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Efficient Cost Measures for Motion
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Abstract—We present and compare methods for choosing
motion vectors for block-based motion-compensated video cod-
ing. The primary focus is on videophone and videoconferencing
applications, where low bit rates are necessary, where motion
is usually limited, and where the amount of computation is
also limited. In a typical block-based motion-compensated video
coding system, motion vectors are transmitted along with a lossy
encoding of the residuals. As the bit rate decreases, the proportion
required to transmit the motion vectors increases. We provide
experimental evidence that choosing motion vectors explicitly
to minimize rate (including motion vector coding), subject to
implicit constraints on distortion, yields better rate–distortion
tradeoffs than minimizing some measure of prediction error.
Minimizing a combination of rate and distortion yields further
improvements. Although these explicit-minimization schemes are
computationally intensive, they provide invaluable insight which
we use to develop practical algorithms. We show that minimizing
a simple heuristic function of the prediction error and the
motion vector code length results in rate–distortion performance
comparable to explicit-minimization schemes while being compu-
tationally feasible. Experimental results are provided for coders
that operate within the H.261 standard.

Index Terms—H.261, motion compensation, motion estimation,
rate–distortion, video coding, video compression.

I. INTRODUCTION

H YBRID video coding that combines block-matching
motion compensation (BMMC) with transform coding

of the residual is a popular scheme for video compression,
adopted by international standards such as H.261 [1], [2],
H.263 [3], and the MPEG standards [4]–[6]. Motion com-
pensation is a technique that exploits the typically strong
correlation between successive frames of a video sequence
by codingmotion vectorsthat tell the decoder where to look
on the previous frame for predictions of the intensity of each
pixel in the current frame. With BMMC, the current frame is
divided into blocks (usually 8 8 or 16 16) whose pixels are
assigned the same motion vectorThe residual from motion
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Fig. 1. Distribution of bits for intraframe coding of the Miss America
sequence at various bit rates with a standardp � 64 coder.

compensation is then coded with a lossy transform coder, such
as the 2-D-DCT, followed by a variable-length entropy coder.

In previous work on BMMC, motion vectors are typically
chosen to minimize prediction error, and much of the em-
phasis has been on speeding up the motion search [7]–[10].
However, for low-bit-rate applications, such as videophone
and videoconferencing, the coding of motion vectors takes
up a significant portion of the bandwidth, as evidenced with
a coding experiment summarized in Fig. 1. This observa-
tion has previously been made in [11]. In this paper, we
investigate cost measures that take into account the effects
of the choice of motion vector on rate and distortion. We
first develop and present computationally intensive coders that
attempt explicitly to optimize for rate and distortion. Insights
gained from these implementations lead to the development of
faster coders that minimize an efficiently computed heuristic
function. Experiments show that using these measures yields
substantially better rate–distortion performance than standard
measures based solely upon prediction error.

We implemented and tested our motion estimation algo-
rithms within the H.261 standard, also known informally as
the standard. The standard is intended for
applications like videophone and videoconferencing, where
low bit rates are required, not much motion is present, and
frames are to be transmitted essentially as they are generated.
Our experimental results are for benchmark videos typical of
the type for which the standard was intended: they
consist of a “head-and-shoulders” view of a single speaker.

In the next section, we briefly describe an existing imple-
mentation of the standard that we use as a basis for
comparison. We then show how to modify the base imple-
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mentation, but remain within the standard, to choose
motion vectors that more directly minimize rate and distortion.
Experiments show that when transmitting two benchmark
QCIF video sequences,Miss America andClaire , at 18
kbits/s using rate control, choosing motion vectors explicitly
to minimize rate improves average PSNR by 0.87 and 0.47
dB, respectively. In the standard, two binary coding
decisions must be made from time to time.1 In the base
implementation, heuristics based upon prediction error are
used to make these decisions. When bit minimization is also
applied to make the coding decisions, the improvement in
PSNR becomes a significant 1.93 dB forMiss America
and 1.35 dB forClaire . If, instead of minimizing the bit
rate, we minimize a combination of rate and distortion, we
observe improvements of 2.09 and 1.45 dB, respectively.

In Section IV, we describe coders that minimize a heuristic
function of the prediction error and motion vector code length.
These heuristic coders give compression performance compa-
rable to the explicit minimization coders while running much
faster. Experimental results are presented in Sections III-D and
IV-B.

Preliminary descriptions of this work can be found in
[12]–[15].

II. PVRG IMPLEMENTATION OF H.261

As a basis for comparing the different motion estimation
schemes proposed in this section, we use the coder
supplied by the Portable Video Research Group (PVRG).2

In the base PVRG implementation, a motion vectoris
determined for each macroblock using standard full-search
block matching. Only the luminance blocks are compared
to the determine the best match, with the mean absolute
difference (MAD) being used as the measure of prediction
error. Decisions on how to code individual blocks are made
according to Reference Model 8 [16].

III. EXPLICIT MINIMIZATION ALGORITHMS

In the PVRG coder, motion estimation is performed to
minimize the MAD of the prediction error. A rationale for
this is that minimizing the mean-square error (MSE) of the
motion-compensated prediction, which is approximated with
the MAD, is equivalent to minimizing the variance of the
2-D-DCT coefficients of the prediction error, which tends to
result in more coefficients being quantized to zero. However,
minimizing the variance of the DCT coefficients does not
necessarily lead to a minimum length encoding of the quan-
tized coefficients, especially since the quantized coefficients
are then Huffman and run-length coded. Furthermore, since
coding decisions are typically made independently of motion
estimation, the effect of motion estimation on rate is further
made indirect.

In this section, we describe two algorithms that perform
motion estimation explicitly to minimize rate, and a third

1These are: 1) whether to use motion compensation, and 2) whether to use
the loop filter with motion compensation.

2As of the publication date, the source code for this implementation can be
obtained via anonymous ftp fromhavefun.stanford.edu .

(a)

(b)

Fig. 2. Comparison of explicit-minimization motion estimation algorithms
for coding the (a) Miss America and (b) Claire sequences at 18 kbits/s.

algorithm that minimizes a combination of rate and distortion.
We then present results of experiments that compare these
algorithms with the standard motion estimation algorithm used
by the PVRG coder.

A. Algorithm M1

In Algorithm M1, motion estimation is performed explicitly
to minimize (locally) the code length of each macroblock. The
decisions of whether to use motion compensation and whether
to use the loop filter are made in the same way as in the
PVRG implementation. We invoke the appropriate encoding
subroutines for each choice of motion vector within the search
area, picking the motion vector that results in the minimum
code length for the entire macroblock. The computed code
length includes the coding of the transform coefficients for
the luminance blocks,3 the motion vector, and all other side
information. When choosing the motion vector to minimize
the coding of the current macroblock, we use the fact that
the motion vectors for previous macroblocks (in scan order)
have been determined in order to compute the code length.

3The transform coding of the chrominance blocks could be included as
well. However, we chose not to do so in order to make a fair comparison to
the base PVRG coder. This is also the policy for the other coders described
in this section.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Density plots of DCT coding bits versus MAD prediction error for first intercoded frame of Miss America sequence at various levels of quantization.
DCT bits versus MAD for (a)Q = 12; (b) Q = 16; (c) Q = 20; (d) Q = 24; (e) Q = 28; and (f) Q = 31:

However, since the choice of a motion vector for the current
macroblock affects the code length of future macroblocks, this
is a greedy minimization procedure which may not result in a
globally minimal code length.

B. Algorithm M2

Algorithm M2 differs from Algorithm M1 in that the
decisions of whether to use motion compensation and the loop
filter are also made to minimize rate: all three combinations of
the decisions are tried, and the one resulting in the minimum
code length is used. Since M2 is able to make decisions on
how to code each macroblock, it is able to take into account
the coding of side information in minimizing the rate. For
low bit rates, where the percentage of side information is
significant compared to the coding of motion vectors and

transform coefficients, we would expect M2 to be effective
in reducing the code length of side information.

C. Algorithm RD

With Algorithms M1 and M2, we minimize rate without
regard to distortion, and then choose the quantization step size
to achieve the desired distortion level. This is not always the
best policy. There may be cases where the choice of motion
vector and coding decisions that minimize rate results in a
relatively high distortion, whereas another choice would have a
slightly higher rate, but substantially lower distortion. In terms
of rate–distortion tradeoff, the second choice may be better.
Since the ultimate goal is better rate–distortion performance,
we expect further improvements if we minimize a combination
of rate and distortion. M1 and M2 call encoder routines in the
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Fig. 4. Density plots of MSE reconstruction distortion versus MAD prediction error for first intercoded frame of Miss America sequence at various levels
of quantization. Distortion versus MAD for (a)Q = 12; (b) Q = 16; (c) Q = 20; (d) Q = 24; (e) Q = 28; and (f) Q = 31:

minimization steps. By adding calls to decoder routines, we
can compute the resulting distortion. We incorporate this idea
into Algorithm RD.

Algorithm RD minimizes a linear combination of rate and
distortion. Let denote the number of bits to code
the current macroblock using motion vectorand coding
decisions Similarly, let be the resulting mean-
squared error. RD minimizes the objective function

(1)

If and for each block were independent
of the choices of and for previously coded blocks, the
results of Shoham and Gersho [17] imply that an objective
function of the form (1) would minimize distortion subject
to a rate constraint. Since in a motion vector is

coded with reference to a previously coded motion vector,
there is some dependence at the macroblock level. Therefore,
minimizing (1) locally for each block is globally suboptimal in
the rate–distortion sense. With this caveat noted, we proceed
as in [17].

In principle, we should choose based upon the theoretical
rate–distortion curve for the input video. A good choice is
to set to be equal to the negative of the slope of the
line tangent to the distortion versus rate curve at the desired
operating point. This way, we are optimizing in a direction
perpendicular to the rate–distortion curve at the operating
point. The rate–distortion curve can be estimated, for example,
by preprocessing a portion of the input video. An on-line
iterative search method could also be used [17]. In our
experiments, we code the test sequence several times with
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TABLE I
RESULTS OFSTATIC HEURISTIC COST FUNCTION; SHOWN IS AVERAGE PSNR (IN DECIBELS) OF INTERCODED FRAMES FOR CODING TEST

SEQUENCES AT18 kbits/s; H1-A (H2-A), H1-B (H2-B),AND H1-C (H2-C) USE THE HEURISTIC FUNCTIONS (3), (4), AND (5), RESPECTIVELY

Sequence PVRG M1 M2 RD H1-A H1-B H1-C H2-A H2-B H2-C

Miss America 34.58 35.44 36.51 36.67 35.60 35.72 35.58 36.63 36.77 36.68
Claire 32.77 33.24 34.12 34.22 33.68 33.50 33.60 34.47 34.36 34.39

(a)

(b)

Fig. 5. Comparison of H1 coder using static heuristic cost function with
PVRG and M1 coders. Coding is performed with RM8 rate control at 18
kbits/s. H1-A, H1-B, and H1-C use the heuristic functions (3), (4), and (5),
respectively. (a) Miss America. (b) Claire.

different quantizer step sizes to estimate the rate–distortion
function, and fix based upon the slope of the function at
the desired rate. Our purpose is to explore the performance
improvement offered by such an approach.

D. Experimental Results

For our experiments, we coded 49 frames of theMiss
America sequence and 30 frames of theClaire sequence,
both in QCIF format sampled at 10 frames/s. These are
“head and shoulders” sequences typical of the type found in
videophone and videoconferencing applications. We present
results here for coding at 18 kbits/s using the rate controller
outlined in Reference Model 8. The average PSNR for each
coded frame is plotted for theMiss America andClaire

(a)

(b)

Fig. 6. Comparison of H2 coder using static heuristic cost function with
PVRG and M2 coders. Coding is performed with RM8 rate control at 18
kbits/s. H2-A, H2-B, and H2-C use the heuristic functions (3), (4), and (5),
respectively. (a) Miss America. (b) Claire.

sequences in Fig. 2. The average PSNR for intercoded frames
is tabulated in Table I. For each sequence, all of the coders
used the same quantization step size for the initial intracoded
frame.

IV. HEURISTIC ALGORITHMS

While Algorithms M1, M2, and RD generally exhibit better
rate–distortion performance than the base PVRG coder, they
are computationally expensive. The additional computation is
in the explicit evaluation of the rate (and distortion in the
case of RD). To reduce the computational complexity, we
propose to minimize an efficiently computed model of rate and
distortion. The idea is that the prediction error (MSE, MAD, or
similar measure) can be used to estimate the rate and distortion
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(a)

(b)

Fig. 7. Comparison of H1 coder using adaptive heuristic cost function with
PVRG and M1 coders. Coding is performed with RM8 rate control at 18
kbits/s. H1-A, H1-B, and H1-C use the heuristic functions (3), (4), and (5),
respectively. (a) Miss America. (b) Claire.

for transform coding. This estimate is then combined with the
motion vector code length, which is readily available with
a table lookup. We develop such a cost function below and
use it in two heuristic coders H1 and H2 that are analogous
to the explicit minimization coders M1 and M2. Both H1
and H2 choose motion vectors to minimize the cost function.
However, H1 makes coding decisions using the same decision
functions that the PVRG and M1 coders use, while H2 chooses
the coding control that minimizes the coding rate given the
estimated motion vectors. Since H2 has to try out three coding
control choices, it will be about three times slower than H1.
However, H2 gives us an indication of the performance that is
achievable by improving the coding control. Also, H2 is easily
parallelized, using duplicated hardware for example.

A. Heuristic Cost Function

Let denote a measure of the prediction error that
results from using motion vector to code the current mac-
roblock. For example, the error measure could be defined
as where is the mean
absolute prediction error and is the average prediction
error. Suppose we have a model that gives us

(a)

(b)

Fig. 8. Comparison of H2 coder using adaptive heuristic cost function with
PVRG and M2 coders. Coding is performed with RM8 rate control at 18
kbits/s. H2-A, H2-B, and H2-C use the heuristic functions (3), (4), and (5),
respectively. (a) Miss America. (b) Claire.

an estimate of the number of bits needed to code the motion
compensation residual, where is defined above and is
the quantization step size. We could then combine this estimate
with the number of bits to code the motion vectorThe
result is a cost function that we can use for motion estimation:

(2)

As defined above, the function provides an estimate of
the number of bits needed to code the motion compensation
residual with quantizer step size As we will discuss later,
it can also be used to estimate a combination of rate and
distortion.

The choice of error measure and heuristic function
are parameters to the motion estimation algorithm. In

our investigations, we used MAD as the error measure for
computational reasons. We also looked into using the MSE,
but this did not give any clear advantages over the MAD. It is
also possible to define to be a function of several variables.
However, we report only on the use of MAD for and denote

by for convenience, where the dependence uponis
implicit. We examined several choices for and describe
them below.
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TABLE II
RESULTS OFADAPTIVE HEURISTIC COST FUNCTION; SHOWN IS AVERAGE PSNR (IN DECIBELS) OF INTERCODED FRAMES FOR CODING TEST SEQUENCES AT18

Kbits/s; H1-A AND H2-A USE THE HEURISTIC FUNCTION (3) WITH STATIC PARAMETERS; H1-WH AND H2-WH USE ADAPTIVE PARAMETERS

Video PVRG M1 M2 RD H1-A H1-WH H2-A H2-W

Miss America 34.58 35.44 36.51 36.67 35.60 35.83 36.63 36.84
Claire 32.77 33.24 34.12 34.22 33.68 33.58 34.47 34.51

(a) (b)

(c) (d)

Fig. 9. Frame 27 of the Miss America sequence as encoded using the PVRG and explicit-minimization motion estimation algorithms. Only the luminance
component is shown. (a) PVRG. (b) RD. (c) M1. (d) M2.

As mentioned above, we can useto estimate the number
of bits used to transform code the prediction error. To get
an idea of what function to use, we gathered experimental
data on the relationship between the MAD and DCT coded
bits per macroblock for a range of motion vectors. Fixing
the quantization step size at various values, the data were
generated by running the RD coder on two frames of the Miss
America sequence and outputting the MAD and DCT coded
bits per macroblock for each choice of motion vector. The
results are histogrammed and shown as density plots in Fig. 3.

These plots suggest the following forms for:

(3)

(4)

(5)

The above forms assume a fixedIn general, also depends
upon however, when using to estimate the motion for
a particular macroblock, is held constant to either a preset

value or to a value determined by the rate control mechanism.
We can treat the parametersas functions of Since there is
a small number (31) of possible values for we can perform
curve fitting for each value of and store the parameters in
a lookup table.

We can also model the reconstruction distortion as a func-
tion of prediction error. We use the RD coder to generate
experimental data for distortion versus MAD, shown in Fig. 4,
and find a similar relationship as existed for bits versus
MAD. Again, we can use (3)–(5) to model the distortion. As
with the RD coder, we can consider jointly optimizing the
heuristic estimates of rate and distortion with the following
cost function:

(6)

where is the model for rate and is the model for
distortion.

If we use one of (3)–(5) for both and the
combined heuristic function would have
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(a) (b)

(c) (d)

Fig. 10. Frame 27 of the Miss America sequence as encoded using the heuristic motion estimation algorithms. Only the luminance component is shown.
(a) H1-A. (b) H2-A. (c) H1-WH. (d) H2-WH.

the same form as and Therefore, we can interpret
the heuristic as modeling a combined rate–distortion function.
In this case, we can perform curve fitting once for the
combined heuristic function by training on the statistic

where is the DCT bits for a macroblock and
is the reconstruction distortion for the macroblock. As with
Algorithm RD, the parameter can be determined from the
operational rate–distortion curve, for example.

B. Experimental Results

To test the H1 and H2 coders, we initially used the same
test sequences and followed the procedures outlined in Section
III-D, and present results for coding at 18 kbits/s using the
buffer-feedback rate controller specified in RM8. In the next
section, we verify these results with experiments on eight
different test sequences.

1) Static Cost Function:Here, we present results using a
static set of coefficients. To determine the coefficients for
the heuristic functions, we performed linear least squares
regression, fitting data generated by the RD coder to the

statistic, as discussed earlier. A set of regression
coefficients are stored in a lookup table, indexed by the
quantizer step size We tested the different forms for the
heuristic function given in (3)–(5). Comparative plots of the
resulting PSNR are shown in Figs. 5 and 6. The average PSNR
for coding at 18 kbits/s is tabulated in Table I. These results

show that the heuristic coders perform comparably to the
explicit minimization coders. In particular, the heuristic coders
seem more robust than M1 and M2, most likely because the
heuristic functions correlate well with both rate and distortion,
whereas M1 and M2 only consider rate.

2) Adaptive Cost Function:The above results rely on pre-
training the model parameters for each value of for
each video sequence. This is a tedious and time-consuming
operation. Instead, we can use an adaptive on-line technique,
such as the Widrow–Hoff learning rule [18], [19], to train the
model parameters. (Despite its simplicity, the Widrow–Hoff
rule has attractive theoretical properties [20], [21].) The train-
ing examples could be generated each time we encode a
macroblock using the motion compensation mode. However,
we cannot possibly hope to train one model for each value of
simply because there would not be enough training examples.
We need a single model whose parameters are independent
of The curve fitting results from the pretraining trials
show a strong correlation between the model parameters and

This agrees well with previous work on rate-quantization
modeling [22]. Therefore, we propose the following form for
the cost function:

(7)

This can be simplified as

(8)
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(a) (b)

(c) (d)

Fig. 11. Estimated motion vectors for frame 27 of the Miss America sequence for the (a) PVRG, (b) RD, (c) H1-WH, and (d) H2-WH coders.

where Since the simple linear model performed well
with static cost functions, we do not consider more complex
models here.

We conducted experiments using the Widrow–Hoff training
rule on the Miss America and Claire sequences. As applied to
the current context, the Widrow–Hoff rule is a technique for
learning an objective function With as an estimate
of the Widrow–Hoff rule gives us a way to adapt the
weights and of (8) when given and the value of
For the experiments, we chose the objective function

(9)

where is the actual number of bits used to code the
DCT coefficients and is the resulting distortion, both of
which can be evaluated by invoking encoder routines. Given
an initial set of weights and a new set of weights
and can be computed as

(10)

(11)

where the learning rate, is a parameter that determines how
quickly the weights are adapted.

With the static cost function, we trained and evaluated the
heuristic function based on the combined prediction error for

the four luminance blocks that make up a macroblock. In order
to gather more training examples for the adaptive heuristics,
we evaluate and update the heuristic function once for each
luminance block. This strategy increased the PSNR slightly at
the expense of some extra computation.

In the experiments, the learning ratewas determined in
a trial and error phase and fixed for both sequences. The
parameter was also determined by trial-and-error and held
constant for both test sequences. Comparative plots of the
resulting PSNR are shown in Figs. 7 and 8. The average PSNR
for coding at 18 kbits/s is tabulated in Table II. These results
show that the adaptive heuristic coders perform comparably
to, and sometimes better than, the static heuristic coders and
the explicit minimization coders. Furthermore, the adaptive
heuristic coders perform well on both sequences with the same
initial parameter values.

As a comparison of visual quality, Frame 27 of the Miss
America sequence is decoded and shown in Fig. 9 for the
PVRG and explicit-minimization coders and in Fig. 10 for
the heuristic coders. The motion vector field for the PVRG,
RD, adaptive H1, and adaptive H2 coders are shown in
Fig. 11. Frame 27 was chosen because it is in a difficult scene
with much head motion, resulting in more noticeable coding
artifacts. The RD and adaptive heuristic coders give smoother
motion fields than the reference PVRG coder, especially
for the background region. Note also that for the former



HOANG et al.: COST MEASURES FOR MOTION ESTIMATION 497

(a) (b)

(c) (d)

Fig. 12. Performance of motion estimation algorithms on eight test sequences. (a) Carphone. (b) Claire. (c) Foreman. (d) Grandma.

coders, no motion is indicated for the relatively uniform
backgroundexceptfollowing macroblocks with detected fore-
ground motion on the same row. Intuitively, this results in
an economical encoding of the motion vectors, which are
differentially encoded. Since the background is relatively
uniform, coding motion in this area results in relatively small
motion compensation residual.

C. Further Experiments

Here, we present results of further experiments to confirm
the efficacy of the various motion estimation algorithms op-
erating within the standard. We applied the various
algorithms to code eight test video sequences without rate
control, sweeping the quantization scale from 12 to 31 to de-
termine the operational rate–distortion plots shown in Fig. 12.
Each test sequence consists of 50 frames in QCIF format coded
at 10 frames/s. TheMiss America sequence in this test suite
was obtained from a different source than theMiss America
sequence used in the earlier experiments, and has different
rate–distortion characteristics.

The results show that the adaptive heuristic algorithms
perform consistently well compared to the base PVRG and

explicit-minimization implementations, although the level of
improvement varies among sequences. The anomalies ob-
served in coding theGrandma sequence at low rates with
the PVRG and adaptive H1 coders, as evidenced by the steep
slope and unevenness in the RD curve, seem to indicate
a breakdown of the RM8 coding control heuristics, which
were not optimized for operation at very low rates. This
conclusion is supported by the lack of such anomalies when
bit minimization is used to perform coding control, as with
the M2, H2, and RD coders.

The distributions of bits for coding the Miss America
sequence with the H1 and H2 coders are plotted in Fig. 13.
Compared to Fig. 1, these plots show that the H1 and H2
coders both reduce the percentage of bits used for coding
motion vectors, while increasing the percentage of bits used
to code the DCT coefficients. Furthermore, with the H2 coder,
which applies bit minimization to coding control, the number
of bits used for coding side information is also reduced.

V. RELATED WORK

In related work, Chunget al. [23] consider rate–distortion
optimizations for motion estimation in a hybrid video coder
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(e) (f)

(g) (h)

Fig. 12. (Continued.)Performance of motion estimation algorithms on eight test sequences. (e) Miss America. (f) Mother and Daughter. (g) Suzie. (h) Trevor.

based upon subband coding and block-matching motion com-
pensation. The input frames are first decomposed into sub-
bands, which are divided into uniform rectangular blocks. For
each block, a Lagrangian cost function is used to select be-
tween intraframe and interframe modes, and to select between
a small number of candidate motion vectors, which are coded
with a lossy two-dimensional vector quantizer.

Independent of our work, rate–distortion optimization for
motion estimation has been reported in [24]. The authors
consider rate–distortion optimization in a dependent-coding
environment where motion vectors are coded using DPCM
techniques. After first constructing a dependency graph, the
Viterbi dynamic programming algorithm is used to find a
path that minimizes an additive Lagrangian cost function.
Noting the computational complexity of this approach, the
authors propose a reduced-complexity algorithm that con-
siders only a small fraction of the possible states for each
motion-compensated block. Even so, this reduced-complexity
algorithm has a considerable processing and memory overhead
associated with the dynamic programming algorithm, which is
performed on top of traditional block matching. In comparison,
our adaptive heuristic cost function requires minimal overhead
over block matching.

In [25], rate–distortion optimization is applied to the selec-
tion of coding control for low-bit-rate video coding under the
H.263 standard, a newer standard than the H.261 standard that
we consider here. A greedy optimization strategy is adopted
to avoid the exponential complexity that a global optimiza-
tion would entail. Limited dependencies between the coding
control of neighboring blocks is considered, and the coding
control is computed using the Viterbi algorithm to minimize a
Lagrangian cost function. Even with simplifying assumptions,
the rate–distortion optimization is computationally complex,
and may not be suitable for real-time implementation, as the
authors readily admit.

Ribas-Corbera and Neuhoff [26] describe a procedure for
minimizing rate in a lossless motion-compensated video coder.
They explore the allocation of bits between the coding of
motion vectors and the coding of prediction error. They assume
that the prediction error has a discrete Laplacian distribution,
and derive an expression for the total rate as a function of the
number of bits allocated to code the motion vectors. It is not
clear whether this work can be extended to lossy coding since
distortion is not taken into account in the formulation.

A linear relationship between MAD and both rate and dis-
tortion has been independently observed in [27]. The authors
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(a)

(b)

Fig. 13. Distribution of bits for coding the Miss America sequence with the
adaptive heuristic coder. (a) H1 Coder. (b) H2 Coder.

mention the possibility of performing motion vector search to
minimize the bit rate, but conclude that just minimizing MAD
would have a similar effect.

VI. DISCUSSION

We have demonstrated that, at low bit rates, choosing motion
vectors to minimize an efficiently computed heuristic cost
function gives substantially better rate–distortion performance
than the conventional approach of minimizing prediction error.
Furthermore, by adapting the heuristic function to the input
sequence, we are able to achieve coding performance compa-
rable to more computationally expensive coders that explicitly
minimize rate or a combination of rate and distortion.

In the experiments, full-search block matching was em-
ployed by all of the coders. Our fast heuristic coders are also
compatible with 2-D logarithmic and many other reduced-
search motion estimation techniques. Furthermore, since the
heuristic cost function factors in the motion vector code length,
the cost function has a strong monotonic component, and is
better suited for the reduced-search techniques that assume
monotonicity in the cost function.

We have considered only the simple case of using a fixed
parameter to trade rate and distortion. An on-line adaptation
of to track variations in the input sequence is certainly
possible, and would result in more robust coders. On the other

hand, we observed that the behavior of these algorithms is
quite robust with respect to moderate variations inand that,
for example, the best setting offor one test sequence worked
well when used for the other. Thus, it seems that fixingis
safe in practice. Still, since influences rate to some extent,
it can be used in conjunction with the quantization step size
in performing rate control. Automatic control ofbased upon
buffer feedback as described in [28] is a possibility.

Although the methods presented here have been imple-
mented within the H.261 standard, they should be applicable
to any video coder that employs motion compensation in
a low-bit-rate setting. In particular, the H.263 standard is
similar enough to H.261 that it seems clear that these methods
will work well with H.263. As a case in point, the bit-
minimization strategy has been applied in [12] within a
nonstandard quadtree-based coder that chooses motion vectors
to optimize a hierarchical encoding of the motion information
within a block-matching framework with variable block sizes.
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