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Abstract|We present and compare methods for choosing
motion vectors for block-based motion-compensated video
coding. The primary focus is on videophone and video-
conferencing applications, where low bit rates are neces-
sary, where motion is usually limited, and where the amount
of computation is also limited. In a typical block-based
motion-compensated video coding system, motion vectors
are transmitted along with a lossy encoding of the resid-
uals. As the bit rate decreases, the proportion required
to transmit the motion vectors increases. We provide ex-
perimental evidence that choosing motion vectors explic-
itly to minimize rate (including motion vector coding), sub-
ject to implicit constraints on distortion, yields better rate-
distortion tradeo�s than minimizing some measure of pre-
diction error. Minimizing a combination of rate and distor-
tion yields further improvements. Although these explicit-
minimization schemes are computationally intensive, they
provide invaluable insight which we use to develop practi-
cal algorithms. We show that minimizing a simple heuristic
function of the prediction error and the motion vector code-
length results in rate-distortion performance comparable to
explicit-minimization schemes while being computationally
feasible. Experimental results are provided for coders that
operate within the H.261 standard.

Keywords

Rate-distortion, motion estimation, motion compensation, video
coding, video compression, H.261

I. Introduction

Hybrid video coding that combines block-matching mo-

tion compensation (BMMC) with transform coding of the

residual is a popular scheme for video compression, adopted

by international standards such as H.261 [1], [2], H.263 [3],

and the MPEG standards [4], [5], [6]. Motion compensation

is a technique that exploits the typically strong correlation

between successive frames of a video sequence by coding

motion vectors that tell the decoder where to look on the

previous frame for predictions of the intensity of each pixel

in the current frame. With BMMC, the current frame is

divided into blocks (usually 8� 8 or 16� 16) whose pixels

are assigned the same motion vector ~v. The residual from

motion compensation is then coded with a lossy transform

coder, such as the 2D-DCT, followed by a variable-length

entropy coder.

In previous work on BMMC, motion vectors are typi-

cally chosen to minimize prediction error, and much of the

emphasis has been on speeding up the motion search [7],

�� ����

��

����

��

��

��

��

��

12 14 16 18 20 22 24 26 28 30 32

500

1000

2000

2500

Quantizer Step Size

A
ve

ra
ge

 B
its

/F
ra

m
e

3000

1500

Side Information

DCT Coefficients

Motion Vector

Fig. 1. Distribution of bits for intraframe coding of the Miss America
sequence at various bit rates with a standard p� 64 coder.

[8], [9], [10]. However, for low bit-rate applications, such

as videophone and videoconferencing, the coding of motion

vectors takes up a signi�cant portion of the bandwidth, as

evidenced with a coding experiment summarized in Fig-

ure 1. This observation has previously been made in [11].

In this paper, we investigate cost measures that take into

account the e�ects of the choice of motion vector on rate

and distortion. We �rst develop and present computation-

ally intensive coders that attempt to explicitly optimize for

rate and distortion. Insights gained from these implemen-

tations lead to the development of faster coders that min-

imize an e�ciently computed heuristic function. Experi-

ments show that using these measures yields substantially

better rate-distortion performance than standard measures

based solely upon prediction error.

We implemented and tested our motion estimation al-

gorithms using an implementation of the H.261 standard,

remaining faithful to the standard (also known informally

as the p�64 standard). The p�64 standard is intended for

applications like videophone and videoconferencing, where

very low bit rates are required, not much motion is present,

and frames are to be transmitted essentially as they are

generated. Our experimental results are for benchmark

videos typical of the type for which the p � 64 standard

was intended: they consist of a \head-and-shoulders" view

of a single speaker.

In the next section, we briey describe an existing im-

plementation of the p� 64 standard that we use as a basis
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for comparison. We then show how to modify the base

implementation, but remain within the p � 64 standard,

to choose motion vectors that more directly minimize rate

and distortion. Experiments show that when transmitting

two benchmark QCIF video sequences, Miss America and

Claire, at 18 kbits/sec using rate control, choosing motion

vectors explicitly to minimize rate improves average PSNR

by 0.87 dB and 0.47 dB respectively. In the p�64 standard,

two binary coding decisions must be made from time to

time.1 In the base implementation, heuristics based upon

prediction error are used to make these decisions. When

bit minimization is also applied to make the coding de-

cisions, the improvement in PSNR becomes a signi�cant

1.93 dB forMiss America and 1.35 dB for Claire. If instead

of minimizing the bit rate, we minimize a combination of

rate and distortion, we observe improvements of 2.09 dB

and 1.45 dB, respectively.

In Section IV, we describe coders that minimize a heuris-

tic function of the prediction error and motion vector code-

length. These heuristic coders give compression perfor-

mance comparable to the explicit minimization coders while

running much faster. Experimental results are presented in

Sections III-D and IV-B.

Preliminary descriptions of this work can be found in

[12], [13], [14], [15].

II. PVRG Implementation of H.261

As a basis for comparing the di�erent motion estimation

schemes proposed in this chapter, we use the p� 64 coder

supplied by the Portable Video Research Group (PVRG).2

In the base PVRG implementation, a motion vector ~v is de-

termined for each macroblockM using standard full-search

block-matching. Only the luminance blocks are compared

to the determine the best match, with the mean absolute

di�erence (MAD) being used as the measure of prediction

error. Decisions on how to code individual blocks are made

according to Reference Model 8 [16].

III. Explicit Minimization Algorithms

In the PVRG coder, motion estimation is performed to

minimize the MAD of the prediction error. A rationale

for this is that minimizing the mean square error (MSE) of

the motion-compensated prediction, which is approximated

with the MAD, is equivalent to minimizing the variance

of the 2D-DCT coe�cients of the prediction error, which

tends to result in more coe�cients being quantized to zero.

However, minimizing the variance of the DCT coe�cients

does not necessarily lead to a minimum-length encoding

of the quantized coe�cients, especially since the quantized

coe�cients are then Hu�man and run-length coded. Fur-

thermore, since coding decisions are typically made inde-

pendently of motion estimation, the e�ect of motion esti-

mation on rate is further made indirect.

1These are 1) whether to use motion compensation and 2) whether
to use the loop �lter with motion compensation.
2As of the publication date, the source code for this implementation

can be obtained via anonymous ftp from havefun.stanford.edu.

In this section, we describe two algorithms that perform

motion estimation explicitly to minimize rate and a third

algorithm that minimizes a combination of rate and distor-

tion. We then present results of experiments that compare

these algorithms with the standard motion estimation al-

gorithm used by the PVRG coder.

A. Algorithm M1

In Algorithm M1, motion estimation is performed ex-

plicitly to minimize (locally) the code-length of each mac-

roblock. The decisions of whether to use motion compen-

sation and whether to use the loop �lter are made in the

same way as in the PVRG implementation. We invoke the

appropriate encoding subroutines for each choice of mo-

tion vector within the search area, picking the motion vec-

tor that results in the minimum code-length for the entire

macroblock. The computed code-length includes the cod-

ing of the transform coe�cients for the luminance blocks,3

the motion vector, and all other side information. When

choosing the motion vector to minimize the coding of the

current macroblock, we use the fact that the motion vec-

tors for previous macroblocks (in scan order) have been

determined in order to compute the code-length. However,

since the choice of a motion vector for the current mac-

roblock a�ects the code-length of future macroblocks, this

is a greedy minimization procedure which may not result

in a globally minimal code-length.

B. Algorithm M2

Algorithm M2 di�ers from Algorithm M1 in that the

decisions of whether to use motion compensation and the

loop �lter are also made to minimize rate: all three com-

binations of the decisions are tried, and the one resulting

in the minimum code-length is used. Since M2 is able to

make decisions on how to code each macroblock, it is able

to take into account the coding of side information in min-

imizing the rate. For low bit rates, where the percentage

of side information is signi�cant compared to the coding

of motion vectors and transform coe�cients, we would ex-

pect M2 to be e�ective in reducing the code-length of side

information.

C. Algorithm RD

With Algorithms M1 and M2, we minimize rate with-

out regard to distortion and then choose the quantization

step size to achieve the desired distortion level. This is

not always the best policy. There may be cases where the

choice of motion vector and coding decisions that minimize

rate results in a relatively high distortion, whereas another

choice would have a slightly higher rate but substantially

lower distortion. In terms of rate-distortion tradeo�, the

second choice may be better. Since the ultimate goal is

better rate-distortion performance, we expect further im-

provements if we minimize a combination of rate and dis-

3The transform coding of the chrominance blocks could be included
as well. However, we chose not to do so in order to make a fair
comparison to the base PVRG coder. This is also the policy for the
other coders described in this chapter.
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tortion. M1 and M2 call encoder routines in the minimiza-

tion steps. By adding calls to decoder routines, we can

compute the resulting distortion. We incorporate this idea

into Algorithm RD.

Algorithm RD minimizes a linear combination of rate

and distortion. Let B(~v;~c) denote the number of bits to

code the current macroblock using motion vector ~v and

coding decisions ~c. Similarly, let D(~v;~c) be the resulting

mean squared error. RD minimizes the objective function:

CRD(~v;~c) = B(~v;~c) + �D(~v;~c): (1)

If B(~v;~c) and D(~v;~c) for each block were independent of

the choices of ~v and ~c for previously coded blocks, results

of Shoham and Gersho [17] imply that an objective func-

tion of the form (1) would minimize distortion subject to

a rate constraint. Since in p� 64 a motion vector is coded

with reference to a previously coded motion vector, there

is some dependence at the macroblock level. Therefore,

minimizing (1) locally for each block is globally subopti-

mal in the rate-distortion sense. With this caveat noted,

we proceed as in [17].

In principle, we should choose � based upon the theo-

retical rate-distortion curve for the input video. A good

choice is to set � to be equal to the negative of the slope

of the line tangent to the distortion vs. rate curve at the

desired operating point. This way we are optimizing in

a direction perpendicular to the rate-distortion curve at

the operating point. The rate-distortion curve can be es-

timated, for example, by preprocessing a portion of the

input video. An online iterative search method could also

be used [17]. In our experiments, we code the test se-

quence several times with di�erent quantizer step sizes to

estimate the rate-distortion function, and �x � based upon

the slope of the function at the desired rate. Our purpose

is to explore the performance improvement o�ered by such

an approach.

D. Experimental Results

For our experiments, we coded 49 frames of the Miss

America sequence and 30 frames of the Claire sequence,

both in QCIF format sampled at 10 frames/sec. These

are \head and shoulders" sequences typical of the type

found in videophone and videoconferencing applications.

We present results here for coding at 18 kbits/sec using

the rate controller outlined in Reference Model 8. The av-

erage PSNR for each coded frame is plotted for the Miss

America and Claire sequences in Figure 2. The average

PSNR for inter-coded frames are tabulated in Table I. For

each sequence, all the coders used the same quantization

step size for the initial intra-coded frame.

IV. Heuristic Algorithms

While Algorithms M1, M2, and RD generally exhibit

better rate-distortion performance than the base PVRG

coder, they are computationally expensive. The additional

computation is in the explicit evaluation of the rate (and

distortion in the case of RD). To reduce the computational
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Fig. 2. Comparison of explicit-minimization motion estimation al-
gorithms for coding the Miss America and Claire sequences at
18 kbits/sec.

complexity, we propose to minimize an e�ciently computed

model of rate and distortion. The idea is that the predic-

tion error (MSE, MAD, or similar measure) can be used to

estimate the rate and distortion for transform coding. This

estimate is then combined with the motion vector code-

length, which is readily available with a table lookup. We

develop such a cost function below and use it in two heuris-

tic coders H1 and H2 that are analogous to the explicit

minimization coders M1 and M2. Both H1 and H2 choose

motion vectors to minimize the cost function. However, H1

makes coding decisions using the same decision functions

that the PVRG and M1 coders use, while H2 chooses the

coding control that minimizes the coding rate given the

estimated motion vectors. Since H2 has to try out three

coding control choices, it will be about three times slower

than H1. However, H2 gives us an indication of the perfor-

mance that is achievable by improving the coding control.

Also, H2 is easily parallelized, using duplicated hardware

for example.
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A. Heuristic Cost Function

Let ~E(~v) denote a measure of the prediction error that

results from using motion vector ~v to code the current mac-

roblock. For example, the error measure could be de�ned

as ~E(~v) = hMAD(~v);DC(~v)i, where MAD(~v) is the mean

absolute prediction error and DC(~v) is the average pre-

diction error. Suppose we have a model H( ~E(~v); Q) that

gives us an estimate of the number of bits needed to code

the motion compensation residual, where ~E(~v) is de�ned

above and Q is the quantization step size. We could then

combine this estimate with B(~v), the number of bits to

code the motion vector ~v. The result is a cost function

that we can use for motion estimation:

CH(~v;Q) = H( ~E(~v); Q) + B(~v): (2)

As de�ned above, the function H provides an estimate of

the number of bits needed to code the motion compensation

residual with quantizer step sizeQ. As we will discuss later,

it can also be used to estimate a combination of the rate

and distortion.

The choice of error measure ~E and heuristic function

H are parameters to the motion estimation algorithm. In

our investigations, we used MAD as the error measure,

for computational reasons. We also looked into using the

MSE, but this did not give any clear advantages over the

MAD. It is also possible to de�ne ~E to be a function of

several variables. However, we report only on the use of

MAD for ~E and denote ~E(~v) by � for convenience, where

the dependence upon ~v is implicit. We examined several

choices for H and describe them below.

As mentioned above, we can use H to estimate the num-

ber of bits used to transform-code the prediction error. To

get an idea of what function to use, we gathered exper-

imental data on the relationship between the MAD and

DCT coded bits per macroblock for a range of motion vec-

tors. Fixing the quantization step size Q at various values,

the data was generated by running the RD coder on two

frames of the Miss America sequence and outputting the

MAD and DCT coded bits per macroblock for each choice

of motion vector. The results are histogrammed and shown

as density plots in Figure 3.

These plots suggest the following forms for H :

H(�) = c1� + c2 ; (3)

H(�) = c1 log(� + 1) + c2; (4)

H(�) = c1 log(� + 1) + c2� + c3: (5)

The above forms assume a �xed Q. In general, H also

depends upon Q; however, when using H to estimate the

motion for a particular macroblock, Q is held constant to

either a preset value or to a value determined by the rate

control mechanism. We can treat the parameters ci as func-

tions of Q. Since there is a small number (31) of possible

values for Q, we can perform curve �tting for each value

of Q and store the parameters in a lookup table. Alterna-

tively, we can determine the parameters adaptively.

We can also model the reconstruction distortion as a

function of prediction error. We use the RD coder to gen-

erate experimental data for distortion versus MAD, shown

in Figure 4, and �nd a similar relationship as existed for

bits versus MAD. Again, we can use (3){(5) to model the

distortion. As with the RD coder, we can consider jointly

optimizing the heuristic estimates of rate and distortion

with the following cost function:

CH(~v;Q) = B(~v) +HR(�;Q) + �HD(�;Q); (6)

where HR is the model for rate and HD is the model for

distortion.

If we use one of (3){(5) for both HR and HD, the com-

bined heuristic function, H = HR + �HD, would have the

same form as HR and HD. Therefore, we can interpret

the heuristic as modeling a combined rate-distortion func-

tion. In this case, we can perform curve �tting once for

the combined heuristic function by training on the statis-

tic R + �D, where R is the DCT bits for a macroblock

and D is the reconstruction distortion for the macroblock.

As with Algorithm RD, the parameter � can be determined

from the operational rate-distortion curve, for example.

B. Experimental Results

To test the H1 and H2 coders, we initially used the same

test sequences and followed the procedures outlined in Sec-

tion III-D and present results for coding at 18 kbits/sec

using the bu�er-feedback rate controller speci�ed in RM8.

In the next section, we verify these results with experiments

on eight di�erent test sequences.

B.1 Static Cost Function

Here, we present results using a static set of coe�cients.

To determine the coe�cients for the heuristic functions,

we performed linear least squares regression, �tting data

generated by the RD coder to the R+�D statistic, as dis-

cussed earlier. A set of regression coe�cients are stored in

a lookup table, indexed by the quantizer step size Q. We

tested the di�erent forms for the heuristic function given

in (3){(5). Comparative plots of the resulting PSNR are

shown in Figures 5 and 6. The average PSNR for cod-

ing at 18 kbits/sec is tabulated in Table I. These results

show that the heuristic coders perform comparably to the

explicit minimization coders. In particular, the heuristic

coders seem more robust than M1 and M2, most likely be-

cause the heuristic functions correlate well with both rate

and distortion, whereas M1 and M2 only consider rate.

B.2 Adaptive Cost Function

The above results rely on pre-training the model param-

eters ci for each value of Q for each video sequence. This is

a tedious and time-consuming operation. Instead, we can

use an adaptive on-line technique, such as the Widrow-Ho�

learning rule [18], [19], to train the model parameters. The

training examples could be generated each time we encode

a macroblock using motion compensation mode. However,

we cannot possibly hope to train one model for each value
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Fig. 3. Density plots of DCT coding bits vs. MAD prediction error for �rst inter-coded frame of Miss America sequence at various levels of
quantization.
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TABLE I

Results of static heuristic cost function. Shown is average PSNR (in dB) of inter-coded frames for coding test sequences

at 18 kbits/sec. H1-A (H2-A), H1-B (H2-B), and H1-C (H2-C) use the heuristic functions (3), (4), and (5), respectively.

Sequence PVRG M1 M2 RD H1-A H1-B H1-C H2-A H2-B H2-C

Miss America 34.58 35.44 36.51 36.67 35.60 35.72 35.58 36.63 36.77 36.68

Claire 32.77 33.24 34.12 34.22 33.68 33.50 33.60 34.47 34.36 34.39
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Fig. 5. Comparison of H1 coder using static heuristic cost function
with PVRG and M1 coders. Coding is performed with RM8 rate
control at 18 kbits/sec. H1-A, H1-B, and H1-C use the heuristic
functions (3), (4), and (5), respectively.

of Q simply because there would not be enough training

examples. We need a single model whose parameters are

independent of Q. The curve �tting results from the pre-

training trials show a strong correlation between the model

parameters and Q�1. This agrees well with previous work

on rate-quantization modeling [20]. Therefore we propose

the following form for the cost function:

H(�;Q) = c1
�

Q
+ c2: (7)

This can be simpli�ed as

H( ) = c1 + c2; (8)
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Fig. 6. Comparison of H2 coder using static heuristic cost function
with PVRG and M2 coders. Coding is performed with RM8 rate
control at 18 kbits/sec. H2-A, H2-B, and H2-C use the heuristic
functions (3), (4), and (5), respectively.

where  � �=Q. Since the simple linear model performed

well with static cost functions, we do not consider more

complex models here.

We conducted experiments using the Widrow-Ho� train-

ing rule on the Miss America and Claire sequences. As ap-

plied to the current context, the Widrow-Ho� rule is a tech-

nique for learning an objective function f( ). With H( )

as an estimate of f( ), the Widrow-Ho� rule gives us a

way to adapt the weights c1 and c2 of (8) when given  

and the value of f( ). For the experiments, we chose the

objective function

f( ) = R( ) + �D( ); (9)
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Fig. 7. Comparison of H1 coder using adaptive heuristic cost function
with PVRG and M1 coders. Coding is performed with RM8 rate
control at 18 kbits/sec. H1-A, H1-B, and H1-C use the heuristic
functions (3), (4), and (5), respectively.

where R( ) is the actual number of bits used to code the

DCT coe�cients and D( ) is the resulting distortion, both

of which can be evaluated by invoking encoder routines.

Given an initial set of weights c1 and c2 a new set of

weights c0
1
and c0

2
can be computed as:

c01 = c1 +  � �
f( )�H( )

 2 + 1
; (10)

c0
2

= c2 + � �
f( )�H( )

 2 + 1
; (11)

where �, the learning rate, is a parameter that determines

how quickly the weights are adapted.

In the experiments, the learning rate � was determined in

a trial-and-error phase and �xed for both sequences. The

parameter � was also determined by trial-and-error and

held constant for both test sequences. Comparative plots

of the resulting PSNR are shown in Figures 7 and 8. The

average PSNR for coding at 18 kbits/sec is tabulated in

Table II. These results show that the adaptive heuristic

coders perform comparably to and sometimes better than

the static heuristic coders and the explicit minimization

coders. Furthermore, the adaptive heuristic coders perform
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Fig. 8. Comparison of H2 coder using adaptive heuristic cost function
with PVRG and M2 coders. Coding is performed with RM8 rate
control at 18 kbits/sec. H2-A, H2-B, and H2-C use the heuristic
functions (3), (4), and (5), respectively.

well on both sequences with the same initial parameter

values.

As a comparison of visual quality, frame 27 of the Miss

America sequence is decoded and shown in Figure 9 for the

PVRG and explicit-minimization coders and in Figure 10

for the heuristic coders. Frame 27 was chosen because it

is in a di�cult scene with much head motion, resulting in

more noticeable coding artifacts.

C. Further Experiments

Here, we present results of further experiments to con-

�rm the e�cacy of the various motion estimation algo-

rithms operating within the p � 64 standard. We applied

the various algorithms to code eight test video sequences

without rate control, sweeping the quantization scale from

12 to 31 to determine the operational rate-distortion plots

shown in Figure 11. Each test sequence consists of 50

frames in QCIF format coded at 10 frames/sec.

The results show that the adaptive heuristic algorithms

perform consistently well compared to the base PVRG and

explicit-minimization implementations, though the level of

improvement varies among sequences. The anomalies ob-
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TABLE II

Results of adaptive heuristic cost function. Shown is average PSNR (in dB) of inter-coded frames for coding test

sequences at 18 kbits/sec. H1-A and H2-A use the heuristic function (3) with static parameters. H1-WH and H2-WH use

adaptive parameters.

Video PVRG M1 M2 RD H1-A H1-WH H2-A H2-WH

Miss America 34.58 35.44 36.51 36.67 35.60 35.83 36.63 36.84

Claire 32.77 33.24 34.12 34.22 33.68 33.58 34.47 34.51

(a) PVRG (b) RD

(c) M1 (d) M2

Fig. 9. Frame 27 of the Miss America sequence as encoded using the PVRG and explicit-minimization motion estimation algorithms. Only
the luminance component is shown.

served in coding the Grandma sequence at low rates with

the PVRG and adaptive H1 coders, as evidenced by the

steep slope and unevenness in the RD curve, seem to in-

dicate a breakdown of the RM8 coding control heuristics,

which were not optimized for operation at very low rates.

This conclusion is supported by the lack of such anomalies

when bit-minimization is used to perform coding control,

as with the M2, H2, and RD coders.

The distributions of bits for coding the Miss America se-

quence with the H1 and H2 coders are plotted in Figure 12.

Compared to Figure 1, these plots show that the H1 and

H2 coders both reduce the percentage of bits used for cod-

ing motion vectors, while increasing the percentage of bits

used to code the DCT coe�cients. Furthermore, with the

H2 coder, which applies bit-minimization to coding con-

trol, the number of bits used for coding side information is

also reduced.

V. Related Work

In related work, Chung, Kossentini and Smith [21] con-

sider rate-distortion optimizations for motion estimation

in a hybrid video coder based upon subband coding and

block-matching motion compensation. The input frames

are �rst decomposed into subbands, which are divided into
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(a) H1-A (b) H2-A

(c) H1-WH (d) H2-WH

Fig. 10. Frame 27 of the Miss America sequence as encoded using the heuristic motion estimation algorithms. Only the luminance component
is shown.

uniform rectangular blocks. For each block, a Lagrangian

cost function is used to select between intraframe and in-

terframe modes and to select between a small number of

candidate motion vectors, which are coded with a lossy

two-dimensional vector quantizer.

In [22], rate-distortion optimization is applied to the se-

lection of coding control for low-bit-rate video coding un-

der the H.263 standard, a newer standard than the H.261

standard that we consider here. A greedy optimization

strategy is adopted to avoid the exponential complexity

that a global optimization would entail. Limited depen-

dencies between the coding control of neighboring blocks

is considered and the coding control is computed using the

Viterbi dynamic programming algorithm to minimize a La-

grangian cost function. Even with simplifying assumptions,

the rate-distortion optimization is computationally com-

plex and may not be suitable for real-time implementation,

as the authors freely admit.

Ribas-Corbera and Neuho� [23] describe a procedure for

minimizing rate in a lossless motion-compensated video

coder. They explore the allocation of bits between the cod-

ing of motion vectors and the coding of prediction error.

They assume that the prediction error has a discrete Lapla-

cian distribution and derive an expression for the total rate

as a function of the number of bits allocated to code the

motion vectors. It is not clear whether this work can be

extended to lossy coding since distortion is not taken into

account in the formulation.

A linear relationship between MAD and both rate and

distortion has been independently observed in [24]. The

authors mention the possibility of performing motion vec-

tor search to minimize the bit rate, but conclude that just

minimizing MAD would have a similar e�ect.

VI. Discussion

We have demonstrated that, at low bit rates, choosing

motion vectors to minimize an e�ciently computed heuris-

tic cost function gives substantially better rate-distortion

performance than the conventional approach of minimiz-

ing prediction error. Furthermore, by adapting the heuris-

tic function to the input sequence, we are able to achieve

coding performance comparable to more computationally

expensive coders that explicitly minimize rate or a combi-

nation of rate and distortion.
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Fig. 11. Performance of motion estimation algorithms on eight test sequences.
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Fig. 12. Distribution of bits for coding the Miss America sequence with the adaptive heuristic coder.

We have considered only the simple case of using a �xed

parameter � to trade rate and distortion. An online adap-

tation of � to track variations in the input sequence is cer-

tainly possible and would result in more robust coders. On

the other hand, we observed that the behavior of these algo-

rithms is quite robust with respect to moderate variations

in �, and that, for example, the best setting of � for one

test sequence worked well when used for the other. Thus,

it seems that �xing � is safe in practice. Still, since � in-

uences rate to some extent, it can be used in conjunction

with the quantization step size in performing rate control.

Automatic control of � based upon bu�er feedback as de-

scribed in [25] is a possibility.

Although the methods presented here have been imple-

mented within the H.261 standard, it should be generally

applicable to any video coder that employs motion compen-

sation in a low bit rate setting. In particular, the H.263

standard is similar enough to H.261 that it seems clear

that these methods will work well with H.263. As a case

in point, the bit-minimization strategy has been applied

in [12] within a non-standard quadtree-based coder that

chooses motion vectors to optimize a hierarchical encoding

of the motion information within a block-matching frame-

work with variable block sizes.
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