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Efficient Cost Measures for Motion
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Abstract—We present and compare methods for choosing 3000
motion vectors for block-based motion-compensated video cod- DCT Coefficients
ing. The primary focus is on videophone and videoconferencing 2500 Side Information [ -
applications, where low bit rates are necessary, where motion )
is usually limited, and where the amount of computation is Motion Vectors Il
also limited. In a typical block-based motion-compensated video
coding system, motion vectors are transmitted along with a lossy
encoding of the residuals. As the bit rate decreases, the proportion
required to transmit the motion vectors increases. We provide
experimental evidence that choosing motion vectors explicitly
to minimize rate (including motion vector coding), subject to
implicit constraints on distortion, yields better rate—distortion 500
tradeoffs than minimizing some measure of prediction error.
Minimizing a combination of rate and distortion yields further
improvements. Although these explicit-minimization schemes are 214 18 18 20 2 24 26 28 30
computationally intensive, they provide invaluable insight which Quantizer Step Size
we use to develop practical algorithms. We show that minimizing
a simple heuristic function of the prediction error and the
motion vector code length results in rate—distortion performance
comparable to explicit-minimization schemes while being compu-
tationally feasible. Experimental results are provided for coders compensation is then coded with a lossy transform coder, such
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Fig. 1. Distribution of bits for intraframe coding of the Miss America
sequence at various bit rates with a standard 64 coder.

that operate within the H.261 standard. as the 2-D-DCT, followed by a variable-length entropy coder.
Index Terms—H.261, motion compensation, motion estimation,  In previous work on BMMC, motion vectors are typically
rate—distortion, video coding, video compression. chosen to minimize prediction error, and much of the em-

phasis has been on speeding up the motion search [7]-[10].
However, for low-bit-rate applications, such as videophone

] ] ) . and videoconferencing, the coding of motion vectors takes
H YBRID video coding that combines block-matching, 5 significant portion of the bandwidth, as evidenced with

motiqn compensation (BMMC) with t_ransform codin_ga coding experiment summarized in Fig. 1. This observa-
of the re5|du_al is a_popular scheme for video compressiqjyn has previously been made in [11]. In this paper, we
adopted by international standards such as H.261 [1], [glyestigate cost measures that take into account the effects
H.263 [3], and the MPEG standards [4]{6]. Motion comMg¢ the choice of motion vector on rate and distortion. We
pensation is a technique that exploits the typically strongs; develop and present computationally intensive coders that
correlation between successive frames of a video sequeRg@mpt explicitly to optimize for rate and distortion. Insights
by codingmotion vectorshat tell the decoder where to '°°kc%ained from these implementations lead to the development of
on the previous frame for predictions of the intensity of €agster coders that minimize an efficiently computed heuristic
pixel in the current frame. With BMMC, the current frame igynction. Experiments show that using these measures yields
divided into blocks (usually & 8 or 16x 16) whose pixels are g hstantially better rate—distortion performance than standard
assigned the same motion vectorThe residual from motion easures based solely upon prediction error.

. . _ We implemented and tested our motion estimation algo-
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mentation, but remain within thg x 64 standard, to choose 39 —
motion vectors that more directly minimize rate and distortion. PVRG ——
Experiments show that when transmitting two benchmark 38 t m; o
QCIF video sequencediss America andClaire , at 18 s RD -x
kbits/s using rate control, choosing motion vectors explicitly 37t _ﬁx:;é ﬂa fa . R

to minimize rate improves average PSNR by 0.87 and 0.47%
dB, respectively. In the x 64 standard, two binary coding
decisions must be made from time to timen the base
implementation, heuristics based upon prediction error are
used to make these decisions. When bit minimization is also
applied to make the coding decisions, the improvement in
PSNR becomes a significant 1.93 dB fdliss America

2
=
w
o

33

and 1.35 dB forClaire . If, instead of minimizing the bit 0 5 10 15 20 25 30 35 40 45 50
rate, we minimize a combination of rate and distortion, we Frame
observe improvements of 2.09 and 1.45 dB, respectively. @)
In Section IV, we describe coders that minimize a heuristic
function of the prediction error and motion vector code length. 36

These heuristic coders give compression performance compa-
rable to the explicit minimization coders while running much

faster. Experimental results are presented in Sections 1lI-D and 3

IV-B. =
Preliminary descriptions of this work can be found in =
o« 34t
[12]-[15]. Z
»
ll B
Il. PVRG IMPLEMENTATION OF H.261 33 e i

As a basis for comparing the different motion estimation
schemes proposed in this section, we use gthe 64 coder

supplied by the Portable Video Research Group (PVRG). BT s 10 15 20 o ‘30
In the base PVRG implementation, a motion vectbris Frame
determined for each macroblod¥ using standard full-search ()

block matching. Only the luminance blocks are compar . C . I .

: . ig. 2. Comparison of explicit-minimization motion estimation algorithms
to the determine the best match, with the mean absolygcoding the (a) Miss America and (b) Claire sequences at 18 kbits/s.
difference (MAD) being used as the measure of prediction

error. Decisions on how to code individual blocks are mad(? ithm that minimi binati frat d distorti
according to Reference Model 8 [16]. algorithm that minimizes a combination of rate and distortion.

We then present results of experiments that compare these
algorithms with the standard motion estimation algorithm used
[ll. EXPLICIT MINIMIZATION ALGORITHMS by the PVRG coder.
In the PVRG coder, motion estimation is performed to
minimize the MAD of the prediction error. A rationale forA. Algorithm M1

this is that minimizing the mean-square error (MSE) of the , aqorithm M1, motion estimation is performed explicitly
motion-compensated prediction, which is approximated Wity minimize (locally) the code length of each macroblock. The
the MAD, is equivalent to minimizing the variance of th&ecisions of whether to use motion compensation and whether
2-D-DCT coefficients of the prediction error, which tends t@, ,se the loop filter are made in the same way as in the
result in more coefficients being quantized to zero. Howevesy R implementation. We invoke the appropriate encoding
minimizing the variance of the DCT coefficients does nQfyprqytines for each choice of motion vector within the search
necessarily lead to a minimum length encoding of the quagze, picking the motion vector that results in the minimum
tized coefficients, especially since the quantized coefﬁm_erttade length for the entire macroblock. The computed code
are_then H.uf.“fman and rgn-length ched. Furthermore, S',nlfé?'lgth includes the coding of the transform coefficients for
coding decisions are typically made independently of motiqfe"jyminance blockd the motion vector, and all other side
estimation, the effect of motion estimation on rate is furth@ic 1 ation. When choosing the motion vector to minimize
made |nd|rect: ) ) the coding of the current macroblock, we use the fact that
In this section, we describe two algorithms that perforfye mation vectors for previous macroblocks (in scan order)
motion estimation explicitly to minimize rate, and a third,;\e peen determined in order to compute the code length.

!These are: 1) whether to use motion compensation, and 2) whether to useThe transform coding of the chrominance blocks could be included as
the loop filter with motion compensation. well. However, we chose not to do so in order to make a fair comparison to

2As of the publication date, the source code for this implementation can thee base PVRG coder. This is also the policy for the other coders described
obtained via anonymous ftp froimavefun.stanford.edu . in this section.
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Fig. 3. Density plots of DCT coding bits versus MAD prediction error for first intercoded frame of Miss America sequence at various levels of guantizati
DCT bits versus MAD for (a)l) = 12, (b) @ = 16, (c) @ = 20, (d) Q = 24, (e) @ = 28, and () @ = 31.

However, since the choice of a motion vector for the curretriansform coefficients, we would expect M2 to be effective
macroblock affects the code length of future macroblocks, this reducing the code length of side information.

is a greedy minimization procedure which may not result in a

globally minimal code length. C. Algorithm RD

. With Algorithms M1 and M2, we minimize rate without

B. Algorithm M2 regard to distortion, and then choose the quantization step size

Algorithm M2 differs from Algorithm M1 in that the to achieve the desired distortion level. This is not always the
decisions of whether to use motion compensation and the ldogst policy. There may be cases where the choice of motion
filter are also made to minimize rate: all three combinations wéctor and coding decisions that minimize rate results in a
the decisions are tried, and the one resulting in the minimurelatively high distortion, whereas another choice would have a
code length is used. Since M2 is able to make decisions siightly higher rate, but substantially lower distortion. In terms
how to code each macroblock, it is able to take into accoustt rate—distortion tradeoff, the second choice may be better.
the coding of side information in minimizing the rate. FoSince the ultimate goal is better rate—distortion performance,
low bit rates, where the percentage of side information vge expect further improvements if we minimize a combination
significant compared to the coding of motion vectors amf rate and distortion. M1 and M2 call encoder routines in the
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Fig. 4. Density plots of MSE reconstruction distortion versus MAD prediction error for first intercoded frame of Miss America sequence at valsous leve
of quantization. Distortion versus MAD for (& = 12, (b) @ = 16, (c) Q@ = 20, (d) Q = 24, (e) Q@ = 28, and () Q = 31.

minimization steps. By adding calls to decoder routines, wmded with reference to a previously coded motion vector,
can compute the resulting distortion. We incorporate this idéeere is some dependence at the macroblock level. Therefore,
into Algorithm RD. minimizing (1) locally for each block is globally suboptimal in
Algorithm RD minimizes a linear combination of rate andhe rate—distortion sense. With this caveat noted, we proceed
distortion. Let B(#,¢) denote the number of bits to codeas in [17].
the current macroblock using motion vectGrand coding  In principle, we should choosk based upon the theoretical
decisionsc. Similarly, let D(#,¢) be the resulting mean- rate—distortion curve for the input video. A good choice is
Squared error. RD minimizes the ObjeCtive funCtion to set A to be equa' to the negative of the S|0pe of the
Cro(7,8) = B(7,8) + AD(%,d). 1) line tapgent Fo the plistortion versus raFe curve at thg de§ired
operating point. This way, we are optimizing in a direction
If B(7,&) and D(¥,&) for each block were independentperpendicular to the rate—distortion curve at the operating
of the choices ofi and ¢ for previously coded blocks, the point. The rate—distortion curve can be estimated, for example,
results of Shoham and Gersho [17] imply that an objectiay preprocessing a portion of the input video. An on-line
function of the form (1) would minimize distortion subjectiterative search method could also be used [17]. In our
to a rate constraint. Since ip x 64 a motion vector is experiments, we code the test sequence several times with



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998

492
TABLE |
ResuLTs oF Static HEURISTIC CosT FUNCTION; SHOWN |s AVERAGE PSNR (N DECIBELS) OF INTERCODED FRAMES FOR CODING TEST
SEQUENCES AT 18 kbits/s; H1-A (H2-A), H1-B (H2-B)AnD H1-C (H2-C) Use THE HEURISTIC FUNCTIONS (3), (4), AND (5), RESPECTIVELY
Sequence PVRG M1 M2 RD H1-A H1-B H1-C | H2-A H2-B H2-C

Miss America 3458 | 35.44 36.51 36.61 35.60 35.72 35.58| 36.63 36.77 36.68

Claire 32.77 | 33.24 34.12 34.22 33.68 33.50 33.60| 34.47 34.36 34.39
= o)
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Fig. 5. Comparison of H1 coder using static heuristic cost function withid- 6: Comparison of H2 coder using static heuristic cost function with

PVRG and M1 coders. Coding is performed with RM8 rate control at 18VRG and M2 coders. Coding is performed with RMS8 rate control at 18
kbits/s. H1-A, H1-B, and H1-C use the heuristic functions (3), (4), and (5§Pits/s. H2-A, H2-B, and H2-C use the heuristic functions (3), (4), and (5),

respectively. (a) Miss America. (b) Claire. fespectively. (a) Miss America. (b) Claire.

different quantizer step sizes to estimate the rate—distortissquences in Fig. 2. The average PSNR for intercoded frames
function, and fixA based upon the slope of the function ais tabulated in Table I. For each sequence, all of the coders
the desired rate. Our purpose is to explore the performangsed the same quantization step size for the initial intracoded

improvement offered by such an approach. frame.

D. Experimental Results IV. HEURISTIC ALGORITHMS

For our experiments, we coded 49 frames of Miss While Algorithms M1, M2, and RD generally exhibit better
America sequence and 30 frames of tBéaire  sequence, rate—distortion performance than the base PVRG coder, they
both in QCIF format sampled at 10 frames/s. These aaee computationally expensive. The additional computation is
“head and shoulders” sequences typical of the type foundim the explicit evaluation of the rate (and distortion in the
videophone and videoconferencing applications. We presease of RD). To reduce the computational complexity, we
results here for coding at 18 kbits/s using the rate controllpropose to minimize an efficiently computed model of rate and
outlined in Reference Model 8. The average PSNR for eadfstortion. The idea is that the prediction error (MSE, MAD, or
coded frame is plotted for thliss America andClaire similar measure) can be used to estimate the rate and distortion
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Fig. 7. Comparison of H1 coder using adaptive heuristic cost function withg. 8. Comparison of H2 coder using adaptive heuristic cost function with
PVRG and M1 coders. Coding is performed with RM8 rate control at 18yRG and M2 coders. Coding is performed with RM8 rate control at 18
kbits/s. H1-A, H1-B, and H1-C use the heuristic functions (3), (4), and (Skpits/s. H2-A, H2-B, and H2-C use the heuristic functions (3), (4), and (5),
respectively. (a) Miss America. (b) Claire. respectively. (a) Miss America. (b) Claire.

for transform coding. This estimate is then combined with thgn estimate of the number of bits needed to code the motion
motion vector code Iength, which is readily available Witl&ompensaﬂon residual, Whe&@’) is defined above an@ is

a table lookup. We develop such a cost function below afife quantization step size. We could then combine this estimate
use it in two heuristic coders H1 and H2 that are analogoygth B(#), the number of bits to code the motion veciiThe

to the explicit minimization coders M1 and M2. Both Hlresylt is a cost function that we can use for motion estimation:
and H2 choose motion vectors to minimize the cost function. . Lo .

However, H1 makes coding decisions using the same decision Cu(¥,Q) = H(E(U)a Q) + B(%). 2
functions that the PVRG and M1 coders use, while H2 chooses

the coding control that minimizes the coding rate given t S defmgd at;c;)\{e, thedfu(;]cUoHdpro;‘/ldes an estimate Of.
estimated motion vectors. Since H2 has to try out three codi number of bits needed to code the motion compensation

control choices, it will be about three times slower than H{€Sidual |W|thbquant|éer step sizg. As we Vt‘)’_'” d!SCUS? later, g
However, H2 gives us an indication of the performance that'FsCan also be used to estimate a combination of rate an

achievable by improving the coding control. Also, H2 is easil§/'Stortion-

parallelized, using duplicated hardware for example. The choice of error measur& and heuristic function
H are parameters to the motion estimation algorithm. In

o ) our investigations, we used MAD as the error measure for

A. Heuristic Cost Function computational reasons. We also looked into using the MSE,

Let E(z?) denote a measure of the prediction error thdut this did not give any clear advantages over the MAD. It is
results from using motion vectar to code the current mac- also possible to defing to be a function of several variables.
roblock. For example, the error measure could be definebwever, we report only on the use of MAD fat and denote
as E(z?) = (MAD(%), DC(%)), where MAD(%) is the mean E(z?) by ¢ for convenience, where the dependence upas
absolute prediction error afdC(¥) is the average prediction implicit. We examined several choices féf and describe
error. Suppose we have a model(E(7), Q) that gives us them below.
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TABLE I
ResuLTs oF ADAPTIVE HEURISTIC CosT FUNCTION; SHOWN |s AVERAGE PSNR (N DECIBELS) OF INTERCODED FRAMES FOR CODING TEST SEQUENCES AT 18
Kbits/s; H1-A AND H2-A Usk THE HEURISTIC FUNCTION (3) WiTH STATIC PARAMETERS, H1-WH AND H2-WH USE ADAPTIVE PARAMETERS

Video PVRG M1 M2 RD H1-A H1-WH H2-A H2-W
Miss America 34.58 35.44 36.51 36.67 35.60 35.83 36.63 36.84
Claire 32.77 33.24 34.12 34.22 33.68 33.58 34.47 34.51

(d)

Fig. 9. Frame 27 of the Miss America sequence as encoded using the PVRG and explicit-minimization motion estimation algorithms. Only the luminance
component is shown. (a) PVRG. (b) RD. (c) M1. (d) M2.

As mentioned above, we can ugeto estimate the number value or to a value determined by the rate control mechanism.
of bits used to transform code the prediction error. To g&te can treat the parametetsas functions of). Since there is
an idea of what function to use, we gathered experimentakmall number (31) of possible values fr we can perform
data on the relationship between the MAD and DCT codexirve fitting for each value of) and store the parameters in
bits per macroblock for a range of motion vectors. Fixing lookup table.
the quantization step siz@ at various values, the data were We can also model the reconstruction distortion as a func-
generated by running the RD coder on two frames of the Miien of prediction error. We use the RD coder to generate
America sequence and outputting the MAD and DCT codexkperimental data for distortion versus MAD, shown in Fig. 4,
bits per macroblock for each choice of motion vector. Thand find a similar relationship as existed for bits versus
results are histogrammed and shown as density plots in FigMAD. Again, we can use (3)—(5) to model the distortion. As

These plots suggest the following forms fAr. with the RD coder, we can consider jointly optimizing the
heuristic estimates of rate and distortion with the following
H(¢) =cié+c ) cost function:
H(¢) =cilog(§+1) + 2 (4)

where Hg is the model for rate anddp is the model for
The above forms assume a fix€d In general H also depends distortion.
upon @; however, when using! to estimate the motion for If we use one of (3)—(5) for bothHr and Hp, the
a particular macroblocky is held constant to either a presetombined heuristic functiold = Hgr + AHp would have

H(¢) =cilog(€+ 1) + cal +c3. )
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(d)

Fig. 10. Frame 27 of the Miss America sequence as encoded using the heuristic motion estimation algorithms. Only the luminance component is shown.
(@) H1-A. (b) H2-A. (c) H1-WH. (d) H2-WH.

the same form adig and Hp. Therefore, we can interpretshow that the heuristic coders perform comparably to the
the heuristic as modeling a combined rate—distortion functioexplicit minimization coders. In particular, the heuristic coders
In this case, we can perform curve fitting once for theeem more robust than M1 and M2, most likely because the
combined heuristic function by training on the statisic+ heuristic functions correlate well with both rate and distortion,
AD, where R is the DCT bits for a macroblock and> whereas M1 and M2 only consider rate.
is the reconstruction distortion for the macroblock. As with 2) Adaptive Cost FunctionThe above results rely on pre-
Algorithm RD, the parametek can be determined from thetraining the model parameteks for each value of(@ for
operational rate—distortion curve, for example. each video sequence. This is a tedious and time-consuming
operation. Instead, we can use an adaptive on-line technique,
) such as the Widrow—Hoff learning rule [18], [19], to train the
B. Experimental Results model parameters. (Despite its simplicity, the Widrow—Hoff
To test the H1 and H2 coders, we initially used the sanigle has attractive theoretical properties [20], [21].) The train-
test sequences and followed the procedures outlined in Sectilagn examples could be generated each time we encode a
II-D, and present results for coding at 18 kbits/s using th@acroblock using the motion compensation mode. However,
buffer-feedback rate controller specified in RM8. In the nexte cannot possibly hope to train one model for each valug of
section, we verify these results with experiments on eigaimply because there would not be enough training examples.
different test sequences. We need a single model whose parameters are independent
1) Static Cost Function:Here, we present results using &f . The curve fitting results from the pretraining trials
static set of coefficients. To determine the coefficients fehow a strong correlation between the model parameters and
the heuristic functions, we performed linear least squar€s *. This agrees well with previous work on rate-quantization
regression, fitting data generated by the RD coder to thedeling [22]. Therefore, we propose the following form for
R + \D statistic, as discussed earlier. A set of regressidhe cost function:
coefficients are stored in a lookup table, indexed by the £
quantizer step siz€). We tested the different forms for the H( Q) = “0 T c2 @
heuristic function given in (3)—(5). Comparative plots of thq_
resulting PSNR are shown in Figs. 5 and 6. The average PSN
for coding at 18 kbits/s is tabulated in Table I. These results HWp)=c1y+c (8)

H’s can be simplified as
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Fig. 11. Estimated motion vectors for frame 27 of the Miss America sequence for the (a) PVRG, (b) RD, (c) H1-WH, and (d) H2-WH coders.

wherey = £/@Q. Since the simple linear model performed welthe four luminance blocks that make up a macroblock. In order
with static cost functions, we do not consider more compléas gather more training examples for the adaptive heuristics,
models here. we evaluate and update the heuristic function once for each
We conducted experiments using the Widrow—Hoff traininiminance block. This strategy increased the PSNR slightly at
rule on the Miss America and Claire sequences. As appliedite expense of some extra computation.
the current context, the Widrow—Hoff rule is a technique for |n the experiments, the learning ratewas determined in
learning an objective functiofi(y). With H(z) as an estimate g trial and error phase and fixed for both sequences. The
of (), the Widrow—Hoff rule gives us a way to adapt thgyarameter\ was also determined by trial-and-error and held
weightsc, ande;, of (8) when givery> and the value of (1).  constant for both test sequences. Comparative plots of the
For the experiments, we chose the objective function resulting PSNR are shown in Figs. 7 and 8. The average PSNR
F(4) = R(3) + AD() 9) for coding at 18 kbits_/s is tab_ulgted in Table Il. These results
show that the adaptive heuristic coders perform comparably
where R(1)) is the actual number of bits used to code thto, and sometimes better than, the static heuristic coders and
DCT coefficients andD(#) is the resulting distortion, both of the explicit minimization coders. Furthermore, the adaptive
which can be evaluated by invoking encoder routines. Givéreuristic coders perform well on both sequences with the same
an initial set of weightsc; and ¢z, a new set of weights} initial parameter values.

and ¢, can be computed as As a comparison of visual quality, Frame 27 of the Miss
F) — H() America sequence is decoded and shown in Fig. 9 for the
¢ =c+vn- W (10) PVRG and explicit-minimization coders and in Fig. 10 for
F() — H) the heuristic coders. The motion vector field for the PVRG,
Cy :c2+n~ﬁ (11) RD, adaptive H1, and adaptive H2 coders are shown in
P

Fig. 11. Frame 27 was chosen because it is in a difficult scene
wheren, thelearning ratg is a parameter that determines howvith much head motion, resulting in more noticeable coding
quickly the weights are adapted. artifacts. The RD and adaptive heuristic coders give smoother
With the static cost function, we trained and evaluated timotion fields than the reference PVRG coder, especially
heuristic function based on the combined prediction error féor the background region. Note also that for the former
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Fig. 12. Performance of motion estimation algorithms on eight test sequences. (a) Carphone. (b) Claire. (c) Foreman. (d) Grandma.

coders, no motion is indicated for the relatively unifornexplicit-minimization implementations, although the level of
backgroundexceptfollowing macroblocks with detected fore-improvement varies among sequences. The anomalies ob-
ground motion on the same row. Intuitively, this results iserved in coding thé&randma sequence at low rates with
an economical encoding of the motion vectors, which atee PVRG and adaptive H1 coders, as evidenced by the steep
differentially encoded. Since the background is relativelslope and unevenness in the RD curve, seem to indicate
uniform, coding motion in this area results in relatively smal breakdown of the RM8 coding control heuristics, which

motion compensation residual. were not optimized for operation at very low rates. This
conclusion is supported by the lack of such anomalies when
C. Further Experiments bit minimization is used to perform coding control, as with

Here, we present results of further experiments to confirm?l_r']\/lz’d_'_?!ba?_d RD ;:ol;j_frs% dina the Miss Ameri
the efficacy of the various motion estimation algorithms o s_equgnc:\zitﬁ It%r:asHol ar:; ngcg?jelrzgareeplotlcse?j ianeigcaB
erating within the 64 standard. We applied the various . i
g p X bp Cfé)mpared to Fig. 1, these plots show that the H1 and H2

algorithms to code eight test video sequences without ra q both red th i f bit df di
control, sweeping the quantization scale from 12 to 31 to ggoders both reduce he percentage of bils used for coding
51ot|on vectors, while increasing the percentage of bits used

termine the operational rate—distortion plots shown in Fig. 12. - X
Each test sequence consists of 50 frames in QCIF format co& &ode the_ DCT co_ef_nc!ent_s. Furthermore, with the H2 coder,
which applies bit minimization to coding control, the number

at 10 frames/s. Thigliss America sequence in this test suite”, ) o S
was obtained from a different source than kMies America of bits used for coding side information is also reduced.
sequence used in the earlier experiments, and has different
rate—distortion characteristics.

The results show that the adaptive heuristic algorithmsin related work, Chunget al. [23] consider rate—distortion
perform consistently well compared to the base PVRG awgtimizations for motion estimation in a hybrid video coder

V. RELATED WORK
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Fig. 12. (Continued.)Performance of motion estimation algorithms on eight test sequences. (e) Miss America. (f) Mother and Daughter. (g) Suzie. (h) Trevor.

based upon subband coding and block-matching motion com4n [25], rate—distortion optimization is applied to the selec-
pensation. The input frames are first decomposed into suion of coding control for low-bit-rate video coding under the
bands, which are divided into uniform rectangular blocks. Fét.263 standard, a newer standard than the H.261 standard that
each block, a Lagrangian cost function is used to select lvee consider here. A greedy optimization strategy is adopted
tween intraframe and interframe modes, and to select betweaeravoid the exponential complexity that a global optimiza-
a small number of candidate motion vectors, which are codgdn would entail. Limited dependencies between the coding
with a lossy two-dimensional vector quantizer. control of neighboring blocks is considered, and the coding
Independent of our work, rate—distortion optimization focontrol is computed using the Viterbi algorithm to minimize a
motion estimation has been reported in [24]. The authoksgrangian cost function. Even with simplifying assumptions,
consider rate—distortion optimization in a dependent-codirtige rate—distortion optimization is computationally complex,
environment where motion vectors are coded using DPCadhd may not be suitable for real-time implementation, as the
techniques. After first constructing a dependency graph, thethors readily admit.
Viterbi dynamic programming algorithm is used to find a Ribas-Corbera and Neuhoff [26] describe a procedure for
path that minimizes an additive Lagrangian cost functiominimizing rate in a lossless motion-compensated video coder.
Noting the computational complexity of this approach, th&hey explore the allocation of bits between the coding of
authors propose a reduced-complexity algorithm that comotion vectors and the coding of prediction error. They assume
siders only a small fraction of the possible states for eatiat the prediction error has a discrete Laplacian distribution,
motion-compensated block. Even so, this reduced-complexitgd derive an expression for the total rate as a function of the
algorithm has a considerable processing and memory overheadber of bits allocated to code the motion vectors. It is not
associated with the dynamic programming algorithm, which @ear whether this work can be extended to lossy coding since
performed on top of traditional block matching. In comparisomlistortion is not taken into account in the formulation.
our adaptive heuristic cost function requires minimal overheadA linear relationship between MAD and both rate and dis-
over block matching. tortion has been independently observed in [27]. The authors
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hand, we observed that the behavior of these algorithms is
quite robust with respect to moderate variations.jrand that,

for example, the best setting affor one test sequence worked
well when used for the other. Thus, it seems that fixings

safe in practice. Still, sincen influences rate to some extent,

it can be used in conjunction with the quantization step size
in performing rate control. Automatic control afbased upon
buffer feedback as described in [28] is a possibility.

Although the methods presented here have been imple-
mented within the H.261 standard, they should be applicable
to any video coder that employs motion compensation in
a low-bit-rate setting. In particular, the H.263 standard is
similar enough to H.261 that it seems clear that these methods
will work well with H.263. As a case in point, the bit-
minimization strategy has been applied in [12] within a
nonstandard quadtree-based coder that chooses motion vectors
to optimize a hierarchical encoding of the motion information
within a block-matching framework with variable block sizes.

Motion Vector I
2000

1500 1
(2]

(3]

1000

Average Bits/Frame

500

[4]
12 14 16 18 20 22 24 26 28 30 32
Quantizer Step Size [5]

(b) (6]

Fig. 13. Distribution of bits for coding the Miss America sequence with the
adaptive heuristic coder. (a) H1 Coder. (b) H2 Coder. 7]

mention the possibility of performing motion vector search tog;
minimize the bit rate, but conclude that just minimizing MAD
would have a similar effect. (0]

VI. DISCUSSION
[10]

We have demonstrated that, at low bit rates, choosing motion
vectors to minimize an efficiently computed heuristic coﬂl]
function gives substantially better rate—distortion performance
than the conventional approach of minimizing prediction error.
Furthermore, by adapting the heuristic function to the inp
sequence, we are able to achieve coding performance compa-
rable to more computationally expensive coders that explicith3!
minimize rate or a combination of rate and distortion.

In the experiments, full-search block matching was emt4]

ployed by all of the coders. Our fast heuristic coders are also
compatible with 2-D logarithmic and many other reduced-
search motion estimation techniques. Furthermore, since thg
heuristic cost function factors in the motion vector code length,
the cost function has a strong monotonic component, and|jg)
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