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Abstract

We consider the problem of allocating bits among pictures in an MPEG video coder to equalize

the visual quality of the coded pictures, while meeting bu�er and channel constraints imposed by

the MPEG Video Bu�ering Veri�er. We address this problem within a framework that consists of

three components: 1) a bit production model for the input pictures, 2) a set of bit-rate constraints

imposed by the Video Bu�ering Veri�er, and 3) a novel lexicographic criterion for optimality.

Under this framework, we derive simple necessary and su�cient conditions for optimality that lead

to e�cient algorithms.
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1 Introduction

In any lossy coding system, there is an inherent trade-o� between the rate of the coded data and

the distortion of the reconstructed signal. Often the transmission (storage) medium is bandwidth

(capacity) limited. The purpose of rate control is to allocate bits to coding units and to regulate

the coding rate to meet the bit-rate constraints imposed by the transmission or storage medium

while maintaining an acceptable level of distortion.

We consider rate control in the context of the MPEG-1 and MPEG-2 video coding standards.

In addition to specifying a syntax for the encoded bitstream and a mechanism for decoding it, the

MPEG standards de�ne a hypothetical decoder called the Video Bu�ering Veri�er (VBV), which

places quanti�able limits on the variability in bit rate of encoded video. The VBV is an integral

part of the MPEG standards and MPEG-compliant bitstreams must be decodable by the VBV.

In this paper, we develop a novel framework for bit allocation under VBV constraints and a

total bit budget. This framework consists of three components: 1) a bit-production model, 2) a

novel lexicographic optimality criterion, and 3) a set of bu�er constraints for constant and variable

bit rate operation. We formalize bit allocation as a resource allocation problem with continuous

variables and non-linear constraints, to which we apply a global lexicographic optimality criterion.

The goal of optimal bit allocation has traditionally been to minimize an additive distortion

measure, typically mean-squared error (MSE), averaged over coding blocks. While this approach

leverages the wealth of tools from optimization theory and operations research, it does not guarantee

the constancy in quality that is generally desired from a video coding system. For example, a video

sequence with a constant or near-constant level of distortion is more desirable than one with lower

average distortion but higher variability, because human viewers tend to �nd frequent changes in

quality more noticeable and annoying. A long video sequence typically contains segments that,

even if encoded at a fairly low bit rate, will not contain any disturbing quantization artifacts, so

that improving the quality of pictures in those segments is far less important than improving the

quality of pictures in segments that are more di�cult to encode.

To address these issues, we propose a lexicographic optimality criterion that better expresses
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the desired constancy in quality. The idea is to minimize the maximum (perceptual) distortion of a

block (or picture) and then minimize the second highest block distortion, and so on. The intuition is

that doing so would equalize distortion by limiting peaks in distortion to their minimum. As we will

show later, if a constant quality allocation is feasible, then it must necessarily be lexicographically

optimal.

The global nature of lexicographic optimization necessitates the use of o�-line techniques

wherein the complexities of all the coded pictures, as speci�ed with bit-production models, are

known prior to computing a global bit allocation. One way to view this is as a serial computation

with unlimited lookahead, wherein the inputs are the bit production models for each picture. In

practice, this would entail making multiple passes over the video sequence in order to construct the

models, compute an optimal allocation, and compress the sequence using the computed allocation.

In Section 8, we explore some techniques for reducing the computation by limiting the amount of

lookahead used.

In Section 3, we detail our new lexicographic framework for bit allocation. In Sections 3.3.1

and 3.3.2, we analyze bit allocation with constant-bit-rate and variable-bit-rate constraints. The

analyses yield necessary and su�cient conditions for optimality that lead to e�cient bit-allocation

algorithms. In Section 8, we describe an implementation of these algorithms within a software

MPEG-2 encoder and present simulation results.

2 Previous Work

Shoham and Gersho [1] have examined the budget-constrained bit-allocation problem in the context

of a discrete set of independent quantizers. A bit-allocation algorithm based upon Lagrangian

minimization is presented as a more e�cient alternative to a well-known dynamic programming

solution based upon the Viterbi Algorithm [2, 3]. Although it only solves the simple budget-

constrained allocation problem, this work lays the foundation for much of the ensuing work on

optimal bit allocation.

Optimal budget-constrained bit allocation in a dependent-coding setting is examined in [4]. A
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parametric rate-distortion model is proposed for intraframe coding and forward predictive coding.

The model has an exponential form and is motivated by theoretical rate-distortion results for

stationary Gaussian sources. Lagrangian minimization is chosen as the optimization technique and

a closed-form solution is obtained in terms of known statistics and the Lagrange multiplier. A

search over the Lagrange multiplier then yields a solution to the budget-constrained problem. The

authors acknowledge that minimizing sum-distortion does not lead to uniform distortion. They

reformulate the problem to minimize the maximum (minimax) picture distortion. However, they

do not re�ne the minimax solutions to further minimize the second highest distortion, and so on.

The minimax solution is obtained by equating the distortion among pictures.

Budget-constrained minimax bit allocation for dependent coding is also considered in [5]. The

authors provide a minimax solution by �rst showing how to �nd a minimum-rate solution given a

maximum distortion and then using a bisection search to �nd the maximum distortion correspond-

ing to the desired rate. However, the bisection search is not guaranteed to converge in a �nite

number of iterations.

The problem of optimal bit allocation in a bu�ered video coder is �rst presented in [6]. The

authors consider video coding with CBR bu�er constraints and formulate bit allocation as an

integer-programming problem. They assume a �nite set of quantization scales, an integral number

of coded bits, and independent coding. The problem is optimally solved using a dynamic program-

ming algorithm based upon the Viterbi Algorithm. Heuristic methods based upon Lagrangian

minimization and other ad-hoc techniques are proposed to provide more e�cient, but sub-optimal,

solutions.

The discrete optimization framework of [6] is extended in [7] to handle dependent coding.

Except for a simple illustrative case, computing an optimal bit allocation under the dependent

framework requires time and space exponential in the number of coding units. A heuristic pruning

technique is proposed to reduce the number of states considered. However, the e�ectiveness of the

heuristic depends upon the rate-distortion characteristics of the source.

The work in [6] is further extended in [8] to include transmission over a variable-bit-rate channel
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with delay constraints. Besides bu�er and delay constraints, the authors also consider constraints

imposed by several policing mechanisms proposed for ATM networks. Assuming a discrete set

of quantizers and a discrete set of transmission rates, the quantization and transmission rate can

be jointly optimized using the Viterbi Algorithm to produce a minimum sum-distortion encoding.

In the construction of the trellis used by the Viterbi Algorithm, states that violate the various

constraints are discarded. Unlike our framework, there is no explicit constraint on the total number

of bits used.

Joint control of encoder and channel rate is also considered in [9]. Instead of considering

global optimality, this work focuses on real-time control algorithms. An algorithm is proposed that

separates rate control into a \short-term" process and a \long-term" process. The long-term rate

control sets a base quantization scale Qs called the sequence quantization parameter. In normal

operation, Qs is used to code each picture. Long-term rate control monitors the average fullness

of a virtual encoder bu�er and adjusts Qs to maintain the bu�er fullness between two thresholds.

Short-term rate control is applied when the upper bound on encoder rate needs to be enforced.

Several methods are proposed for performing short-term rate control.

In [10], a model relating bits, distortion, and quantization scale is derived for block-transform

video coders. Assuming a stationary Gaussian process, the authors derive a bit-production model

containing transcendental functions. The model is applied to control the frame rate of motion-

JPEG and H.261 video coders.

In the operations research literature, lexicographic optimality has been applied to such problems

as resource location and allocation (e.g., [11, 12, 13, 14, 15, 16]) and is sometimes referred to as

lexicographic minimax , since it can be viewed as a re�nement of minimax theory.
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3 Lexicographic Framework

3.1 Perceptual Quantization

The output bit rate of a typical video coder can be regulated by adjusting a quantization scale Qs.

Increasing Qs reduces the output bit rate but also decreases the visual quality of the compressed

pictures. Similarly, decreasing Qs increases the output bit rate and increases the picture quality.

Although Qs can be used to control rate and distortion, coding with a constant value of Qs

generally does not result in either constant bit rate or constant perceived quality. Both of these

factors depend upon the scene content as well. Studies into human visual perception suggest that

perceptual distortion is correlated to certain spatial (and temporal) properties of an image (video

sequence) [17, 18]. These studies lead to various techniques, called perceptual quantization or

adaptive perceptual quantization, that take into account properties of the Human Visual System

(HVS) in determining the quantization scale [19, 20, 21, 22, 23, 24, 25].

Based upon this body of work, we propose a separation of the quantization scale Qs into a

nominal quantization Q and a perceptual quantization function P (I;Q) such that Qs = P (I;Q),

where I denotes the block being quantized. The function P is chosen so that if the same nominal

quantization Q were used to code two blocks then the blocks would have the same perceptual

distortion. In this way, the nominal quantization parameter Q would correspond directly to the

perceived distortion and can serve as the object for optimization. We favor a multiplicative model

where P (I;Q) = �IQ. (The MPEG-2 Test Model 5 [26] also uses a multiplicative formulation

while an additive formulation is proposed in [27].) Where quantization noise is less noticeable,

such as in highly-textured regions, we can use a larger value for �I than regions where quantization

noise is more noticeable, such as in relatively uniform areas. In this regards, �I can be viewed

as a perceptual weighting factor. Our bit rate allocation, however, works with any monotonic

perceptual quantization function.

The problem of determining P (I;Q) has been studied elsewhere [19, 28] and is an active research

area. It is not considered further in this paper. Here, we address the assignment of Q to each
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picture to give constant or near-constant quality among pictures while satisfying rate constraints

imposed by the channel and decoder. We propose to compute Q at the picture level; that is, we

compute one Q for each picture to be coded. Besides decreasing the computation over computing

a di�erent Q for each macroblock, this method results in constant perceptual quality within each

picture. The framework can certainly be generalized to other coding units, and in principle can be

applied to code other types of data, such as images and speech.

3.2 Bit-Production Modeling

For simplicity, we assume that each picture has a bit-production model that relates the picture's

nominal quantization Q to the number of coded bits B. This assumes that the coding of one

picture is independent of any other. This independence holds for an MPEG encoding that uses only

intraframe (I) pictures, but not for one that uses forward predictive (P) or bidirectionally predictive

(B) pictures, for example. In practice, the extent of the dependency is limited to small groups of

pictures. Nonetheless, we initially assume independence to ease analysis and defer treatment of

dependencies until a later section where we consider practical implementations.

We specify Q and B to be non-negative real-valued variables. In practice, the quantization

scale Qs and B are positive integers with Qs = bP (I;Q)c. However, to facilitate analysis, we

assume that there is a continuous function for each picture that maps Q to B.

For a sequence of N pictures, we de�ne N corresponding bit-production models ff1; f2; : : : ; fNg

that map nominal quantization scale to bits: bi = fi(qi), where fi : [0;1] 7! [li; ui], with

0 � li < ui. (We number pictures in encoding order and not temporal display order.) We require

the models to have the following properties:

1. fi(0) = ui,

2. fi(1) = li,

3. fi is continuous and monotonically decreasing.

From these conditions, it follows that fi is invertible with qi = gi(bi), where gi = f�1i and
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gi : [li; ui] 7! [0;1]. We note that gi is also continuous and monotonically decreasing. Although

monotonicity does not always hold in practice, it is a generally accepted assumption.

In video coding systems, the number of bits produced for a picture also depends upon a myriad

of coding choices besides quantization scale, such as motion compensation and the mode used to

code each block. We assume that these choices are made independently of quantization and prior

to performing rate control.

3.3 Bu�ering Constraints

The MPEG standards specify that an encoder should produce a bitstream that can be decoded by

a hypothetical decoder referred to as the Video Bu�ering Veri�er (VBV). With MPEG-2, data can

be transferred to the VBV either at a constant or variable bit rate; whereas the MPEG-1 standard

only de�nes VBV operation with a constant bit rate. In either mode of operation, the number

of bits produced by each picture must be controlled so as to satisfy constraints imposed by the

operation of the decoder bu�er, whose size BV is speci�ed in the bitstream by the encoder. The

encoder also speci�es the maximum transfer rate R into the VBV bu�er and the amount of time

the decoder should wait before decoding the �rst picture. In this section, we consider constraints

on the number of bits produced for each picture that follow from analysis of the VBV. The reader

is referred to [29] for a more general discussion of bu�er constraints in video coder systems.

3.3.1 Constant Bit Rate

We �rst examine the mode of operation in which the compressed bitstream is to be delivered at a

constant bit rate R.

De�nition 1 Given a sequence of N pictures, an allocation s = hs1; s2; : : : ; sN i is an N -tuple

containing bit allocations for all N pictures, so that sn is the number of bits allocated to picture n.

Let BV be the size of the decoder bu�er; Bf(s; n) the fullness of the VBV bu�er, resulting from

allocation s, just before the nth picture is removed from the bu�er; R the rate at which bits enter

the decoding bu�er; Tn the amount of time required to display picture n; and Ba(n) = RTn the
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number of bits that enter the bu�er in the time it takes to display picture n. For constant bit rate

(CBR) operation, the state of the VBV bu�er is described by the recurrence

Bf(s; 1) = B1;

Bf(s; n+ 1) = Bf(s; n) +Ba(n)� sn;

(1)

where B1 is the initial bu�er fullness. Unwinding the recurrence, we can also express (1) as

Bf(s; n+ 1) = B1 +

nX
j=1

Ba(j)�

nX
j=1

sj : (2)

To prevent the decoder bu�er from overowing we must have

Bf(s; n+ 1) � BV: (3)

The MPEG standards allow pictures to be skipped in certain applications. We assume that all

pictures are coded, in which case all bits in the encoding of picture n must arrive at the decoder

by the time it is to be decoded and displayed; that is, we must have

Bf(s; n) � sn: (4)

A violation of this condition is called a bu�er underow.

We now have an upper bound and can derive a lower bound for the number of bits that we can

use to code picture n. From (1), (3), and the non-negativity of sn, we have

sn � maxfBf(s; n) +Ba(n)�BV; 0g: (5)

In summary, for constant bit rate operation, in order to pass video bu�er veri�cation, an

allocation s must satisfy the following for all n:

maxfBf(s; n) +Ba(n)�BV; 0g � sn � Bf(s; n): (6)
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An exemplary plot of the evolution of the bu�er fullness over time for CBR operation is shown

in Figure 1(a). In this example, the decoder waits T0 seconds before decoding the �rst picture, at

which time the bu�er fullness is B1. The time to display each picture is assumed to be a constant T

seconds. In the plot, the upper and lower bounds for the number of bits to code picture 2 are shown

as U2 and L2, respectively.

3.3.2 Variable Bit Rate

We now examine the scenario where the compressed video bitstream is to be delivered at a variable

bit rate (VBR). Speci�cally, we adopt the MPEG-2 VBV model where bits always enter the decoder

bu�er at the peak rate R until the bu�er is full. Depending upon the state of the bu�er, bits

enter during each display interval at a rate that is e�ectively variable up to the peak rate R. The

maximum number of bits entering the bu�er in the time it takes to display picture n isBa(n) = RTn.

For VBR operation, the state of the VBV bu�er is described by:

Bf(s; 1) = BV;

Bf(s; n+ 1) = minfBV; Bf(s; n) +Ba(n)� sng:

(7)

Unlike the CBR case, the decoder bu�er is prevented from overowing by the minimization

in (7). When Bf(s; n)+Ba(n)�sn > BV, we say that picture n results in a virtual overow. When

a virtual overow occurs, the e�ective input rate to the VBV bu�er during that display interval

is less than the peak rate. Like the CBR case, underow is possible and to prevent it (4) must

hold. The evolution of the bu�er fullness is shown for VBR operation in Figure 1(b). The time to

display each picture is assumed to be a constant T seconds. As shown in the plot, the number of

bits that enter the bu�er during each display interval is variable, with virtual overows occurring

for pictures 2 and 4.

MPEG-2 de�nes a second VBR mode wherein bits enter the bu�er at a piecewise-constant rate

up to the peak rate R. The rate at which bits for picture i are input to the VBV is determined by

the coded vbv delay parameter and the number of bits for picture i. We note that with the same
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bit allocation, the VBV bu�er fullness for the �rst VBR mode is equal to or higher than for the

second mode. Intuitively, if the channel rate is not further constrained, a lexicographically-optimal

bit allocation for the �rst VBR mode should not be worse than an optimal bit allocation for the

second mode, all else being equal.

3.4 Bu�er-Constrained Bit-Allocation Problem

Using the bit-production model and VBV constraints de�ned above, we now formalize the bu�er-

constrained bit-allocation problem.

De�nition 2 A bu�er-constrained bit-allocation problem P is speci�ed by a tuple

P = hN;F;BT; BV; B1; Bai;

where N is the number of pictures; F = hf1; f2; : : : ; fNi is a sequence of N functions, as speci�ed

in Section 3.2, that model the relationship between the nominal quantization scale and the number

of coded bits for each picture; BT is the target number of bits to code all N pictures; BV is the size

of the VBV bu�er in bits; B1 is the number of bits initially in the VBV bu�er; Ba is a function

that gives the maximum number of bits that can enter the decoding bu�er while each picture is

being displayed.

De�nition 3 Given a bu�er-constrained bit-allocation problem P = hN;F;BT; BV; B1; Bai, an

allocation s is a legal allocation if the following conditions hold:

1.
PN

j=1 sj = BT

2. Equation (4) holds: Bf(s; n) � sn.

3. For CBR only, (5) holds: sn � maxfBf(s; n) +Ba(n)�BV; 0g.

For convenience, we shall use the shorter term \bit-allocation problem" to refer to the bu�er-

constrained bit-allocation problem and assume that bit-allocation problems are given so that a

legal allocation exists.
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3.5 Lexicographic Optimality

We now formally de�ne the lexicographic optimality criterion. As mentioned in Section 3.1, we

equate nominal quantization scale with perceptual distortion and de�ne the optimality criterion

based upon the nominal quantization Q assigned to each picture.

Let S be the set of all legal allocations for a bit-allocation problem P . For an allocation s 2 S,

let Qs = hQs
1; Q

s
2; : : : ; Q

s
Ni be the values of Q to achieve the bit allocation speci�ed by s. Thus

Qs
i = gi(si), where gi is as de�ned in Section 3.2. Ideally, we would like an optimal allocation to

use a constant nominal quantization scale. However, this may not be feasible because of bu�er

constraints. We could consider minimizing an lk norm of Qs. However, as discussed earlier, such

an approach does not guarantee constant quality where possible and may result in some pictures

having extreme values of Qi.

Instead, we would like to minimize the maximum Qi. Additionally, given that the maximum Qi

is minimized, we want the second largest Qi to be as small as possible, and so on. This is referred

to as lexicographic optimality or lexicographic minimax in the literature (e.g., [30]).

We de�ne a sorted permutation DEC on Qs such that for DEC(Qs) = hqj1 ; qj2 ; : : : ; qjN i, we

have qj1 � qj2 � � � � � qjN . Let rank(s; k) be the kth element of DEC(Q
s); that is, rank(s; k) = qjk .

We de�ne a binary relation � on allocations as follows: s = hs1; : : : ; sN i � s0 = hs01; : : : ; s
0
N i if

and only if rank(s; j) = rank(s0; j) for j = 1 ,2 ,: : : , k � 1 and rank(s; k) > rank(s0; k) for some

1 � k � N . We also de�ne s � s0 if and only if s0 � s; s � s0 if and only if rank(s; j) = rank(s0; j)

for all j; s � s0 if and only if s � s0 or s � s0; and s � s0 if and only if s � s0 or s � s0.

De�nition 4 A legal allocation s� is lexicographically optimal if s� � s for all other legal alloca-

tion s.

Lemma 1 Given a bit-allocation problem P = hN;F;BT; BV; B1; Bai, if there exists a legal allo-

cation s and a quantization q such that gn(sn) is the constant quantization q for all n, where gn is

de�ned as in Section 3.2, then s is the only lexicographically-optimal allocation for P .

Proof : First we prove that s is optimal. Since s is a legal allocation, we have
PN

j=1 sj =
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PN

j=1 fj(q) = BT: Suppose that s is not optimal. Let s
0 be an optimal allocation. Then rank(s0; k) <

rank(s; k) = q for some k, and rank(s0; j) � rank(s; j) for all j. Therefore s0l > fl(q) for some l

and s0j � fj(q) for all j since fj is a decreasing function. Thus
PN

j=1 s
0
j >

PN

j=1 fj(q) = BT, a

contradiction. Therefore s is optimal.

Now we show that s is the only optimal allocation. Let s0 be an optimal allocation. Since s

and s0 are both optimal, s � s0 and s � s0, implying s � s0. Then rank(s; j) = rank(s0; j) for all j.

Therefore rank(s0; j) = q for all j. Thus s0 = s. 2

Lemma 1 establishes a desirable property of the lexicographic optimality criterion: If a constant-

Q allocation is legal, it is the only lexicographically-optimal allocation. This meets our objective

of obtaining a constant-quality allocation (via perceptual quantization) when feasible.

4 CBR Analysis

In this section, we analyze the bu�er-constrained bit-allocation problem under constant-bit-rate

VBV constraints, as described in Section 3.3.1.

Before proceeding with a formal theoretical treatment, we �rst present some intuition for the

results that follow. If we consider a video sequence as being composed of segments of di�ering

coding di�culty, a segment of \easy" pictures can be coded at a higher quality (lower distortion)

than an immediately following segment of \hard" pictures if we code each segment at a constant

bit rate. Since we have a decoder bu�er, we can vary the bit rate to some degree, depending upon

the size of the bu�er. If we could somehow \move" bits from the easy segment to the hard segment,

we would be able to code the easy segment at a lower quality than before and the hard segment at

a higher quality, thereby reducing the di�erence in quality between the two segments. In terms of

the decoder bu�er, this corresponds to �lling up the bu�er during the coding of the easy pictures,

which are coded with less than the average bit rate. By use of the accumulated bits in the bu�er,

the hard pictures can be coded with e�ectively more than the average bit rate.

Similarly, suppose we have a hard segment followed by an easy segment. We would like to
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empty the bu�er during the coding of the hard pictures to use as many bits as the bu�er allows to

code the hard pictures at above the average bit rate. This simultaneously leaves room in the bu�er

to accumulate excess bits resulting from coding the easy pictures below the average bit rate.

This behavior of emptying and �lling the bu�er is intuitively desirable since this means that

we are taking advantage of the full capacity of the bu�er. In the following analysis, we will show

that such a behavior is indeed exhibited by a lexicographically-optimal bit allocation.

4.1 Analysis

First, we establish a set of necessary conditions for optimality with the following lemma.

Lemma 2 Given a CBR bit-allocation problem P = hN;F;BT; BV; B1; Bai, if s is an optimal

allocation, the following are true:

1. If Qs
j > Qs

j+1 for some 1 � j < N then Bf(s; j) = sj .

2. If Qs
j < Qs

j+1 for some 1 � j < N then Bf(s; j + 1) = BV.

Proof : A sketch of the proof of Lemma 2 is shown in Figure 2. The proof is by contradiction. In

the �gure, the VBV bu�er is shown for a hypothetical situation in which Qs
2 > Qs

3 and Qs
1 < Qs

2

and the switching conditions are not met.

In the �rst case, for Qs
2 > Qs

3, if the bu�er is not empty after picture 2 is decoded, an alternate

allocation can be constructed that is the same as the allocation shown except that the VBV plot

follows the dotted line for the segment between pictures 2 and 3. The dotted line results from

decreasing Qs
2 and increasing Qs

3 while still maintaining Qs
2 > Qs

3 and not causing the bu�er

to underow. This results in a better allocation than before, a contradiction. Intuitively, this

corresponds to shifting bits right-to-left from a relatively easy picture (lower Q) to a relatively

hard picture (higher Q). This shifting of bits can take place until the bu�er becomes empty or

until Qs
1 = Qs

2.

In the second case, for Qs
1 < Qs

2, if the bu�er is not full before picture 2 is decoded, an

alternate allocation can be constructed that is the same as the allocation shown except that the
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VBV plot follows the dashed line for the segment between pictures 1 and 2. The dashed line

results from increasing Qs
1 and decreasing Qs

2 while still maintaining Qs
1 < Qs

2 and not causing

the bu�er to overow. This results in a better allocation than before, a contradiction. Intuitively,

this corresponds to shifting bits left-to-right from a relatively easy picture (lower Q) to a relatively

hard picture (higher Q). This shifting of bits can take place until the bu�er becomes full or until

Qs
1 = Qs

2.

2

Lemma 2 gives us a set of necessary \switching" conditions for optimality. It states that an

optimal allocation consists of segments of constant Q, with changes in Q occurring only at bu�er

boundaries. Also, Q must change in a speci�c manner depending upon whether the bu�er is full or

empty. We observe that in an optimal allocation, the decoder bu�er is full before decoding starts

on a relatively di�cult scene, which is marked by an increase in Q (Case 2). This policy makes

the entire capacity of the decoder bu�er available to code the more di�cult pictures. On the other

hand, before decoding a relatively easy scene, which is marked by a decrease in Q (Case 1), the

bu�er is emptied in order to provide the most space to accumulate bits when the easy scene uses

less than the average bit rate. These observations agree with the intuitions provided earlier. We

also note that Lemma 1 follows directly from Lemma 2.

The theorem that follows is the main result of this section and shows that the switching condi-

tions are also su�cient for optimality.

Theorem 1 Given a CBR bit-allocation problem P = hN;F;BT; BV; B1; Bai, a legal allocation s

is optimal if and only if the following conditions hold. Also, the optimal allocation is unique.

1. If Qs
j > Qs

j+1 for some 1 � j < N , then Bf(s; j) = sj .

2. If Qs
j < Qs

j+1 for some 1 � j < N , then Bf(s; j + 1) = BV.

Proof : Lemma 2 established these condition as necessary for optimality. Now we need to show

that these conditions are also su�cient and imply uniqueness.

17



Let s be a legal allocation that meets both conditions of the theorem. Let Qs
(k) denote the kth

highest value of Q assigned by allocation s. We �rst consider maximal segments of pictures that

are allocated the maximum Q, Qs
(1). From Lemma 2, we have that each such segment starts with

the bu�er either full or at the initial state and ends with the bu�er either empty or at the �nal

state. Since these segments start at the maximum bu�er level, we cannot use a lower value of Q for

any picture in such a segment without causing a bu�er underow. Therefore an optimal allocation

must use Qs
(1) for these segments of pictures.

We can proceed by induction on k to prove that segments of pictures assigned Qs
(k) by alloca-

tion s are given the same Q in an optimal allocation. We conclude that s has the same allocation

as any optimal allocation, and therefore the optimal allocation is unique. 2

Detailed proofs of Lemma 2 and Theorem 1 can be found in [31].

4.2 Related Work

Conditions similar to the switching conditions of Theorem 1 have been described in [32] for optimal

bu�ered bit allocation under a minimum sum-distortion criterion and assuming independent convex

rate-distortion functions. In this work, the Lagrange multiplier method is used to �nd a bit

allocation that is optimal within a convex-hull approximation. The optimal vector of Lagrange

multipliers consists of constant-valued segments that increase (decrease, respectively) only when

the decoder bu�er is full (empty, respectively).

In [33, 34], the theory of majorization [35] is applied to reduce the variability in transmission

rate for stored video. In this setting, the problem is to determine a feasible transmission schedule

by which a pre-compressed video bitstream can be transmitted over a communications channel to

the decoder without underowing or overowing the decoder bu�er. As applied to this problem,

majorization results in minimizing the peak and variance in transmission rate. It can be easily

shown that majorization is in fact equivalent to lexicographic minimization of the transmission

schedule, subject to the constraint that the total number of bits transmitted is �xed.
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5 CBR Allocation Algorithms

Theorem 1 is a powerful result. It says that to �nd the optimal allocation we need only to �nd a legal

allocation that meets the stated switching conditions. In Section 5.1, we �rst use the technique of

dynamic programming (DP) to develop a simple algorithm to compute a lexicographically-optimal

CBR allocation in polynomial time and linear space. The DP algorithm uses a \brute-force"

approach that does not take advantage of some of the structure inherent in the problem. In

Section 5.2, we develop an e�cient algorithm that exploits the monotonicity of the bit-production

models to compute the optimal bit allocation in linear time.

5.1 DP Algorithm

The basic idea behind dynamic programming is to decompose a given problem in terms of optimal

solutions to smaller problems. All we need to do is maintain invariant the conditions stated in

Theorem 1 for each subproblem we solve. We do this by constructing optimal bit allocations for

pictures 1 to k that end up with the VBV bu�er in one of two states: full or empty. These states

are exactly the states where a change in Q may occur. Let Topk be the optimal allocation for

pictures 1 to k that end up with the VBV bu�er full, if such an allocation exists. Similarly, let

Botk be the optimal allocation for pictures 1 to k that end up with the VBV bu�er empty. Suppose

that we have computed Topi and Boti for 1 � i � k. To compute Topk+1, we search for a legal

allocation among
n
;;Top1; : : : ;Topk;Bot1; : : : ;Botk

o
, where ; denotes the empty allocation, to

which we can concatenate a constant-Q segment to give a legal allocation s such that the switching

conditions are met and the bu�er ends up full, that is, Bf(s; k+1) = BV. Similarly, for Bot
k+1 we

search for a previously computed allocation that, when extended by a constant-Q segment, meets

the switching conditions and results in the bu�er being empty, that is, Bf(s; k + 1) = sk+1.

The basic step in the DP algorithm is illustrated in Figure 3. The round nodes represent bu�er

states for which we have previously computed optimal allocations. Each node stores the last Q

used in the optimal allocation for that state and the origin of the last constant-Q segment leading

to that state. The square node represents the next state that we wish to compute. The dashed
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lines represent a constant-Q allocation that connects the respective nodes. To compute a solution

for the square node, we need to search for an edge that connects the square node with a round node

such that the switching conditions are met. For each edge, the switching conditions are checked

by comparing the Q used for the edge against the last Q used in the optimal solution for the

round node that the edge connects. The allocation implied by each edge is also checked for VBV

compliance.

Once we have computed TopN�1 and BotN�1, we can compute the optimal allocation for all N

pictures in a process similar to the one above for computing Topk and Botk, except that the �nal

allocation results in a �nal bu�er state that gives the desired target number of bits BT.

5.1.1 Correctness of DP Algorithm

When computing Topk and Botk for 1 � k � N � 1, we have insured that the conditions of

Theorem 1 are met. Additionally in the �nal computation, the conditions are also met. The result

is a legal allocation that meets the conditions of Theorem 1 and is thus optimal.

5.1.2 Constant-Q Segments

We have used the concept of a constant-Q segment extensively in the above discussion. We now

formalize this concept. First, we de�ne a family of bit-production functions fFi;j(q)g that gives

the number of bits resulting from allocating a constant value of Q for pictures i to j, inclusive:

Fi;j(q) =
X
i�k�j

fk(q): (8)

What we are really interested in, though, is the inverse of Fi;j . We denote the inverse as Gi;j

so that Gi;j = F�1
i;j . Then Gi;j(B) gives the constant Q that results in B bits being produced

by pictures i to j collectively. Since fi is monotonically decreasing, so is Fi;j , and thus Gi;j is

monotonically increasing.
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5.1.3 Verifying a Constant-Q Allocation

The DP algorithm for CBR bit allocation needs to verify whether a constant-Q allocation meets

VBV bu�er constraints. This can be done in time linear in the length of the allocation by simulating

the VBV. In the DP algorithm, O(N2) veri�cations of constant-Q allocations are needed. If

each veri�cation requires linear time, this translates to at least cubic time complexity for the DP

algorithm.

We observe that the constant-Q allocations to be veri�ed start with the bu�er either full, empty,

or at its initial state; and end with the bu�er either full, empty, or at its �nal state. We also note

that for an allocation to a segment of pictures, say from i to j, with a �xed initial bu�er state,

say B1, and using BT bits, there is a continuous range of Q values that results in a legal allocation.

When additional pictures are considered, this range of legal Q values never widens. Furthermore,

the upper bound for Q is simply the minimum Q among the constant-Q allocations for pictures i

to j in which the bu�er is exactly full for some picture k, where i � k < j. More formally,

Gi;j(BT) � min
i�k<j

Gi;k

�
B1 +

X
i�m�k

Ba(m)�BV

�
: (9)

Similarly, the lower bound for Q is the maximum Q among the constant-Q allocations for pictures i

to j in which the bu�er is exactly empty for some picture k, where i � k < j. More formally,

Gi;j(BT) � max
i�k<j

Gi;k

�
B1 +

X
i�m<k

Ba(m)
�
: (10)

We can use these observations to perform all the VBV veri�cations in constant time per veri�cation

with linear-time preprocessing.

5.1.4 Time and Space Complexity

The time complexity of the DP algorithm depends upon two main factors: the time to compute a

constant-Q allocation and the time to verify whether a sub-allocation is legal.

We assume that fi and Gi;j can be evaluated in constant time with O(N) preprocessing time
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and space. An example is fi(q) = �i=q + �i, where

Gi;j(B) =

P
i�k�j �k

B �
P

i�k�j �k
:

We can precompute the pre�x sums of �i and �i in linear time and space and then use these to

compute Gi;j in constant time. The same technique can be used for bit-production models of the

form: fi(q) = �i=q
2 + �i=q + i, fi(q) = �i=q

3 + �i=q
2 + i=q + �i, and fi(q) = �i=q

4 + �i=q
3 +

i=q
2 + �i=q + �i. Examples of other functional forms for fi with a closed-form solution for Gi;j

can be found in [36]. Of course, we need to insure that the models are monotonically decreasing.

Since VBV veri�cation and constant-Q calculation can be done in constant time with linear-

time preprocessing, computing Topk and Botk takes O(k) time. Therefore, to compute an optimal

allocation for a sequence of N pictures would take
PN

k=1 O(k) = O(N2) time. If we store pointers

for tracing the optimal sequence of concatenations, the algorithm requires O(N) space.

5.2 Linear-Time CBR Algorithm

The dynamic programming solution in Section 5 ignores some of the structure that exists in the

framework and focuses solely on achieving the switching conditions of Theorem 1 by \brute force."

For example, a \blind" search strategy is used to �nd a feasible constant-Q segment that con-

nects the end state with a previously-computed optimal sub-allocation and meets the switching

conditions.

A linear-time and linear-space algorithm for optimal smoothing of transmission rates has been

described in [34] and is based on an algorithm for computing the shortest path in the presence

of rectilinear barriers [37]. By plotting transmitted bits versus time, we can view a transmission

schedule as a curve in 2D space. Bu�ering constraints are manifested as rectilinear barriers. As

shown in [33], an optimally smooth transmission schedule follows the shortest path that does not

cross the barriers.

A lexicographically-optimal bit allocation does not have such a simple geometric interpretation

since the relationship between the nominal quantization scale and rate is non-linear. However,
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optimal rate smoothing and optimal bit allocation do have some properties in common. Conditions

analogous to the switching conditions of Theorem 1 exist in the rate smoothing context [34]: the

decoder bu�er must be full when there is an increase in the transmission rate and empty when

there is a decrease.

To apply the linear-time algorithm to lexicographic bit allocation, we equate a constant-bit-

rate (constant-slope) segment in the rate-smoothing problem with a constant-Q segment in the

bit-allocation problem. An increase (decrease) in rate would correspond to an increase (decrease)

in Q.

6 VBR Analysis

In this section, we analyze the bu�er-constrained bit-allocation problem under variable-bit-rate

VBV constraints, as described in Section 3.3.2. The analysis leads to an e�cient iterative algorithm

for computing a lexicographically-optimal solution.

In CBR operation, the total number of bits that a CBR stream can use is dictated by the

channel bit rate and the bu�er size. With VBR operation, the total number of bits has no lower

bound, and its upper bound is determined by the peak bit rate and the bu�er size. Consequently,

VBR is useful and most advantageous over CBR when the average bit rate needs to be lower than

the peak bit rate. This is especially critical in storage applications, where the storage capacity,

and not the transfer rate, is the limiting factor. Another important application of VBR video

coding is for multiplexing multiple video bitstreams over a CBR channel [38]. In this application,

statistical properties of the multiple video sequences may allow more VBR bitstreams with a given

peak rate R to be multiplexed onto the channel than CBR bitstreams coded at a constant rate

of R.

For typical VBR applications, then, the average bit rate is lower than the peak. In this case,

bits enter the decoder bu�er at an e�ective bit rate that is less than the peak during the display

interval of many pictures. In interesting cases, there will be segments of pictures that are coded

with an average bit rate higher than the peak. This is possible because of the bu�ering. During
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the display of these pictures, the VBV bu�er �lls at the peak rate. Since these pictures require

more bits to code than the peak rate, they are \harder" to code than the other \easier" pictures.

In order to equalize quality, the easy pictures should be coded at the same base quality. It does

not pay to code any of the hard pictures at a quality higher than that of the easy pictures. The

bits expended to do so could instead be better distributed to raise the quality of the easy pictures.

Among the hard pictures, there are di�erent levels of coding di�culty. Using the same intuitions

from the CBR case, we can draw similar conclusions about the bu�er emptying and �lling behavior

among the hard pictures.

In the following analysis, we show that a lexicographically-optimal VBR bit allocation possesses

the properties described above. In particular, the hard segments of pictures in a VBR bit allocation

behave as in a CBR setting. In fact, the VBR algorithm invokes the CBR algorithm to allocate

bits to segments of hard pictures.

6.1 Analysis

The following two lemmas characterize the \easy" pictures in an optimal allocation, that is, the

pictures that are coded with the best quality (lowest Q).

Lemma 3 Given a VBR bit-allocation problem P = hN;F;BT; BV; BV; Bai and an optimal allo-

cation s, if Bf(s; j) +Ba(j)� sj > BV for 1 � j � N , then Qs
j = min1�k�N Qs

k.

The above lemma states that, in an optimal allocation, pictures that cause a virtual overow

(see Section 3.3.2) are coded with the globally minimum Q, Qs
min. We can prove the lemma by

contradiction. For a picture i that causes a virtual overow and is not coded with Qs
min, we can

shift bits between picture i and another picture j that is coded with Qs
min so that the quality of

picture i will be improved but not beyond the quality of picture j. Such a shift in bits will result

in a lexicographically better allocation.

As discussed above, there may be segments of hard pictures that require coding at higher than

the peak rate R. The following lemma gives a set of switching conditions for changes in Q that are

similar to the results of Lemma 2 and characterize the behavior of hard pictures.
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Lemma 4 Given a VBR bit-allocation problem P = hN;F;BT; BV; BV; Bai, if s is an optimal

allocation, the following are true:

1. If Qs
j > Qs

j+1 for 1 � j < N , then Bf(s; j) = sj .

2. If Qs
j < Qs

j+1 for 1 � j < N , then Bf(s; j+1) = BV and Bf(s; j+1)+Ba(j + 1)�sj+1 � BV.

The proof for Lemma 4 is similar to that for Lemma 2 except that for Case 2, we use Lemma 3

to show that Bf(s
�; j + 1) +Ba(j + 1)� s�j+1 � BV.

The following theorem is the main result of this section. It shows that the minimum-Q and

switching conditions in the previous lemmas are also su�cient for optimality.

Theorem 2 Given a VBR bit-allocation problem P = hN;F;BT; BV; BV; Bai, a legal allocation s

is optimal if and only if the following conditions hold. Also, the optimal allocation is unique.

1. If Bf(s; j) +Ba(j)� sj > BV for 1 � j � N , then Qs
j = min1�k�N Qs

k.

2. If Qs
j > Qs

j+1 for 1 � j < N , then Bf(s; j) = sj .

3. If Qs
j < Qs

j+1 for 1 � j < N , then Bf(s; j+1) = BV and Bf(s; j+1)+Ba(j + 1)�sj+1 � BV.

Lemmas 3 and 4 establish these as necessary conditions. The proof for su�ciency and uniqueness

is similar to that of Theorem 1 except for segments with the minimum Q, Qs
min. Using the same

arguments as in the proof of Theorem 1, we can show that hard pictures k that are assigned

Qs
k > Qs

min use the same number of bits as in an optimal allocation. This leaves the same number

of bits to be allocated by s to the remaining easy pictures as in the optimal allocation. Since the

bit-production models are monotonic, there is exactly one such assignment using a constant Q.

Although Theorem 2 is an important result, it does not show us how to compute the minimum Q

with which to code the \easy" pictures. The following lemmas and theorem show that, if we relax

the bit budget constraint, we can �nd the minimum Q, and therefore the optimal allocation, to

meet the bit budget by an iterative process. Furthermore, the iterative process is guaranteed to

converge to the optimal allocation in a �nite number of steps.
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Lemma 5 Given two VBR bit-allocation problems P (1) = hN;F;B
(1)
T ; BV; BV; Bai and P (2) =

hN;F;B
(2)
T ; BV; BV; Bai that have optimal allocations s(1) and s(2), respectively, with B

(1)
T < B

(2)
T ,

then s(1) � s(2).

This lemma states the intuitively obvious: If we use more bits we expect to get a lexicographi-

cally better allocation. The following lemma is more interesting and states that pictures that are

already hard retain their bit allocation with an increase in the bit budget.

Lemma 6 Given two VBR bit-allocation problems P (1) = hN;F;B
(1)
T ; BV; BV; Bai and P (2) =

hN;F;B
(2)
T ; BV; BV; Bai that have optimal allocations s(1) and s(2), respectively, with B

(1)
T < B

(2)
T ,

then s
(1)
j = s

(2)
j for j such that Qs(1)

j > min1�k�N Qs(1)

k :

The hard pictures are constrained by the bu�er and the peak rate and not by the bit budget.

Intuitively, increasing the bit budget, therefore, cannot improve the allocation to these pictures.

We can prove this lemma using the same techniques to prove Theorem 1.

Lemma 7 Given two VBR bit-allocation problems P (1) = hN;F;B
(1)
T ; BV; BV; Bai and P (2) =

hN;F;B
(2)
T ; BV; BV; Bai that have optimal allocations s(1) and s(2), respectively, with B

(1)
T < B

(2)
T ,

then min1�k�N Qs(1)

k > min1�k�N Qs(2)

k :

This lemma follows from Lemma 5 and 6. We summarize Lemmas 5, 6, and 7 with the following

theorem.

Theorem 3 Given two VBR bit-allocation problems P (1) = hN;F;B
(1)
T ; BV; BV; Bai and P (2) =

hN;F;B
(2)
T ; BV; BV; Bai that have optimal allocations s(1) and s(2), respectively, with B

(1)
T < B

(2)
T ,

then

1. s(1) � s(2),

2. s
(1)
j = s

(2)
j for j such that Qs(1)

j > min1�k�N Qs(1)

k , and

3. min1�k�N Qs(1)

k > min1�k�N Qs(2)

k .
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7 VBR Allocation Algorithm

Theorems 2 and 3 give us a way to �nd the optimal allocation for a given VBR allocation problem.

If we know the minimum Q that the optimal allocation uses, then it would be straightforward to

�nd the optimal allocation. However, in general we do not know what that minimum Q would be.

Theorem 3 gives us an iterative way to �nd the minimum Q.

7.1 VBR Algorithm

Here we sketch an iterative algorithm for computing a VBR allocation.

1. Mark all pictures as easy. Let Beasy  BT.

2. Allocate Beasy bits to easy pictures using a constant Q. Let Qmin be the value of Q used.

3. Simulate operation of VBV to identify hard and easy segments of pictures. A hard segment

contains pictures that lead to a bu�er underow and consists of pictures that follow the

most recent virtual overow up to and including the picture that caused the overow. In

case a virtual overow has not yet occurred, the segment starts with the �rst picture. After

identifying a hard segment, reset the bu�er fullness to empty and continue the simulation.

4. Assign a bit budget to each newly identi�ed hard segment such that the underow is just

prevented. By preventing underow in the hard segments, we are left with extra unallocated

bits.

5. Let Bhard be the total number of bits allocated to hard pictures. Let Beasy  BT �Bhard.

6. If a new hard segment has been identi�ed in Step 3, goto Step 2.

7. Allocate bits to maximal segments of hard pictures using the CBR algorithm.

7.2 Correctness of VBR Algorithm

Here we prove that the VBR algorithm computes a lexicographically-optimal allocation. We do

this by showing that the algorithm computes an allocation that satis�es the switching conditions
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of Theorem 2.

First, we make several observations about the VBR algorithm.

1. Pictures marked \easy" are assigned the same value of Q,

2. \Hard" pictures are marked in segments that start either at the beginning of the video

sequence or with the bu�er full and that end with the bu�er empty.

3. Segments of hard pictures are allocated using the CBR algorithm.

The correctness of the CBR algorithm insures that within hard segments Conditions 2 and 3

of Theorem 2 hold. In order to show that Condition 1 also holds, we �rst need to show that the

CBR algorithm does not assign a Q lower than the Qmin computed in Step 2.

Lemma 8 Let s be the allocation computed by the VBR algorithm. Let i and j denote the indices of

the beginning and end, respectively, of a hard segment as identi�ed in Step 3. Then mini�k�j Q
s
k �

Qmin.

Proof : Let s0 be an allocation that is the same as s except for pictures i to j, where s0 uses Qmin.

Thus, in a VBV simulation using s0 for pictures i to j, s0 does not cause a virtual overow and

underows only at picture j. Let u and v mark the beginning and end, respectively, of a segment

with the minimum Q in the CBR allocation for pictures i to j. We consider two cases for u: u = i

and u > i. If u = i, then we have Bf(s; u) = Bf(s
0; u) since sk = s0k for k < i. If u > i, then since u

marks the beginning of a segment with minimum Q in the CBR allocation for pictures i to j, from

Theorem 1, Bf(s; u � 1) = su�1. This implies that Bf(s; u) = Ba(u� 1). Since s0 does not cause

an underow for picture u� 1, Bf(s
0; u� 1) � s0u�1, which implies that Bf(s

0; u) � Ba(u� 1). In

either case, we have

Bf(s
0; u) � Bf(s; u): (11)

We consider two cases for v: v = j and v < j. If v = j, then Bf(s
0; v) < s0v since an underow

occurs at picture j. Thus Bf(s
0; v+1) < Ba(v). But since s is a legal allocation, Bf(s; v+1) � Ba(v).

If v < j, then since v marks the end of a segment with minimum Q in the CBR allocation for
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pictures i to j, from Theorem 1, Bf(s; v + 1) = BV. Since s0 does not cause virtual overow,

Bf(s
0; v + 1) � BV. In either case,

Bf(s
0; v + 1) � Bf(s; v + 1): (12)

Through some algebraic manipulations we have

vX
k=u

sk =
vX

k=u

Ba(k) +Bf(s; u)�Bf(s; v + 1); (13)

vX
k=u

s0k =

vX
k=u

Ba(k) +Bf(s
0; u)�Bf(s

0; v + 1): (14)

Combining (11), (12), (13), and (14) we have

vX
k=u

sk �

vX
k=u

s0k: (15)

Pictures u to v use a constant Q in both allocations s and s0, where s uses Q = mini�k�j Q
s
k

and s0 uses Qmin. Therefore we have

Fu;v

�
min
i�k�j

Qs
k

�
� Fu;v(Qmin): (16)

Since Fu;v is a monotonically decreasing function (see Section 5.1.2), we have mini�k�j Q
s
k �

Qmin. 2

From Lemma 8, we can conclude that after each iteration of the VBR algorithm, Qmin is

indeed the minimum Q. Since hard segments do not include pictures that cause a virtual overow,

Condition 1 of Theorem 2 also holds.

Theorem 4 Each pass through the VBR algorithm results in an allocation that is lexicographically

optimal for the number of bits actually allocated.
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7.3 Time and Space Complexity

We note that the loop in the VBR algorithm terminates when no more hard segments are identi�ed.

This implies that the algorithm terminates after at most N iterations, where N is the number of

pictures.

Not counting the executions of the CBR algorithm, each iteration of the VBR algorithm

takes O(N) time and space. Since at most O(N) iterations are performed, the time complex-

ity excluding the executions of the CBR algorithm is O(N2). Assuming that Gi;j can be evaluated

in constant time, an optimal CBR allocation can be computed in linear time and space. Therefore

the time complexity of the VBR algorithm is O(N2).

When there are relatively few hard segments, computing an optimal VBR allocation will likely

be faster in practice than computing a CBR allocation. Furthermore, Theorem 4 guarantees that

we can halt the VBR algorithm after any number of iterations and have an optimal allocation.

The decision to continue depends upon whether the achieved bit consumption is acceptable. With

each iteration the number of bits allocated increases.

8 Implementation

In this section, we describe an implementation of rate control using the lexicographically-optimal

bit-allocation algorithms presented in Sections 5 and 7 within the ISO MPEG-2 software en-

coder [39]. With this implementation, we aim to: 1) verify the e�ectiveness of lexicographic

optimality, 2) assess the practical implications of the assumptions made in the framework, namely

independent coding and continuous variables, 3) explore various bit-production models, and 4)

develop robust techniques for recovering from errors due to the approximate models and the sim-

plifying assumptions.
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8.1 Perceptual Quantization

For perceptual quantization, we use the TM5 adaptive quantization scheme, where the nominal

quantization scale is modulated by an activity factor that is computed from the spatial variance of

the luminance blocks within a macroblock. In TM5, the actual quantization scale used for coding

a particular macroblock is determined from an initially computed (global) reference quantization

scale, a (local) feedback factor that is dependent of the state of a virtual encoding bu�er, and the

normalized activity factor for that block. For modeling purposes, we de�ne the nominal quanti-

zation Q for a picture as the average of the product of the reference quantization scale and the

bu�er-feedback factor over all coded macroblocks.

8.2 Bit-Production Modeling

The framework in Section 3 presumes the existence of an exact continuous bit-production model

for each picture. In practice, the rate-distortion function of a complex encoding system, such as

MPEG, cannot be determined exactly for non-trivial classes of input. Therefore, approximate

models are used in practice.

As the complexity analyses in Sections 5.1.4 and 7.3 show, the running time for the optimal

bit-allocation algorithms depends on the time to evaluate Gi;j , the function that is used to com-

pute a constant-Q sub-allocation. In practice, therefore, the chosen models should admit e�cient

computation of Gi;j .

8.2.1 Hyperbolic Model

In [19], the following \hyperbolic" model forms the basis of an adaptive bit-allocation algorithm:

fi(qi) =
�i

qi
+ �i; (17)

where �i is associated with the complexity of coding picture i and �i with the overhead for coding

the picture. The hyperbolic model is one of the simplest models to exhibit the monotonicity and
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concavity characteristic of rate-distortion functions. TM5 adopts a similar model where only the

complexity term is used. With adaptive quantization techniques, �i and �i are typically estimated

from the results of encoding previous pictures. The parameters can also be determined by coding

a sampling of blocks in picture i and �tting the parameters to the coding statistics. There is a

simple closed-form expression for Gi;j :

Gi;j(b) =

P
i�k�j �k

b�
P

i�k�j �k
: (18)

As previously discussed in Section 5.1.4, we can precompute the cumulative sums for �i and �i in

linear time and space and then use these to compute Gi;j in constant time.

In related work, Ding and Liu [40] propose the following more general class of bit-production

models and describe its use in rate control:

fi(q) =
�i

qi
+ �i: (19)

The extra parameter i is dependent on the picture type (I, P, or B) and is intended to capture

the di�erent rate-distortion characteristics for each picture type. One drawback to (19) is that the

model is non-linear with respect to the parameters, and we know of no closed-form solution to Gi;j

in the general setting. Although numerical techniques can be used to solve for Gi;j , this could

adversely a�ect the computational e�ciency of the bit-allocation algorithms.

8.2.2 Linear-Spline Model

In preliminary experiments, we have found that the hyperbolic model works well with small changes

in the quantization scale Q between pictures. However, with a large variation in Q between

successive pictures, as may occur with a scene change, the model becomes less reliable. This is

because the model is de�ned by only two parameters �i and �i. We can compensate for this

by performing multiple encoding passes to ensure that the parameters are determined close to

the actual operating point. We now consider a di�erent approach where more e�ort is expended
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initially to construct more accurate bit models that are then used to encode the video sequence in

a single pass.

Lin, Ortega, and Kuo [41] have proposed using cubic-spline interpolation models of rate and

distortion in conjunction with a gradient-based rate-control algorithm [42]. The spline models

are computed by �rst encoding each picture several times using a select set of M quantization

scales, fx1, x2, : : :, xMg with x1 < x2 < � � � < xM , and measuring the actual rates. Each

quantization/rate pair is called a control point. For picture i, the bit-production model between

two consecutive control points (xk ; yk) and (xk+1; yk+1) is approximated as

fki (xk) = aikx
3 + bikx

2 + cikx+ dik: (20)

The authors suggest using the Fibonacci-like set f1, 2, 3, 5, 8, 13, 21, 31g for the control quanti-

zation scales to exploit the exponential-decay typical of rate-distortion functions.

One drawback of a cubic-spline model is that it is generally not monotonic. To ensure mono-

tonicity, we consider a simpler linear-spline interpolation model, where a line segment is used to

interpolate the bit-production function between control points. For picture i, the function between

two consecutive control points (xk ; yk) and (xk+1; yk+1) has the form

fki (x) = �i;kx+ �i;k: (21)

In case the control points themselves do not exhibit monotonicity, we enforce monotonicity by

skipping those control points that violate the monotonicity property. For quantization scales less

than x1 or greater than xM , we extrapolate using the parameters (�i;1; �i;1) or (�i;M�1; �i;M�1),

respectively.

The linear-spline model has a simple closed-form expression for Gi;j if we know the two control

points that bracket the operating point. Because of the monotonicity property, we can determine

the two bracketing points using binary search. Between the control points xk and xk+1, Gi;j can
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be computed as

Gi;j(b) =
b�
P

i�m�j �m;kP
i�m�j �m;k

: (22)

If xk � Gi;j � xk+1 then the correct operating point has been found. If Gi;j < xk, the operating

point must lie between two control points with lower indices. Similarly, if Gi;j > xk+1, the operating

point must lie between two control points with higher indices. Since there are a �xed number of

control points, we can compute Gi;j in constant time with linear-time preprocessing.

8.2.3 Piecewise-Hyperbolic Model

In earlier experiments [43, 31], we found that the linear-spline model gave consistently better results

than the simple hyperbolic model. This is because the linear-spline model has more parameters and

can better approximate a picture's rate-distortion characteristics over a wider range of quantization.

The hyperbolic model, on the other hand, better matches the rate-distortion locally. These two

observations suggest that we can construct a more accurate model by combining the two. We

can do this by replacing the linear interpolation in the spline model with hyperbolic interpolation.

Instead of (21), we use

fki (x) =
�i;k

x
+ �i;k: (23)

We can compute Gi;j using (18).

In Section 9, we present results of encoding simulations using the piecewise-hyperbolic model.

8.3 Picture-Level Rate Control

Even with accurate bit-production models, the actual number of bits produced will inevitably

depart from the model, especially if we use predicted P- and B-pictures. There are essentially two

ways to cope with bit-modeling errors.
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8.3.1 Closed-Loop Rate Control

A popular approach taken in TM5 is to regulate the quantization scale at the macroblock level

while coding a picture so that the desired bit allocation is met. This is achieved with a closed-

loop feedback mechanism using the fullness of a virtual encoder bu�er to control the macroblock

quantization. One drawback of this technique is that the coded quality within a picture may vary

considerably, especially for a picture that contains regions of varying complexity. With gross errors

in the bit-production models, the actual average quantization scale may di�er markedly from the

desired quantization scale, thereby adversely a�ecting the coded quality.

8.3.2 Open-Loop Rate Control

Another approach is to perform open-loop control where the assigned (nominal) quantization scale

is used to code a picture. We can then adjust the bit allocation of the remaining uncoded pictures

to compensate for the di�erence between desired and actual bit production. An advantage of this

approach is that the quality is more constant within a picture. In addition, less processing is

required to code each picture. A disadvantage is that, since the bit production is not controlled

below the picture layer, the actual bit production may vary from the target. If left uncorrected,

the errors can accumulate and potentially cause the bu�er to overow or underow.

After coding a picture, we can recover from errors in the bit-production model by reallocating

bits to the remaining pictures optimally (for the given models). If we use the DP algorithm, instead

of recomputing an optimal allocation from scratch and incurring an extra factor of N in the time

complexity, we can take advantage of dynamic programming to increase the time complexity by

only a constant factor. We do this for a CBR allocation and for hard pictures in a VBR allocation

by constructing the dynamic programming table in the CBR algorithm in reverse.

As presented in Section 5, the dynamic programming algorithm works by solving for sub-

allocations for pictures 1 to k for increasing values of k. We can also rework the dynamic program-

ming to compute optimal sub-allocations for pictures k to N for decreasing values of k. We do this

by computing optimal allocations that start with the bu�er empty or full at picture k and ends
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with the bu�er at the �nal bu�er state after picture N .

We can compute a revised allocation for picture k, after encoding picture k � 1, by searching

for a proper constant-Q connector starting with the known VBV bu�er fullness before picture k

is removed. With the reverse dynamic programming table available, this search consumes O(N)

time. The total additional time to recover from bit-production errors is then O(N2), the same as

the time complexity for computing the initial allocation with the DP algorithm.

As an alternative, we could use the linear-time CBR algorithm and recompute the allocation

after coding each picture. This would also require O(N2) time.

The above procedure applies to a CBR allocation and to hard pictures in a VBR allocation

(which are allocated using the CBR algorithm). For easy pictures in a VBR allocation, we can

simply recompute a new value for Qmin. Here, we assume that errors in bit-production modeling

are not severe enough to change the classi�cation of hard and easy pictures.

8.3.3 Hybrid Rate Control

In early experiments, we observed that closed-loop rate control resulted in rapid uctuations in

the nominal quantization scale between pictures owing to the bu�er-feedback mechanism. With

accurate bit-production models, however, the need to perform low-level rate control below the

picture level is questionable. This suggests using open-loop control. Since we use independent

bit-production models, we can expect more errors in the models at predicted pictures where the

assigned Q changes. With these observations, we propose a hybrid rate control strategy where

closed-loop control is used for pictures at the boundaries of a constant-Q segment and open-loop

control is used for the rest. Another motivation for using closed-loop control for boundary pictures

is that the VBV bu�er should be either nearly empty or nearly full for these pictures, and the bit

rate must be carefully controlled to avoid underowing or overowing the bu�er.
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8.4 Bu�er Guard Zones

Even with the picture-level rate-control strategies outlined above, there is still the possibility of the

VBV bu�er overowing or underowing. To safeguard against this, we compute a bit allocation

using a slightly smaller bu�er than that speci�ed in the MPEG bitstream so that we can have

guard zones near the top and bottom of the bu�er. For the experiments with CBR, have we chosen

to place the guard zones at 5% and 95% of maximum bu�er size. For VBR mode, the upper guard

zone is not needed since bu�er overow is not a concern.

8.5 Limiting Lookahead

The above rate-control algorithms compute an allocation for the entire video sequence. This may

not be feasible when the sequence consists of many pictures, as in a feature-length movie, for

example. One way to deal with this is to partition the sequence into blocks consisting of a small

number of consecutive pictures. Optimal allocation can then be performed on the blocks separately.

In order to do this, the starting and ending bu�er fullness must be speci�ed for each block for the

CBR case. For the VBR case, the bit budget must also be speci�ed for each block. This approach

is globally suboptimal; however, it is easy to parallelize since the block allocations are independent

of each other.

Another approach is to use limited lookahead in conjunction with hybrid rate control. Using a

lookahead window of size W and a step size S �W , the procedure is as follows:

1. Compute a bit allocation for the next W pictures not yet coded.

2. Code the next S pictures using hybrid rate control.

3. Repeat Step 1.

This procedure can be thought of as performing lookahead with a sliding window.

Another approach similar to the hybrid rate-control method is to use the allocation computed

from a given model and only recompute the allocation when the bu�er fullness reach preset bu�er
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boundaries, such as 10% and 90% of bu�er fullness. As with hybrid rate control, reverse dynamic

programming can be used to speed up the reallocation.

8.6 Related Work

Several heuristic methods have been proposed in [6] to reduce the complexity as compared to

an optimal bit allocation based on the Viterbi algorithm. A Lagrangian optimization technique

is applied to recompute an allocation incrementally for each picture, similar to the technique

described in Section 8.3.2. In addition, the Lagrangian optimization is performed with a �nite

window size. In essence, this method implements limited lookahead with a sliding window, similar

to the technique described in Section 8.5. The authors also describe the heuristic of recomputing

a allocation only when the bu�er reaches prede�ned threshold levels.

In [10], a bit-production model is derived for block-transform coders based on rate-distortion

theory and assuming a stationary Gaussian process. The model is applied for VBR coding with

motion JPEG and H.261 coders. In [44], an adaptive tree-structured piecewise linear bit-production

model is proposed and applied to MPEG video coding using a one-pass encoding strategy. A

cubic-spline model of rate and distortion is proposed in [41] for use with a gradient-based rate-

control algorithm [42] that attempts to minimize MSE. The model takes into account the temporal

dependencies introduced by predictive coding.

9 Encoding Simulations

To assess the behavior and e�ectiveness of the lexicographic bit-allocation algorithms, the bit-

production models, and the rate control strategies outlined above, we conducted encoding simu-

lations using a two-minute (3,660 frames) promotional video clip courtesy of IBM Corporation.

The interlaced video is sampled spatially at 720 � 480 pixels and temporally at 29.97 frames/sec

(59.94 �elds/sec). The clip starts with a fade-in to a spokeswoman standing in front of a slowing

changing background. A block diagram in one corner of the picture then rotates and zooms to �ll

the screen. The diagram then remains static with some illumination changes before fading back
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to the spokeswoman. On one side of the picture, a collage of di�erent video clips scroll up the

screen. One of the clips then zooms to occupy the full picture. The clips cycle through a variety

of action-�lled scenes from horses running to a skydiver rotating on a skateboard to a bicycle race

and �nally to highlights from a basketball game.

We implemented the lexicographic rate-control algorithms within the software encoder provided

by the MPEG-2 Simulation Group [39]. The piecewise-hyperbolic model of Section 8.2.3 is used

in conjunction with the non-linear quantizer scale of MPEG-2. Since the non-linear quantizer

scale already performs an \exponential-type" mapping, we use the following set of MPEG-2 quan-

tizer scale codes f1, 4, 9, 13, 18, 22, 27, 31gwhich corresponds to the set of quantization scales f1,

4, 10, 18, 32, 48, 80, 112g. We de�ne nominal quantization based on quantizer scale code in-

stead of on the actual quantization scale because the former is the parameter coded in the MPEG-2

bitstream.

As a reference, we also ran the simulations with TM5 rate control. A minor modi�cation was

made to the TM5 model in that the levels of the virtual encoding bu�ers used to regulate the

quantization scale are restricted to the range [0; 2r], where r is the reaction parameter given by

r = 2 � bit rate=picture rate.

9.1 Independent Coding

To assess the performance of the lexicographic bit allocation algorithms, we initially performed

encoding simulations using only I-pictures to maintain independence. For CBR mode, we speci�ed

an average bit rate of 7.0 Mbits/sec. For VBR, we used the same average rate and a peak rate of

9.0 Mbits/sec. The VBV bu�er size was set to 1,835,008 bits.

The results of the encodings are presented in Table 1 and Figures 4 to 6. The table collects

some summary statistics for the various coders. Figure 4 shows the evolution of the bu�er fullness,

Figure 5 plots the computed and observed nominal quantization, and Figure 6 plots the PSNR.

As evident from Figure 4, the TM5 coder uses only a fraction of the VBV bu�er and maintains

the bu�er relatively level. In contrast, the lexicographic coders make better use of the VBV bu�er.
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The lexicographic CBR coder is able to control the quantization to a narrower range than the TM5

coder, with a resulting increase in PSNR. The lexicographic VBR coder sacri�ces quality in earlier

pictures in order to code better the later more complex pictures. The result is that the nominal

quantization is nearly constant and the PSNR plot is more even.

Visually, the lexicographic VBR coder produced near-constant-quality video with few noticeable

coding artifacts. In contrast, both CBR coders produced noticeable blocking artifacts in scenes

with high motion, especially in the basketball scene. However, the lexicographic CBR coder fared

noticeably better than TM5 at maintaining constant quality through scene changes and reducing

artifacts during complex scenes of short duration.

9.2 Dependent Coding

In a second experiment, we performed the encoding simulations using I-, P-, and B-pictures. In

order to reduce factors that would a�ect the actual bit production, full-search motion estimation

was initially performed using a �xed nominal quantization of 13, and the same motion vectors were

then used for all the encodings. The coding decisions, however, were still determined on-line. To

partially compensate for the di�erence in the rate-distortion characteristics of the dependent P-

and B-pictures, the KP and KB factors of TM5 are used in the perceptual quantization. An open

GOP structure of length 15 with at most two consecutive B-pictures is used.

We coded the sequence in CBR mode at 3.0 Mbits/sec and in VBR mode at 3.0 Mbits/sec

average and 4.5 Mbits/sec peak. The VBV bu�er size is set to 1,835,008 bits. We used piecewise-

hyperbolic models in conjunction with the hybrid rate-control strategy.

A summary of some encoding statistics are listed in Table 2. The bu�er fullness, nominal

Q, and PSNR are plotted in Figures 7, 8, and 9, respectively. The results are similar to the

independent coding simulations. It is noteworthy that the di�erence between the initially computed

lexicographic nominal quantizers and the actual values used is barely noticeable. This suggests that

the independent models can be used successfully, albeit suboptimally, with dependent coding. Since

we can view coding dependencies as contributing to errors in the (independent) bit-production
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models, the error-recovery techniques of Section 8.3 e�ectively allow us to apply the bit-allocation

framework to predictive video coders.

10 Bit Allocation with a Discrete Set of Quantizers

One of the assumptions made in Section 3 is that there is a continuous relationship between

quantization (distortion) and rate. As shown in Sections 4 and 6, this assumption facilitates

rigorous analysis of the bu�er-constrained bit-allocation problem under the lexicographic optimality

criterion and results in an elegant characterization of the optimal solution. In order to apply directly

the results of the analysis, we need to construct a continuous model of the relationship between

quantization and rate. As demonstrated in Section 8, this can be done by gathering statistics during

multiple encoding passes and �tting these to a chosen functional form. Because of the inevitable

error in the modeling, some form of error recovery is needed, such as the methods proposed in

Section 8.

In most practical coders, however, both the set of available quantizers and the number of bits

produced are discrete and �nite. The problem of bu�er-constrained bit-allocation under these con-

ditions have been examined by Ortega, Ramchandran, and Vetterli [45]. They provide a dynamic

programming algorithm to �nd a CBR allocation that minimizes a sum-distortion metric. In this

section, we briey describe their algorithm and show how it can be readily extended to perform

lexicographic minimization.

10.1 Dynamic Programming

The dynamic programming algorithm described in [45] is based on the Viterbi Algorithm described

in [1] for solving the budget-constrained bit-allocation problem. To handle the additional bu�er

constraints, the bu�er fullness is recorded at each state instead of the total number of bits used

so far; for CBR coding, the number of bits used can be determined from the bu�er fullness. We

can use the recurrence equations in Section 3.3.1 to update the bu�er fullness and create a trellis.

Instead of pruning states that exceed a given bit budget, we instead prune states that overow or
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underow the bu�er. At each stage in the construction of the trellis, we compare the current sum

distortion associated with edges that enter a new state and record the minimum distortion along

with a pointer to the source state. At the last stage of trellis construction, we identify the state

with the minimum sum distortion and backtrack through the stored pointers to recover an optimal

bit allocation. Since an integral number of bits is generated, the maximum number of states that

can be generated at each stage is equal to the size of the bu�er. Therefore, with M quantizers, N

pictures, and a bu�er of size B, the dynamic programming algorithm of [45] requires O(MBN)

time to compute an optimal bit allocation.

10.2 Lexicographic Extension

It is straightforward to modify the dynamic programming algorithm to perform lexicographic min-

imization. Instead of keeping track of a minimum sum distortion value, a scalar, we keep track

of a lexicographic minimum, a vector. A naive implementation would store a vector of length k

for a state at the kth stage in the trellis, where the vector records the quantizers used for coding

the �rst k pictures. However, since the set of quantizers is �nite and we are only concerned with

the number of times a given quantizer is used and not with the order in which the quantizers are

used, we only need to store M values at each state, where M is the number of quantizers. Each

of these M values count the number of times a given quantizer has been used to code the �rst k

pictures in an optimal path ending at the given state. Given two vectors of quantizer counts, a

lexicographic comparison can be performed in O(M) time. With this modi�cation, we can �nd a

lexicographically-optimal bit allocation in O(M2BN) time.

11 Summary

In this paper, we have introduced a novel lexicographic framework for bit allocation of MPEG

video. Designed explictly to equalize the quality of pictures in a video sequence, the framework

consists of independent bit-production models, bu�ering constraints based on the MPEG Video

Bu�ering Veri�er, and a novel lexicographic optimality criterion. Rigorous analysis under the
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framework reveals necessary and su�cient conditions for optimality that are simple and intuitive.

These conditions lead to e�cient bit-allocation algorithms for both constant-bit-rate and variable-

bit-rate operation.

Experimental implementations of these algorithms con�rm the theoretical analysis and produce

encodings that are more uniform in quality than that achieved with existing rate control methods.

With the implementations, we explore several forms of bit-production models and propose a hybrid

rate-control strategy that allows for robust recovery from errors in the bit-production modeling.

We performed simulations of both independent and dependent coding. The results suggest that,

although developed for independent coding, the framework can successfully be applied to dependent

coding.

Finally, we show how an existing technique for bit allocation with a discrete set of quantizers

can be extended to perform lexicographic optimization with minimal overhead.
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Figure 1: Sample plots of bu�er fullness for CBR and VBR operation.
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Figure 2: Sketch for proof of Lemma 2.
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Figure 3: Illustration of search step in dynamic programming algorithm.



Table 1: Results of independent coding simulations.

Average Std. Dev. Average Std. Dev. Maximum Minimum

Method PSNR (dB) of PSNR Nom. Q of Nom. Q Nom. Q Nom. Q

TM5 CBR 33:53 3:35 12:79 4:91 36:38 0:48

Lexicographic CBR 33:56 3:13 12:81 4:10 23:17 0:97

Lexicographic VBR 33:52 1:99 12:65 0:94 17:02 11:76
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Figure 4: Evolution of normalized bu�er fullness for independent coding simulations.
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Figure 5: Nominal quantization scale for independent coding simulations.
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Figure 6: PSNR for independent coding simulations.



Table 2: Results of dependent coding simulations.

Average Std. Dev. Average Std. Dev. Maximum Minimum

Method PSNR (dB) of PSNR Nom. Q of Nom. Q Nom. Q Nom. Q

TM5 CBR 33:34 4:95 14:10 10:47 52:57 1:93

Lexicographic CBR 33:45 4:75 13:04 7:96 29:01 2:25

Lexicographic VBR 33:09 2:54 11:74 1:97 16:84 9:02
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Figure 7: Evolution of normalized bu�er fullness for dependent coding simulations.



0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

(a) TM5 CBR

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Actual
Target

(b) Lexicographic CBR

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Actual
Target

(c) Lexicographic VBR

Figure 8: Nominal quantization scale for dependent coding simulations.



20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

(a) TM5 CBR

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

(b) Lexicographic CBR

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

(c) Lexicographic VBR

Figure 9: PSNR for dependent coding simulations.


