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Abstract

We compare methods for choosing motion vectors for motion-compensated
video compression. Our primary focus is on videophone and videoconferenc-
ing applications, where very low bit rates are necessary, where the motion is
usually limited, and where the frames must be coded in the order they are
generated. We provide evidence, using established benchmark videos of this
type, that choosing motion vectors to minimize codelength subject to (implicit)
constraints on quality yields substantially better rate-distortion tradeo�s than
minimizing notions of prediction error. We illustrate this point using an algo-
rithm within the p � 64 standard. We show that using quadtrees to code the
motion vectors in conjunction with explicit codelength minimization yields fur-
ther improvement. We describe a dynamic-programming algorithm for choosing
a quadtree to minimize the codelength.

1 Introduction

The typically strong correlation between successive frames of a video sequence makes
video highly compressible, since the pixels of the previous frame can be used to predict
the intensities of the current frame. The di�erence between the predicted and the true
frame often is small and can be encoded e�ciently, for example, by a lossy transform
coder using the two-dimensional discrete cosine transform (2D DCT).

Improved compression is readily obtained by �rst estimating what portions of the
current frame correspond to moving objects and then transmitting motion vectors
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that tell the decoder where to look on the previous frame for predictions of the
intensity of each pixel in the current frame. The most popular method for estimating
these motion vectors originated with Jain and Jain [8] and is called block matching. In
their approach, the current frame is divided into blocks (usually 8�8) whose pixels are
assigned the same motion vector. (Carpentieri and Storer [2] group together blocks
with the same motion vector into superblocks, and describe a method for keeping track
of which block is in which superblock, in order to reduce the encoding of the motion
vectors.) Jain and Jain's approach is taken by the CCITT in Recommendation H.261
(also known as the p � 64 standard) [3, 10]. The motion vector for a given block B
is usually obtained by (approximately) minimizing, from among candidates ~v within
a limited search area, some norm of the di�erence between B and the prediction
obtained from ~v. The mean squared error (which is the square of the `2-norm) is a
commonly used measure, although for example the mean absolute di�erence is often
substituted because it can be implemented e�ciently. This is done, for example, in
the implementation of the p � 64 standard made available by the Portable Video
Research Group (PVRG) [6].

In this paper, we report on work in progress investigating the use of heuristics
that more directly estimate the e�ect of the choice of a given motion vector on the
total codelength. Our experimental results give evidence that this approach yields
substantially better rate-distortion tradeo�s. While the error-minimization approach
enables one to separate into modules the tasks of predicting the current frame and
coding the resulting error, our experiments suggest that this separation comes at a
substantial cost: integrating the two can lead to a better coder. We illustrate this
point using three programs. The �rst two implement this idea within the p � 64
standard, and the third adds the idea of using a quadtree to transmit the motion
vectors to exploit spatial redundancy in the estimated motion �eld.

In this paper, our emphasis is on codelength and quality, not on computation
time, in order to determine the limits on the compressibility of video. We can ini-
tially use computationally intensive coders to set a standard against which more
e�cient algorithms can be judged, such as those obtained, for example, by modifying
the computationally intensive coders. Furthermore, our algorithms are highly paral-
lelizable, and special-purpose chips are already available for many subroutines used
by our algorithm.

The p � 64 standard is intended for applications like videophone and video con-
ferencing, where very low bit rates are required, not much motion is present, and
frames are to be transmitted essentially as they are generated. Unlike the case of
the MPEG standard, we cannot �rst compress a subsampling of frames, and then use
frames both before and after a given frame to predict it. Our experimental results are
for benchmark videos typical of the type for which the p� 64 standard was intended:
they consist of a single speaker sitting at a table.

Using the block-matching approach, we create only a crude, but concise, model
of the motion. For video coding, we do not necessarily want to �nd the \correct"
motion vectors, in contrast to a goal of research in optic 
ow, for example [13]. If a
motion vector �eld that does not correspond to the actual motion in the scene yields
the shortest description, that is su�cient for purposes of compression. However, an
accurate motion �eld is desirable for motion interpolation, where a non-coded frame
is interpolated from two successive coded frames by performing motion compensa-



tion using an interpolated motion �eld. We plan to apply our techniques to the
compression-related optic 
ow techniques of [12], which should result in improved
motion estimates.

In the next section, we describe the PVRG implementation of the p�64 standard,
and then show how to modify the PVRG implementation, but remain within the
p � 64 standard, to choose motion vectors that more directly minimize codelength.
For comparable quality, at the level roughly required for transmitting 15 CIF frames
at 128 Kbits/sec, explicit bit minimization reduces the codelength by about 17%
on average for a particular benchmark video. In the p � 64 standard, two binary
decisions must be made from time to time (for details, see Section 2). In the PVRG
implementation, heuristics based on prediction error are used to make these decisions.
When the explicit bit minimization philosophy is also applied here, the improvement
becomes a signi�cant 33%. Rate-distortion plots appear in Section 2.

In Sections 3 and 4, we present a non-standard approach based on quadtree decom-
positions using the explicit bit minimization paradigm in which coding improvement
for interframe prediction at low bit rates can reach about 40%. (A rate-distortion
plot for this experiment is given in Section 3.) Such an improvement suggests that
this approach has potential in the related �eld of optic 
ow motion estimation.

To the best of our knowledge, ours is the �rst work investigating the e�ect of
minimizing codelength subject to quality constraints to choose motion vectors. Puri
and Hang [11] considered using transform coding for the error, adaptively choosing
a transform for each block from among those in a given list by taking the one that
resulted in the shortest code.

2 Within the p� 64 standard

In this section, we compare the performance of three algorithms which conform to
the p�64 standard [3, 10]. The �rst algorithm1 chooses motion vectors to minimize a
notion of the prediction error. The second is the same as the �rst, except that motion
vectors are chosen in order to minimize a local approximation to the contribution of
the choice of the given motion vector to the total codelength. In the third, certain
binary decisions made in the �rst algorithm using heuristics based on error are instead
made again to minimize total codelength.

2.1 Overview of the p� 64 standard

We �rst provide a brief overview of key components of the p�64 standard. The p�64
standard speci�es a three-component color system as the format for the video data.
The three components are a luminance band Y and two chrominance bands CB and
CR. Since the human visual system is more sensitive to the luminance component
and less sensitive to the chrominance components, CB and CR are subsampled by a
factor of 4 compared to Y . The image is decomposed into macroblocks (MB) each
consisting of four 8� 8 Y blocks, one 8� 8 CB block and one 8� 8 CR block. Motion
prediction and compensation are performed by treating each macroblock as an atomic
entity; that is, there is one motion vector per macroblock.

1The code for this algorithmwas obtained via anonymous ftp from PVRG. We modi�ed this code
for the other implementations of algorithms operating within the p� 64 standard.
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Figure 1: Block Diagram of the p � 64 Source Coder [3]

Figure 1 shows a block diagram of the p � 64 coder. At a high level, the basic
process is as follows. The macroblocks are scanned in a linear order. For a macroblock
M , the encoder chooses a motion vector ~v (how this is done is left unspeci�ed), and the
di�erence between ~v and the motion vector for the previous macroblock is transmitted,
using a static Hu�man code. For each 8� 8 block B contained in M , a lossy version
of the block of prediction errors obtained by using ~v to predict B is then transmitted.
This is done by applying a 2D DCT to the block of prediction errors, quantizing
the resulting coe�cients, and sending the result using a run-length/Hu�man coder,
where the coe�cients are scanned in a zigzag order.

As indicated in the diagram, the encoder has the option of changing certain as-
pects of the above process. First, the encoder might simply not transmit the current
macroblock; the decoder is then assumed to use the corresponding macroblock in the
previous frame in its place. If transmitted, the macroblock can be transform coded
with motion compensation (interframe coding) or without (intraframe coding). If mo-
tion compensation is used, there is an option to apply a linear �lter to the previous
decoded frame before using it for prediction.

2.2 PVRG implementation of p� 64

In the PVRG implementation, a motion vector ~v is determined for each macroblockM
by means of block matching. Only the luminance blocks are compared to the deter-
mine the best match, with the mean absolute di�erence being used as the measure



of similarity. The variance VP of the resulting prediction errors for the luminance
blocks in M by using ~v is compared against the variance of the luminance blocks in
M to determine whether to perform intraframe or interframe coding. The loop �lter
in interframe mode is enabled if VP is below a certain threshold.

The decision of whether to transmit a transform-coded block is made individually
for each block in a macroblock by considering the sum of absolute values of the
quantized transform coe�cients. If the sum falls below a prede�ned threshold, the
block is not transmitted.

2.3 Algorithm M1

A good �rst place to apply the bit-minimization principle is in choosing the motion
vectors. Instead of performing block matching to minimize the mean absolute di�er-
ence, we minimize the actual number of bits needed to code the current macroblock.
In computing the codelength, we make the same coding decisions as the original
PVRG p � 64 implementation and perform the appropriate encoding steps for each
choice of motion vector within the search area, picking the motion vector that results
in the minimum codelength for the entire macroblock. The computed codelength
includes the coding of the transform coe�cients, the motion vector, and all other side
information. We call this algorithm M1.

When choosing the motion vector to minimize the coding of the current mac-
roblock, we use the fact that the motion vectors for previous macroblocks (in scan
order) have been determined to compute the codelength. However, since the choice
of a motion vector for the current macroblock a�ects the codelength of future mac-
roblocks, this is a greedy minimization procedure, and we may not obtain a globally
minimal codelength.

Since we are explicitly attempting to minimize the codelength, we are almost as-
sured to have higher prediction error than if we attempted to minimize the prediction
error. Instead of attempting to deal with quality directly, we rely on the transform
coder and quantizer to deliver a desired level of quality; that is, the M1 coder may re-
quire a �ner quantization step size to deliver the same quality as the PVRG coder. As
we will see in the results section, bit-minimization does indeed result in consistently
better rate-distortion curves.

2.4 Algorithm M2

In Algorithm M1, the decisions of whether to use a �lter and whether to use motion
compensation are made the same way as in the PVRG p � 64 implementation. In
algorithm M2, however, these decisions are also made to minimize codelength: All
three combinations of the decisions are tried, and the one resulting in the smallest
codelength is used. Here, even more than with M1, we rely on the transform coder
and the quantizer to code the prediction errors with adequate quality. Our hope
is that the gain in compression e�ciency will o�set the decrease in reconstruction
quality for a given quantization step size; that is, to achieve a certain quality level,
we may be able to use �ner quantization and still get improvements in compression.

Since M2 is able to make decisions on how to code each macroblock, it is able to
take into account the coding of side information in minimizing the codelength. For
low bit rates, where the percentage of side information is signi�cant compared to the
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Figure 2: MSE vs. Rate for Miss America

coding of motion vectors and transform coe�cients, one would expect that M2 will
be able to reduce the codelength of side information.

2.5 Experimental results

We performed experiments using 150 frames of the \Miss America" sequence in CIF
(352� 288) format. We ran the three p� 64 algorithms for various quantization step
sizes. The search region used for block matching is �7 in both directions. Rate-
distortion curves are plotted in Figure 2.

As indicated in the plots, M1 performs slightly better than the PVRG implemen-
tation and M2 signi�cantly better. For instance, transmitting a CIF-format video
sequence at 15 frames per second (fps) on a 128 kbits-per-second line would allow for
8,738 bits per frame. For the same distortion achieved by the PVRG codec at this
rate, the M1 and M2 coders would require 17% and 33% less bandwidth, respectively.
Equivalently, for the same bandwidth, M1 would be able to code a sequence at 17.5
fps and M2 at 20 fps.

It is interesting to note that, for the one quantization level for which we did this
experiment, increasing the search range from �7 to �15 yielded an improvement
only for the M2 coder. The codelength actually increased for the PVRG coder and
was unchanged for the M1 coder. This result points out one property of the bit-
minimization approach: increasing the search range can never increase the codelength.

Though the experiments were performed with no rate control, we expect similar
relative performance even with rate control.

In summary, for one particular test sequence both M1 and M2 exhibit signi�cantly
better rate-distortion curves than the PVRG p�64 coder at low bit rates. In addition,
M2 has better performance at high bit rates.

3 Quadtrees for motion vector coding

Like the underlying image data that they are computed from, motion vector �elds
exhibit an appreciable amount of spatial correlation. Approaches such as the p � 64



standard exploit this observation by coding the di�erences between successive motion
vectors in a one-dimensional scan order. Potentially better results can be achieved
by directly exploiting the two-dimensional correlation of motion vectors. A quadtree
data structure can be used for this purpose by encoding a hierarchical decomposition
of a frame into variable-sized regions of uniformmotion [4]. For video sequences where
there are large regions of uniform motion, a quadtree decomposition could reduce the
number of bits required to encode the motion �eld compared to a method which used
�xed-sized blocks.

In this section, we consider the instantiation of the bit-minimization principle in
an algorithm which uses a quadtree to code motion vectors, thereby departing from
the p � 64 standard.

3.1 Previous work

Puri and Hang [11] considered an algorithm for motion-compensated video coding
which, when an 8� 8 block B is not coded well (that is, when coding it requires a lot
of bits), chooses a separate motion vector for each of B's four 4�4 subblocks. Bierling
[1] described a hierarchical algorithm for choosing motion vectors in which initially
motion vectors are chosen for large blocks (64 � 64) by minimizing the prediction
error.2 Then for each large block B, motion vectors are chosen for subblocks of B
again by minimizing prediction error, except looking only at motion vectors close to
the motion vector chosen for B. This process results in a smoother motion �eld,
and experiments suggest that it is closer to the \true" motion than is a motion �eld
obtained by separately minimizing error on the small blocks. While Bierling did
not discuss how to code motion vectors obtained through by his method, Chan, Yu,
and Constantinides [4] described a method where motion vectors are again chosen
in a top-down fashion, starting with large blocks and re�ning with smaller blocks,
except when the average squared prediction error for a given block B is below a given
threshold, the algorithm does not re�ne the motion vector chosen for B by looking at
subblocks of B. Similarly, if the use of separate motion vectors for the subblocks of
B does not reduce the error signi�cantly, the subblocks of B are \merged" with B.
After this process is completed, the tree obtained by making a given block the parent
of its subblocks is transmitted, together with motion vectors for each of the leaves.
Methods for taking a tree structure like the above (except expanded completely) and
then \smoothing" the motion vectors by making children tend to be like their parents
and vice-versa, were discussed by Dufaux and Kunt [5]. Zhang, Cavenor, and Arnold
[15] considered various ways of using quadtrees to code the prediction error.

3.2 Description of our algorithm

In [4], Chan, Yu, and Constantinides describe several coding schemes using quadtrees
in which the split/merge operations used to construct the tree are controlled by
prediction error criteria. We propose to use a quadtree to encode motion vectors for
a block-matching motion-compensated video coder in which the tree is constructed
using the bit-minimization principle. The basic coder design is similar to the p � 64
coder shown in Figure 1. The di�erence is that now motion vectors are coded with a
quadtree whose leaves represent regions of uniform motion. Conceptually, one might

2In fact, a heuristic search [8, 9] was used to only approximately minimize the error.



associate a motion vector with each node of the quadtree, which, for internal nodes,
is re�ned further down the tree. Using this viewpoint, for each node other than the
root, the di�erence between the node's and its parent's motion vectors is transmitted.
Thus, one can construct the motion vector for each leaf by adding the root's motion
vector to the sum of the di�erences encountered along the path from the root to the
given leaf.

Given a particular quadtree decomposition, we code the structure of the tree using
an adaptive arithmetic code to code whether each node is a leaf or not (a di�erent
adaptive coder is used for each level). The motion vector di�erences at each node are
coded using another adaptive arithmetic code (again, using a di�erent coder for each
level). For each leaf node, the 8 � 8 transform coded blocks subsumed by the node
are transmitted in scan order. The decision of how to code the block (choosing from
among alternatives similar to those in the p� 64 standard) is also transmitted using
an adaptive arithmetic coder. If the quantized transform coe�cients are transmitted,
this is done using the run-length/Hu�man coding method from the p� 64 standard.
The counts for the adaptive arithmetic coder are updated once at the end of each
frame.

The quadtree coding structure just described has several nice properties that make
a dynamic-programming solution possible for �nding an optimal set of motion vectors
that minimizes the sum of the codelengths needed to encode the motion vectors and
the transform-coded prediction error. Since the code used for the motion vector
di�erences at each node doesn't change during the coding of a particular frame, the
optimum number of bits to code the motion vector di�erences for any subtree is
independent of the coding of any other disjoint subtree. Similarly, the transform
coding of the prediction errors is independent for disjoint subtrees.

We now describe a dynamic-programming algorithm for choosing an optimal
quadtree. For each node in the tree, we store a table indexed by the (absolute)
motion vector of the node's parent. This table, for each possible motion vector ~v of
the parent, gives the minimum codelength to code the subtree rooted at the current
node given that the parent's motion vector is ~v. Also stored with each table entry
is a motion vector giving the minimum codelength. Construction of the tables is
performed in a bottom-up fashion, starting at the 8 � 8 block level. For a node p,
the table is constructed by �nding, for each possible motion vector ~v0 of the parent
of p, a motion vector for p that results in the minimum codelength for the subtree
rooted at p. If p is at the 8 � 8 block level, this is done by computing the transform
codelength of the prediction error for each motion vector in the search range S and
noting the minimum codelength and the corresponding motion vector. Otherwise if p
is not an 8�8 block, we consider for each motion vector ~v in S the codelength needed
to transform-code the prediction errors if the quadtree is pruned at p. (This quantity
can be computed in a preprocessing step.) We also consider the codelength if the
quadtree is not pruned at p. This codelength is computed by indexing the tables of
children of p with ~v and summing. The minimum of these two quantities is added to
the number of bits to code ~v0� ~v. The result is the minimum codelength required to
code the subtree rooted at p given motion ~v0 at p's parent node.

Once the minimum codelength is computed for the root of the quadtree, the
motion vectors for each node in the tree are determined by going back down the tree,
using the tables constructed on the way up. The optimal motion vector for the root
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node is made known to its children. Each child uses this to index its table to �nd its
optimal motion vector. Pruning of the tree is also performed as a result.

The dynamic-programming algorithm requires O(N jSj2) time, where N is the
number of 8�8 blocks in the frame and S is the search area for block-matching. The
space requirement is O(N jSj).

We performed experiments using 50 frames of the grayscale 256 � 256 \Trevor"
sequence. The p � 64 coders were modi�ed to accept input at 256 � 256 resolution.
A rate-distortion plot for the quadtree and p � 64 coders is given in Figure 3.

4 Ongoing research

The current quadtree algorithm uses a bottom-up dynamic programming approach,
except that the \bottom" level is de�ned as the 8�8 block level used for DCT coding.
More e�cient encoding can be obtained by allowing the quadtree decomposition to
go all the way to the pixel level. The most promising approach within reason is to
\freeze" the quadtree resulting from the \bottom-up" approach starting at the 8� 8
level, and then use a heuristic to expand non-pruned nodes at the 8�8 level. Another
use for the top-down heuristic is as a fast approximation to the bottom-up dynamic
programming approach.

The same motion estimation methods we discussed in this paper should work as
well for MPEG, in which interframe coding can be both forwards and backwards. The
MPEG approach is more suitable for computationally intensive encoding methods,
as long as decoding is fast, as in the case at hand.

We are also interested in adapting the optic 
ow algorithms of Shvaytser [12],
which use the Occam paradigm of minimizing code length in order to get better es-
timates of the motion. However, the algorithms in [12] only approximately minimize
code length, since they ignore the coding of the error signal. The approach we advo-
cate in this paper, when combined with the prediction framework in [12] should yield
better motion estimates.
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