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a b s t r a c t

This paper revisits the problem of indexing a text for approximate string matching.
Specifically, given a text T of length n and a positive integer k, we want to construct an
index of T such that for any input pattern P , we can find all its k-error matches in T
efficiently. This problem is well-studied in the internal-memory setting. Here, we extend
some of these recent results to external-memory solutions, which are also cache-oblivious.
Our first index occupies O((n logk n)/B) disk pages and finds all k-error matches with
O((|P| + occ)/B + logk n log logB n) I/Os, where B denotes the number of words in a disk
page. To the best of our knowledge, this index is the first external-memory data structure
that does not requireΩ(|P|+occ+poly(log n)) I/Os. The second index reduces the space to
O((n log n)/B) disk pages, and the I/O complexity is O((|P|+occ)/B+ logk(k+1) n log log n).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recent years havewitnessed a huge growth in the amount of data produced in various disciplines.Well-known examples
include DNA sequences, financial time-series, sensor data, and web files. Due to the limited capacity of the main memory,
traditional data structures and algorithms that performoptimally inmainmemory become inadequate inmany applications.
For example, the suffix tree [19,25] is an efficient data structure for indexing a text T for exact pattern matching; given a
pattern P , it takes O(|P| + occ) time to report all occurrences of P in T , where occ denotes the number of occurrences.
However, if we apply a suffix tree to index the human genome, which has 3 billion characters, at least 64G bytes of main
memory would be needed.

To deal with thesemassive data sets, a natural way is to exploit the external memory as an extension of mainmemory. In
this paradigm of computation, data can be transferred in and out of main memory through an I/O operation. In practice, an
I/O operation takes much more time than an operation in main memory. Therefore, it is important to minimize the number
of I/O operations.

Aggarwal and Vitter [2] proposed a widely accepted two-level I/O-model for analyzing the I/O complexity. In their model,
the memory hierarchy consists of a main memory of M words and an external memory of unlimited space. Data reside in
the external memory initially (as they exceed the capacity of the main memory), and computations can be performed only
when the required data are present in the main memory. With one I/O operation, a disk page with B contiguous words can
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be read from the external memory to the main memory, or Bwords from the main memory can be written to a disk page in
the external memory; the I/O complexity of an algorithm counts only the number of I/O operations involved. To reduce the
I/O complexity, an algorithmmust be able to exploit the locality of data in external memory. For instance, under this model,
sorting a set of n numbers can be done in O((nB log n

B )/ log(M
B )) I/Os, and this bound is proven to be optimal. (See [24] for

more algorithms and data structures in the two-level I/O model.)
Later, Frigo et al. [15] introduced the notion of cache-obliviousness, in which we do not know the values of M or B when

we design data structures and algorithms for the external-memory setting; instead, we require the data structures and
the algorithms to work for any given M and B. Furthermore, we would like to match the I/O complexity when M and B
are known in advance. Thus, cache-obliviousness implies that the data structures and the algorithms will readily work well
under differentmachines,without the need of fine tuning the algorithms (or recompilation) or rebuilding the data structures.
Many optimal cache-oblivious algorithms and data structures have been proposed over recent years, including algorithms
for sorting [20] and matrix transposition [20], and data structures such as priority queues [8] and B-trees [7].

For string matching, the recent data structure proposed by Brodal and Fagerberg [9] can index a text T in O(n/B) disk
pages1 and find all occurrences of a given pattern P in T in O((|P| + occ)/B + logB n) I/Os. This index works in a cache-
oblivious manner, improving on the String-B tree, which is an earlier work by Ferragina and Grossi [14] that achieves the
same space and I/O bounds but requires the knowledge of B to operate.2 In this paper, we consider the approximate string
matching problem defined as follows:

Given a text T of length n and a fixed positive integer k, construct an index on T such that for any input pattern P , we
can find all k-error matches of P in T , where a k-error match of P is a string that can be transformed to P using at most k
character insertions, deletions, or replacements.3

The above problem has been well-studied in the internal-memory setting [21,12,3,10,17,11]. Recently, Cole et al. [13]
proposed an index that occupies O(n logk n) words of space, and can find all k-error matches of a pattern P in O(|P| +

logk n log log n + occ) time. This is the first solution with time complexity linear in |P|; in contrast, the time complexity of
other existing solutions depends on |P|

k. Chan et al. [11] later gave another index that requires only O(n) space, and the time
complexity increases toO(|P|+logk(k+1) n log log n+occ). In this paper, we extend these two results to the external-memory
setting. In addition, our solution is cache-oblivious.

Themain difficulty in extending Cole et al.’s index to the external-memory setting lies in answering the longest common
prefix (LCP) query for an arbitrary suffix of a pattern P using just a few I/Os. More specifically, given a suffix Pi, we want to
find the longest substring of T that is a prefix of Pi. In the internal-memory setting, we take advantage of the suffix links
in the suffix tree of T to compute the answers of all possible LCP queries in O(|P|) time (there are |P| such queries). In the
external-memory setting, a naive implementation would require Ω(min{|P|

2/B, |P|}) I/Os to compute the answers of all
LCP queries. To circumvent this bottleneck, we create a new notion called k-partitionable patterns. If a given pattern P is not
k-partitionable, we can show that T contains no k-error match of P . If P is k-partitionable, we can process all its LCP queries
efficiently in two phases: We first compute the answers of some ‘‘useful’’ LCP queries (using O(|P|/B+ k logB n) I/Os), which
would then enable us to answer each other LCP query efficiently (using O(log logB n) I/Os). To support this idea, we devise
an I/O-efficient screening test that checks whether P is k-partitionable; if P is k-partitionable, the screening test would also
compute some useful LCP values as a by-product, which can then be utilized to answer the LCP query for an arbitrary Pi in
O(log logB n) I/Os.

Together with other cache oblivious data structures (for supporting LCA, Y-Fast Trie and WLA), we are able to construct
an index that finds all k-errormatches usingO((|P|+occ)/B+ logk n log logB n) I/Os. The space of the index isO((n logk n)/B)
disk pages. To the best of our knowledge, this is the first external-memory data structure that does not requireΩ(|P|+occ+

poly(log n)) I/Os. Note that both Cole et al.’s index and our index can work even if the alphabet size is unbounded.
Recall that the internal-memory index by Chan et al. [11] occupies only O(n) space. The reduction of space demands a

more involved searching algorithm. In particular, they need the data structure of [10] to support a special query called Tree-
Cross-Product. Again, we can ‘externalize’ this index. Here, the difficulties come in two parts: (i) computing the LCP values,
and (ii) answering the Tree-Cross-Product queries. For (i), wewill use the same approach aswe externalize Cole et al.’s index.
For (ii), there is no external memory counterpart for the data structure of [10]; instead, we reduce the Tree-Cross-Product
query to a two-dimensional orthogonal range search query, the latter can be answered efficiently using an external-memory
index based on the work in [1]. In this way, for any fixed k ≥ 2, we can construct an index using O((n log n)/B) disk pages,
which can find all k-error matches of P in O((|P| + occ)/B + logk(k+1) n log log n) I/Os. Following [11], our second result
assumes the alphabet size to be constant.

In Section 2, we give a survey of a few interesting queries that have efficient cache-oblivious solutions.We also introduce
a novel cache-oblivious index for the weighted level ancestor (WLA) queries. Section 3 reviews Cole et al.’s internal memory

1 Under the cache-oblivious model, the index occupies O(n) contiguous words in the external memory. The value of B is arbitrary, which is considered
only in the analysis.
2 Recently Bender et al. [6] have devised the cache-oblivious string B-tree, which is for other pattern matching queries, such as prefix matching and

range searching.
3 A k-error match should more precisely be termed as a k-edit-error match. We use the former for the sake of brevity.
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index for k-errormatching and discusses how to turn it into an external memory index. Section 4 defines the k-partitionable
property, describes the screening test, and shows how to compute the answers of the LCP queries efficiently. Section 5 shows
how to externalize Chan et al.’s index. We conclude the paper in Section 6.

2. Preliminaries

2.1. Suffix tree, suffix array, and inverse suffix array

Given a text T [1..n], the substring T [i..n] for any i ∈ [1, n] is called a suffix of T . We assume that characters in T are drawn
from an ordered alphabet which is of constant size, and T [n] = $ is a distinct character that does not appear elsewhere in
T . The suffix tree of T [19,25] is a compact trie storing all suffixes of T . Each edge corresponds to a substring of T , which is
called the edge label. For any node u, the concatenation of the edge labels along the path from the root to u is called the path
label of u. There are n leaves in the suffix tree, with each leaf corresponding to a suffix of T . Each leaf stores the starting
position in T of its corresponding suffix, which is called the leaf label. The children of an internal node are ordered by the
lexicographical order of their edge labels.

The suffix array of T [18], denoted by SA, is an array of integers such that SA[i] stores the starting position in T of the ith
lexicographically smallest suffix. It is worthmentioning that SA can be obtained by traversing the suffix tree in a left-to-right
order and recording the leaf labels. Furthermore, the descendant leaves of each internal node u in the suffix tree correspond
to a contiguous range in the suffix array, and we call this the SA range of u.

The inverse suffix array, denoted by SA−1, is defined such that SA−1
[i] = j if and only if i = SA[j]. When stored in the

external memory, the space of both SA and SA−1 arrays take O(n/B) disk pages, and each entry in the arrays can be reported
in one I/O operation.

Suppose that we are given a pattern P , which appears at position i of T . That is, T [i..i + |P| − 1] = P . Then, P must be a
prefix of the suffix T [i..n]. Furthermore, each distinct occurrence of P in T corresponds to a distinct suffix of T sharing P as
a prefix. Based on this observation, the following lemma from [18] shows a nice property about the suffix array.
Lemma 1. Suppose that P is a pattern appearing in T . Then there exists i ≤ j such that SA[i], SA[i + 1], . . . , SA[j] are the starting
positions of all suffixes sharing P as a prefix. In other words, SA[i..j] lists all occurrences of P in T .

2.2. Cache-oblivious string dictionaries

Brodal and Fagerberg proposed an external-memory index for a text T of length n that supports efficient patternmatching
queries [9]. Their index takes O(n/B) disk pages and is cache-oblivious. For the pattern matching query, given any input
pattern P , we can find all occurrences of P in T using O((|P| + occ)/B + logB n) I/O operations.

In this paper, we are interested in answering a slightly more general query. Given a pattern P , let ℓ be the length of the
longest prefix of P that appears in T . We want to find all suffixes of T that have P[1..ℓ] as a prefix (that is, all suffixes of T
whose common prefix with P is the longest among the others). We denote Q to be the set of starting positions in T of all
such suffixes. Note that Q occupies a contiguous region in SA, say SA[i..j]. We define the LCP query of P with respect to T ,
denoted by LCP(P, T ), to be a query which reports (i) the SA range, [i, j], that corresponds to the SA region occupied by Q ,
and (ii) the LCP length, ℓ.

With very minor adaptation, Brodal and Fagerberg’s index can be used to answer the LCP query efficiently, as stated in
the following lemma.
Lemma 2. We can construct a cache-oblivious index for a text T of length n, such that given any input pattern P, we can compute
LCP(P, T ) in O(|P|/B + logB n) I/O operations. The space of the index is O(n/B) disk pages.

2.3. LCA index on rooted tree

For any two nodes u and v in a rooted tree, a common ancestor of u and v is a node that appears in both the path from u to
the root and the path from v to the root; among all common ancestors of u and v, the one that is closest to u and v is called the
lowest common ancestor of u and v, denoted by LCA(u, v). The lemma below states the performance of an external-memory
index for LCA queries, which follows directly from the results in [16,5].
Lemma 3. Given a rooted tree with n nodes, we can construct a cache-oblivious index of size O(n/B) disk pages such that for any
nodes u and v in the tree, LCA(u, v) can be reported in O(1) I/O operations.

2.4. Cache-oblivious Y-fast trie

Given a set X of x integers, the predecessor of r in X , denoted by Pred(r, X), is the largest integer in X that is smaller than
r . If the integers in X are chosen from [1, n], the Y-fast trie on X [26] can find the predecessor of any input r in O(log log n)
time under the word RAM model4; the space occupancy is O(x) words. In the external-memory setting, we can store the
Y-fast trie easily using the van Emde Boas layout [7,22,23,20], giving the following lemma.

4 A word RAM supports standard arithmetic and bitwise boolean operations on word-sized operands in O(1) time.
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Lemma 4. Given a set X of x integers chosen from [1, n], we can construct a cache-oblivious Y-fast trie such that Pred(r, X) for
any integer r can be answered using O(log logB n) I/O operations. The space of the Y-fast trie is O(x/B) disk pages.

2.5. Cache-oblivious WLA index

Let R be an edge-weighted rooted tree with n nodes, where the weight on each edge is an integer in [1,W ]. We want
to construct an index on R so that given any node u and any integer w, we can find the unique node v (if exists) with the
following properties: (1) v is an ancestor u, (2) the sum of the weights on the edge from the root of R to v is at least w, and
(3) no ancestor of v satisfies the above two properties. We call v the weighted level ancestor of u at depth w, and denote it
byWLA(u, w).

Assume that logW = O(log n). In the internal-memory setting, we can construct an index that requires O(n) words of
space and finds WLA(u, w) in O(log log n) time [4]. In the following, we describe the result of a new WLA index that works
cache-obliviously, which may be of independent interest. This result is based on a recursive structure with careful space
management. The proof will be given in the Appendix.
Lemma 5. We can construct a cache-oblivious index on R such that for any node u and any integerw, WLA(u, w) can be reported
in O(log logB n) I/O operations. The total space of the index is O(n/B) disk pages.

2.6. Cache-oblivious index for join operation

Let T be a text of length n. For any two strings Q1 and Q2, suppose that LCP(Q1, T ) and LCP(Q2, T ) are known. The join
operation for Q1 and Q2 is to compute LCP(Q1Q2, T ), where Q1Q2 denotes the concatenation of Q1 and Q2.

Cole et al. (Section 5 of [13]) have developed an index of O(n log n) words that performs the join operation in O(log log n)
time in the internal-memory setting. Their index assumes the internal-memory results of LCA index, Y-fast trie, and WLA
index. In the following lemma, we give an index that supports efficient join operations in the cache-oblivious setting.
Lemma 6. We can construct a cache-oblivious index on T of O((n log n)/B) disk pages that supports the join operation in
O(log logB n) I/O operations.
Proof. Using Lemmas 3–5, we can directly extend Cole et al.’s index into a cache-oblivious index. �

3. A review of Cole et al.’s k-error matching

In this section, we review the internal-memory index for k-error matching proposed by Cole et al. [13], and explain the
challenge in adapting it into a cache-oblivious index.

To index a text T of length n, Cole et al.’s index includes two data structures: (1) the suffix tree of T that occupies O(n)
words, and (2) a special tree structure, called k-error tree, that occupies a total of O(n logk n)words of space. The k-error tree
connects to a number of (k − 1)-error trees, each of which connects to a number of (k − 2)-error trees, and so on. The base
of this recursive structure consists of 0-error trees.

Given a pattern P , Cole et al.’s matching algorithm considers different ways of making k edit operations on P in order to
obtain an exact match in T . Intuitively, the matching algorithm first considers all possible locations of the leftmost error on
P in which a match may exist; then for each location i that has an error, we can focus on searching the remaining suffix,
P[i+ 1..|P|], for subsequent errors. The searches are efficiently supported by the recursive tree structure. More precisely, at
the top level, the k-error tree will immediately identify all matches of P in T with no errors; in addition, for those matches
of P with at least one error, the k-error tree classifies the locations of the leftmost error on P into O(log n) groups, and then
each group creates a search in a dedicated (k − 1)-error tree. Subsequently, each (k − 1)-error tree being searched will
immediately identify all matches of P with one error, while for those matches of P with at least two errors, the (k−1)-error
tree further classifies the locations of the second-leftmost error on P into O(log n) groups, and then each group creates a
search in a dedicated (k− 2)-error tree. The process continues until we get to the 0-error trees, where all matches of P with
exactly k errors are reported.

The classification step in each k′-error tree is cleverly done to avoid repeatedly accessing characters in P . It does so by
means of a constant number of LCA, LCP, Pred, and WLA queries; then, we are able to create enough search information
(such as the starting position of the remaining suffix of P to be matched) to continue the subsequent O(log n) searches in
the (k′

− 1)-error trees. Reporting matches in each error tree can also be done by a constant number of LCA, LCP, Pred, and
WLA queries. In total, it can be done by O(logk n) of these queries. See Fig. 1 for the framework of Cole et al.’s algorithm. (In
the subroutine Search_Error_Tree, Line 2, Line 5 and Line 6 can be done by a constant number of LCA, LCP, Pred, and WLA
queries; Line 8 requires O(1) operations by following appropriate pointers.)

Each LCA, Pred, or WLA query can be answered in O(log log n) time. For the LCP queries, they are all in the form of
LCP(Pi, T ), where Pi denotes the suffix P[i..|P|]. Instead of answering each query on demand, Cole et al. compute the answers
of all these LCP queries at the beginning of the algorithm. There are |P| such LCP queries, which can be computed in O(|P|)
time by exploiting the suffix links of the suffix tree of T (the algorithm is essentially McCreight’s suffix tree construction
algorithm [19]). Consequently, the answer of each LCP query is returned in O(1) time when needed. Then, Cole et al.’s index
supports k-error matching in O(|P| + logk n log log n + occ) time, where occ denotes the number of occurrences.
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Fig. 1. Cole et al.’s algorithm for k-error matching.

3.1. Externalization of Cole et al.’s index

We are now ready to consider how to adapt Cole et al.’s index into a cache-oblivious index. Notice that each LCA, Pred, or
WLA query can be answered in O(log logB n) I/Os by storing suitable data structures (see Lemmas 3–5). The only bottleneck
lies in answering the O(logk n) LCP queries. In the external-memory setting, though we can replace the suffix tree with
Brodal and Fagerberg’s cache-oblivious string dictionary (Lemma 2), if we compute LCP(Pi, T ) for all i in advance, we will
need Ω(|P|

2/B) I/Os. Alternatively, if we compute each LCP query on demand without doing anything at the beginning, we
will need a total ofΩ((logk n)|P|/B) I/Os to answer all LCP queries during the search process. In summary, a direct adaptation
of Cole et al.’s index into the external-memory setting will need Ω((min{|P|

2, |P| logk n} + occ)/B + logk n log logB n) I/Os
for k-error matching.

In the next section, we propose another approach, where we compute the answers of some useful LCP queries using
O(|P|/B + k logB n) I/Os at the beginning, so that each subsequent query of LCP(Pi, T ) can be answered efficiently in
O(log logB n) I/Os (see Lemma 9 in Section 4). This result leads to the following theorem.

Theorem 1. For a fixed integer k, we can construct a cache-oblivious index on T of size O((n logk n)/B) disk pages such that, given
any pattern P, the k-error matches of P can be found in O((|P| + occ)/B + logk n log logB n) I/O operations.

4. Cache-oblivious k-error matching

Let P be a pattern, and let Pi = P[i..|P|] be a suffix of P . In this section, we show how to preprocess P in O(|P|/B+k logB n)
I/Os. The aim is to obtain the answers of some useful LCP(Pi, T ) queries, such that a subsequent query of LCP(Pj, T ) for any j
can be answered in O(log logB n) I/Os.

We observe that for a general pattern P , the above target may be difficult to achieve. Instead, we take advantage of
treating only those query patterns that potentially have a k-error match. We formulate a notion called k-partitionable and
show that

• if P is k-partitionable, we can achieve the above target;
• if P is not k-partitionable, there must be no k-error match of P in T .

In Section 4.1, we first define the k-partitionable property, and describe an efficient screening test that checks whether
P is k-partitionable; in case P is k-partitionable, the screening test would have computed the answers of LCP(Pi, T ) queries
for some i as a by-product. In Section 4.2, we show how to utilize the answers precomputed in the screening test to answer
LCP(Pj, T ) for any j in O(log logB n) I/Os.

In the following, we assume that we have maintained the suffix array and inverse suffix array of T . Each entry of these
two arrays will be accessed one at a time, at the cost of one I/O per access.

4.1. k-partitionable and screening test

Consider the following partitioning process on P . In Step 1, we delete the first ℓ characters of P , where ℓ is the LCP length
reported by LCP(P, T ). While P is not empty, Step 2 removes further the first character from P . Then, we repeatedly apply
Step 1 and Step 2 until P is empty. In this way, P is partitioned intoπ1, c1, π2, c2, . . . , πd, cd, πd+1 such thatπi is a string that
appears in T , and ci is called a cut-character such that πici is a string that does not appear in T . (Note that πd+1 is an empty
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string if P becomes empty after some Step 2.) Note that this partitioning is unique, and we call this the greedy partitioning
of P .
Definition 1. P is called k-partitionable if the greedy partitioning of P consists of at most k cut-characters.

The following lemma states that the k-partitionable property is a necessary condition for the existence of a k-errormatch.
Lemma 7. If P has a k-error match, P is k-partitionable.
Proof. Suppose on contrary that P is not k-partitionable and the greedy partitioning of P has more than k cut-characters.
Then, consider a particular k-error match M of P . Since πici is not a string in T , there must be at least one edit operation
in that region to turn P into M . This implies that at least k + 1 edit operations are needed to turn P into M , which is a
contradiction. �

The screening test on P performs the greedy partitioning of P to check if P is k-partitionable. If P is not k-partitionable,
we can immediately conclude that P does not have a k-error match in T . One way to perform the screening test is to
apply Lemma 2 repeatedly, so that we discover π1 and c1 in O(|P|/B + logB n) I/O operations, then discover π2 and c2
in O((|P| − |π1| − 1)/B + logB n) I/O operations, and so on. However, in the worst case, this procedure will require
O(k(|P|/B + logB n)) I/O operations. In the following lemma, we make a better use of Lemma 2 with the standard doubling
technique and show how to use O(|P|/B + k logB n) I/O operations to determine whether P passes the screening test or not.
Lemma 8. The screening test on P can be done cache-obliviously in O(|P|/B + k logB n) I/O operations.
Proof. Let r = ⌈|P|/k⌉. In Round 1, we perform the following steps.

• We apply Lemma 2 on P[1..r] to see if it appears in T . If so, we double the value of r and check if P[1..r] appears in T . The
doubling continues until we obtain some P[1..r] which does not appear in T , and in which case, we have also obtained
π1 and LCP(π1, T ).

• Next, we remove the prefix π1 from P . The first character of P will then become the cut-character c1, and we apply
Lemma 2 to get LCP(c1, T ). After that, remove c1 from P .

In each subsequent round, say Round i, we reset the value of r to be ⌈|P|/k⌉, and apply the same steps to find πi and ci
(as well as LCP(πi, T ) and LCP(ci, T )). The algorithm stops when P is empty, or when we get ck+1.

It is easy to check that the above process correctly outputs the greedy partitioning of P (or, up to the cut-character ck+1
if P does not become empty) and thus checks if P is k-partitionable. The number of I/O operations of the above process can
be bounded as follows. Let ai denote the number of times we apply Lemma 2 in Round i, and bi denote the total number of
characters compared in Round i. Then, the total I/O cost is at most O((

∑
i bi)/B+ (

∑
i ai) logB n) by Lemma 2. The term

∑
i bi

is bounded by O(|P| + k) because Round i compares O(|πi| + ⌈|P|/k⌉) characters, and there are only O(k) rounds. For ai, it
is bounded by O(log(k|πi|/|P|) + 1), so that, by Jensen’s inequality, the term

∑
i ai is bounded by O(k). �

4.2. Computing LCP for k-partitionable pattern

In case P is k-partitionable, the screening test in Section 4.1 would also have computed the answers for LCP(πi, T ) and
LCP(ci, T ). To answer LCP(Pj, T ), we will make use of the join operation (Lemma 6) as follows. Firstly, we determine which
πi or ci covers the jth position of P .5 Then, there are two cases:

• Case 1: If the jth position of P is covered byπi, we notice that the LCP length of LCP(Pj, T ) cannot be too long sinceπi+1ci+1
does not appear in T . Let πi(j) denote the suffix of πi that overlaps with Pj. Indeed, we have:

Fact 1. LCP(Pj, T ) = LCP(πi(j)ciπi+1, T ).

This shows that LCP(Pj, T ) can be found by the join operations in Lemma 6 repeatedly on πi(j), ci and πi+1. The SA
range of πi(j) can be found easily using SA, SA−1 and WLA as follows. Let [p, q] be the SA range of πi. The pth smallest
suffix is the string T [SA[p]..n], which has πi as a prefix. We can compute p′

= SA−1
[SA[p]+ j], such that the p′th smallest

suffix has πi(j) as a prefix. Using theWLA index, we can locate the node (or edge) in the suffix tree of T corresponding to
πi(j). Then, we can retrieve the required SA range from this node. The LCP query on Pj can be answered in O(log logB n)
I/O operations.

• Case 2: If ci is the jth character of P , the LCP query on Pj can be answered by the join operation on ci andπi+1 inO(log logB n)
I/O operations, using similar arguments as in Case 1.

Thus, we can conclude the section with the following lemma.
Lemma 9. Let T be a text of length n, and k be a fixed integer. Given any pattern P, we can perform a screening test in
O(|P|/B + k logB n) I/Os such that if P does not pass the test, it implies that there is no k-error match of P in T . In case P passes
the test, LCP(P[j..|P|], T ) for any j can be returned in O(log logB n) I/Os.

5 This is in fact a predecessor query and can be answered in O(log logB n) I/O operations by maintaining a Y-fast trie for the starting positions of each πi
and ci .
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5. An O(n log n)-space Cache-oblivious index

5.1. A review of Chan et al.’s k-error matching

Below we review the O(n)-space index for k-error pattern matching given by Chan et al. [11]. For simplicity, we only
consider the case of Hamming distance.

Consider a text T [1..n] over an alphabetΣ of constant size. Let β = Θ(logk+1 n) be an integer. We first focus on handling
‘‘long’’ patterns, whose lengths are at least β . We call a character T [a] a check-point if a is a multiple of β . Given a long
pattern P , we cut P into P[1..i − 1] and P[i..m] for all i ∈ [1, β]. For all k1 and k2, where k1 + k2 ≤ k, we will search for
all check-points a such that P[i..m] has a k2-error match starting from T [a], and P[1..i − 1] has a k1-error match ending at
T [a − 1]. Thus, P has a (k1 + k2)-error match starting at T [a − i + 1].

The index is divided into two parts.
1. (PatternMatching Index) T is indexed using some special search trees for the check-points, called TAILℓ andHEADℓ, where

ℓ ∈ [0, k]. Each leaf in TAILℓ (or HEADℓ) corresponds to a check-point. Given a pattern X , TAILℓ supports finding all its
ℓ-error matches in T that start at some check-points. Similarly, HEADℓ finds all ℓ-error matches ending at the position
in T just before some check-points. HEADℓ and TAILℓ do not report directly all the check-points; instead they report a set
of O(logℓ n) nodes such that the union of all their descendant leaves covers all the matches.

2. (Set Intersection Index) For any k1, k2 with k1 + k2 ≤ k, if there exists a leaf x1 in TAILk1 and a leaf x2 in HEADk2 both
corresponding to the same check-point a, then (x1, x2) is called a connecting pair. Given a node u1 in TAILk1 and a node
u2 in TAILk2 , the index for connecting pairs supports finding connecting pairs (x1, x2), where x1 and x2 are descendants
of u1 and u2 respectively.

Chan et al. adapted the work of Cole et al. [13] to index the check-points in O(n) space. Given a pattern P , after
an O(|P|)-time preprocessing, the required nodes in the Pattern Matching Index can be found in O(β logk n log log n) =

O(log2k+1 n log log n) time. In the Set Intersection Index, each pair of trees (TAILk1 ,HEADk2) is indexed using the technique
of Buchsbaum et al. [10] for Tree-Cross-Product. The total space required is O(n), and finding all connecting pairs takes
O(log2k+1 n log log n + occ) time.

For short patterns with length less than β , we can use the data structure by Lam et al. [17], which supports k-error
searching in O(|Σ |

k
|P|

k log log n + occ) time. If |Σ | = O(1), the time complexity becomes O(logk(k+1) n log log n + occ).

5.2. Cache-oblivious data structure

Nowwe showhow to turn Chan et al.’s index into a cache-oblivious index by providing the corresponding cache-oblivious
data structures.

Patternmatching. Let T ′ (resp. P ′

i ) denote the stringwith all characters in string T (resp. Pi) reversed. Analogous to Section 3,
Chan et al.’s data structuremakesO(logk n) LCA, Pred,WLA and LCP queries, where LCP queries are in the form LCP(Pi, T ) and
LCP(P ′

i , T
′), where 1 ≤ i ≤ |P|. We can build cache-oblivious data structures in Section 2 so that LCA, Pred andWLA queries

can be answered in O(log logB n) I/O. Similar to the previous section, the major difficulty is to avoid using Ω(|P|
2/B)-time to

compute the answers of all LCP queries in advance for all i. By preprocessing P and P ′ using our screening test and greedy
partition, LCP queries can be answered by Lemma 9 using O(log logB n) I/Os. This data structure requires O(n log n) space
due to a data structure in Lemma 6 that was not needed in the index of Chan et al.

Set intersection. There is no cache-oblivious data structure for Tree-Cross-Product. Here, we show a reduction of Tree-
Cross-Product to two-dimensional orthogonal range queries. We first look at the Tree-Cross-Product indexing problem.

Let T1 and T2 be trees with at most n leaves. Let E be a set of pair of leaves (v1, v2) such that v1 is a leaf of T1 and v2 is a
leaf of T2. We call the pairs in E connecting pairs. Given a node u1 in T1 and a node u2 in T2, we ask for all connecting pairs
(v1, v2) such that v1 and v2 are descendants of u1 and u2, respectively.

The data structure of Buchsbaum et al. [10] takes O(n + |E| log n) space and answers each query in O(log log n + occ)
timewhere occ is the number of connecting pairs reported.We show the following cache-oblivious data structure to answer
each Tree-Cross-Product query in O(logB n + occ/B) I/O.
1. We label the leaves from left to right by their pre-order ranking. For each internal node, we store the smallest and the

largest labels of all its descendant leaves. The data structure requires O(n/B) pages, and on given a node u1 in T1, it takes
O(1) I/O to retrieve the corresponding stored labels. The tree T2 is indexed similarly.

2. For a connecting pair (v1, v2), we store a point (x, y) in the two-dimensional plane such that x and y are labels of v1 and
v2, respectively. Given an axis-parallel rectangle (x1, y1)–(x2, y2), we want to locate all points inside the rectangle. Arge
et al.’s data structure [1] requiresO(|E| log2 n/B log log n) disk pages and takesO(logB n+occ/B) I/Os to answer the query.

The above data structures handle ‘‘long’’ patterns in O((|P| + occ)/B + log2k+1 n logB n) I/Os. The Pattern Matching
index requiresO(n log n/B)disk pages and the Set Intersection index requiresO((n/β) logk n(log2 n/ log log n)) = O(n log n/
(B log log n)) disk pages. The total space requirement is O(n log n/B) disk pages.

For short patterns, the index of Lam et al. [17] can be used directly as it stores the occurrences of each short pattern
contiguously in the memory. Hence, searching takes only O(logk(k+1) n log log n + occ/B) I/Os.
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Theorem 2. For a fixed integer k ≥ 2, we can construct a cache-oblivious index on T of size O(n log n/B) disk pages such that on
given any pattern P, the k-error matches of P can be found in O((|P| + occ)/B + logk(k+1) n log log n) I/O operations. For k = 1,
searching takes O((|P| + occ)/B + log3 n logB n) I/O operations.

6. Conclusion

We adapted Cole et al.’s approximatematching index into a cache-oblivious index.We identified the answering of all LCP
queries as the major bottleneck in a naive implementation. To circumvent this bottleneck, we compute the answers of only
some ‘‘useful’’ LCP queries in advance, so that each subsequent LCP query can still be answered efficiently.We take advantage
of a new notion called k-partitionable and devise an I/O-efficient screening test that checks whether P is k-partitionable. If
P is k-partitionable, the screening test would also compute the answers of some useful LCP queries as a by-product, which
can then be utilized to answer LCP query for arbitrary Pi efficiently.

Together with other cache-oblivious data structures, we are able to construct an index to find all k-error matches using
O((|P| + occ)/B + logk n log logB n) I/O operations. The space of the index is O((n logk n)/B) disk pages. To the best of our
knowledge, this is the first external-memory data structure that does not require Ω(|P|+ occ +poly(log n)) I/O operations.
Our index can work even if the alphabet size is unbounded.

When the alphabet size is a constant, we extended the internal-memory result of Chan et al. [11] to work in the external
memory setting. The difficulties of the extension come in two parts: (i) computing the answers of the LCP queries, and
(ii) answering the Tree-Cross-Product queries. For (i), wewill use the same approach aswe externalize Cole et al.’s index. For
(ii), there is no external memory counterpart for the data structure of [10]; instead, we show how to reduce the Tree-Cross-
Product query to a two-dimensional orthogonal range search query, so that we can store an appropriate data structure of [1]
that can answer the latter query efficiently. In this way, for any fixed k ≥ 2, we can construct an index using O((n log n)/B)
disk pages, which can find all k-error matches of P in O((|P| + occ)/B + logk(k+1) n log log n) I/Os.

It is an open problem whether we can further reduce the number of searching I/Os to O((|P| + occ)/B + poly(logB n)).
Another related open problem is on the construction of these indexes. It would be nice to know if one can obtain cache-
oblivious construction algorithms for these indexes.
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Appendix

A.1. Cache-oblivious WLA index

Given a rooted tree Rwith n nodes, with integral weights on each edge drawn from [1,W ], wewant to construct an index
on R such that on given any node u and any integer w, we can find the ancestor node v of u such that the sum of weights
on the edge from the root to v is just greater than or equal to w. We call v the weighted level ancestor of u at depth w, and
denote it byWLA(u, w).

Assume that logW = O(log n). In the following, we describe our cache-oblivious implementation of the WLA index.
Firstly, we focus on an index that supports WLA query for any node u being a leaf in R. Let us call that a WLA-for-leaf

index on R. After that, with minor modification to the WLA-for-leaf index, we can easily extend it to support WLA query for
the internal nodes in R as well.

For ease of discussion, we define some notation as follows. For each node v in R, the sum of the weights of all edges on
the path from the root to v is called the depth of v. We call the subtree formed by those nodes having at least

√
n descendant

leaves the top tree of R. For each node x not in the top tree, but whose parent is in the top tree, we call the subtree rooted
at x in R a bottom tree rooted at x. The edge that connects the bottom tree to a top tree is called a middle edge. That is, R can
be decomposed into one top tree connected to multiple bottom trees through middle edges. Note that the number of leaves
in a top tree or in a bottom tree is at most

√
n. For any rooted tree S, a compact tree of S is defined by contracting every

non-root degree-1 internal node of S.

A simple recursive structure: OurWLA-for-leaf index is a recursive structure based on the top-bottom tree decomposition,
and it is stored using the van Emde Boas layout [7,22,23]. Precisely, theWLA-for-leaf index of a tree consists of theWLA-for-
leaf index of the compact tree of its top tree first, the WLA index for each of the middle edges,6 and the WLA-for-leaf index
of the compact tree of each of its bottom trees. Our recursion stops when the number of leaves in the compact tree is one;
in this case, the tree consists of a root node x and a leaf node ℓ. The corresponding WLA-for-leaf index will be a pointer to a
cache-oblivious Y-fast trie structure (stored at some othermemory locations) that is defined on the depth of all nodes on the
path from x to ℓ in the original tree R. Similarly, theWLA-index for amiddle edge (v, x)will be a pointer to a cache-oblivious
Y -fast trie defined on the depth of all nodes on the path from v to x in R.

6 A middle edge in the current tree may refer to multiple edges in the original tree, since recursion is performed on compact trees.
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Before we give further details about WLA-for-leaf index when there is more than one leaf in the tree, let us see how one
would findWLA of a leaf u at depthw based on theWLA-for-leaf indexes of (the compact tree of) the top tree and the bottom
trees. Let x be the root of the bottom tree that contains u, and let (v, x) be the middle edge connecting the bottom tree to its
top tree. (Recall that v is a node in the top tree.) There can be three cases:

Case 1: If w is between the depth of x and the depth of v, the desired WLA can be found by consulting the WLA index for
the middle edge (v, x).

Case 2: Else if the depth of v is more than w, let ℓ′ be the leftmost descendant leaf of v in the top tree. The desired WLA
will beWLA(ℓ′, w), which can be found by consulting the WLA-for-leaf index in the top tree.

Case 3: Else, we have the depth of x is less than w. The desired WLA can be found by consulting the WLA-for-leaf index in
the bottom tree rooted at x.

In order to support the above procedure efficiently (when there ismore than one leaf in the tree), we define theWLA-for-leaf
index as follows: For each leaf u in the tree, we store the information (i) the depth of x (the root of the bottom tree where u
belongs) and the depth of v, (ii) a pointer to theWLA index for the middle edge (v, x), (iii) a pointer to ℓ′ (the leftmost
descendant leaf of v in the top tree) in the WLA-for-leaf index for the top tree, and (iv) a pointer to u in the WLA-for-leaf
index for the bottom tree containing u. With this information stored, we can findWLA of any leaf at any depth by recursion.

To count the number of I/O operations involved, we observe two things: (1) Thoughwe do not know the actual value of B,
once the size of the compact tree in the recursion contains at most B leaves (thus, Θ(B) nodes in total), the above procedure
will access O(1) number of disk pages in the remaining recursion; the reason is that by our memory layout, the WLA-for-
leaf index of this tree fits into O(1) disk pages. (2) If the number of leaves in a tree is n′, the number of leaves in its top tree,
or in each of its bottom tree, is at most

√
n′. Combining (1) and (2), we can conclude that there are at most O(log logB n)

recursion steps to reduce the tree size from n to B (though we do not know B in advance), and for each of these recursion
steps, it requires O(1) number of I/O operations. Then, at the end of the recursion, we will follow a pointer to a Y-fast trie
structure, and perform a predecessor search. By Lemma 4, this final step takes atmostO(log logB(nW )) I/O operations, which
can be bounded by O(log logB n) as we assume logW = O(log n). Thus, we can solveWLA for any leaf using O(log logB n) I/O
operations.

Amore compact structure: Unfortunately, the major drawback of the above recursive structure is its space usage. Consider
any leaf u. It will be in a bottom tree of R, in a bottom tree of a bottom tree of R, a bottom tree of a bottom tree of a bottom
tree of R, and so on. With each leaf requiring O(1) number of words of space (to store its information of (i) through (iv)),
we can see that the above recursive structure takes at least Ω(n log log n) words of storage. One easy fix to reduce the space
is to remove the leaves of the bottom tree in the recursion. Precisely, if Sx is a bottom tree of S rooted at x, we obtain a tree S ′

x
from Sx by removing all its leaves, and replace the original WLA-for-leaf index on the compact tree of Sx by theWLA-for-leaf
index on the compact tree of S ′

x. Then, for any leaf u in the bottom tree Sx, let (v′, u) be the edge that connects u to Sx. In
addition to keeping the previous information (i)–(iii), we store (iv) the depth of u and the depth of v′, (v) a pointer
to ℓ′′ in the WLA-for-leaf index of S ′

x, where ℓ′′ is the leftmost descendant leaf of v′ in S ′
x, and (vi) a pointer to a Y-fast trie

structure (stored at some other memory locations) that is defined on the depth of all nodes on the path from v′ to u in the
original tree R. In this way, recursion in the top tree is the same as before, while recursion in the bottom tree can be done
by the modified Case 3 as follows:

Modified Case 3: Else, we have the depth of x is less than w.
1. If the depth of u is less than w, report ‘‘not found’’, asWLA(u, w) is undefined.
2. Else if the depth of v′ is less than w, the desired WLA is on the path from v′ to u in the original tree, which can

be found by a predecessor search in the Y-fast trie pointed by u.
3. Else, the desiredWLA isWLA(ℓ′′, w), which can be found by consulting theWLA-for-leaf index on (the compact

tree of) S ′
x.

With the above modified implementation, we have the following lemma.
Lemma 10. We can construct a cache-oblivious index on R such that for any leaf u and any integerw, WLA(u, w) can be reported
in O(log logB n) I/O operations. The total space of the index is O(n/B) disk pages.
Proof. In the modified implementation, the I/O operations can be bounded in the same way as in the original imple-
mentation. For the space, each node in R can become at most once a leaf in some bottom tree, in which case O(1) words are
required to store the leaf information. And for each edge in R, it can be in a path corresponding to at most one Y-fast trie
structure. It is because once a path is stored by a Y-fast trie, either the recursion stops, or the path contains a leaf in some
bottom tree to be removed from recursion. This implies that the path (and the edges on it) will not appear in subsequent
recursive structures. Thus, the number of words required for the Y-fast trie is linear to the number of edges in R. As R has
O(n) nodes and edges, the total space is O(n) words, which is stored in O(n/B) disk pages with our memory layout. �

To get the general WLA index, we observe that for any internal node v, suppose that ℓv is the leftmost descendant leaf of
v in R, thenWLA(v, w) is undefined when the depth of v is less than w, and otherwise, it will beWLA(ℓv, w). Thus, for each
internal node v, if we store along (i) its depth and (ii) a pointer to ℓv , we can use the WLA-for-leaf index to solve the
WLA of any internal node at any depth. The total space of this augmentation is O(n) words, or O(n/B) disk pages. This gives
the following theorem.
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Theorem 3. Given a rooted tree Rwith n nodes, where edges in the tree have integralweights from [1,W ]with logW = O(log n),
we can construct a cache-oblivious index on R such that for any node v and any integer w, WLA(v, w) can be reported in
O(log logB n) I/O operations. The total space of the index is O(n/B) disk pages.
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