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Abstract Given a set D of patterns of total length n, the dictionary matching prob-
lem is to index D such that for any query text T , we can locate the occurrences of any
pattern within T efficiently. This problem can be solved in optimal O(|T |+occ) time
by the classical AC automaton (Aho and Corasick in Commun. ACM 18(6):333–340,
1975), where occ denotes the number of occurrences. The space requirement is O(n)

words which is still far from optimal. In this paper, we show that in many cases, spar-
sification technique can be applied to improve the space requirements of the indexes
for the dictionary matching and its related problems. First, we give a compressed
index for dictionary matching, and show that such an index can be generalized to
handle dynamic updates of D. Also, we give a compressed index for approximate
dictionary matching with one error. In each case, the query time is only slowed down
by a polylogarithmic factor when compared with that achieved by the best O(n)-word
counterparts.
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1 Introduction

Given a set D = {P1,P2, . . . ,Pd} of d patterns of total length n, the dictionary match-
ing problem is to index D such that for any query text T , we can locate the occur-
rences of any pattern within T efficiently. This problem has many practical applica-
tions, such as locating genes in a genome, or detecting viruses in a computer program
segments. The classical AC automaton proposed by Aho and Corasick [1] requires
O(n) words of index space in the worst case, and can answer a query in optimal
O(|T | + occ) time, where occ denotes the number of occurrences. Over the years,
several advances were made to solve the dynamic version of this problem (where pat-
terns can be inserted to or deleted from D) [3–5]. Recently, there has been interests
in making the index space compressed or succinct [8, 11, 22, 24]. Suppose that char-
acters in D are chosen from an alphabet Σ of size σ . Without loss of generality, we
shall assume that the alphabet is equal to the set {1,2, . . . , σ } throughout the paper.
An index of D is said to be succinct if it requires space at most the worst-case space
complexity of D, ignoring lower order terms (i.e., taking space (1 + o(1))n logσ bits
in our case); furthermore, it is said to be a compressed index if, ignoring lower order
terms, it requires space at most the space of a compressed representation of D, mea-
sured by its zeroth-order entropy or even its kth-order entropy. The two entropy terms
are denoted by H0 and Hk , respectively, and it follows that Hk ≤ H0 ≤ logσ . In this
paper, we propose a compressed index for the dictionary matching and a succinct
index for the dynamic dictionary matching.

We can generalize the dictionary matching problem to the approximate dictionary
matching problem by relaxing the definition of an occurrence. Precisely, in approx-
imate dictionary matching with k errors, we consider P occurs at position i in T

whenever there is some substring T [i..j ] such that the edit distance between T [i..j ]
and P is at most k. The edit distance between a string X and a string Y is the mini-
mum number of edit operations (i.e., substitution, insertion, or deletion, of a charac-
ter) to transform X into Y . In this paper, we focus on the case where k = 1, and give
a compressed index for approximate dictionary matching with one error.

A common way to solve dictionary matching problem in the uncompressed O(n)-
word space is to apply suffix tree [27, 31] as a tool to support efficient searching and
updates. In this paper, we apply a simple technique called sparsification to reduce the
space of the suffix tree. Intuitively, a suffix tree attempts to store all possible suffixes
of each pattern in D, while sparsification selects only a subset of these suffixes so as
to achieve space reduction. Such a technique can be dated back since Kärkkäinen and
Ukkonen’s paper in [25], and has been successfully applied in obtaining compressed
indexes for other string matching problems [12, 23]. The major challenge is to de-
sign new querying strategies to overcome the absence of the suffixes, while keeping
the searching time as close to the optimal as possible. Other than that, the proposed
indexes are all conceptually simple (as we are still working with an uncompressed
suffix tree, though sparsified), and thus can be easily implemented in practice.
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Table 1 Existing dictionary matching indexes

Index Space (bits) Query time

[1] O(n logn) O(|T | + occ)

[11] O(nσ) O(|T | log2 n + occ log2 n)

This O(n logσ) O(|T | log logn + occ)

This nHk + o(n log σ) + O(d logn) O(|T |(logε n + logd) + occ)

[8] nH0(D) + O(n) O(|T | + occ)

[24] nHk(D) + O(n) O(|T | + occ)

The organization of this paper is as follows. Section 1.1 reviews the existing re-
lated indexes for the dictionary matching, dynamic dictionary matching, and approxi-
mate dictionary matching problems. Section 2 gives the preliminaries and defines use-
ful notation. In Sect. 3, we describe our compressed index for the dictionary matching
problem, while in Sect. 4, we give our succinct index for the dynamic version of the
problem. In Sect. 5, we show our compressed index for the approximate dictionary
matching problem, for the case when k = 1. We conclude the paper in Sect. 6.

1.1 Comparisons with Previous Results

The dictionary matching problem can be solved in optimal O(|T | + occ) time by the
classical AC automaton [1], where occ denotes the number of occurrences. Alterna-
tively, we may store the (generalized) suffix tree for the patterns in D, and the query
time remains O(|T |+occ). Both indexes require O(n) words in the worst case. Chan
et al. [11] showed that the index space can be reduced to O(nσ) bits, while query is
slowed down by a factor of O(log2 n).1 In their scheme, space reduction is achieved
by compressing the suffix tree directly, based on various elegant, but complicated,
tools for compressed text indexing (e.g., the compressed suffix arrays [20], the FM-
index [16], the compressed suffix tree [30]). In contrast, we show that the sparsifica-
tion technique, despite its simplicity, is capable to give a compressed index for the
dictionary matching, which simultaneously improve both the space requirement and
query time.

Very recently, Belazzougui [8] successfully compressed the AC automaton di-
rectly, using the tools for compressed indexing, and obtained the first nH0-bit index
(ignoring lower-order space term) with optimal O(|T | + occ) query time. Hon et
al. [24] later adapted Belazzougui’s index to reduce the space to nHk , while keeping
the query time optimal. Although our index does not give as good a performance as
the indexes of [8] and [24], we still explain our index in details, due to its simplicity
and its applicability in handling dynamic updates (where the latter is not yet possible
with the indexes of [8] or [24]). A summary of the above indexes for the dictionary
matching problem is shown in Table 1.

For dynamic dictionary matching, Amir et al. gave an O(n logn)-bit index that can
answer a query in O((|T | + occ) logn/ log logn) time, while updates (insertion or

1In fact, Chan et al.’s index can support dynamic updates of D.
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Table 2 Existing dynamic dictionary matching indexes

Index Space (bits) Query time Update time

[5] O(n logn) O((|T | + occ) logn/ log logn) O(|P | logn/ log logn)

[11] O(nσ) O((|T | + occ) log2 n) O(|P | log2 n)

This (1 + o(1))n log σ + O(d logn) O(|T | logn + occ) O(|P | logσ + log2 n)

Table 3 Existing approximate
dictionary matching indexes (for
k = 1)

Index Space (bits) Query time

[18] O(n1+ε) O(|T | log logn + occ)

[6] O(n log3 n) O(|T | log3 n log logn + occ)

[13] O(n logn + d logd logn) O(|T | logd log logd + occ)

This nHk + O(n) + o(n logσ) O(σ |T | log3 n log logn + occ)

deletion of a pattern P ) can be done in O(|P | logn/ log logn) time. Their approach
consists of constructing a generalized suffix tree of the patterns with suffix links.
In particular, suffix links are exploited to avoid repeatedly matching the characters
of T when different positions of T are examined for pattern occurrences. Chan et
al. [11] were the first to present O(nσ)-bit index to solve this problem, by extending
various compressed text indexing tools for dynamic updates, and combining these
tools to simulate the suffix tree. In this paper, we show that we can dynamize our
compressed index, and solve the dynamic dictionary matching problem. A summary
of the existing results is shown in Table 2.

For approximate dictionary matching, we focus on the case with one error in this
paper (k = 1). The best-known index, in terms of query performance, is by Fer-
ragina et al. [18], which requires O(n1+ε) words of space and answers a query in
O(|T | log logn + occ) time. Amir et al. [6] gave a suffix-tree-based index with a
reduced space of O(n log2 n) words, and showed how to reduce the query answer-
ing into a three-dimensional range reporting problem, so that the query time be-
came O(|T | log3 n log logn + occ). Later, Cole et al. [13] reduced the index space
further to O(n + d logd) words, and simultaneously improved the query time to
O(|T | logd log logd + occ). In this paper, we adapt Amir et al.’s index with the spar-
sification technique to obtain a compressed index for this problem. Nevertheless, we
reduce the query answering into a two-dimensional range reporting problem instead,
so as to control the space of the overall index. A summary of the existing approximate
dictionary matching indexes for the case k = 1 is shown in Table 3.

2 Preliminaries

2.1 Locus of a String

Let Δ = {S1, S2, . . . , Sr} be a set of r strings over an alphabet Σ of size σ . Let $
and # be two characters not in Σ , whose alphabetic orders are, respectively, smaller
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than and larger than any character in Σ . Let C be a compact trie of the set of strings
{S1$, S1#, S2$, S2#, . . . , Sr$, Sr#}. Then, each string Si$ or Si# corresponds to a dis-
tinct leaf in C, and each Si corresponds to an internal node in C. Also, each edge is
labeled by a sequence of characters, such that for each leaf representing some string
Si$ (or Si#), the concatenation of the edge labels along the root-to-leaf path is exactly
Si$ (or Si#). For each node v, we use path(v) to denote the concatenation of edge
labels along the path from root to v.

Definition 1 For any string Q, the locus of Q in C is defined to be the lowest node v

(i.e., farthest from the root) such that path(v) is a prefix of Q.

For simplicity, we refer C to be the compact trie for Δ, despite its constituent
strings are constructed by appending a special character to each string in Δ.

2.2 Suffix Tree and Dictionary Matching

The suffix tree [27, 31] for a set of strings {S1, S2, . . . , Sr} is a compact trie storing all
suffixes of each Si . For each internal node v in the suffix tree, it is shown that there
exists a unique internal node u in the tree, such that path(u) is equal to the string
obtained from removing the first character of path(v). Usually, a pointer is stored
from v to such a u; this pointer is known as the suffix link of v. By utilizing the suffix
links, the suffix tree can be updated according to the insertion or deletion of Si in the
set S with O(|Si | logσ) time [15].

Given a set of patterns D = {P1,P2, . . . ,Pd}, suppose that we store the cor-
responding suffix tree. Then, inside the suffix tree we mark each node v with
path(v) = Pi for some i; after that, each node stores a pointer to its nearest marked
ancestor. Let T be any input text, and T (j) be the suffix of T starting at the j th
character. Immediately, we have the following:

Lemma 1 Suppose that the locus of T (j) in the suffix tree of D is found. Then, we
can report all occ patterns which appear at position j in T using O(1 + occ) time.

Proof A pattern Pi appears at position j of T if and only if it is a prefix of T (j).
Let u be the locus of T in the trie. Then, Pi is a prefix of T if and only if u has a
marked ancestor v with path(v) = Pi . Thus, reporting all patterns which appear at
position j of T is equivalent to reporting all marked ancestors of u. The latter is done
by repeatedly tracing pointers of the nearest marked ancestor, starting from u. �

By utilizing the suffix links, the locus of T (j) for all j can be found based on a
traversal in the suffix tree, in a total of O(|T |(tchild + tslink)) time, where tchild denotes
the time to access a child node in the suffix tree, and tslink denotes the time to traverse
a suffix link. Traversal of a suffix link takes O(1) time if the suffix link is explicitly
stored. In case the suffix tree is static (thus no updates in D), tchild = O(1) since we
can maintain all children pointers of a node by perfect hashing [21], taking space
linear to the number of children, and guaranteeing worst-case O(1) time access. In
general, when the suffix tree is dynamic, tchild = O(logσ), where we maintain the
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children pointers by a balanced binary search tree of height O(logσ). We summarize
the discussion in the following lemma.

Lemma 2 The loci of all T (j) in the suffix tree for D can be found in either O(|T |)
time if no updates of D are allowed, or O(|T | logσ) time if the suffix tree supports
updating of D; in the latter case, insertion or deletion of a pattern P in D can be
done in O(|P | logσ) time, based on the algorithm in [27].

2.3 Suffix Arrays

The suffix array SA[1 . . . n] is an array which stores the starting positions of all the
suffixes when the suffixes are sorted in the lexicographical order [26]. In other words,
SA[i] is the starting position of the ith lexicographically smallest suffix (among all the
n suffixes stored). We also define its inverse, SA−1, to be an array such that SA[i] = j

if and only if SA−1[j ] = i. A suffix array takes O(n logn) bits of space and supports
pattern matching query in O(|P | + logn + occ) time [26]. For any pattern P , it is
known that all suffixes whose prefix matches exactly with P will correspond to a
contiguous region in SA. The range of such a region is called the suffix range of P .
By storing SA and its inverse, we have the following lemma.

Lemma 3 Let [�1, r1] and [�2, r2] be the suffix ranges of patterns P1 and P2. Then
the suffix range [�, r] of P1P2 (concatenation of P1 and P2) can be computed in
O(logn) time.

Proof Note that �1 ≤ � ≤ r ≤ r1 and the task is to find the range of i, such that
�1 ≤ i ≤ r1 and �2 ≤ SA−1[SA[i] + |P1|] ≤ r2. This can be performed in O(logn)

time by doing a binary search on i. �

Lemma 4 Let T be the input text, and T (j) be the suffix of T starting at the j th
character. By preprocessing T initially in O(|T | logn) time in O(|T | logn) bits, then
for any character c, the locus of cT (j) in a suffix tree for any j can be answered in
O(log2 n) time, where cT (j) is a string formed by the concatenation of c and T (j).

Proof For i = 1,2,4,8, . . . , we divide the text T into |T |/i different blocks, each
of length i, and find the locus of each block. This takes a total of O(|T | logn) time
by Lemma 2. Now the locus of cT (j) can be obtained as follows: Partition T (j)

into O(logn) maximal intervals, each starting and ending with a blocking boundary.
Next, continuously add the partition of T (j) to c, and compute the suffix range by
Lemma 3. Once the suffix range is empty, we backtrack to get the longest prefix of
T (j) that can be added to c with a non-empty suffix range. Thus, O(logn) suffix
ranges are computed, taking a total of O(log2 n) time. The total space for storing the
preprocessed data is O(|T |) words, or O(|T | logn) bits. �

2.4 String B-Tree

String B-tree [15] is an external-memory index for a set of strings that supports var-
ious string matching functionalities. It assumes an external memory model that we
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can read or write a disk page of B words in one I/O operation. By setting B = Θ(1),
string B-tree can be readily applied in the internal memory model.

Let {P1,P2, . . . ,Pr} be a set of strings over an alphabet of size σ , where P1 ≤
P2 ≤ · · · ≤ Pr lexicographically. Suppose that each string has length at most �, and
their total length is n. The following lemma is an immediate result from Theorem 1
in [15]:

Lemma 5 Assume that the strings are stored separately. We can construct an index
of size O(r logn) bits such that on any input T , we can find the largest i such that
Pi ≤ T lexicographically, and the smallest j such that Pj ≥ T lexicographically,
using O(�/ logσ n + log r) time.

2.5 Centroid Path and Centroid Path Decomposition

Let Γ be a tree with n nodes. We define the size of an internal node v to be the
number of leaves in the subtree rooted at v. Then the centroid path of the tree Δ is
the path starting from the root, so that each node v on the path is the largest-size child
of its parent (where ties are broken arbitrarily). The centroid path decomposition of
the tree Γ is the operation where we decompose each off-path subtree of the centroid
path recursively; as a result, the edges in Γ will be partitioned into disjoint centroid
paths.

Lemma 6 ([13]) The path from the root of Γ to v traverses at most logn centroid
paths.

2.6 Range Minimum Query (RMQ)

Let A be an array of length n. A range minimum query (RMQ) on A takes a query
interval [i, j ] and the task is to return an index k such that A[k] ≤ A[x] for all i ≤
x ≤ j .

Lemma 7 ([19]) By maintaining a structure of size 2n + o(n) bits over A, the RMQ
query can be answered in constant time.

2.7 Three-Sided Range Query Structure

Let R = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of n points in the two-dimensional
n×n grid. Without loss of generality, we assume that xi ≤ xi+1. A three-sided query
on R is defined as follows: Given a query range [x�, xr ] × [−∞, y], report all points
(xi, yi) such that x� ≤ xi ≤ xr and yi ≤ y.

Lemma 8 By maintaining a data structure of size O(n logn) bits over R, the three-
sided query can be answered in O(log logn + |output|), where |output| denotes the
output size.

Proof For answering this query efficiently, we maintain two arrays X and Y , such that
X[i] = xi and Y [i] = yi . Further, we build a predecessor query structure [32] over X
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and an RMQ structure of Lemma 7 over Y . Now, whenever a query comes, we first
find the maximal range X[�′ . . . r ′] (using predecessor search in X in O(log logn)

time), such that x� ≤ x�′ ≤ xr ′ ≤ xr . Now our task is to retrieve all points Y [k] ≤ y

such that �′ ≤ k ≤ r ′. This can be done by performing RMQ repeatedly as follows
(where we are simulating the corresponding search in a priority search tree [28]). First
we obtain the minimum value in this range (say Y [k]) and we check if Y [k] ≤ y. If
so, we report this as an output and we recursively perform this query in the subrange
Y [�′ . . . (k−1)] and Y [(k+1) . . . r ′]. Whenever RMQ returns a value which is greater
than y, we stop recursing in that interval further. The total time can be bounded by
O(log logn + |output|), where |output| denotes the output size. �

2.8 Computation Model

We assume the standard word RAM with word-size Θ(logn) bits as our computation
model, where n is the input size of our problem. In this model, standard arithmetic or
bitwise boolean operations on word-sized operands, and reading or writing O(logn)

consecutively stored bits, can each be performed in constant time.

3 Compressed Index for Dictionary Matching

This section describes our compressed index for the dictionary matching problem.
Apart from a sparsified suffix tree, we also make use of an auxiliary index that can
answer prefix matching queries (see Sect. 3.1 for the definition), where the latter
helps in locating the locus more quickly. In the following, we first introduce such an
auxiliary index, and then we give the details of our dictionary matching index.

3.1 Prefix Matching for Patterns

Consider a set of r patterns {P1,P2, . . . ,Pr} over an alphabet of size σ , with the
length of each pattern at most �. Let n be the total length of these r patterns. Without
loss of generality, we assume that P1 ≤ P2 ≤ · · · ≤ Pr lexicographically. The prefix
matching problem is to construct an index for the patterns, so that when we are given
an input text T , we can report efficiently all patterns which are a prefix of T . Solv-
ing this problem can help us solve the original dictionary matching problem. In the
following, we propose two such indexes. The first index works for the general case
where � can be arbitrarily large. The second index targets for the case � ≤ logσ n with
improved matching time.

Later, in Sect. 3.2, we will explain how to reduce (part of) the original dictionary
matching problem into a prefix matching problem. The first index can be applied to
obtain a compressed nHk-bit index for the dictionary matching problem, while the
second index can be applied to speed up the query time when slightly more space
(O(n logσ) bits) is allowed.
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3.1.1 Index for General Patterns

The first index consists of three data structures, namely a compact trie, a string B-tree,
and an LCP array (to be defined shortly). We store a compact trie C comprising the r

patterns. Inside the compact trie, for each node, we store the length of its path label
in the node. Also, we mark each node v with path(v) = Pi for some i; after that, each
node stores a pointer to its nearest marked ancestor. Based on the same argument as
we prove Lemma 1, we have the following:

Lemma 9 Suppose that the locus of a string T in the compact trie C is found. Then,
we can report all occ patterns which are prefix of T using O(1 + occ) time.

To facilitate finding the locus of T in the compact trie, we store a string B-tree for
the r patterns. In addition, we store an LCP array which is defined as follows: Let
πi denote the longest common prefix of Pi and Pi+1, and let wi be the node in the
compact trie with path(wi) = πi . The LCP array is an array L such that L[i] stores
the length of the longest common prefix |πi | = |path(wi)| and a pointer to wi . By
using the string B-tree only, we obtain the following result.

Lemma 10 Among all r patterns, we can find the lexicographically smallest one and
the lexicographically largest one, which share a longest common prefix with T , in
O(�/ logσ n + log r) time. The length of such a longest common prefix can also be
reported.

Proof We first compute the length m of the longest common prefix between T and
the desired answers. By Lemma 5 we can find the largest j such that Pj is at most
T lexicographically, using O(�/ logσ n + log r) time. Then, either Pj or Pj+1 must
be a string which shares the longest common prefix with T . Checking which string is
the desired one, and finding the length m, can be done by comparing T with Pj and
Pj+1 in a straightforward manner, with an extra O(�/ logσ n) time.

Once m is known, to obtain the lexicographically smallest answer, it is sufficient to
apply Lemma 5 again to get the lexicographically smallest pattern that is larger than
T [1..m]$. Similarly, we can obtain the lexicographically largest answer by finding
the lexicographically largest pattern that is smaller than T [1..m]#. Both steps require
an extra O(�/ logσ n + log r) time. �

Let Px and Py be, respectively, the lexicographically smallest and largest strings
reported in the above lemma which share the longest common prefix with T . Let m

be the length of such a longest common prefix. Depending on whether the traversal
of T [1..m] in the compact trie ends at a node or in the middle of an edge, the locus
of T in the compact trie will be one of the following two cases:

Case 1: The lowest common ancestor z of the node u that corresponds to Px (i.e.,
path(u) = Px ) and the node v that corresponds to Py (i.e., path(v) = Py );

Case 2: The parent p of z.

The lowest common ancestor z may not be found directly using our current auxil-
iary data structures (though if we are willing to store an extra structure for reporting
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lowest common ancestor [10], it can be done directly). Nevertheless, it can be seen
that the parent p of z must either be wx−1 (which corresponds to the longest common
prefix of Px−1 and Px ) or wy (which corresponds to the longest common prefix of
Py and Py+1). To distinguish which is the correct parent, we consider the lengths of
their path labels |πx−1| and |πy |, and select the node whose corresponding length is
closer to m. Thus, we can find p by a constant number of accesses to the LCP array.

Once p, and the length m′ of its path label, are known, we can find z by locating
the p’s child whose edge label starts with T [m′ +1]. This can be done in tchild = O(1)

time by following the child pointer in the compact trie. Finally, to decide whether the
locus of T belongs to Case 1 or Case 2, it is sufficient to check if the length of z’s
path label is exactly m. If so, it will be Case 1; otherwise, it will be Case 2.

Thus, by using the string B-tree and the LCP array, we have:

Lemma 11 We can find the locus of T in the compact trie in O(�/ logσ n + log r)

time.

Suppose that the patterns are stored separately so that we can retrieve any consec-
utive t characters of any pattern in O(1 + t/ logσ n) time, for any t . Then, the space
of the compact trie, the string B-tree, and the LCP array each takes O(r logn) bits.
This gives the following theorem.

Theorem 1 Given r patterns of total length n, with the length of each pattern at
most �. Suppose the patterns are stored separately. We can construct an O(r logn)-
bit index such that we can report every pattern which is a prefix of any input T in
O(�/ logσ n + log r + occ) time.

3.1.2 Index for Very Short Patterns

When � is at most logσ n, Theorem 1 implies that prefix matching can be done in
O(1 + log r + occ) time. Here, we give an alternative index so that the time becomes
O(log logn + occ). The time is better when r is moderately large (say, r = √

n).
Firstly, we observe that the bottleneck O(log r)-term in the previous time bound

comes from searching the string B-tree. The main purpose of this searching is to
find out the smallest Px which is at least T (and the largest pattern Py which is at
most T ) lexicographically. Now, by padding each Pi with sufficient $ characters to
make its length logσ n, we can consider each padded pattern as a bit string of length
logσ n × logσ = logn, which can in turn be considered as an integer of logn bits.
Here, we assume implicitly that logσ , logσ n and logn are integers. (This assumption
can be removed by using �logσ�, 	(�logn�/�logσ�)
, and �logn�, respectively, in
the analysis. The query time, and the space of the lower-order terms, will only be
affected by a constant factor, so that the asymptotic query time bound, and the overall
space, will still hold.) In this way, we have converted the r patterns into r integers.

We maintain the set of r integers by Willard’s y-fast trie data structure [32] which
takes O(r logn) bits of space and supports O(log logn)-time predecessor and suc-
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cessor queries.2 To search for the desired Px and Py , we follow the same steps as be-
fore. We first find one of the patterns that shares the longest common prefix with T .
This can be done by extracting the first logσ n characters of T (padding $ if T is
too short) and consider it as an integer t . Then, either the pattern that corresponds
to the predecessor of t , or the pattern that corresponds to the successor of t , will be
one sharing the longest common prefix. After that, we can check which is the case,
as well as the length m of such a longest common prefix. As all integers are logn-
bit patterns, the checking, and the reporting of m, can be done in O(1) time by the
standard table-lookup method, using an auxiliary data structure of size o(n) bits.

Next, to get Px , we pad T [1..m] with $ to get an integer t ′, and search for the
successor of t ′ among the r integers to find its corresponding pattern. Similarly, to
get Py , we pad T [1..m] with # to get an integer t ′′, and search for its predecessor in the
set to find its corresponding pattern. In summary, the overall process requires constant
number of predecessor and successor queries, and an extra O(1) time to compute the
length m. In addition, it requires constant number of word RAM operations to prepare
the integers t , t ′, and t ′′, taking O(1) time. Thus, the overall process can be done
in a total of O(log logn) time. Combining this with the subsequent searching with
the compact trie and LCP array in the previous subsection, we obtain the following
theorem.

Theorem 2 Given r patterns of total length n, with the length of each pattern at most
logσ n. Suppose the patterns are stored separately. We can construct an O(r logn)-
bit index such that we can report every pattern which is a prefix of any input T in
O(log logn + occ) time.

3.2 Details of Compressed Indexes for Dictionary Matching

Now we show how to make use of the prefix matching index to build a compressed
dictionary matching index. Let α be a sampling factor to be fixed later. We intend to
build a suffix tree with only one node per α suffixes so that we can save space, and
we also call this suffix tree sparse suffix tree. The missing suffixes will be covered by
more intensive searching with the help of Theorems 1 and 2.

For a string S[1..s], we call every substring S[1 + iα..s] (where 0 ≤ iα < s) an α-
sampled suffix of S. Let D = {P1,P2, . . . ,Pd} be the set of patterns in the dictionary
matching problem. We collect all α-sampled suffixes of each pattern. Then, for each
such suffix, we block every α characters (starting from the beginning) into a single
meta-character, until the number of remaining characters is between 1 and α. We call
the remaining characters the residue of the suffix, which will be ignored temporarily.
The core of our compressed index for D is a sparse suffix tree, which is a compact trie
C storing all the blocked suffixes. Note that in this compact trie, there may be some
degree-1 internal nodes, in case the path label of such a node is exactly a blocked
suffix. Also, the length of the path label of each node is exactly a multiple of α. In
addition, we define the following for this compact trie:

2A predecessor query reports the largest integer in the set that is at most the query integer, while a successor
query reports the smallest integer in the set that is at least the query integer.
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Fig. 1 An example of the sparse suffix tree. The left side shows the tree before adding the marked nodes.
The right side shows the three possible cases of adding a marked node

• For each pattern Pi , a marked node is created in the trie so that the path label of
the marked node is exactly Pi . Let v be the locus of Pi with its residue removed,
which must exist as some node in the trie. There are three possible cases (see Fig. 1
for an illustration):

Case 1: v is a leaf. In this case, we add the marked node as a child of v;
Case 2: v is an internal node, and the residue of Pi is a prefix of the edge label of
some child u of v. In this case, we add the marked node as a child of v, and the
marked node is lying in the middle of the edge (v,u), with edge label equal to the
residue of Pi .

Case 3: v is an internal node, and the residue of Pi is not a prefix of edge label of
any child of v. In this case, we add the marked node as a child of v.

The marked node is said to be associated with the node v.
• Each node u in C, whether marked or unmarked, stores a pointer to the nearest

marked ancestor (i.e., the nearest marked node in the middle of the edges when we
trace from u (inclusive) back to the root).

• For each unmarked node v, it is easy to show that there is a unique node u with
path(u) equal to the string obtained from removing the first meta-character (i.e.,
the first α characters) of path(v). We store a pointer from v to u, called the sparse
suffix link of v.

For any string Q, we define the unmarked locus of Q in the compact trie C to be
the lowest unmarked node v such that path(v) is a prefix of Q. Based on the above
definitions, we have:

Lemma 12 Let v be the unmarked locus of T (j) in C. Let φ be the length of path(v).
Then, a pattern Pi appears at position j of T if and only if one of the following cases
occurs:
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1. the locus of Pi is a marked ancestor of v;
2. v is the unmarked locus of Pi (i.e., v is associated with the marked node of Pi ),

and the residue of Pi is a prefix of T (j + φ).

Based on the above lemma, the occurrence of all patterns appearing at position j

can be found as follows:

1. Find the unmarked locus v of T (j) in C.
2. Report all marked ancestors of v by tracing pointers.
3. Report all marked nodes associated with v, whose corresponding residue is a pre-

fix of T (j + φ).

Consider α = logσ n. For Step 2, reporting the occurrences can be done in O(1 +
occj ) time, where occj denotes the number of patterns which appear at position j

of T . For Step 3, it can be solved by storing a separate data structure of Theorem 2
for each unmarked node that has associated marked nodes. It remains to show how to
find the unmarked locus of T (j) in Step 1 efficiently.

Essentially, if we consider only the unmarked nodes, the compact trie C is equiv-
alent to a suffix tree for blocked patterns, and the sparse suffix links are equivalent
to the suffix links of such a suffix tree. As a result, we can utilize the sparse suffix
links and apply Amir et al.’s [5] traversal algorithm to find the unmarked loci of T (j)

for all j ≡ x (mod α), for a particular x, in O(|T |/α + 1) time. Thus, the unmarked
loci of T (j) for all j can be found applying the traversal algorithm α times, taking
a total of O(|T | + α) = O(|T |) time (Here, we assume |T | ≥ α, as otherwise, the
dictionary matching problem can be trivially be solved in O(1 + occ) time with the
standard table-lookup method, requiring an extra o(n)-bit index space). In summary,
we obtain the following lemma.

Lemma 13 Let {P1,P2, . . . ,Pd} be d patterns over an alphabet of size σ , with total
length n. Suppose the patterns are stored separately in n logσ bits. We can construct
an index taking O(n logσ) + O(d logn) bits such that we can answer the dictionary
matching query for any input T in O(|T | log logn + occ) time.

Proof The searching of the unmarked locus uj of T (j) takes O(|T |) time in total, for
all j . For a particular j , we report part of the occurrences of patterns (that appear at
position j of T ) by tracing pointers, starting from uj . Also, we report the remaining
occurrences from the data structure of Theorem 2 for uj . The total time for reporting
is O(|T | log logn + occ).

For the space complexity, the compact trie takes O(
∑d

i=1(|Pi |/α + 1) logn) bits,
which is O(n logσ + d logn) bits. For the data structures of Theorem 2 in the un-
marked nodes (which have associated marked nodes), they require O(d logn) bits in
total. Thus, the total space is O(n logσ) + O(d logn) bits. �

Notice that for patterns whose length is at most 0.5 logσ n, we can just store them
together using an ordinary suffix tree. The number of such (distinct) patterns is at
most O(

√
n logn), and their total length is at most O(

√
n log2 n). Thus, the suffix tree

occupies O(
√

n log3 n) = o(n) bits of space, and it supports dictionary matching of T
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in O(|T |+occ) time. For the remaining patterns, there are at most d ′ = O(n/ logσ n)

of them; these patterns can be stored using our core index in Lemma 13, taking
O(n logσ)+O(d ′ logn) = O(n logσ) bits. Thus, we can restate the above lemma as
follows:

Theorem 3 Let {P1,P2, . . . ,Pd} be d patterns over an alphabet of size σ , with total
length n. Suppose the patterns are stored separately in n logσ bits. We can construct
an index taking O(n logσ) bits such that we can answer the dictionary matching
query for any input T in O(|T | log logn + occ) time.

Now, let us increase the sampling factor α from logσ n to log1+ε n/ logσ . We store
similar data structures as before, except we replace each data structure of Theorem 2
by a data structure of Theorem 1 for each unmarked node that has associated marked
nodes. In addition, one minor technical point arises: In the previous case where α =
0.5 logσ n, we have implicitly assumed that the child pointers of each node in the
trie are maintained by perfect hashing [21], so that tchild = O(1). However, when
α is set to log1+ε n/ logσ , we can no longer use perfect hashing to maintain the
child pointers, since each branching character is too long (ω(logn) bits). Instead, we
replace the hashing table by a modified Patricia trie (Lemma 9 from Sect. 4.1 in [20]).
As a result, tchild becomes O(logε n) time, and the required space of the modified
Patricia trie is still linear (in words) to the number of children. Consequently, we can
modify Lemma 13 and obtain the following theorem:

Theorem 4 Let {P1,P2, . . . ,Pd} be d patterns over an alphabet of size σ , with total
length n. Suppose the patterns are stored separately in n logσ bits. We can construct
an index taking o(n logσ) + O(d logn) bits such that we can answer the dictionary
matching query for any input T in O(|T |(logε n + logd) + occ) time.

Proof Finding the locus of all T (j) is done in O(|T | logε n+α) = O(|T | logε n) time
(Here, we assume |T | ≥ 0.5 logσ n, as otherwise the dictionary matching problem
can be solved by table-lookup, as mentioned before). Reporting occurrences is done
in O(|T |(logε n + logd) + occ) time. For the space complexity, the compact trie
takes O(

∑d
i=1(|Pi |/α + 1) logn) bits, which is o(n logσ) + O(d logn) bits for α =

log1+ε n/ logσ . For the data structures of Theorem 1 in the unmarked nodes (which
have associated marked nodes), they require O(d logn) bits in total. Thus, the total
space is o(n logσ) + O(d logn) bits. �

Finally, for the patterns which are originally stored separately in its raw form (i.e.,
using n logσ bits), it can be stored in nHk + o(n logσ) bits for k = o(logσ n) using
the scheme proposed by Ferragina and Venturini [17], without affecting the time of
retrieving characters from any pattern. This gives the following corollary.

Corollary 1 For k = o(logσ n), the space occupied by the patterns and the index in
Theorem 4 is nHk + o(n logσ) + O(d logn) bits.
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4 Succinct Index for Dynamic Dictionary Matching

This section describes our succinct index for the dynamic dictionary matching prob-
lem. The design of the index is the same as that in Sect. 3, except that we replace the
static component data structures into their dynamic counterparts. In the following,
we first describe a new index for solving the dynamic marked ancestor problem, and
after that, we give the details of our dynamic dictionary matching index.

4.1 New Approach for Dynamic Marked Ancestors

Let I be a rooted tree with m nodes, where some κ nodes are marked. The dynamic
marked ancestor problem is to index I so that on given any node v, we can report all
the ancestors of v which are marked; in addition, the tree can be updated by insertion
or deletion of nodes, and by marking or unmarking nodes. Existing solutions [2, 5]
are achieved by the reduction to parentheses maintenance problem. In the following,
we use an alternative approach where we solve the problem via management of one-
dimensional intervals. We first discuss the semi-static case, where the tree is static but
we are allowed to mark or unmark an existing node in the tree. After that, we extend
the idea to handle the dynamic case, where the tree structure can further be changed
by node insertion or deletion.

4.1.1 Reduction for Semi-Static Case: Intervals Management

When the structure of the tree is static, and the set of marked nodes is fixed, the
marked ancestor problem can be easily and optimally solved, simply by maintaining
a pointer in each node to its nearest marked ancestor. Nevertheless, we shall show a
non-optimal solution, which acts as a stepping stone towards an efficient solution for
the dynamic case.

First, we perform a pre-order traversal of the tree. Each node is assigned the order
in which it is first visited as its label. For instance, the root has label 1 and its leftmost
child has label 2. For each marked node v, let v′ denote the last node visited in the
subtree rooted at v; also, let Lv and Lv′ be their labels, respectively. It is easy to
check that v is a marked ancestor of a node u if and only if the label of u falls in the
interval [Lv,Lv′ ].

Using the interval tree, we can maintain the κ intervals corresponding to the k

marked nodes in O(κ logm) bits, such that for any node u with label Lu, we can
report all occ intervals containing Lu in O(logκ + occ) time; that is, we can find
all marked ancestors of u in O(logκ + occ) time. The space of the data structure is
O(κ logm) bits.

In fact, if the tree structure is static, the above scheme can also handle marking
or unmarking of a tree node. Each such operation simply corresponds to inserting
or deleting an interval in the interval tree. For this semi-static case, we can apply
the dynamic interval tree by Arge and Vitter [7], where each update can be done in
O(logκ) time, while the query time and the space requirement remain unchanged.
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4.1.2 Reduction for Dynamic Case: Elastic Intervals Management

Note that the interval tree scheme cannot be directly used to handle the fully dynamic
case. In particular, when a node is inserted or deleted in the tree,3 it can cause the
pre-order label of many nodes to change, which in turn can cause the intervals of
many marked nodes to change.

However, observe that the relative order of the pre-order label of the existing
nodes, before and after the updates, are not changed. This motivates us to represent
each marked node v by an “elastic” interval (instead of a fixed interval when v is
marked), where endpoints are represented by pointers to v and v′, so that its interval
can be flexibly changed according to the current ranks of v and v′ in the tree.

Now, suppose that the relative rank of two nodes can be compared online in f (m)

time, where m is the number of nodes in the tree. Then the dynamic interval tree of
Arge and Vitter can easily be adapted to support each update in O(f (m) logκ) time
and each query in O(f (m)(logκ +occ)) time. One simple solution is to overlay a bal-
anced binary tree for the nodes so that the exact rank of any node can be computed in
O(logm) time, thus comparison can be made in O(logm) time. A more complicated
solution is by Dietz and Sleator [14] or by Bender et al. [9], which is an O(m logm)-
bit data structure for maintaining order in a list of items. In this order-maintenance
data structure, an item can be inserted into the list in O(1) time when either its pre-
decessor or its successor is given, while it can be deleted (freely) in O(1) time; given
two items, we can compare their ranks in the list in O(1) time. Thus, we can obtain
a solution of dynamic marked ancestor by interval tree without any sacrifice in query
efficiency.

Yet, there are two important points to note for using the final scheme. First, the
insertion of a node v in a tree will require the knowledge of which node is v’s pre-
decessor or successor. This can be immediately done when v is the first child of its
parent (so that its predecessor is known), or v is inserted in the middle of an existing
edge (whose successor is known). However, it will be time-consuming in case v is the
last child of its parent, in which case we may need to find its successor by traversing
to the root and finding the first branch to the right.

Second, as the endpoints of the interval for a marked node v is now replaced by
pointers to v and v′, it will cause a serious problem if v′ can be deleted while v

is marked (in that case, the endpoint becomes undefined). To avoid this problem,
whenever we mark a node v, we will create a dummy node v̂ and insert it as the
rightmost child of v; on the other hand, v̂ will be deleted only when v becomes
unmarked. As v̂ will always be the last node visited in the subtree rooted at v, v̂ = v′
by definition, so that the interval of each marked node will always be well-defined.

4.2 Details of Succinct Index for Dynamic Dictionary Matching

Dynamic dictionary matching problem can insert or delete a pattern, so we solve
this problem by applying the indexes described in Sect. 3 without the perfect hashing

3Here, node insertion includes the case where a node is inserted into the middle of an existing edge, thus
splitting one edge into two edges. On the other hand, when a degree-1 internal node is deleted, we reverse
the process so that its parent edge and its child edge will be merged to a single edge.
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tables. Recall that in the Sect. 3.2, we can use an ordinary suffix tree for short patterns
(length shorter than α = 0.5 logσ n), with space o(n) bits, such that the loci of all
suffixes of T can be obtained in O(|T | logσ) time. Also, we use a sparse suffix tree
for the long patterns, with space O(n logσ) bits, such that the unmarked loci of all
suffixes of T can be obtained in O(|T | logn) time. Here, we use these two indexes
combined with the dynamic marked ancestor data structures (Sect. 4.1) to solve the
dynamic dictionary matching.

When α = 0.5 logσ n and assuming the patterns are distinct, we can solve the
dictionary matching query as follows.

1. We locate the unmarked loci of all suffixes of T in the sparse suffix tree in
O(|T | logn) time.

2. Then, we apply the dynamic interval tree to report all marked ancestors of these
|T | loci in a total of O(|T | logn + occ�) time, where occ� denotes the number of
occurrences of long patterns.

3. Next, we traverse the ordinary suffix tree to locate the |T | loci of all suffixes of T

and report all marked ancestors in total O(|T | logσ + occs), where occs denotes
the number of occurrences of short patterns.

Thus, in total, O(|T | logn + occ) time is required.
To support the update when a pattern P is inserted, we perform the following.

Firstly, when P is shorter than α, we add P and its suffixes into the ordinary suffix
tree, using O(|P | logσ) time. After that, we mark the node v with path(v) = P , using
O(1) time. Otherwise, when P is long, we shall update the sparse suffix tree and the
dynamic marked ancestor data structures as follows:

1. We first insert the �|P |/α� suffixes of P (with the residue removed) into the sparse
suffix tree, using O((|P |/α + 1) logn) time, by exploiting the suffix links. In ad-
dition, we will ensure that for each node inserted to the sparse suffix tree, if it is
not inserted into the middle of some existing edge, then it will be inserted as the
first child of its parent.

2. Then, for each node inserted, we find either its predecessor or its successor in
the pre-order traversal in O(1) time. Then, we make the corresponding change in
the Dietz-Sleator order-maintenance data structure, using an extra O(1) time per
node. In total, this takes O(|P |/α + 1) time.

3. Next, we add the marked node v with path(v) = P in the sparse suffix tree. This
involves adding a dummy node v̂ as the rightmost child of v. For this step, we find
the successor of v̂ in the sparse suffix tree by traversing from v̂ to the root, and
finding the first branch to the right. This takes O(|P |) time. After that, we update
the order-maintenance data structure in O(1) time. In total, adding the dummy
node v̂ takes O(|P |) time.

4. After that, we add the elastic interval corresponding to the marked node v (i.e.,
pointers to v and v̂) to the dynamic interval tree. This step takes O(logd) time,
where d is the current number of patterns in D.

As the most time-consuming step is Step 1, pattern insertion can be supported in
O((|P |/α + 1) logn) = O(|P | logσ + logn) time. To support pattern deletion, it can
be done similarly (and more easily) with the above steps, using the same time bound.
This gives the following theorem.
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Theorem 5 Suppose that the patterns in D are distinct. Then we can maintain an
O(n logσ)-bit index for Δ, such that on any given text T , a dictionary matching
query can be answered in O(|T | logn + occ) time. Also, the index supports insertion
or deletion of a pattern in D in O(|P | logσ + logn) time.

We can increase α to logn logσ n, so that the space of sparse suffix tree is
further reduced to o(n logσ) + O(d logn) bits. Finding all loci can be done in
O(|T |(tchild + textend)) time, where textend denotes the time to extend the unmarked
locus v of a suffix T (j) to its true locus in the sparse suffix tree. Both tchild and textend

can be bounded by O(α/ logσ n + logd) = O(logn), if we maintain the child point-
ers, and the marked nodes of an unmarked node, by a String B-tree [15]. The total
space required is, respectively, o(n logσ) bits and O(d logn) bits. For updates due
to pattern insertion or deletion, it can be done in similar time as the above, though
we will need to handle extra updates in the String B-tree data structures, which can
be done in O((|P |/α + 1) log2 n)+O(|P |) = O(|P | logσ + log2 n) time. This gives
the following theorem.

Theorem 6 Suppose that patterns in D are stored separately in n logσ bits. Then
we can maintain an o(n logσ) + O(r logn)-bit index for D, such that on any given
text T , dictionary matching query can be answered in O(|T | logn + occ) time. Also,
the index supports insertion or deletion of a pattern in O(|P | logσ + log2 n) time.

5 Compressed Index for Approximate Dictionary Matching

This section describes our compressed index for the approximate dictionary matching
problem. Our approach is to compress the index by Amir et al. [6]. In the following,
we first introduce Amir et al.’s index and its query algorithm, and a simple trick to
trade index space with query time. After that, we show how the compression is made
to achieve our result.

5.1 Amir et al.’s Index

Amir et al. based on the following simple idea to design their index for the approx-
imate matching problem with one error. Let S and P be two strings of length p. To
decide whether S matches P [1..p] with exactly one error, suppose S[i] �= P [i] for
some 1 ≤ i ≤ p. Then, we can check whether S[1..i − 1] is the same as P [1..i − 1]
and S[i + 1..s] is the same as P [i + 1..p]. If this is the case, S matches P with one
error.

We now describe Amir et al.’s index. For a string S, we use SR to denote the
reverse of S. Given a set D = {P1,P2, . . . ,Pd} of d patterns, let DR = {P R

1 ,P R
2 ,

. . . ,P R
d } be the set of patterns such that P R

i is the reverse of Pi . Amir et al.’s index
consists of a suffix tree STD for all the patterns in D, and a suffix tree STDR for all
patterns in DR . In addition, all the nodes in STD and STDR are renamed according
to the centroid path decomposition, such that the nodes in the same centroid path
have contiguous id values. They also maintain a three-dimensional n × n × σ range
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searching index which links the nodes v ∈ STD , u ∈ STDR , and a character c ∈ Σ ,
whenever the concatenation of (i) the reverse of path(u), (ii) c, and (iii) path(v) is
equal to some pattern pi ∈D. Note that u and v are represented by the node id values
which are renamed according to the centroid path decomposition. The approximate
dictionary matching algorithm for the replacement error is given as follows, while the
other types of edit errors (i.e., insertion or deletion) can be handled analogously.

Let T = t1t2 . . . t|T |. For i = 1, . . . , |T | do

1. Find the locus node v of the longest prefix of ti+1 . . . t|T | in STD .
2. Find the locus node u of the longest prefix of ti−1 . . . t1 in STDR .
3. Report all patterns that match a substring of T with exactly one error, where such

an error occurs at location ti .

Steps 1 and 2 can be answered by Lemma 2 in O(|T |) time. For Step 3, it can
be modeled as a range query on the linking structure between all the ancestors of u,
all the ancestors of v, and character c �= ti . Based on the property of centroid path
decomposition and the naming convention for nodes in the suffix trees, all the an-
cestors of u, and all the ancestors of v, will be partitioned into O(logn) ranges.
For those characters not equal to ti , they will fall into the two ranges [1, ti − 1] and
[ti + 1, σ ], or equivalently the two ranges [−∞, ti − 1] and [ti + 1,∞]. Thus, the
query in Step 3 can be decomposed into O(logn) × O(logn) × 2 = O(log2 n) 5-
sided range queries, which can be answered in O(|T | log3 n log logn + occ) time if
we use the range searching index of Overmars [29]. For the space, the bottleneck
comes from Overmars’s index, which requires O(n log2 n) words.

5.1.1 Trading Index Space with Query Time

We show how to reduce the above three-dimensional range searching problem into a
series of two-dimensional range searching problems, so that we can achieve an index
with smaller space. In particular, we use a two-dimensional range searching structure,
such that the nodes v ∈ STD and u ∈ STDR are linked if and only if the concatenation
of (i) the reverse of path(u) and (ii) path(v) is equal to a pattern pi ∈ D. The query
algorithm is modified as follows.

For i = 1, . . . , |T | and for each character c ∈ Σ and c �= ti do

1. Find the locus node v of the longest prefix of ti+1 . . . t|T | in STD .
2. Find the locus node u of the longest prefix of cti−1 . . . t1 in STDR .
3. Report all patterns that match a substring of T with exactly one error, where such

an error occurs at location ti , and the match occurs when ti is replaced by c.

For Step 3 in the modified algorithm, we can model the reporting query as a range
query on the linking structure for all the ancestors of u against all the ancestors of v.
With similar arguments as before, the query can be split into O(log2 n) four-sided
range queries. In fact, a closer look reveals that the ancestors of v in each centroid
path must appear as a prefix in the centroid path. Thus, if we partition the linking
structure into separate linking structures, one for each centroid path in STD , the
range of the ancestors of v in a certain centroid path will correspond to a contiguous
range starting from the beginning. Consequently, the O(log2 n) four-sided queries on
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the original linking structure will become O(log2 n) three-sided queries on O(logn)

different linking structures, where each query can be answered efficiently using the
structures of Lemma 8 described in Sect. 2.7. This gives the following theorem.

Theorem 7 Approximate dictionary matching query with one error can be performed
in O(σ |T | log2 n log logn + occ) by maintaining an O(n)-word index.

5.2 Compressed Approximate Dictionary Matching with One Error

We now describe our index for compressed approximate dictionary matching with
one error. Our approach is to answer a query with the idea in Sect. 5.1.1, and con-
struct a corresponding compressed index with sparsification technique. We handle
long patterns (|Pi | ≥ logn) and short patterns (|Pi | < logn) separately using two dif-
ferent indexes.

5.2.1 Handling Long Patterns

In the following, we shall adopt the definitions of residue and sparse suffix tree, and
the related notion, from Sect. 3.2. Given a sampling factor α and a pattern P , we use
trunc(P ) to denote the pattern formed by removing the residue of P . Let trunc(D)

denote the set of patterns {trunc(P1), . . . , trunc(Pd)}, and trunc(D)R denote the cor-
responding set of reverse patterns.

We shall set α = logn, and maintain two sparsified suffix trees. The first one is
the sparse suffix tree ΔF for D, while the second one is an ordinary suffix tree ΔR

for the ‘blocked’ patterns in trunc(D)R (every α characters in each pattern is blocked
into a single meta-character). Intuitively, these two suffix trees correspond to the two
suffix trees used in Amir et al.’s index. To facilitate the query algorithm, all pattern
residues associated to an unmarked node in the sparse suffix tree for D are maintained
by a Patricia trie, and we maintain a linear-space index [10] to support constant-time
lowest common ancestor (LCA) query.

To find all 1-error pattern matches within an input text T , we classify the matches
into two groups. The first one contains those matches with error occurring in the
‘blocked’ part of the pattern, while the second one contains those matches with error
occurring in the residue part of the pattern. To obtain the matches in the first group,
our method is based on the following observation:

Observation 1 For a string S, let ζ(S) denote the maximal suffix of S whose length
is a multiple of α, and ρ(S) denote the maximal prefix of S whose length is a multiple
of α. Suppose that a pattern P matches a substring T [j..j + |P | − 1], with exactly
one replacement error inside the ith block of P . Then (i) the prefix of P of length
(i − 1)α is a suffix of ζ(T [1..j + (i − 1)α − 1]), (ii) the ith block of P has one
mismatch with T [j + (i − 1)α..j + iα − 1], and (iii) the remaining suffix of P is a
prefix of ρ(T [j + iα..|T |]).

We shall use the framework, as shown in Algorithm 1, to find all the matches in
the first group. Now, we describe the details of each step in Algorithm 1.
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Algorithm 1 Finding all matches in the first group
For j = 1, . . . , α do
For i = 1, . . . , |T |/α do
Change each character in tj+(i−1)α . . . tj+iα−1 for σ times. For each change, let β be
the meta-character obtained, and we do the following: /* executed with σα

different βs for each combination of i and j */

1. Find the locus node v of tj+iα . . . t|T | in ΔF .
2. Find the locus node u of βRtj+(i−1)α−1 . . . t1 in ΔR .
3. Report all patterns that match a substring of T with exactly one error, where such

an error occurs at the non-residue of the pattern, and the match occurs when the
substring tj+(i−1)α . . . tj+iα−1 is replaced by β .

• For each round j , Step 1 can be performed in a total of O((|T |/α + 1) log(σα)) =
O((|T | + α) logσ) time, based on the result of Lemma 2. Thus, the overall time
spent in Step 1 is O((|T | + logn) logn logσ) time.

• For each particular β , Step 2 can be performed by first finding the suffix range
of βR in ΔR , using O(α logn) = O(log2 n) time, and then apply the result of
Lemma 4 to obtain the desired locus, in O(log2 n) time. Since we need to pre-
process T before applying Lemma 4, each round j requires an extra O(|T | logn)

preprocessing time, and O(|T |/α + 1) words of working space. Thus, Step 2 can
be performed in an overall of α×|T |/α×O(σα)×O(log2 n)+O(|T | logn) time,
which is bounded by O(σ |T | log3 n).

• For Step 3, we use the same scheme as in Sect. 5.1,which takes O(log2 n log logn+
|output|) time for each β in each subround i. Thus, Step 3 can be performed in an
overall of α × |T |/α ×O(σα)× log2 n log logn+O(occ) time, which is bounded
by O(σ |T | log3 n log logn + occ).

For the index space, the sparse suffix trees require O(
∑d

i=1(|Pi |/α + 1) logn) =
O(n) bits, while the range searching structure for Step 3 also needs O(

∑d
i=1(|Pi |/

α + 1) logn) = O(n) bits.
To find all the matches in the second group, we shall use the framework as shown

in Algorithm 2. This algorithm is very similar to Algorithm 1, and it is easy to show
that they can be implemented within the same time complexity. The index space and
working space complexity is also the same as we use the same structures. This gives
the following theorem.

Theorem 8 Let D1 ⊆ D be the subset of all long patterns in D, where each pattern
P ∈ D1 has length at least α. Let

∑
P∈D1

|P | = n1 ≤ n. Then D1 can be indexed in
n1Hk(D1)+o(n logσ)+O(n) bits of space, such that all the occurrences of patterns
p ∈D1 which appear as a substring of an online text T with one error can be reported
in O(σ |T | log3 n log logn + occ) time.

5.2.2 Handling Small Patterns

In order to handle short patterns, we maintain an index for exact dictionary matching
for the set of all short patterns (|Pi | ≤ α = logn). Here we choose the nHk(D) +



536 Algorithmica (2015) 72:515–538

Algorithm 2 Finding all matches in the second group
For j = 1, . . . , α do
For i = 1, . . . , |T |/α do
Change each character in tj+iα . . . tj+(i+1)α−1 for σ times. For each change, let β be
the meta-character obtained, and we do the following: /* executed with σα

different βs for each combination of i and j */

1. Find the locus node v of β in ΔF .
2. Find the locus node u of tj+iα−1 . . . t1 in ΔR .
3. Report all patterns that match a substring of T with exactly one error, where

such an error occurs at the residue of the pattern, and the match occurs when the
substring tj+iα . . . tj+(i+1)α−1 is replaced by β .

/* The reporting is done by the same scheme as in
Sect. 5.1. However, to avoid reporting the same oc-
currence repeatedly, we ensure that only the marked
ancestors of v in ΔF, whose path label is long enough
to contain the changed character, are considered. As
v has O(α) ancestors, the desired marked nodes can be
found in O(α) time directly. */

O(n)-bit index by Hon et al. [24] which can perform dictionary matching in optimal
O(|T | + occ) time. Our approach is again by substitution. First we block the text
T into overlapping intervals T1, T2, . . . of length 2α, where Ti = T [1 + (i − 1)α,

. . . , (i + 1)α]. Then we obtain a set of new blocks by introducing an error in each
position of each of these blocks. The total number of such new blocks (with one error)
is O(σα(|T |/α)) = O(σ |T |). Now all these new blocks can be checked separately
to report the matches. However, this approach creates a small problem as all the
reported occurrences need not be an approximate match (some can be exact matches
as the introduced error need not be within an occurrence). However the number of
occurrences within a block is bounded by

(2α
2

)
= O(α2), hence the total number of

outputs can be bounded by O(σ |T |α3) = O(σ |T | log3 n). Among all outputs, those
which match with an error position can be reported as the actual outputs.

Theorem 9 Let D2 ⊆ D be the subset of all short patterns in D, where each pattern
P ∈ D2 has length less than α. Let

∑
P∈D2

|P | = n2 ≤ n. Then D2 can be indexed
in n2Hk(D2) + O(n2) bits space, such that all the occurrences of patterns P ∈ D2

which appear as a substring of an online text T with one error can be reported in
O(σ |T | log3 n) time.

By combining Theorems 8 and 9, we obtain the following result. Note that Hk is
the kth order empirical entropy of the complete set of patterns.

Theorem 10 Approximate dictionary matching with one error can be solved in
nHk + O(n) + o(n logσ) bits space and O(σ |T | log3 n log logn + occ) query time.
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For the discussion so far, we have assumed that the error in a match comes as a
replacement error. It is straightforward to modify the above query algorithms, using
the same index and same query time, to report matches with one insertion or one
deletion error. We omit the details for brevity.

6 Conclusion

We have shown that the sparsification technique can be applied to improve the space
requirements of the indexes, to nearly optimal, for the dictionary matching and two
of its related problems. The indexes are mainly based on the sparsified version of
the suffix tree, which is conceptually very simple; tools that are technically involved
are mainly used in maintaining the child pointers to speed up the access time, and in
maintaining the residues of the patterns. For practical consideration, these tools may
be replaced with the slower but simpler alternatives (such as non-perfect hashing or
balanced binary search tree) to simplify the programming tasks, while keeping the
index space nearly optimal.
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