of space, is excessive since it is much bigger than
the size O(n log σ) of the original text, where σ is the alphabet size.

The compressed suffix array (CSA) [5] and the FM-index [6] achieve a space usage
related to the compressed size (i.e., higher-order entropy) of the original text, and
they provide fast random access to any part of the original text. The query time is
proportional to the query pattern size plus the product of the output size and a small
polylog function of n. However, for massive data, the CSA and the FM-index do not
fit into internal memory well, and thus they must be stored in secondary storage such
as disk drives or in the cloud. The external memory model introduced by Aggarwal
and Vitter [7, 8] uses the number of I/O operations to measure the performance of an
external memory algorithm.

Queries using the CSA and the FM-index tend to perform random memory
accesses and show poor locality, and thus they can incur large I/O costs. Nevertheless,
some fast compressed indexes for secondary memory do exist [1, 2, 9–12]. Mäkinen

217

2018 Data Compression Conference

2375-0359/18/$31.00 ©2018 IEEE
DOI 10.1109/DCC.2018.00030

et al. [12] proposed an external memory index based upon compressed suffix array
taking nH0 + O(n loglog σ) bits of space, and supporting pattern search in
O(|P | logB n + occ log n) I/Os, where |P | is the query pattern size, B is the block
size measured in words, and σ is the alphabet size. Arroyuelo and Navarro [9]
proposed an index based on Lempel-Ziv compression that takes 8nHk + o(n log σ)
bits and claimed to support pattern matching queries in practice in about several
dozen disk accesses. González and Navarro [11] presented an external memory index
that requires O((n log n)Hk log(1/Hk)) bits of space and answers a pattern matching
query in O(|P | + occ/B) I/Os.

Ferragina and Grossi [13] introduced an efficient external memory data structure
for string search, called string B-tree (SBT), that takes O(n log n) bits of space and
supports pattern matching queries in optimal O(|P |/B + logB n+ occ/B) I/Os.

Chien et al. [1, 2] introduced the first succinct external memory index called
geometric Burrows-Wheeler transform (GBWT) with efficient query in O(|P |/B +
logσ n logB n+ occ logB n) I/Os, and they showed that this index is further improved
to achieve the high-order entropy-compressed space of O(nHk) + o(n log σ) bits. In
addition, they also gave implementations [10] of the GBWT for randomly generated
texts of up to 4 million characters with alphabet size = 4.

In this paper we introduce a practical succinct external memory text index, called
mKD-GBWT. It uses O(n log σ) bits space and finds all occurrences of pattern P in T
in O(|P |/B + logσ n logB n +

√
n/B + occ/B) I/Os in the worst case. Experimental

results show that our index provides significantly better space performance than the
state-of-the-art indexing techniques for various sizes of texts and alphabet sizes. The
source code is available online [3].

II. Preliminaries

A. Text Indexing and Suffix Arrays

The suffix tree [14] and suffix array [4] are popular index structures that provide
efficient solutions to many problems involving pattern matching and pattern discovery
for string processing. Let T denote a text of size n over an alphabet Σ of size σ. A
prefix of T is a substring of the form T [1..i], and a suffix of T is a substring of the
form T [j..n], where 1 ≤ i, j ≤ n. The suffix tree of T is a compact trie that stores
the n suffixes of T .

The suffix array SA[1, n] of T is an array of n integers that gives the sorted
order of the suffixes of T . SA[i] is the starting position in T of the ith smallest
suffix of T in lexicographical order, denoted by ≤L. Given a pattern P , if it appears
in the jth position of T , then P must be a prefix of the suffix T [j..n]. All the
starting positions in T where P occurs create a contiguous range in SA. That is,
SA[l], SA[l + 1], · · · , SA[r] stores the start positions where P occurs in T , for some
1 ≤ l ≤ r ≤ n. We refer to [l, r] as the suffix range of pattern P . Suffix trees and
suffix arrays use Θ(n log n) bits of space, which can be much larger than the text
itself.

The text index problem is to design a data structure for T so that for any query
pattern P , we can efficiently report all occurrences of P in T . The compressed
(or succinct) text index problem is to design a data structure whose space usage is

218

i SA′[i] T ′[SA′[i] .. n/d] ci c′i S

1 1 aak ask rha kas rhk aka skr − − {(1, –),
2 6 aka skr rhk khr (2, khr),
3 2 ask rha kas rhk aka skr aak kaa (3, kaa),
4 4 kas rhk aka skr rha ahr (4, ahr),
5 3 rha kas rhk aka skr ask ksa (5, ksa),
6 5 rhk aka skr kas sak (6, sak),
7 7 skr aka aka (7, aka)}

Figure 1: The GBWT S of T = aak ask rha kas rhk aka skr for d = 3.

provably close to the entropy-compressed size of T while still maintaining fast query
functionality.

B. The KD-tree

Orthogonal range searching in the two-dimensional setting can be described as follows:
Given a set S with N points and a query axis-aligned rectangle R, the problem is to
report all points lying within R.

A kd-tree [15] built upon S is a balanced binary tree. Using a kd-tree built upon S
of N points, we can answer an orthogonal range query in O(

√
N+occ) time, where occ

is the number of reported points. We can externalize the kd-tree trivially — simply
create a leaf node when the number of points drops below B. Lemma 1 gives the
external memory kd-tree performance [16].

Lemma 1 ([16]). A kd-tree on a set S of N points in two-dimensional plane
occupies Θ(N/B) disk blocks or Θ(N logN) bits, and answers an orthogonal range
query in O(

√
N/B + occ/B) I/Os, where occ is the number of reported points.

C. The GBWT Transform

The geometric Burrow-Wheeler transform (GBWT) is a variant of the Burrows-
Wheeler transform (BWT) [17] that converts a text T into a collection of points S
in the two-dimensional plane. GBWT can support pattern matching on T by using
the SBT built upon the sampled suffixes of T and the index structure built upon S.
GBWT keeps relative position information between characters explicitly and hence
it has better locality than the BWT, more suitable for external memory.

Given a text T of n characters from an alphabet Σ, we group each d contiguous
characters of T into a meta-character, except for the last group which may contain
less than d characters, then we obtain a new text T ′ of length n/d. Each meta-
character of T ′ corresponds to d characters of T . Therefore, the suffix starting from
the position i of T ′ corresponds to the suffix starting from position (i− 1)d+ 1 of T .
We use SA′ to denote the suffix array of T ′ of length n/d.

The GBWT of T is a two-dimensional point set S = {(i, c′i) | 1 ≤ i ≤ n/d} built
upon T ′, where c′i represents the reverse of the meta-character ci = T ′[SA′[i] − 1]
preceeding the ith lexicographically smallest suffix SA′[i] of T ′. Figure 1 shows an
example of GBWT for string T = aak ask rha kas rhk aka skr for d = 3, where T ′

consists of seven meta-characters, and the GBWT S of T is shown in the last column.

219

III. mKD-GBWT

In this section, we introduce a new succinct text index in external memory, called
mKD-GBWT. The mKD-GBWT index consists mainly of two data structures: a new
representation of the SBT of T ′ in which a crit-bit tree [18] is used to represent each
SBT node, denoted by cSBT, and the range search structure (multiple kd-trees) built
over S. The first data structure is used to report positions of T , which corresponds
to positions of meta-characters of T ′ where P occurs and the second one is used to
report positions in T where P occurs within meta-characters.

A. Pattern Matching

Given a text T of length n over an alphabet Σ of size σ, and an query pattern P ,
the pattern matching query of P on T answers all the positions where P occurs in T .
Assume that |P | ≥ d, where d is a group size. For a pattern matching query of P
in cSBT over T ′, we can only report positions (i − 1)d + 1 in T , which correspond
to position i of some meta-characters where P occurs in T ′. As a result, in order
to be able to support a full-text pattern search, we need to build the orthogonal
range search structure over S to find the positions within some meta-character of T ′

where P occurs.
Each meta-character ci = T ′[k](= T [l..r]) of length d of T ′ has d suffixes, where

k = SA′[i] − 1, l = (k − 1)d+ 1 and r = l + d − 1. For each 2 ≤ j ≤ d, if ci[j..d] is a
prefix of P and the suffix P [d − j + 2..m] of P is a prefix of the suffix T ′[k + 1..n/d]
(i.e., P [d − j + 2..m] occurs at position k + 1 of T ′), then the jth suffix of the meta-
character ci corresponds to an occurrence of P in T .

The key point is how to find the positions within some meta-character of T ′

where P occurs. Let Pk1 = P [1..d− j+1] and Pk2 = P [d− j+2..m] where 2 ≤ j ≤ d.
If the jth suffix of meta-character ci is an occurring position of P in T , it must satisfy
the following two conditions:

1. Pk2 is a prefix of T ′[k + 1..n/d] for k = SA′[i] − 1; and

2. ci[j..d] = Pk1 where ci = T ′[k].

For condition 1, we can search for Pk2 on the cSBT of T ′ to find the suffix
range [s, e] of Pk2 in T ′. That is, for any s ≤ i ≤ e, Pk2 is a prefix of suffixes
T ′[SA′[i]..n/d]. If the jth suffix ci[j..d] of meta-character ci = T ′[SA′[i] − 1] is
alphabetically equal to Pk1 for s ≤ i ≤ e, i.e., ci[j..d] = Pk1, then condition 2 is
satisfied. Then we must have P ′

k1 ·Cj−1
min ≤L c′i ≤L P ′

k1 ·Cj−1
max for 2 ≤ j ≤ d, where P ′

k1

and c′i are the respective reverse order of Pk1 and meta-character ci, C
j−1
min is the string

of length j − 1 consisting of repetitions of the minimum character in T , Cj−1
max is the

string of length j − 1 consisting of repetitions of the maximum character in T , and ‘·’
denotes the simple concatenation of two strings.

Notice that c′i is a y-coordinate of the point having x-coordinate of i (s ≤ i ≤ e)
in S. Therefore, for query pattern P , we can build the query rectangle Qj = [s, e] ×
[P ′

k1 · Cj−1
min , P

′
k1 · Cj−1

max] for 2 ≤ j ≤ d and perform orthogonal range searching on the
index data structure on S to find all the points in the query rectangle Qj. These
points must satisfy both conditions 1 and 2.

220

If points (i, c′i) satisfy conditions 1 and 2 for some s ≤ i ≤ e, that is, the jth suffix
of the meta-character ci corresponds to a position where pattern P occurs in T , then
we need to query the cSBT of T ′ to obtain the value of SA′[i] (notice that the leaves on
the cSBT of T ′ store the suffix array SA′[1..n/d] of T ′). Then we know d(SA′[i]−1)+1
is the position where suffix T ′[SA′[i]..n/d] occurs in T . Thus d(SA′[i]− 1)− d+ j) is
the position where P occurs in T .

For the example T in Figure 1 for d = 3 and pattern P = akas, let Pk1 = ak
and Pk2 = as when j = 2, we know the suffix range of Pk2 is [s, e] = [3, 3] by
querying the cSBT of T ′ and SA′[3] = 2. And then we build query rectangle Q2 =
[s, e] × [P ′

k1 · Cmin, P
′
k1 · Cmax] = [3, 3] × [kaa, kas] and perform range search to report

point (3, ka). Hence d(SA′[i] − 1) + 1 = 4 is the position where Pk2 occurs in T .
Therefore, d(SA′[i] − 1) − d+ j) = 2 for j = 2 is one position that P occurs in T .

B. Partitioned Range Search Structures

Let S be a set of n/d points in two-dimensional plane obtained by applying GBWT
on T . We partition the x-axis into σ intervals by the suffix range [sx, ex] of character x
of T , and partition the y-axis into σ intervals by character y of T , and then we
obtain σ2 subregions, where x, y ∈ Σ. We build a kd-tree KDT x,y for the points in
each subregion individually. Then we obtain σ2 kd-trees.

For the query rectangle Qj = [s, e] × [P ′
k1 · Cj−1

min , P
′
k1 · Cj−1

max] of P for 2 ≤ j ≤ d,
where [s, e] is the suffix range obtained by searching Pk2 on the cSBT of T ′, we observe
the following property: For the query rectangle Qj and P , we can always determine a
unique subregion Rx,y = [sx, ex]× [y ·Cd−1

min , y ·Cd−1
max], where [sx, ex] is the suffix range

in T ′ of character x = P [d − j + 2], and character y = P [d − j + 1] such that Qj is
enclosed in Rx,y.

By this property, when searching P , we can determine directly its region Rx,y by
x = P [d − j + 2] and y = P [d − j + 1], which encloses the query rectangle Qj of P ,
and perform an orthogonal range search on the corresponding kd-tree KDT x,y built
upon Rx,y to report the points in Qj, which are the positions where P occurs within
some meta-characters of T ′. In this way, we can avoid a range search on the whole
region R over S.

Searching on the reduced subregion Rx,y instead of the whole region R may reduce
the required I/Os. On the other hand, building a single kd-tree over S, we need
log(n/d) bits and d log σ bits to represent x- and y-coordinates of a point, respectively,
since there are n/d points in S while building a kd-tree over Rx,y, individually, we only
need log(ec − sc) bits and (d− 1) log σ bits to represent the x- and y-coordinates of a
point, respectively, where [sc, ec] is the suffix range of character c and 1 ≤ sc, ec ≤ n/d.
Thus using multiple kd-trees may take up less space in practice.

C. Query Algorithms

The mKD-GBWT consists of two parts: a crit-bit tree representation of the SBT
of T ′(cSBT) and multiple kd-trees built upon σ2 subregions. So we store two
index files in the external memory for the mKD-GBWT. The first index stores an
implementation of the sparse string B-tree and the second index stores multiple kd-
trees. Given a pattern P , we perform pattern matching queries on the mKD-GBWT

221

index in two steps. First, we search for P on the cSBT of T ′ to obtain a suffix range
of P and collect these SA′s values in the suffix range stored in the cSBT in lines 2–4.
These values of SA′s are the start positions of meta-characters where P occurs in T ′.
Second, we use the cSBT of T ′ to find the suffix range of Pk2 in line 13, and construct
query rectangle [s − beg , e − beg] × [yl, yh], where yl = P ′

k3 · Cj−1
min , yh = P ′

k3 · Cj−1
max ,

and P ′
k3 is a reverse of Pk3 (= P [1..d− j]), and locate the corresponding kd-tree built

upon Rr×s to find all the points occurred in the rectangle so as to find positions
where P occurs within some meta-characters of T ′. Algorithm 1 describes how to
perform a pattern matching query using the mKD-GBWT.

Algorithm 1: PMQuery(T, P)

1 result ← ∅

2 [s, e] ← cSBTSearch(T ′, P)
3 for i ← s to e do
4 result ← result ∪ {d(SA′[i] − 1) + 1}
5 for j ← 2 to d do
6 S1 ← ∅

7 Pk2 ← P [d − j + 2..m]
8 Pk3 ← P [1..d − j]
9 beg ← ST [P [d − j + 2]]

10 for k ← 1 to j − 1 do
11 Cmin [k] ← cmin

12 Cmax [k] ← cmax

13 [s, e] ← cSBTSearch(T ′, Pk2)
14 if [s, e] �= ∅ then
15 [yl, yh] ← [P ′

k3 · Cmin , P
′
k3 · Cmax]

16 Computing Rr×s such that Σ[r] = P [d − j + 2] and Σ[s] = P [d − j + 1]
17 S1 ← KDTSearch([s − beg , e − beg] × [yl, yh],KDT r×s)

18 for each (x, y, SA′[x]) ∈ S1 do
19 result ← result ∪ {d(SA′[x] − 1) − d+ j}
20 return result

We can improve the efficiency of the mKD-GBWT with some carefully considered
modifications to the implementation. For example, we can divide the query rectangles
of P into groups so that the query rectangles located in the same region Rr×s are
packed to the same group to improve the query I/Os.

We plug a crit-bit tree [18] into each SBT node containing some suffixes of T ,
denoted as cSBT and store it in a disk block of size B. When searching for P in the
cSBT, we need to load the crit-bit tree into memory and perform a pattern matching
of P on the crit-bit tree to find the positions where corresponding suffixes are stored
in the crit-bit tree. We then load its child nodes according to these positions to
proceed the search in the cSBT.

222

IV. Performance

In this section, we give the performance of mKD-GBWT in Theorem 1:

Theorem 1. Our index on a text T of length n over an alphabet Σ of size σ
requires O(n log σ) bits, and finds all the occurrences of pattern P in T in O(|P |/B+
logB n logσ n+

√
n/B+ occ/B) I/Os in the worst case, where B is the disk block size

and occ is the number of reported points.

Proof. Our index consists of two parts: one is the cSBT built upon T ′ of size n/d
and the other is the structure of σ2 kd-trees, where d is the group size. By [13],
the space usage by the first part takes O((n/d) log(n/d)) bits, which is O(n log σ)
bits for d = O(logσ n). Next we consider the space occupied by the σ2 kd-trees
KDT x,y built over the points in each of σ2 subregions, where x, y ∈ Σ. Assume

that KDT x,y built upon subregion Rx,y contains ni points such that
∑σ2

i=1 ni = n/d.
By Lemma 1, the total space required by the σ2 kd-trees KDT x,y is bounded by∑σ2

i=1O(ni/B) = O(
∑σ2

i=1 ni/B) = O(n/(dB)) disk blocks, which is O(n log σ) bits

since
∑σ2

i=1 ni = n/d. The total space occupied by the mKD-GBWT is therefore
O(n log σ) bits.

Now we consider the I/Os required to perform pattern matching queries in
our index. By [13], performing a pattern matching query of P in cSBT of T ′

requires O(|P |/(B logσ(n/d)) + logB(n/d)) I/Os, and thus performing d pattern
matching queries on cSBT of Algorithm 1 requires a total of O(d|P |/(B logσ(n/d))+
d logB(n/d)) I/Os, which is O(|P |/B+ logB n logσ n) I/Os. By Lemma 1, performing
an orthogonal range query in the kd-tree KDT x,y with ni points takes O(

√
ni/B +

occi/B) I/Os. Thus performing d−1 orthogonal range queries in Algorithm 1 requires
search on at most d − 1 distinct KDT x,y structures. The number of I/Os required is
therefore bounded by

d−1∑

i=1

O
(√

ni/B + occi/B
)
=

d−1∑

i=1

O
(√

ni/B
)
+

d−1∑

i=1

O(occi/B)

= O
(√

n1/B +
√
n2/B + · · · +

√
nd−1/B

)
+O(occ/B)

= O
(√

d − 1
√
(n1 + n2 + · · · + nd−1)/B

)
+O(occ/B)

= O
(√

(d − 1)(n/d)/B
)
+O(occ/B) < O(

√
n/B) +O(occ/B).

The second equality is due to the fact that
∑d−1

i=1 occi ≤ occ. The first inequality
follows from Cauchy-Schwarz inequality. The second inequality is due to the fact
that

∑σ×σ
i=1 ni = n/d.

By adding the I/Os required by searching in the cSBT and multiple kd-trees, we
obtain the query bound O(|P |/B + logB n logσ n +

√
n/B + occ/B) on the I/Os in

the worst case.

V. Experimental Results and Discussion

A. Environment and Setup

We have conducted experiments on a Dell Tower 7910 workstation that has 24
Intel Xeon(R) CPU E5-2630 v3 @2.4GHZ cores and 192GB of memory, running

223

wor
ld_l
ead
ers
pitc
hes

infl
uen
za
sou
rces kern

el

dblp
.xm
l dna paraeng

lish
pro
tein
s102

103

104

In
de
x
si
ze
(M
B
)

d = 2 d = 4 d = 6 d = 8

wor
ld_l
ead
ers
pitc
hes

infl
uen
za
sou
rces kern

el

dblp
.xm
l dna paraeng

lish
pro
tein
s101

102

103

104

Q
ue
ry
I/O
s

d = 2 d = 4 d = 6 d = 8

Figure 2: Effect of d on the performance of mKD-GBWT.

Ubuntu 12.04. We implement mKD-GBWT in C++ and compile it using g++ 4.8.1.
The disk block size B is set to 4KB. Table 1 summarizes some general characteristics
of the tested data sets, which come from the Pizza & Chilli Corpus and the
Pizza & Chili Highly Repetitive Corpus. For each tested data set, we randomly
choose 10000 query patterns of length 10 and measure the average number of I/Os
incurred for a query.

Table 1: Statistics of the tested data sets
File size (MB) σ File size (MB) σ
world leaders 44.79 89 dblp.xml 282.42 97
pitches 53.25 133 dna 385.22 16
influenza 147.67 15 para 409.38 5
sources 201.1 230 english 500 226
kernel 246.01 160 proteins 1129.2 27

B. Effect of d

As far as we know, the group size d is a key parameter in mKD-GBWT. Thus, in this
section we evaluate the effect of d on the performance of mKD-GBWT, and show the
results in Figure 2.

By Figure 2, we know that the space of mKD-GBWT decreases as d increases.
This is because that the number of sampled suffixes of T becomes smaller as d
increases. As a result, the occupied space of cSBT in mKD-GBWT storing these
sampled suffixes decreases. Meanwhile, the number of obtained points also decreases,
and hence reduces the space occupied by the kd-trees. Note that, as d increases, the
decrement of the space of mKD-GBWT is gradually getting smaller. For example,
when d varies from 2 to 4, the space decreases by about 50%, while it only decreases
by 20% when d increases from 6 to 8.

On the contrary, the number of query I/Os incurred by mKD-GBWT increases
as d increases. Several factors may contribute to this trend: (1) as d increases, the
number of suffixes Pk2 increases, which means that we consume more I/Os to search
these suffixes by using cSBT; (2) as a result of (1), we obtain more query rectangles.
Thus, we may perform more range search on the kd-trees. In addition, the increment
of the number of query I/Os becomes smaller as d increases in most case. Considering
space and query I/Os together, we choose d = 6 as the default parameter for mKD-
GBWT.

224

C. Performance of mKD-GBWT

In this section, we compare our mKD-GBWT with the state-of-the-art external text
indexes, including SBT [13] and GBWT [1]. Table 2 shows the index size and query
I/Os for different methods. Note that, for GBWT and mKD-GBWT, we set the
group size d = 6.

Table 2: Index Size (in megabytes) and Query I/Os

Data sets
SBT GBWT mKD-GBWT

Size I/Os Size I/Os Size I/Os
world leaders 302.7 13571 185.8 56223.6 135.8 21216.7
pitches 326 14.5 196.4 109 182 56.1
influenza 941.9 13.8 455.8 333.7 432.9 150
sources 1384.4 47.6 839.8 309.1 624.2 110.1
kernel 1789.8 55.9 900.1 326.1 777.8 130.1
dblp.xml 1693.7 239.5 960.5 1271.3 820.3 476.7
dna 2802.6 21.8 1869.7 771.9 1179.8 212.8
para 2767 1279.3 1903.1 5329.4 1252.9 1845.9
english 3574.2 15.9 2028.5 267.2 1574.1 93.5
proteins 8348.8 15.3 4309.3 132.7 3562.9 80.9

As shown in Table 2, SBT consumes the most space as it has stored all suffixes
of the text. Compared with GBWT, the index size of our mKD-GBWT decreases by
10%–35%. This improvement is due to the fact that (1) we replace blind tree with crit-
bit tree to represent each node of the string B-tree, which can avoid to explicitly store
the pointers in the blind tree; (2) we partition the whole region into σ2 subregions,
and each point located in a subregion needs fewer bits in the kd-tree built upon this
subregion.

Considering query I/Os, SBT performs better than GBWT and mKD-GBWT.
The number of query I/Os incurred by mKD-GBWT is only 27%–60% of that of
GBWT, which achieves an excellent performance. This is because that mKD-GBWT
perform the range search on subregions, while GBWT performs the one on the whole
region. In summary, mKD-GBWT is superior to the alternative GBWT in terms of
space and query I/Os, and takes much less space than SBT.

VI. Conclusions

Chien et al. [1] gave an improvement upon their GBWT data structure so as to
achieve high-order entropy-compressed space; it used the wavelet tree [19] and a
variable length blocking coding scheme, paying an extra factor of polylog function
of n in query time.

While our mKD-GBWT index is not optimal in space usage, it performs quickly
in practice. We still have a goal of developing a high-order entropy-compressed index
while achieving fast query performance both in theory and in practice.

VII. Acknowledgments

The authors would like to thank Wing-Kai Hon and Rahul Shah for their discussions
and information regarding GBWT. This work is supported in part by China NSF
grants 61173025, 61373044, and 61741215 and U.S. NSF grant CCF-1017623.

225

References

[1] Y.-F. Chien, W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter, “Geometric
bwt: Compressed text indexing via sparse suffixes and range searching,” Algorithmica,
vol. 71, no. 2, pp. 258–278, 2015.

[2] Y.-F. Chien, W.-K. Hon, R. Shah, and J. S. Vitter, “Geometric burrows-wheeler
transform: Linking range searching and text indexing,” in IEEE Data Compression
Conference, 2008, pp. 252–261.

[3] Y. Zhao and H. Huo, “Source code for mKD-GBWT,” https://github.com/
Hongweihuo-Lab/mKD-GBWT, 2016.

[4] U. Manber and G. Myers, “Suffix arrays: a new method for on-line string searches,”
SIAM Journal on Computing, vol. 22, no. 5, pp. 935–948, 1993.

[5] R. Grossi and J. S. Vitter, “Compressed suffix arrays and suffix trees with applications
to text indexing and string matching,” SIAM Journal on Computing, vol. 35, no. 2,
pp. 378–407, 2005.

[6] P. Ferragina and G. Manzini, “Indexing compressed text,” Journal of the ACM, vol. 52,
no. 4, pp. 552–581, 2005.

[7] A. Aggarwal and J. S. Vitter, “The input/output complexity of sorting and related
problems,” Communications of the ACM, vol. 31, no. 9, pp. 1116–1127, 1988.

[8] J. S. Vitter, “Algorithms and data structures for external memory,” Foundations and
Trends R© in Theoretical Computer Science, vol. 2, no. 4, pp. 305–474, 2008.

[9] D. Arroyuelo and G. Navarro, “A lempel-ziv text index on secondary storage,” in
Proceedings of Symposium on Combinatorial Pattern Matching, 2007, pp. 83–94.

[10] Y.-F. Chien, W.-K. Hon, R. Shah, and J. S. Vitter, “I/O-efficient compressed text
indexes: From theory to practice,” in IEEE Data Compression Conference, 2010, pp.
426–434.

[11] R. González and G. Navarro, “A compressed text index on secondary memory,” Journal
of Combinatorial Mathematics and Combinatorial Computing, vol. 71, p. 127, 2009.

[12] V. Mäkinen, G. Navarro, and K. Sadakane, “Advantages of backward searching-efficient
secondary memory and distributed implementation of compressed suffix arrays,” in
Proceedings of Symposium on Algorithms and Computation, 2004, pp. 681–692.

[13] P. Ferragina and R. Grossi, “The string B-tree: a new data structure for string search
in external memory and its applications,” Journal of the ACM, vol. 46, no. 2, pp.
236–280, 1999.

[14] E. M. McCreight, “A space-economical suffix tree construction algorithm,” Journal of
the ACM, vol. 23, no. 2, pp. 262–272, 1976.

[15] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[16] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter, “Bkd-tree: A dynamic scalable
kd-tree,” in International Symposium on Spatial and Temporal Databases, 2003, pp.
46–65.

[17] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,”
Digital Equipment Corporation, Palo Alto, CA, Tech. Rep., 1994.

[18] S. Gog, A. Moffat, J. S. Culpepper, A. Turpin, and A. Wirth, “Large-scale pattern
search using reduced-space on-disk suffix arrays,” IEEE transactions on knowledge
and data engineering, vol. 26, no. 8, pp. 1918–1931, 2014.

[19] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed text indexes,”
in Proceedings of the 14th annual ACM-SIAM symposium on Discrete algorithms, 2003,
pp. 841–850.

226

