NH,
2 INFORMATION
gﬁ% SCIENCES

AN INTERNATIONAL JOURNAL

ELSEVIER Information Sciences 119 (1999) 57-72

www.elsevier.com/locate/ins

Dictionary selection using partial matching

Dzung T. Hoang *!, Philip M. Long >*2,
Jeffrey Scott Vitter >

* Digital Video Systems, Inc., 2710 Walsh Ave., Suite 200, Santa Clara, CA 95051, USA
o Department of Computer Science, National University of Singapore, Singapore 119260, Singapore
¢ Department of Computer Science, Duke University, Box 90129, Durham, NC 27708-0129, USA

Received 3 August 1998; accepted 1 February 1999

Abstract

This work concerns the search for text compressors that compress better than existing
dictionary coders, but run faster than statistical coders. We describe a new method for
text compression using multiple dictionaries, one for each context of preceeding char-
acters, where the contexts have varying lengths. The context to be used is determined
using an escape mechanism similar to that of prediction by partial matching (PPM)
methods. We describe modifications of three popular dictionary coders along these lines
and experiments evaluating their effectiveness using the text files in the Calgary corpus.
Our results suggest that modifying LZ77, LZFG, and LZW along these lines yields
improvements in compression of about 3%, 6%, and 15%, respectively. © 1999 Elsevier
Science Inc. All rights reserved.

Keywords: Text compression; Dictionary compression; Statistical compression; PPM;
Multiple dictionary compression

* Corresponding author. Fax: +65-779-4580.
E-mail addresses: dth@dvsystems.com (D.T. Hoang), plong@comp.nus.edu.sg (P.M. Long),

jsv@cs.duke.edu (J.S. Vitter)

! Supported in part by an NSF Graduate Fellowship and by Air Force Office of Strategic
Research grants F49620-92-J-0515 and F49620-94-1-0217.

2 Supported in part by Air Force Office of Strategic Research grants F49620-92-J-0515 and
F49620-94-1-0217.

3 Supported in part by Air Force Office of Scientific Research grants F49620-92-J-0515 and
F49620-94-1-0217 and by a Universities Space Research Association/CESDIS associate member-
ship.

0020-0255/99/$ - see front matter © 1999 Elsevier Science Inc. All rights reserved.
PI: S0020-0255(99)00060-2

58 D.T. Hoang et al. | Information Sciences 119 (1999) 57-72

1. Introduction

Text compression methods are usually divided into two categories. Statis-
tical algorithms use previously coded characters to estimate probabilities for
the character to be coded, and these probabilities are used in conjunction with
arithmetic coding. Dictionary-based algorithms replace sections of text by
pointers into a dictionary. The prediction by partial matching (PPM) methods
[4,1] are examples of statistical coders, and the Ziv—Lempel methods [6,16,18-
20] are examples of dictionary-based coders. Statistical coders typically give
better compression while dictionary coders run faster.

A recent line of research has looked into constructing lossless coders that
combine the compression efficiency of statistical coders with the speed of
dictionary-based coders. With statistical coders, there has been some work on
techniques for arithmetic coding [9,10,12,13] that trade arithmetic precision
(and therefore compression) for speed. Furthermore, efficient data structures
and coding heuristics have been developed to improve the running time and
resource requirements of statistical modeling. While these techniques have
succeeded in speeding up statistical coding without sacrificing much com-
pression, they are ultimately limited by coding one character at a time.

From the dictionary coding side, recent work [7,14] has attempted to im-
prove the compression of dictionary-based methods without slowing them
down too much by maintaining separate dictionaries, one for each source
character. A dictionary is chosen for coding based on the last character coded.
Since the last character coded is known by both the encoder and decoder, the
same dictionary will be used for both encoding and decoding.

One motivation for using multiple dictionaries is that each dictionary can be
made smaller, and therefore pointers into each dictionary can be represented
more compactly. A drawback is that matches in a smaller dictionary may tend
to be shorter. Will the compression efficiency lost by having shorter matches be
more than offset by the more concise representation of dictionary pointers?
Insights gained from results concerning the equivalence between dictionary and
statistical coding suggest that this should be the case. It has been shown [11,2],
that some of the Ziv—-Lempel algorithms are, in a sense, equivalent to corre-
sponding statistical coders. Loosely speaking, a statistical method of this sort
uses a varying number of previous characters as a context in order to calculate
its estimated probability distribution for the next character. It cycles, first using
a context of zero previous characters, then one and continuing for a varying
amount of time, typically to around seven characters but sometimes longer,
then returns to a context of zero characters. The proofs of these results lead to
the intuition that a similar phenomenon exists with regard to the other Ziv—
Lempel algorithms.

The use of multiple dictionaries corresponds to an additional level of context
modeling on top of the variable-context mechanism inherent in a greedy

D.T. Hoang et al. | Information Sciences 119 (1999) 57-72 59

dictionary coder. In effect, a statistical equivalent to an order-1 multiple-
dictionary scheme would start its cycle by using a context of one previous
character, then two, and so on, instead of starting with an order-0 context. This
directly addresses the observation in [1] that “‘the compression achieved by
dictionary schemes suffers because of the loss of context at phrase bound-
aries” since some context is retained at phrase boundaries with context dict-
ionaries.

A drawback for using multiple dictionaries is that this practice results in
some overhead. However, the increase in overhead can potentially be met with
a decrease in search time, due to the smaller dictionaries.

The work of [7] placed a heavy emphasis on speed, and therefore com-
pression gain was not demonstrated. The compression results of the CSD al-
gorithm of [14], which is based on the LZW [18] dictionary coder, show more
promise. However, the CSD algorithm is limited to using a single-character
context.

In this paper, we carry the multiple-dictionary-based approaches of [7,14]
further with a general scheme that combines the variable context length
modeling techniques of PPM with various LZ dictionary coders. Since the
publication of a preliminary version of this paper [8], further work has con-
tinued this line of research (see [3]).

2. Dictionaries with partial matching

At a high level, the new hybrid method, which we call dictionaries with partial
matching (DPM), works as follows. The coder maintains a list of contexts of
length 0 up to some upper limit. For each context in the list, the coder maintains a
dictionary containing strings that have previously occurred following the con-
text. To encode the input starting from the current position, the coder first looks
for the longest context in its collection that matches a context of the current
position: call the context ¢. It then looks for the longest string in ¢’s dictionary
that matches a prefix of the input starting at the current position. If there is a
match, the identity of the matching string of ¢’s dictionary is transmitted,
otherwise a special escape symbol is transmitted, and the process is repeated with
the next longest context. If even the length-0 context fails to find a match, a final
escape is sent, and the character in the position to be coded is sent literally. If the
identity of a string in some dictionary is sent, the position to be coded is advanced
to the first position in the input past those “matching” the given string. If a literal
is coded, the position is moved forward one. In either case, the dictionaries
corresponding to the matching contexts are updated. Optionally, the context
dictionaries that were escaped from may be updated as well.

We now illustrate DPM with an example in Fig. 1. At the current position,
indicated by a vertical bar in (a), the available contexts are qui, ui, i, and A

60 D.T. Hoang et al. | Information Sciences 119 (1999) 57-72

Theuquilckubrownu. ..

(a) Input text

index | string index | string index | string
0t 0|ck 0|d
1]z 1 |de l1{n
2| et 2| 1d 21t
3|1t 3 |sh 3| ck
4 | (Esc) 4 | 1ty 4 | nd
5 | dity :
(b) qui dictionary 6 | 1ding 506 .zation
7 | (Ese) 501 | (Esc)

(c) ui dictionary (d) i dictionary

Fig. 1. Example of a DPM coder with maximum order 3. At the current position, indicated by a
vertical bar in (a), the available contexts are qui, ui, i, and A (order-0 context). The dictionaries
for each context, except for A, are shown in (b), (c), and (d).

(order-0 context). The dictionaries for each context, except for A, are shown in
(b), (¢), and (d). A search of the qui dictionary does not yield a match, and so
the escape symbol is coded using [log, 5| = 3 bits. The ui dictionary is then
searched, yielding the longest match at index 0. The index is coded with
[log, 8] = 3 bits.

The above example illustrates the basic operations of DPM. It also dem-
onstrates the savings in coding a dictionary pointer that can potentially result
from coding with a small high-order dictionary. If the i dictionary were used,
9 bits would be needed to code a pointer. With the same memory usage, a
conventional dictionary coder would require even more bits to code a
pointer.

The example leaves out many important details that would go into the
design and implementation of an actual DPM coder. In order to get a better
idea of what these issues are, we consider three instantiations of the DPM
idea, one for each of three dictionary-based coders: LZ77 [19,6], LZ78 [20,18],
and LZFG [6,15]. The selection of a dictionary method involves choosing a
data structure for maintaining the dictionaries, a policy for adding and re-
moving strings from the dictionaries, and a scheme for coding dictionary
pointers and escapes. LZ77-PM, the coder described in Section 3, makes these
decisions in a manner analogous to the Al instantiation in [6] of the LZ77
method. LZW-PM, the coder of Section 4, is based upon LZW [18], an LZ78
variant. LZFG-PM, the coder of Section 5, is based upon an implementation
of LZFG by Slyz [15].

D.T. Hoang et al. | Information Sciences 119 (1999) 57-72 61

The LZ77-PM and LZW-PM schemes have been simulated in software
with programs that keep count of the number of encoded bits, but do not
actually generate a compressed output. Since the main interest is in the
compression gain by adopting DPM, no attempt has been made to use efficient
data structures or searching techniques, except for a bare minimum to
make the simulations run in a reasonable amount of time with the available
memory.

The LZFG-PM scheme, on the other hand, has been implemented as a fully
functional encoder and decoder. Memory use is limited by fixing the size of the
dictionary data structures. This allows for evaluation of DPM in a real-world
setting where memory resources are limited.

3. LZ77-PM

In an LZ77-style coder, the dictionary is implicitly defined as all substrings,
within length restrictions, that are contained in a buffer of the recent past input.
In defining a multiple-dictionary extension of LZ77, we seek to preserve the
nature of the dictionary. A natural extension of LZ77 to multiple dictionaries,
then, is to have the effective dictionary for context ¢ contain all substrings,
within length restrictions, that have occurred in the past following the context
o. This is the approach described in [7] for single-character contexts, where
each context dictionary is implemented as a linked list with hashing.

We now describe an PM modification of a simple LZ77 coder that is almost
identical to the Al coder from [6].

3.1. Baseline coder

The baseline (non-PM) coder works as follows. First, it divides the input
into buffers of size 256K (where K denotes 1024 characters), and codes each
buffer separately. While coding a particular buffer, the dictionary at any given
time consists of all strings in the buffer preceding the current position that are
of length at least 2 and at most 16. At each coding step, the encoder finds the
longest string in the dictionary that is identical to the string of the same length
obtained by reading forward in the buffer starting at the current position. If p is
the buffer position being coded (counting from 1), the encoder tells the decoder
which string “matched” by giving the position earlier in the buffer where the
match occurred along with the length of the match. The position is encoded
using [log, p| bits. The length is encoded in binary using 4 bits. If there is no
matching string in the dictionary, the remaining 4-bit codeword (the first 15
were used to encode lengths 2 through 16) is transmitted, and the character at
position p is coded literally; i.e., as it appears in the input.

62 D.T. Hoang et al. | Information Sciences 119 (1999) 57-72

3.2. PM modification

Our PM modification involves the addition of context dictionaries together
with a PPM-style escape mechanism. As in the baseline coder, the input is
coded in 256K buffers. The context dictionaries are not explicitly maintained.
Instead, when searching for a match in context o, ¢ is included as the prefix of
the search string. For example, let o be the input string of length 16 (the
maximal match length) that starts at the current coding position. A search in
context ¢ would involve searching for the longest prefix of go that has occurred
in the buffer before the current position. In conducting this search, the number
of times ¢ has occurred previously in the buffer is recorded by counter n. The
position k of the longest match is noted as the value of n the first time the string
is matched. In essence, the search in context ¢ returns the length and index of
the longest match within the implicit context dictionary. Let N denote the final
value of counter n, § the longest prefix of « that is matched, /; the length of f,
and k the value of n the first time was matched. If N is above a given
threshold 7,, the encoder uses the current context for coding. Otherwise, the
encoder escapes to a lower-order context. Since the decoder can perform the
same test, no escape symbol needs to be sent. If N > T, and no matching string
is found, the encoder sends an escape symbol and escapes to the next lower-
order context. If N > T, and a match is found, the index k and the length /4 of
the match are transmitted using [log, N and 4 bits, respectively.

By introducing the threshold 7,, we are delaying the use of a context
dictionary until it reaches a certain size. A reason for this is that a small
dictionary is not likely to yield a match. Therefore, the expense of having to
transmit an escape symbol every time there is no match is great relative to the
potential savings in coding by using the dictionary when there is a match.
Although a similar problem exists in statistical coding, the implications for
dictionary coding are more severe since the escape symbol must be coded in a
more restricted setting where an integral number of bits is used. For example,
the escape symbol may be coded as a flag bit, as a special length value, or as a
special index value.

In the baseline coder, only strings with at least two characters are coded by
dictionary reference. This is done since it is more economical to code a one-
character string as a literal using 12 bits than as a dictionary pointer using
4 + [log, p] bits when p > 256, where p is the current coding position in the
buffer. We face a similar situation with the PM modification. Experiments
show that coding with a minimum length of 2 is better than with a minimum of
length of 1.

We have explored several ways to encode the escape symbol. The first is to
code the escape as a length-0 match without a match index, using 4 bits, as is
done in the baseline coder when coding a literal. The second is to code the
escape with a match index of 0 without a length field, using [log, N + 1] bits.

D.T. Hoang et al. | Information Sciences 119 (1999) 57-72 63

In experiments with text files in the Calgary corpus [1], coding the escape as a
length-0 match and using a minimum match-length of 2 yielded consistently
better compression.

3.3. Experimental results

We performed coding experiments to observe the effects of the threshold 7,
and the maximum context order in coding a test file (paper?) from the Cal-
gary corpus. * In one experiment, we limited the maximum context order to 1
and varied the threshold for order-1 contexts. In a second experiment, we fixed
the threshold for order-1 contexts to 300 and varied the threshold for order-2
contexts. The compression results are summarized in Table 1 and are shown in
more detail in Fig. 2 as plots of the distribution of coding bits versus the
threshold value. As expected, the proportion of bits spent coding in the highest
context order decreases as the threshold is increased.

For the order-1 LZ77-PM coder, the compression efficiency peaks when the
threshold is about 300. For the order-2 LZ77-PM coder, the compression rate
approaches, but does not beat, that of the order-1 LZ77-PM coder, even when
the threshold is 2000. This suggests that a single-character context is adequate
to restore context at phrase boundaries in an LZ77-style coder.

Complete results for coding the Calgary corpus with an order-1 LZ77-PM
coder are shown in Table 2. Since both the base LZ77 and LZ77-PM coders are
limited to matches of length 16 or less, there is a upper bound of the com-
pression ratio that is achievable. For example, this limit is reached for the file
pic, a digital image that can be compressed fairly well with the other dictio-
nary coders.

On average, DPM improves the compression rate by about 2%. It should be
noted, however, that for the text files in the corpus, the improvement is about
3.4%. The non-text files in the corpus generally perform worse with DPM than
without.

4. LZW-PM

In the LZ78 coder, a literal character is transmitted after every dictionary
pointer. One reason for this is to insure that at least one character is coded with
each encoding step. In [16], this is referred to as pointer guaranteed progress.
The LZW coder [18] eliminates the need to transmit a literal after every match

4 Tuning an algorithm by considering its behavior on data used later to evaluate the algorithm is
in general to be avoided; however, in this case, the vast quantity of data compared with the small
number of parameters tuned suggests that the effect on the results will be negligible (see [17]).

64 D.T. Hoang et al. | Information Sciences 119 (1999) 57-72

Table 1
Distribution of bits for coding paper2 with various threshold values®

Threshold Bits for Bits for Bits for Bits for Total bits Total bits/

literal order-0 order-1 order-2 symbol

(a) Order-1 LZ77-PM
(%) 5744 257099 N/A 262843 3.198
1 5864 39639 208335 253838 3.088
50 5848 42310 203126 251284 3.057
100 5872 45379 199363 250614 3.049
150 5864 48510 196226 250600 3.049
200 5880 51403 193176 250459 3.047
250 5872 54297 190202 250371 3.046
300 5864 57215 187244 250323 3.045
350 5840 59948 184541 250329 3.045
400 5816 63143 181435 250394 3.046
450 5808 65921 178865 250594 3.049
500 5816 68730 176297 250843 3.052

(b) Order-2 LZ77-PM
1 6040 49279 51009 166785 273113 3.323
200 5920 59124 101287 94204 260535 3.170
400 5864 58500 135435 57034 256833 3.125
600 5872 57882 155486 35040 254280 3.093
800 5864 57613 167182 22083 252742 3.075
1000 5872 57399 173406 15271 251948 3.065
1200 5872 57342 178608 9598 251420 3.059
1400 5864 57382 181428 6391 251065 3.054
1600 5856 57277 183037 4588 250758 3.051
1800 5864 57339 184155 3384 250742 3.050
2000 5864 57299 185195 2231 250589 3.049

#Results are shown in (a) for an order-1 LZ77-PM coder. The row marked with an (x) gives results
for the baseline non-PM LZ77 coder. In (b), results are shown for an order-2 LZ77-PM coder with
fixed order-1 threshold of 300.

by initializing the dictionary to contain the source alphabet, that is, all strings
of length 1. In this way, only dictionary pointers are coded. Since all characters
are in the dictionary, a match will always be found. This is referred to as
dictionary guaranteed progress in [16].

LZW uses the same dictionary update rule as LZ78. After each match, a
single string consisting of the matched string concatenated with the first un-
matched character is added to the dictionary. This is one case where the de-
coder’s dictionary differs from the encoder’s dictionary since the decoder does
not yet know the identity of the unmatched character. This is not as serious a
problem as it may first seem. If the encoder happens to send the newly added
string as the next match, the decoder can recover the unmatched character as
the first character in the next match, which will be known to the decoder when
the next string is sent.

D.T. Hoang et al. | Information Sciences 119 (1999) 57-72 65

300,000
Order-1 Length

. Order-1 Index

250,000 - Order-1 Escape
. Order-0 Length
200,000 Order-0 Index
& Order-0 Escape
2} . Literal
= 150,000
M
100,000
50,000
0
* 1 50 100 150 200 250 300 350 400 450 500
Threshold
(a) Order-1 LZ77-PM
300,000
_ Order-2 Length
B Order-2 Index
250,000 @ Order-2 Escape
Order-1 Length
200,000 w Order-1 Index
W Order-1 Escape
@ BB Order-0 Length
[130000 Order-0 Index
_ Order-0 Escape
100,000 Bl Literal
50,000
0

1 200 400 600 800 1000 1200 1400 1600 1800 2000

Threshold

(b) Order-2 LZ77-PM

Fig. 2. Distribution of bits vs context threshold 7,. The results are shown for coding file paper?2 of
the Calgary corpus. In (a), except for the first column, the results are for varying the order-1 context
threshold for LZ77-PM with maximum context order of 1. The first column of (a), indicated by an
(*), shows the coding results for the non-PM baseline coder. In (b), the results are for varying
order-2 context threshold with an order-1 threshold of 300 for LZ77-PM with maximum context
order of 2.

66 D.T. Hoang et al. | Information Sciences 119 (1999) 57-72

Table 2
Compression results for files in the Calgary corpus®
File LZz77 LZ77-PM LZFG LZFG-PM LZW LZW-PM CSD
bib 2.85 2.68 2.69 2.44 3.22 2.61 3.22
book1 3.44 3.32 3.57 3.28 3.17 2.74 3.59
book?2 2.98 2.84 3.05 2.78 3.06 2.55 3.37
geo 6.71 6.96 5.65 5.63 5.79 6.51 6.74
news 3.51 3.42 3.42 3.25 3.62 3.18 4.13
objl 5.11 5.24 4.06 432 5.05 5.14 5.12
obj2 3.51 3.40 3.10 3.04 4.08 3.42 3.80
paperl 3.24 3.14 2.94 2.74 3.62 3.08 3.43
paper2 3.20 3.05 3.02 2.80 3.38 2.94 3.28
paper3 3.52 3.43 3.27 3.05 3.65 3.30 N/A
paper4 3.94 3.89 3.55 3.41 3.98 3.69 N/A
paper5 4.02 3.98 3.61 3.49 4.20 3.86 N/A
paper6 3.34 3.25 3.00 2.80 3.77 3.19 N/A
pic 2.01 2.01 0.92 0.93 0.94 0.98 1.00
progc 3.28 3.22 2.89 2.74 3.72 3.18 3.42
progl 2.44 2.31 1.95 1.80 2.95 2.37 2.70
progp 242 2.34 1.91 1.81 3.00 2.40 2.66
trans 2.31 2.12 1.79 1.67 3.16 2.31 291
Average 3.44 3.37 3.02 2.89 3.58 3.19 N/A

#The results are expressed in bits/symbol. The LZ77 coder is almost identical to the Al coder from
[6]. LZ77-PM used a maximum context orderof 1. The LZFG implementation used is from [15].
LZFG-PM used a maximum context order-1. LZW-PM used a maximum context order of 2. CSD
results are from [14]. CSD used a limited dictionary size (16K), while LZW and LZW-PM had
unlimited dictionaries; the effects this is most notable on the longer text files: bookl and book2.

4.1. Baseline coder

In the UNIX compress implementation of LZW, the size of the dictionary
is restricted. In defining our baseline coder, this restriction is removed. Also,
instead of initializing the dictionary to contain the characters of the alphabet,
the dictionary initially contains only the empty string. When the longest match
is the empty string, the next character in the file is coded literally. This can be
viewed as an escape mechanism similar to coding the escape symbol as a match
index in the LZ77-PM coder described above. In [16], this is referred to as on-
the-fly dictionary guaranteed progress. This modification has a negligible effect
on the compression and is done so that we can view the baseline coder as a
special case of the PM coder where the maximum context is of order 0.

In LZW, the dictionary is updated in the same manner as in LZ78. The
longest matching string concatenated with the first unmatched character is
added to the dictionary. The result is that one entry is added for each dictio-
nary match coded. In contrast, an LZ77 coder grows its effective dictionary at a
faster rate.

D.T. Hoang et al. | Information Sciences 119 (1999) 57-72 67

4.2. PM modification

In the LZW-PM coder evaluated in our experiments, we maintain an LZW
dictionary for each previously seen context up to a maximum length. As in the
baseline coder, an important difference from LZW is that the dictionary ini-
tially contains the empty string in order to make use of the escape mechanism.

At each coding step, the longest matching context, say o, is used for coding.
The dictionary corresponding to ¢ is searched for the longest match. Re-
gardless of the length of the match, which may be zero, the LZ78 dictionary
update rule is used. If the longest match is the empty string, an escape symbol is
coded ° and the next longest matching context is used for coding. This process
is repeated until a non-empty match is found or until an escape is coded from
the order-0 context. A character is coded literally after an escape from the
order-0 context. The identity of a dictionary entry is coded using a phased-in
binary code using either |log, D| or [log, D] bits, where D is the size of the
dictionary.

Coding the escape symbol as a dictionary entry approximately corresponds
to the method used in PPMA [1], since it (approximately) involves the implicit
assumption that the probability of seeing a previously unseen character in a
given context is the inverse of the number of times the context has been seen.
While other probability models for escapes performed better as part of PPM
(see [1,9]) and are therefore likely to yield better compression here, we chose the
method above for simplicity and computational efficiency.

We found that, unlike the case of LZ77-PM, delaying the use of a context
does not yield better compression for LZW-PM in general. This is most likely
due to the different rates at which the dictionaries are updated. Since LZ77-PM
bases its dictionaries on the contents of a buffer of past input, each time a
match is coded, multiple entries are added to the effective dictionaries of several
contexts corresponding to the matched string. In contrast, only one entry is
added to each context matched in LZW-PM. Intuitively, in the early growing
phase, the LZ77-PM dictionaries quickly become “diluted”, increasing the
number of bits required to code a match without a corresponding increase in
the reliability of prediction. Only after the initial growing phase does the cost
of coding a match balance the reliability of prediction.

4.3. Experimental results

Experiments on the Calgary corpus show a significant improvement in the
compression rate when DPM is applied to the baseline LZW coder. The best

> The empty string occupies one entry in the dictionary and an escape is coded by coding the index
of the empty string.

68 D.T. Hoang et al. | Information Sciences 119 (1999) 57-72

results for the corpus as a whole is obtained for a maximum context of order 2.
However, the best maximum context order for each file varies. For some of the
binary files, notably geo, the compression degrades when using even an order-
1 context dictionary. In contrast, the text files are better compressed by using
context dictionaries. On average, introducing Partial Matching improves the
compression rate by about 11%. For text files, the improvement is about 15%.

5. LZFG-PM

In the LZ77 coder, for a given match, several positions in the buffer may
contain the same match. As a result, LZ77 effectively reserves codespace for
pointers that will never be coded, which is wasteful. The LZFG coder of Fiala
and Greene [6] eliminates pointer redundancy by coding a string as a pointer
into a trie, a digital search tree which stores parsed substrings that have oc-
curred previously in the text. Each substring stored in the trie has a unique
identifier. LZFG’s efficient coding of pointers makes it an ideal candidate as a
base dictionary coder for DPM. In addition, LZFG is a symmetric coder since
the decoder must maintain the same trie. In a sense, DPM is also a symmetric
coding scheme since the encoder and decoder must make the same context
selection. Integrating DPM into LZFG, then, should have minimal impact on
both the encoder and decoder. For these reasons, we chose to implement
LZFG-PM as a fully functional encoder/decoder program.

5.1. Baseline coder

We use an existing LZFG implementation [15] as the baseline coder. Some
details of this implementation differ from the coder originally described by
Fiala and Greene. In the base implementation, a sliding-window buffer of size
44K is used with the sliding occurring in 4K chunks. A limited number of
internal nodes and leaves is globally allocated. Nodes and leaves are stored in
self-organizing lists that use the least-recently-used (LRU) update heuristic.
New nodes and leaves replace old ones when their allotted number has been
reached. The interested reader is referred to [15] for further details of the im-
plementation.

5.2. PM modification

Following the outline of Section 2, LZFG-PM constructs separate tries for
each context, including one for the order-0 context. Although the tries are
separate, nodes and leaves are allocated from a common pool. When all nodes
(respectively, leaves) have been allocated and there is a request for a new node
(leaf), the oldest node (leaf) in a globally managed LRU list is deleted. In this

D.T. Hoang et al. | Information Sciences 119 (1999) 57-72 69

way, fixed memory usage is assured. Furthermore, since the different contexts
are competing for the same memory resources in a LRU list, context dict-
ionaries that are used more frequently will suffer fewer deletions.

Coding of literal characters is handled differently in LZFG-PM than in
LZFG. Whereas LZFG groups consecutive literals together and sends them in
one chunk, LZFG-PM codes each literal individually. The reasoning is that
since LZFG-PM allows pointers to code phrases of length-1 efficiently, literals
are less likely to occur consecutively than in LZFG.

We have implemented two methods for coding escapes. In the first, we code
the escape symbol as a special node, namely the root. In the second, we code
the escape symbol as a special entry in the LRU list of leaves, using the same
self-organizing-list heuristic. We find that coding an escape as a node gives
slightly better compression than coding it as a leaf.

We use a heuristic to determine the appropriate context order to begin
parsing the next phrase. If the previous context order is C and the length of the
previous phrase is L, we do not use contexts with order higher than L + C — 1
for coding. Starting at an order higher than L 4+ C — 1 would not likely be
fruitful since that would mean repeating a search that has failed in the past.
This heuristic saves us in the cost of coding escapes.

A new dictionary entry is added to the context used for coding as well as to
higher-order contexts that were escaped from. Contexts of order less than the
coding context could also be updated. In our experiments we find that updating
lower-order contexts results in marginal improvement (about 0.01 bits/symbol)
in compression at the expense of more overhead. Therefore, we adopt the
strategy of updating only the coding context and the contexts that are escaped
from.

5.3. Experimental results

Experimental results for the LZFG and LZFG-PM coders are given in
Table 2. For both coders, the buffer size is 44K. Both coders limit the total
number of internal nodes to 16K and the number of leaves to 32K. We ex-
perimentally determined the best settings for the start-step-stop codes used to
code the nodes and leaves based upon a subset of the test files. We also varied
the maximum context order and obtained the best results for a maximum
context of order 1. The results, given in Table 2, are for a maximum context of
order 1. The improvement in the average compression rate with DPM is about
4.3%. For text files, the improvement is 6.4%.

Our implementations of LZFG and LZFG-PM are experimental prototypes
that were designed for flexibility and not efficiency. For the file book1, LZFG-
PM requires 22% more time to compress than LZFG. While neither imple-
mentation was optimized for speed, this gives us an indication of the overhead
of DPM over conventional dictionary coders.

70 D.T. Hoang et al. | Information Sciences 119 (1999) 57-72

6. Discussion

In this paper, we have described a new approach to dictionary-based text
compression, and we have demonstrated that it results in improved compres-
sion. The improvement is particularly significant when used with LZW. We
expect that the use of the dictionary PM approach also yields practically fast
coders. The fact that this approach succeeded in conjunction with the three
coders studied in this paper suggests that the high-level specification of this
approach can be combined with many dictionary methods, including those that
might be developed in the future.

Why did the use of contexts improve compression significantly more in
conjunction with some dictionary methods than with others? One plausible
explanation is as follows. The LZ77 coder is the most liberal about adding
entries to its dictionary, followed by LZFG then LZW. This parallels the level
of improvement exhibited by introducing DPM, with LZ77 benefiting the least
and LZW the most.

Past studies with PPM coders [1] have shown that, as the context order
increases, the compression improves and then worsens, with the best com-
pression when the maximum context order is about 4 or 5. The correspondence
between (non-PM) dictionary methods and statistical methods suggests that, as
a match continues, the probability estimates in the corresponding symbolwise
statistical coder tend to get better as more contextual information is made
available and then get worse as the estimates at high context orders become
more unreliable. The effect of a context dictionary is, loosely speaking, to
bypass the lower order contexts with relatively poor probability estimates,
thereby increasing the average quality of the remaining probability estimates.

A method that liberally updates its dictionary, all else being equal, makes
longer matches at the expense of requiring more bits to identify the match. By
tending to have longer matches, such a method has a relatively greater share
of its coding inefficiency due to the later characters in its matches. For such a
method, bypassing low-order contexts will not yield much of an improvement.
Further, even if, for example, using an order-2 context to encode a single
character tends to be worse than using an order-3 context, it is possible that
the order-2 dictionaries tend to be better than the order-3 dictionaries. To see
why this might be true, consider what happens in the corresponding statistical
method when we use an order-2 context rather than an order-3 context.
Loosely speaking, instead of cycling from contexts of length 3 up to some
large number, we cycle from 2 through some large number. Adding the order
2 to the cycle will result in improved compression if, loosely speaking, using
order-2 contexts is better than the average of the use of contexts of order 3
and higher.

A method that is “stingy’’ about adding entries to its dictionary, like LZW,
has a greater share of its inefficiency due to the early characters in a match, and

D.T. Hoang et al. | Information Sciences 119 (1999) 57-72 71

therefore we would expect it to be helped more by the addition of contexts, as is
consistent with our experiments.

Cleary et al. [5] recently discovered an improvement of PPM, called PPMx,
which does not impose any restriction on the length of the context used. In-
stead, PPMx uses the longest of the present contexts which has appeared
previously. DPM could conceivably be modified similarly: this is potentially a
subject of future research.

References

[1]1 T.C. Bell, J.G. Cleary, I.H. Witten, Text Compression, Prentice Hall, Englewood Cliffs, NJ,
1990.

[2] T.C. Bell, I.LH. Witten, Relationship between greedy parsing and symbol-wise text compres-
sion, Journal of the ACM 41 (4) (1994) 708-724.

[3] C. Bloom, Using prediction to improve LZ77 coders, in: Proceedings of of 1996 IEEE Data
Compression Conference, 1996, p. 425 (full version available at http: //wwwvms. utex-
as.edu/ cbloom/dcc96. html).

[4] J.G. Cleary, .H. Witten, Data compression using adaptive coding and partial string matching,
IEEE Transactions on Communication COMM 32 (4) (1984) 396-402.

[5] J.G. Cleary, W.J. Teahan, I.H. Witten, Unbounded length contexts for PPM, in: Proceedings
of the 1995 Data Compression Conference, 1995, pp. 52-61.

[6] E.R. Fiala, D.H. Greene, Data compression with finite windows, Communications of the
ACM 32 (4) (1989) 490-505.

[71 P.C. Gutmann, T.C. Bell, A hybrid approach to data compression, in: Proceedings of the 1994
Data Compression Conference, Snowbird, UT, March 1994, IEEE Computer Society Press,
pp. 225-233.

[8] D.T. Hoang, P.M. Long, J.S. Vitter, Multiple-dictionary compression using partial matching,
in: Proceedings of the 1995 IEEE Data Compression Conference, Snowbird, Utah, March
1995, pp. 272-281.

[9] P.G. Howard, J.S. Vitter, Practical implementations of arithmetic coding, in: J.A. Storer (Ed.),
Images and Text Compression, Kluwer Academic Publishers, Norwell, MA, 1992, pp. 85-112.

[10] P.G. Howard, J.S. Vitter, Design and analysis of fast text compression based on quasi-
arithmetic coding, Information Processing and Management 30 (6) (1994) 777-790.

[11] G.G. Langdon, A note on the Ziv—Lempel model for compressing individual sequences, IEEE
Transactions on Information Theory IT-29 (1983) 284-287.

[12] J.L. Mitchell, W.B. Pennebaker, Optimal hardware and software arithmetic coding procedures
for the Q-coder, IBM Journal of Research and Development 32 (1988) 727-736.

[13] A. Moffat, R. Neal, I.H. Witten, Arithmetic coding revisited, in: Proceedings of the 1995 Data
Compression Conference, 1995, pp. 202-211.

[14] Y. Nakano, H. Yahagi, Y. Okada, S. Yoshida, Highly efficient universal coding with
classifying to subdictionaries for text compression, in: Proceedings of the 1994 Data
Compression Conference, Snowbird, UT, March 1994. IEEE Computer Society Press, pp. 234—
243.

[15] M. Slyz, Image compression using a Ziv—Lempel type coder, Master’s thesis, School of
Engineering, University of Michigan, 1991.

[16] J.A. Storer, Data Compression: Methods and Theory, Computer Science Press, New York,
1988.

[17] V.N. Vapnik, Estimation of Dependencies based on Empirical Data, Springer, Berlin, 1982.

72 D.T. Hoang et al. | Information Sciences 119 (1999) 57-72

[18] T.A. Welch, A technique for high-performance data compression, IEEE Computer 17 (1984)
8-19.

[19] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Transactions
on Information Theory IT-23 (3) (1977) 337-343.

[20] J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding, IEEE
Transactions on Information Theory IT 24 (1978) 530-536.

