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Abstract. This paper revisits the problem of indexing a text for ap-
proximate string matching. Specifically, given a text T of length n and a
positive integer k, we want to construct an index of T such that for any
input pattern P , we can find all its k-error matches in T efficiently. This
problem is well-studied in the internal-memory setting. Here, we extend
some of these recent results to external-memory solutions, which are also
cache-oblivious. Our first index occupies O((n logk n)/B) disk pages and
finds all k-error matches with O((|P | + occ)/B + logk n log logB n) I/Os,
where B denotes the number of words in a disk page. To the best of our
knowledge, this index is the first external-memory data structure that
does not require Ω(|P | + occ + poly(log n)) I/Os. The second index re-
duces the space to O((n log n)/B) disk pages, and the I/O complexity is
O((|P | + occ)/B + logk(k+1) n log log n).

1 Introduction

Recent years have witnessed a huge growth in the amount of data produced
in various disciplines. Well-known examples include DNA sequences, financial
time-series, sensor data, and web files. Due to the limited capacity of main
memory, traditional data structures and algorithms that perform optimally in
main memory become inadequate in many applications. For example, the suffix
tree [19,25] is an efficient data structure for indexing a text T for exact pattern
matching; given a pattern P , it takes O(|P |+ occ) time to report all occurrences
of P in T , where occ denotes the number of occurrences. However, if we apply
a suffix tree to index DNA, for example, the human genome which has 3 billion
characters, at least 64G bytes of main memory would be needed.
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To solve the problem in dealing with these massive data sets, a natural way
is to exploit the external memory as an extension of main memory. In this
paradigm of computation, data can be transferred in and out of main memory
through an I/O operation. In practice, an I/O operation takes much more time
than an operation in main memory. Therefore, it is more important to minimize
the number of I/Os.

Aggarwal and Vitter [2] proposed a widely accepted two-level I/O-model for
analyzing the I/O complexity. In their model, the memory hierarchy consists of
a main memory of M words and an external memory. Data reside in external
memory initially (as they exceed the capacity of main memory), and computa-
tion can be performed only when the required data are present in main memory.
With one I/O operation, a disk page with B contiguous words can be read
from external memory to main memory, or B words from main memory can
be written to a disk page in external memory; the I/O complexity of an algo-
rithm counts only the number of I/O operations involved. To reduce the I/O
complexity, an algorithm must be able to exploit the locality of data in external
memory. For instance, under this model, sorting a set of n numbers can be done
in O

(
(n

B log n
B )/ log(M

B )
)

I/Os, and this bound is proven to be optimal. (See [24]
for more algorithms and data structures in the two-level I/O model.)

Later, Frigo et al. [15] introduced the notion of cache-obliviousness, in which
we do not have advance knowledge of M or B in designing data structures
and algorithms for external memory; instead, we require the data structures and
algorithms to work for any given M and B. Furthermore, we would like to match
the I/O complexity when M and B are known in advance. Among others, cache-
obliviousness implies that the algorithms and data structures will readily work
well under different machines, without the need of fine tuning the algorithm (or
recompilation) or rebuilding the data structures. Many optimal cache-oblivious
algorithms and data structures are proposed over the recent years, including
algorithms for sorting [20] and matrix transposition [20], and data structures
like priority queues [8] and B-trees [7].

For string matching, the recent data structure proposed by Brodal and Fager-
berg [9] can index a text T in O(n/B) disk pages1 and find all occurrences of
a given pattern P in T in O((|P | + occ)/B + logB n) I/Os. This index works
in a cache-oblivious manner, improving the String-B tree, which is an earlier
work by Ferragina and Grossi [14] that achieves the same space and I/O bounds
but requires the knowledge of B to operate.2 In this paper, we consider the
approximate string matching problem defined as follows:

Given a text T of length n and a fixed positive integer k, construct an index
on T such that for any input pattern P , we can find all k-error matches of
P in T , where a k-error match of P is a string that can be transformed to
P using at most k character insertions, deletions, or replacements.

1 Under the cache-oblivious model, the index occupies O(n) contiguous words in the
external memory. The value of B is arbitrary, which is considered only in the analysis.

2 Recently Bender et al. [6] have devised the cache-oblivious string B-tree, which is
for other pattern matching queries such as prefix matching and range searching.
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The above problem is well-studied in the internal-memory setting
[21,12,3,10,17,11]. Recently, Cole et al. [13] proposed an index that occupies
O(n logk n) words of space, and can find all k-error matches of a pattern P in
O(|P |+logk n log log n+occ) time. This is the first solution with time complexity
linear to |P |; in contrast, the time complexity of other existing solutions depends
on |P |k. Chan et al. [11] later gave another index that requires only O(n) space,
and the time complexity increases to O(|P | + logk(k+1) n log log n + occ). In this
paper, we extend these two results to the external-memory setting. In addition,
our solution is cache-oblivious.

The main difficulty in extending Cole et al.’s index to the external-memory
setting lies in how to answer the longest common prefix (LCP) query for an arbi-
trary suffix of a pattern P using a few I/Os. More specifically, given a suffix Pi,
we want to find a substring of T that is the longest prefix of Pi. In the internal
memory setting, we can compute all possible LCP values in advance in O(|P |)
time (there are |P | such values) by exploiting the suffix links in the suffix tree of
T . Then each LCP query can be answered in O(1) time. In the external memory
setting, a naive implementation would require Ω(min{|P |2/B, |P |}) I/Os to com-
pute all LCP values. To circumvent this bottleneck, we target to compute only
some “useful” LCP values in advance (using O(|P |/B + k logB n) I/Os), so that
each subsequent LCP query can still be answered efficiently (in O(log logB n)
I/Os). Yet this target is very difficult to achieve for general patterns. Instead,
we take advantage of a new notion called k-partitionable and show that if P is k-
partitionable, we can achieve the above target; otherwise, T contains no k-error
match of P . To support this idea, we devise an I/O-efficient screening test that
checks whether P is k-partitionable; if P is k-partitionable, the screening test
would also compute some useful LCP values as a by-product, which can then
be utilized to answer the LCP query for an arbitrary Pi in O(log logB n) I/Os.

Together with other cache oblivious data structures (for supporting LCA,
Y-Fast Trie and WLA), we are able to construct an index to find all k-error
matches using O((|P | + occ)/B + logk n log logB n) I/Os. The space of the index
is O((n logk n)/B) disk pages. To the best of our knowledge, this is the first
external-memory data structure that does not require Ω(|P |+ occ+poly(log n))
I/Os. Note that both Cole et al.’s index and our index can work even if the
alphabet size is unbounded.

Recall that the internal-memory index by Chan et al. [11] occupies only O(n)
space. The reduction of space demands a more involved searching algorithm. In
particular, they need the data structure of [10] to support a special query called
Tree-Cross-Product. Again, we can ‘externalize’ this index. Here, the difficulties
come in two parts: (i) computing the LCP values, and (ii) answering the Tree-
Cross-Product queries. For (i), we will use the same approach as we externalize
Cole et al.’s index. For (ii), there is no external memory counter-part for the
data structure of [10]; instead, we reduce the Tree-Cross-Product query to a two-
dimensional orthogonal range search query, the latter can be answered efficiently
using an external-memory index based on the work in [1]. In this way, for any
fixed k ≥ 2, we can construct an index using O((n log n)/B) disk pages, which
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can find all k-error matches of P in O((|P |+occ)/B +logk(k+1) n log log n) I/Os.
Following [11], our second result assumes alphabet size is constant.

In Section 2, we give a survey of a few interesting queries that have efficient
cache-oblivious solutions. In particular, the index for WLA (weighted level an-
cestor) is not known in the literature. Section 3 reviews Cole et al.’s internal
memory index for k-error matching and discusses how to turn it into an ex-
ternal memory index. Section 4 defines the k-partitionable property, describes
the screening test, and show how to compute LCP queries efficiently. Finally,
Section 5 states our result obtained by externalizing the index of Chan et al.

2 Preliminaries

2.1 Suffix Tree, Suffix Array, and Inverse Suffix Array

Given a text T [1..n], the substring T [i..n] for any i ∈ [1, n] is called a suffix of
T . We assume that characters in T are drawn from an ordered alphabet which
is of constant size, and T [n] = $ is a distinct character that does not appear
elsewhere in T . The suffix tree of T [19,25] is a compact trie storing all suffixes
of T . Each edge corresponds to a substring of T , which is called the edge label.
For any node u, the concatenation of edge labels along the path from root to
u is called the path label of u. There are n leaves in the suffix tree, with each
leaf corresponding to a suffix of T . Each leaf stores the starting position of its
corresponding suffix, which is called the leaf label. The children of an internal
node are ordered by the lexicographical order of their edge labels.

The suffix array of T [18], denoted by SA, is an array of integers such that
SA[i] stores the starting position of the ith smallest suffix in the lexicographical
order. It is worth-mentioning that SA can also be obtained by traversing the
suffix tree in a left-to-right order and recording the leaf labels. Furthermore,
the descendant leaves of each internal node u in the suffix tree correspond to a
contiguous range in the suffix array, and we call this the SA range of u.

The inverse suffix array, denoted by SA−1, is defined such that SA−1[i] = j
if and only if i = SA[j]. When stored in the external memory, the space of both
arrays take O(n/B) disk pages, and each entry can be reported in one I/O.

Suppose that we are given a pattern P , which appears at position i of T . That
is, T [i..i+ |P | − 1] = P . Then, we observe that P is a prefix of the suffix T [i..n].
Furthermore, each other occurrence of P in T corresponds to a distinct suffix of
T sharing P as a prefix. Based on this observation, the following lemma from
[18] shows a nice property about the suffix array.

Lemma 1. Suppose P is a pattern appearing in T . Then there exists i ≤ j such
that SA[i], SA[i + 1], . . . , SA[j] are the starting positions of all suffixes sharing
P as a prefix. In other words, SA[i..j] lists all occurrences of P in T . ��

2.2 Cache-Oblivious String Dictionaries

Recently, Brodal and Fagerberg proposed an external-memory index for a text
T of length n that supports efficient pattern matching query [9]. Their index
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takes O(n/B) disk pages of storage; also, it does not require the knowledge of
M or B to operate and is therefore cache-oblivious. For the pattern matching
query, given any input pattern P , we can find all occurrences of P in T using
O((|P | + occ)/B + log

B
n) I/Os.

In this paper, we are interested in answering a slightly more general query.
Given a pattern P , let � be the length of the longest prefix of P that appears in
T . We want to find all suffixes of T that has P [1..�] as a prefix (that is, all suffixes
of T whose common prefix with P is the longest among the others). We denote
Q to be the set of starting positions of all such suffixes. Note that Q occupies a
contiguous region in SA, say SA[i..j]. Now we define the LCP query of P with
respect to T , denoted by LCP (P, T ), which reports (i) the SA range, [i, j], that
corresponds to the SA region occupied by Q, and (ii) the LCP length, �.

With very minor adaptation, the index in [9] can readily be used to support
efficient LCP query, as stated in the following lemma.

Lemma 2. We can construct a cache-oblivious index for a text T of length n,
such that given a pattern P , we can find LCP (P, T ), its SA range, and its length
in O(|P |/B + logB n) I/Os. The space of the index is O(n/B) disk pages. ��

2.3 LCA Index on Rooted Tree

For any two nodes u and v in a rooted tree, a common ancestor of u and v is a
node that appears in both the path from u to the root and the path from v to
the root; among all common ancestors of u and v, the one that is closest to u
and v is called the lowest common ancestor of u and v, denoted by LCA(u, v).
The lemma below states the performance of an external-memory index for LCA
queries, which follows directly from the results in [16,5].

Lemma 3. Given a rooted tree with n nodes, we can construct a cache-oblivious
index of size O(n/B) disk pages such that for any nodes u and v in the tree,
LCA(u, v) can be reported in O(1) I/Os. ��

2.4 Cache-Oblivious Y-Fast Trie

Given a set X of x integers, the predecessor of r in X , denoted by Pred(r, X), is
the largest integer in X which is smaller than r. If the integers in X are chosen
from [1, n], the Y-fast trie on X [26] can find the predecessor of any input r in
O(log log n) time under the word RAM model; 3 the space occupancy is O(x)
words. In the external-memory setting, we can store the Y-fast trie easily using
the van Emde Boas layout [7,22,23,20], giving the following lemma.

Lemma 4. Given a set X of x integers chosen from [1, n], we can construct a
cache-oblivious Y-fast trie such that Pred(r, X) for any integer r can be answered
using O(log logB n) I/Os. The space of the Y-fast trie is O(x/B) disk pages. ��
3 A word RAM supports standard arithmetic and bitwise boolean operations on word-

sized operands in O(1) time.



Cache-Oblivious Index for Approximate String Matching 45

2.5 Cache-Oblivious WLA Index

Let R be an edge-weighted rooted tree with n nodes, where the weight on each
edge is an integer in [1, W ]. We want to construct an index on R so that given
any node u and any integer w, we can find the unique node v (if exists) with the
following properties: (1) v is an ancestor u, (2) sum of weights on the edge from
the root of R to v is at least w, and (3) no ancestor of v satisfies the above two
properties. We call v the weighted level ancestor of u at depth w, and denote it
by WLA(u, w).

Assume that log W = O(log n). In the internal-memory setting, we can con-
struct an index that requires O(n) words of space and finds WLA(u, w) in
O(log log n) time [4]. In the following, we describe the result of a new WLA
index that works cache-obliviously, which may be of independent interest. This
result is based on a recursive structure with careful space management, whose
proof is deferred to the full paper.

Lemma 5. We can construct a cache-oblivious index on R such that for any
node u and any integer w, WLA(u, w) can be reported in O(log log

B
n) I/Os.

The total space of the index is O(n/B) disk pages. ��

2.6 Cache-Oblivious Index for Join Operation

Let T be a text of length n. For any two strings Q1 and Q2, suppose that
LCP (Q1, T ) and LCP (Q2, T ) are known. The join operation for Q1 and Q2 is
to compute LCP (Q1Q2, T ), where Q1Q2 is the concatenation of Q1 and Q2.

Cole et al. (Section 5 of [13]) had developed an index of O(n log n) words that
performs the join operation in O(log log n) time in the internal-memory setting.
Their index assumes the internal-memory results of LCA index, Y-fast trie, and
WLA index. In the following lemma, we give an index that supports efficient
join operations in the cache-oblivious setting.

Lemma 6. We can construct a cache-oblivious index on T of O((n log n)/B)
disk pages and supports the join operation in O(log logB n) I/Os.

Proof. Using Lemmas 3, 4, and 5, we can directly extend Cole et al.’s index into
a cache-oblivious index. ��

3 A Review of Cole et al.’s k-Error Matching

In this section, we review the internal-memory index for k-error matching pro-
posed by Cole et al. [13], and explain the challenge in turning it into a cache-
oblivious index.

To index a text T of length n, Cole et al.’s index includes two data structures:
(1) the suffix tree of T that occupies O(n) words, and (2) a special tree structure,
called k-error tree, that occupies a total of O(n logk n) words in space. The k-
error tree connects a number of (k−1)-error trees, each of which in turn connects
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to a number of (k − 2)-error trees, and so on. The bottom of this recursive
structure are 0-error trees.

Given a pattern P , Cole et al.’s matching algorithm considers different ways of
making k edit operations on P in order to obtain an exact match in T . Intuitively,
the matching algorithm first considers all possible locations of the leftmost error
on P to obtain a match; then for each location i that has an error, we can focus on
searching the remaining suffix, P [i + 1..|P |], for subsequent errors. The searches
are efficiently supported by the recursive tree structure. More precisely, at the
top level, the k-error tree will immediately identify all matches of P in T with no
errors; in addition, for those matches of P with at least one error, the k-error tree
classifies the different ways that the leftmost edit operation on P into O(log n)
groups, and then each group creates a search in a dedicated (k − 1)-error tree.
Subsequently, each (k − 1)-error tree being searched will immediately identify all
matches of P with one error, while for those matches of P with at least two errors,
the (k − 1)-error tree further classifies the different ways that the second-leftmost
edit operation on P into O(log n) groups, and then each group creates a search
in a dedicated (k − 2)-error tree. The process continues until we are searching a
0-error tree, in which all matches of P with exactly k errors are reported.

The classification step in each k′-error tree is cleverly done to avoid repeatedly
accessing characters in P . It does so by means of a constant number of LCA,
LCP, Pred, and WLA queries; then, we are able to create enough information
(such as the starting position of the remaining suffix of P to be matched) to
guide the subsequent O(log n) searches in the (k′ − 1)-error trees. Reporting
matches in each error tree can also be done by a constant number of LCA, LCP,
Pred, and WLA queries. In total, it can be done by O(logk n) of these queries.
See Figure 1 for the framework of Cole et al.’s algorithm.

Each LCA, Pred, or WLA query can be answered in O(log log n) time. For
the LCP queries, they are all in the form of LCP (Pi, T ), where Pi denotes
the suffix P [i..|P |]. Instead of computing these values on demand, Cole et al.
computes all these LCP values at the beginning of the algorithm. There are
|P | such LCP values, which can be computed in O(|P |) time by exploiting the
suffix links of the suffix tree of T (the algorithm is essentially McCreight’s suffix
tree construction algorithm [19]). Consequently, each LCP query is returned in
O(1) time when needed. Then, Cole et al.’s index supports k-error matching in
O(|P |+logk n log log n+occ) time, where occ denotes the number of occurrences.

3.1 Externalization of Cole et al.’s Index

One may now think of turning Cole et al.’s index directly into a cache-oblivious
index, based on the existing techniques. While each LCA, Pred, or WLA query
can be answered in O(log log

B
n) I/Os by storing suitable data structures (See

Lemmas 3, 4, and 5), the bottleneck lies in answering the O(logk n) LCP queries.
In the external memory setting, though we can replace the suffix tree with Bro-
dal and Fagerberg’s cache-oblivious string dictionary (Lemma 2), we can no
longer exploit the suffix links as efficiently as before. That means, if we compute
LCP (Pi, T ) for all i in advance, we will need Ω(|P |2/B) I/Os. Alternatively, if
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Algorithm Approximate Match(P )
Input: A pattern P
Output: All occurrences of k-error match of P in T
1. R ← k-error tree of T ;
2. Search Error Tree(P,R,nil);
3. return;

Subroutine Search Error Tree(P, R, I)
Input: A pattern P , an error tree R, information I to guide the search

of P in R
1. if R is a 0-error tree
2. then Output all matches of P with k errors based on R and I ;
3. return;
4. else (∗ R is a k′-error tree for some k′ > 0 ∗)
5. Output all matches of P with k − k′ errors based on R

and I ;
6. Classify potential error positions into O(log n) groups

based on P , R, and I ;
7. for each group i
8. Identify the (k′ − 1)-error tree Ri corresponding

to group i;
9. Compute information Ii to guide the search of P

in Ri;
10. Search Error Tree(P, Ri, Ii);
11. return;

Fig. 1. Cole et al.’s algorithm for k-error matching

we compute each LCP query on demand without doing anything at the begin-
ning, we will need a total of Ω((logk n)|P |/B) I/Os to answer all LCP queries
during the search process. In summary, a direct translation of Cole et al.’s index
into an external memory index will need Ω((min{|P |2, |P | logk n} + occ)/B +
logk n log logB n) I/Os for k-error matching.

In the next section, we propose another approach, where we compute some
useful LCP values using O(|P |/B + k logB n) I/Os at the beginning, and each
subsequent query of LCP (Pi, T ) can be answered efficiently in O(log logB n)
I/Os (see Lemma 9 in Section 4). This result leads us to the following theorem.

Theorem 1. For a fixed integer k, we can construct a cache-oblivious index on
T of size O((n logk n)/B) disk pages such that, given any pattern P , the k-error
matches of P can be found in O((|P | + occ)/B + logk n log log

B
n) I/Os. ��

4 Cache-Oblivious k-Error Matching

Let P be a pattern, and let Pi = P [i..|P |] be a suffix of P . In this section, our
target is to perform some preprocessing on P in O(|P |/B + k logB n) I/Os to
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obtain some useful LCP (Pi, T ) values, such that subsequent query of LCP (Pj , T )
for any j can be answered in O(log logB n) I/Os.

We observe that for a general pattern P , the above target may be difficult to
achieve. Instead, we take advantage by concerning only those P that potentially
has k-error matches. We formulate a notion called k-partitionable and show that

– if P is k-partitionable, we can achieve the above target;
– if P is not k-partitionable, there must be no k-error match of P in T .

In Section 4.1, we first define the k-partitionable property, and describe an
efficient screening test that checks whether P is k-partitionable; in case P is
k-partitionable, the screening test would have computed LCP (Pi, T ) values for
some i as a by-product. In Section 4.2, we show how to utilize these precomputed
LCP values to answer LCP (Pj , T ) for any j in O(log logB n) I/Os.

In the following, we assume that we have maintained the suffix array and
inverse suffix array of T . Each entry of these two arrays will be accessed one at
a time, at the cost of one I/O per access.

4.1 k-Partitionable and Screening Test

Consider the following partitioning process on P . In Step 1, we delete the first �
characters of P where � is the LCP length reported by LCP (P, T ). While P is not
empty, Step 2 removes further the first character from P . Then, we repeatedly
apply Step 1 and Step 2 until P is empty. In this way, P is partitioned into
π1, c1, π2, c2, . . . , πd, cd, πd+1 such that πi is a string that appears in T , and ci is
called a cut-character such that πici is a string that does not appear in T . (Note
that πd+1 is an empty string if P becomes empty after some Step 2.) Note that
this partitioning is unique, and we call this the greedy partitioning of P .

Definition 1. P is called k-partitionable if the greedy partitioning of P consists
of at most k cut-characters. ��

The following lemma states that k-partitionable property is a necessary condition
for the existence of k-error match.

Lemma 7. If P has a k-error match, P is k-partitionable. ��

The screening test on P performs the greedy partitioning of P to check if P
is k-partitionable. If not, we can immediately conclude that P does not have a
k-error match in T . One way to perform the screening test is to apply Lemma 2
repeatedly, so that we discover π1 and c1 in O(|P |/B+logB n) I/Os, then discover
π2 and c2 in O((|P | − |π1| − 1)/B + log

B
n) I/Os, and so on. However, in the

worst case, this procedure will require O(k(|P |/B+logB n)) I/Os. In the following
lemma, we make a better use of Lemma 2 with the standard doubling technique
and show how to use O(|P |/B + k log

B
n) I/Os to determine whether P passes

the screening test or not.

Lemma 8. The screening test on P can be done cache-obliviously in O(|P |/B+
k logB n) I/Os.
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Proof. Let r = �|P |/k�. In Round 1, we perform the following steps.

– We apply Lemma 2 on P [1..r] to see if it appears in T . If so, we double the
value of r and check if P [1..r] appears in T . The doubling continues until we
obtain some P [1..r] which does not appear in T , and in which case, we have
also obtained π1 and LCP (π1, T ).

– Next, we remove the prefix π1 from P . The first character of P will then
become the cut-character c1, and we apply Lemma 2 to get LCP (c1, T ).
After that, remove c1 from P .

In each subsequent round, say Round i, we reset the value of r to be �|P |/k�, and
apply the same steps to find πi and ci (as well as LCP (πi, T ) and LCP (ci, T )).
The algorithm stops when P is empty, or when we get ck+1.

It is easy to check that the above process correctly outputs the greedy parti-
tioning of P (or, up to the cut-character ck+1 if P does not become empty) and
thus checks if P is k-partitionable. The number of I/Os of the above process can
be bounded as follows. Let ai denote the number of times we apply Lemma 2
in Round i, and bi denote the total number of characters compared in Round i.
Then, the total I/O cost is at most O((

∑
i bi)/B + (

∑
i ai) log

B
n) by Lemma 2.

The term
∑

i bi is bounded by O(|P | + k) because Round i compares O(|πi| +
�|P |/k�) characters, and there are only O(k) rounds. For ai, it is bounded by
O(log(k|πi|/|P |) + 1), so that by Jensen’s inequality, the term

∑
i ai is bounded

by O(k). ��

4.2 Computing LCP for k-Partitionable Pattern

In case P is k-partitionable, the screening test in Section 4.1 would also have
computed the answers for LCP (πi, T ) and LCP (ci, T ). To answer LCP (Pj , T ),
we will make use of the join operation (Lemma 6) as follows. Firstly, we deter-
mine which πi or ci covers the jth position of P .4 Then, there are two cases:

– Case 1: If the jth position of P is covered by πi, we notice that the LCP
length of LCP (Pj , T ) cannot be too long since πi+1ci+1 does not appear in
T . Denote πi(j) to be the suffix of πi that overlaps with Pj . Indeed, we have:

Fact 1. LCP (Pj , T ) = LCP (πi(j)ciπi+1, T ).

This shows that LCP (Pj , T ) can be found by the join operations in Lemma 6
repeatedly on πi(j), ci and πi+1. The SA range of πi(j) can be found easily
using SA, SA−1 and WLA as follows. Let [p, q] be the SA range of πi. The
pth smallest suffix is the string T [SA[p]..n], which has πi as a prefix. We
can compute p′ = SA−1[SA[p] + j], such that the p′th smallest suffix has
πi(j) as a prefix. Using the WLA index, we can locate the node (or edge)
in the suffix tree of T corresponding to πi(j). Then, we can retrieve the
required SA range from this node. The LCP query on Pj can be answered
in O(log log

B
n) I/Os.

4 This is in fact a predecessor query and can be answered in O(log logB n) I/Os by
maintaining a Y-fast trie for the starting positions of each πi and ci.
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– Case 2: If ci is the jth character of P , the LCP query on Pj can be answered
by the join operation on ci and πi+1 in O(log logB n) I/Os, using similar
arguments as in Case 1.

Thus, we can conclude the section with the following lemma.

Lemma 9. Let T be a text of length n, and k be a fixed integer. Given any
pattern P , we can perform a screening test in O(|P |/B + k logB n) I/Os such
that if P does not pass the test, it implies there is no k-error match of P in
T . In case P passes the test, LCP (P [j..|P |], T ) for any j can be returned in
O(log log

B
n) I/Os. ��

5 O(n log n) Space Cache-Oblivious Index

To obtain an O(n log n)-space index, we externalize Chan et al.’s internal-memory
index, so that for patterns longer than logk+1 n, they can be searched in O((|P |+
occ)/B + logk(k+1) n log log n) I/Os. Roughly speaking, this index consists of a
‘simplified’ version of the index in Theorem 1, together with the range-searching
index by Arge et al. [1] to answer the Tree-Cross-Product queries. To handle short
patterns, we find that the internal-memory index of Lam et al. [17] can be used di-
rectly without modification, so that short patterns can be searched in O(logk(k+1)

n log log n + occ/B) I/Os.
Due to space limitation, we only state our result obtained by the above

schemes. Details are deferred to the full paper.

Theorem 2. For a constant k ≥ 2, we can construct a cache-oblivious index
on T of size O(n log n/B) pages such that on given any pattern P , the k-error
matches of P can be found in O((|P | + occ)/B + logk(k+1) n log log n) I/Os. For
k = 1, searching takes O((|P | + occ)/B + log3 n logB n) I/Os. ��
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