
CS2A: a compressed suffix array-based method for short read alignment

Hongwei Huo∗, Zhigang Sun∗, Shuangjiang Li∗, Jeffrey Scott Vitter†,
Xinkun Wang‡, Qiang Yu∗ and Jun Huan§

∗School of Computer Science and Technology,Xidian University,China†Department of Computer and Information Science, the University of Mississippi,USA‡Department of Biochemistry and Molecular Genetics,Northwestern University,USA§Department of Electrical Engineering and Computer Science, the University of Kansas,USA

Abstract

Next generation sequencing technologies generate enormous amount of short reads, which poses a significant computational
challenge for short read alignment. Furthermore, because of sequence polymorphisms in a population, repetitive sequences, and
sequencing errors, there still exist difficulties in correctly aligning all reads. We propose a space-efficient compressed suffix
array-based method for short read alignment (CS2A) whose space achieves the high-order empirical entropy of the input string.
Unlike BWA that uses two bits to represent a nucleotide, suitable for constant-sized alphabets, our encoding scheme can be
applied to the string with any alphabet set. In addition, we present approximate pattern matching on compressed suffix array
(CSA) for short read alignment. Our CS2A supports both mismatch and gapped alignments for single-end and paired-end reads
mapping, being capable of efficiently aligning short sequencing reads to genome sequences. The experimental results show that
CS2A can compete with the popular aligners in memory usage and mapping accuracy. The source code is available online.

I. INTRODUCTION

High-throughput next generation sequencing (NGS) technologies deliver millions of short reads in a single run. It makes the

analysis of gene expression and genome variation on a genome-wide scale possible [19]. The first step in these bioinformatics

analysis is short read alignment, which maps short reads to some positions on a reference genome (usually billions of base

pairs), based upon the principle that the reads are approximate substrings of the reference [20]. These reads may have errors

and the orientation of the read relative to the reference genome is usually not known, and we usually do not have the exact

reference genome for these reads. How to align short reads to a reference genome, while account for the inexact pattern

match, in the presence of sequencing errors, also within a reasonable amount of time and memory space, poses a significant

computational challenge.

In recent years, many short read alignment algorithms have been developed. A classical short reads alignment framework

used by earlier aligners is the seed and extension approach which extends alignment from a seed in various ways including

backward searching and dynamic programming. MAQ [12] hashes short reads as seed and scans the reference genome to

find candidate alignment locations. Then MAQ extends the remaining portion of the read against the reference to find an

alignment which minimizes the sum of quality values of mismatched bases. Bowtie [10] uses Burrows-Wheeler Transform

(BWT) [2]. BWA [11], another BWT-based aligner, adopts improved backward search to align short reads. There are also

other methods [1], [15], [17] that use this framework.

Another short read alignment framework is based upon the use of spaced seeds. In this framework, several parts of a read

are selected as spaced (or gapped) seeds. SOAP [16], for example, is based upon the seed (spaced seed)-and-extend approach.

Using spaced seeds, aligners select more than one candidate alignment location (CAL). These candidate locations are then

filtered by well-designed rules. At last, these candidate locations are verified by aligning remaining non-seed subsequences

to the reference genome.

There are also aligners using different alignment frameworks [9], [18], [21]. Though there are many short read aligners

available, the difficulties in correctly aligning all reads remain [14] because of sequence polymorphisms among individuals,

repetitive sequences, and sequencing errors.

The compressed suffix array (CSA) introduced by Grossi and Vitter [4] is the first self-index that was proved by Grossi et

al. [5] to achieve asymptotic space optimality in entropy sense. In this paper, we propose a space-efficient CSA-based method

for short read alignment (CS2A). In CS2A, we construct the compressed index for the reference genome sequence based

upon the storage scheme developed by Huo et al. [7]. The space required by the compressed index achieves the high-order

empirical entropy of the string. In addition, we present approximate pattern matching on compressed suffix array for short

read alignment. CS2A supports both mismatch and gapped alignments for single-end and paired-end reads mapping. The

experiments show that CS2A can compete with the popular aligners in memory usage and mapping accuracy. The source

code is available online [8].

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.58

271

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.58

271

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.58

271

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:06:22 UTC from IEEE Xplore. Restrictions apply.

II. METHODS

A. Index structure

Let T be a string of n characters over an alphabet Σ of size σ and P a query pattern of length m. The suffix array

SA[0..n − 1] of T is an array of n integers that gives the sorted order of the suffixes of T . SA[i] = j means that suffix

T [j..n], starting at position j in T ranks the ith smallest among all the n suffixes. All the suffixes prefixed by P form a

lexicographically contiguous range in the sorted array SA. Thus, we can use binary search to search for the range of SA
containing the suffixes prefixed by P . The neighbor function Φ(i) = SA−1[SA[i] + 1] of the CSA [4] maps a position i in

SA, such that SA[i] = m for some m, into the position j, such that SA[j] = m+ 1. The values of Φ forms a piece-wise

increasing sequence [4]. A practical index structure for the CSA of T is shown in Figure 1 [7], where n = 36, superblock

size a = 9, and block size b = 3. ”#” is a special end-of-text symbol smaller than any other character in T .

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

T a t a g t t a t g t a c c t g a c g a c g g c t g a g t a c a t t g a #
SA 35 34 28 10 15 1825 2 0 6 30 29 11 16 19 12 22 33 14 17 24 21 20 26 8 3 27 9 1 5 32 13 23 7 4 31

\Phi 8 0 11 12 13 1423 25 28 33 35 10 15 19 22 31 32 1 4 5 6 16 21 26 27 34 2 3 7 9 17 18 20 24 29 30

gap 0 28 11 0 1 1 0 2 3 0 2 11 0 4 3 0 1 5 0 1 1 0 5 5 0 7 4 0 4 2 0 1 2 0 5 1

S 0000111000001011 1 1 010 011 0100001011 00100 011 1 00101 1 1 00101001010011100100 00100 010 1 010 00101 1

SB 0 24 48 70

B 0 16 18 0 10 18 0 2 12 0 8 12

SAM 8 12 23 33 15 31 4 16 27 3 17 24

Figure 1. Index structure of T = atagttatgtacctgacgacggctgagtacattga#

We use formula (1) to access the values of Φ. SAM [�i/b�] is the sampling array, which samples Φ at regular step b.
decompress conducts a decoding on the encoded sequence S, which is obtained by applying Elias Gamma coding [3] to

the gap sequence. Given position i, SB[�i/a�]+B[�i/b�] is the decoding starting position. i mod b is the number of times

to be decoded. We refer the reader to references [7] for an extensive description of the index structure.

Φ[i] = (SAM [�i/b�] + decompress(S, SB[�i/a�] +B[�i/b�], i mod b)) mod n (1)

Lemma 1 ([7]): Our index structure requires at most 2nHk + n + o(n) bits of space in the worst case for any k ≤
c logσ n− 1 and any constant c < 1, where Hk is the kth-order empirical entropy of T and σ is the alphabet size.

B. Pattern matching

Let C[c] be the total number of occurrences in T of the characters that are alphabetically smaller than c ∈ Σ. That

is, C[c] denotes the number of suffixes in T whose leading character is less than c. Let P be a pattern of length m. We

now show how to search for P in S, which is the compressed representation of T . Since the suffixes prefixed by P are

lexicographically contiguous in the sorted array SA, thus, we can search for the range of SA containing the suffixes prefixed

by P using binary search. The search determines the starting position l for the suffixes lexicographically larger than or equal

to P and the ending position r for suffixes that start with P . We use [l, r] to denote the suffix range to which P belongs.

That is, SA[l], SA[l + 1], · · · , SA[r] contains positions of these suffixes that are prefixed by P .

Algorithm 1 describes how to perform a match using the neighbor function Φ. We use pattern P = gt as an example

to show how to use Algorithm 1 to perform pattern matching. Start from c = p1 = t with l0 = 0 and r0 = 35, we have

lc = C[t] = 26 and rc = C[t + 1] − 1 = 35, thus l = min{j : j ∈ [26, 35] and Φ(j) ∈ [0, 35]} = 26, r = max{j : j ∈
[26, 35] and Φ(j) ∈ [0, 35]} = 35. This shows that character t occurs (35− 26) + 1 = 10 times in T . If we continue to call

Algorithm 1 for next character c = p0 = g, we have l0 = 26 and r0 = 35, we have lc = C[g] = 17 and rc = C[g+1]−1 = 25,

thus l = min{j : j ∈ [17, 25] and Φ(j) ∈ [26, 35]} = 23, r = max{j : j ∈ [17, 25] and Φ(j) ∈ [26, 35]} = 25. This

shows that pattern P = gt occurs (25− 23) + 1 = 3 times in T . c is a parameter of Algorithm 1 and can be instantiated a

character when Algorithm 1 is called in Algorithms 2 and 3. If we want the compressed suffix array to work for the short

read alignment, we have to modify the pattern matching algorithm to support approximate matching because reads may have

errors, and the reference genome is usually not exact for the reads.

272272272

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:06:22 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 One match

Input: Φ, C, l0, r0, c
Output: l, r

OneMatch(Φ, C, l0, r0, c)
1: lc ← C[c]; rc ← C[c+ 1]− 1
2: l← min{j : j ∈ [lc, rc] and Φ(j) ∈ [l0, r0]}
3: r ← max{j : j ∈ [lc, rc] and Φ(j) ∈ [l0, r0]}
4: return l and r

C. Approximate pattern matching

Let P = p0p1 . . . pm−1 be a short read of length m and Pi = pi . . . pm−1 is a suffix of P , where 0 ≤ i ≤ m− 1. Starting

from pm−1, assumed that we have found pi and obtained a suffix range [li, ri] where the suffixes start with pi . . . pm−1.

According to the backward search, the next step should search for pi−1 on the basis of [li, ri], and we would obtain a

new range [li−1, ri−1] in T of suffixes starting with pi−1pi . . . pm−1. However, if we do not find pi−1 but find a character

s �= pi−1, we would obtain another suffix range [l′i−1, r
′
i−1] instead. Then we may continue to search for p0 . . . pi−3pi−2

backwards based upon [l′i−1, r
′
i−1], until a range [l0, r0] is obtained. [l0, r0] is the suffix range of the approximate string of

P , where pi is substituted with another character s. Similarly, we can obtain an approximate string of P by deleting or

inserting a character at position i.
Using substitute, delete or insert operation, we can align a short read onto a reference genome inexactly. The alignment

procedure, however, could be time consuming. Since we do not know the exact positions where a substitute, insert or delete

may occur; we need to try these operations on every possible position of a read. Each of the operations on a position would

introduce a new approximate read. Before aligning all the approximate reads to the reference genome, we do not know

which approximate read will result in the best alignment. Therefore, every approximate read could be a potential candidate

and should be stored during the approximate matching.

Each operation in the approximate matching can be seen as a traversal in a search tree. For a short read P of length m,

we can do four kinds of insert operations, three kinds of substitute operations, one kind of delete operation, and normal

alignment at a position i. Therefore, each internal node in the search tree would have 9 children nodes; and the total number

of branches in the search tree is 9m in the worst case, which is computationally prohibitive.

D. Branch and Bound

In order to accelerate the search tree traversal for the approximate matching of a short read, we use two branch and

bound strategies to prune branches of the search tree. First, we also use a difference array d, inspired by [11] to restrict the

number of branches. d[i] represents the maximum number of operations (replace, insert, or delete) allowed in the searching

for Pi = pi . . . pm−1. It can be computed by Algorithm 2.

Algorithm 2 Difference array computation

Input: Φ, C, P
Output: d

Diff(Φ, C, P)
1: z ← 0; l← 0; r ← m− 1
2: for i← m− 1 down to 0 do
3: (l, r)← OneMatch(Φ, C, l, r, pi)
4: if l > r then
5: l← 0; r ← m− 1; z ← z + 1 �mismatch, increment z
6: end if
7: d[i]← z
8: end for
9: return d

Second, we use the penalty strategy to limit the number of branches. During the search tree traversal for the alignment

of the short read P of length m, performing any operation (substitute, insert or delete) will decrease the similarity between

the approximate string corresponding to the search direction and P . We assign a different penalty score to insert, delete, and

273273273

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:06:22 UTC from IEEE Xplore. Restrictions apply.

substitute, respectively. We use the affine gap penalty for successive indels. When the penalty score of a search direction is

greater than a given maximal penalty value maxp, we discard the direction, since it cannot drive a good solution.

E. Alignment algorithm

We create a priority queue data structure and change the depth-first search to breadth-first search in the search tree. We

rank all search directions in increasing penalty score in each level and stored in the priority queue. With the priority queue

structure, we can restrict the search to the optimal direction. In addition, we can discard the worst search direction by

specifying the size of the priority queue though it satisfies bounded conditions.

Algorithm 3 Extension

Input: P,Φ, C, x, heap
Output: heap

Extend(P,Φ, C, x, heap)
1: y.l← x.l; y.r ← x.r; y.i← x.i− 1; y.z ← x.z + 1 � delete pi
2: y.pen← x.pen+ delPen; insertHeap(heap, y)
3: for all s ∈ {a, c, g, t} do
4: (l, r)← OneMatch(Φ, C,X.l,X.r, s)
5: if l ≤ r then
6: y.l← l; y.r ← r; y.i← x.i; y.z ← x.z + 1 � insert s after pi
7: y.pen← x.pen+ insPen; insertHeap(heap, y)
8: if pi = s then
9: y.l← l; y.r ← r; y.i← x.i− 1; y.z ← x.z �match

10: y.pen← x.pen; insertHeap(heap, y)
11: else
12: y.l← l; y.r ← r; y.i← x.i− 1 y.z ← x.z + 1 � substitute
13: y.pen← x.pen+ subPen; insertHeap(heap, y)
14: end if
15: end if
16: end for
17: return heap

We use min binary heap to implement the priority queue. Each element keeps some information on the approximate

matching. We take the corresponding penalty score and z value as key. Let x be a partial alignment of P associated with

the suffix range [l, r], penalty and the number of operations (substitute, insert or delete) performed so far. The extension

procedure is described in Algorithm 3.

CS2A is described in Algorithm 4. CS2A first calculates difference array d of P , and initialize a partial alignment entity

x with l = 0, r = n − 1, i = m − 1, pen = 0 and z = 0, and two data structures heap and result . The heap is used to

store intermediate alignment results. The result stores the final alignment that satisfies alignment constraints. During the

alignment, we first extract a partial alignment x with the smallest penalty pen from the priority queue heap. If the current

alignment position i < 0, which means that x has been aligned to p0, we identify x as a reasonable alignment and insert

x into the priority queue result , then we carry out next iteration; otherwise, we handle x according to branch and bound

strategy.

III. IMPLEMENTATIONS

Based on the alignment algorithm proposed above, we implement a short read aligner: CS2A. CS2A aligner consists of

three procedures: Buildindex , Alignment , and Output . Buildindex creates the index structure for the reference genome

T . Alignment is the core of CS2A, which aligns short reads onto T . The alignment result is stored in an intermediate

file format: SAI. Output transforms SAI to standard SAM (Sequence Alignment/Map) format [13]. In order to improve

alignment efficiency and accuracy, we also make further optimizations on the CS2A: seed policy and paired-end mapping.

A. Creating the index for the reference genome

Because we do not know from which DNA strand a short read is sequenced, we need to align the short read against both

forward strand and reverse strand of a reference genome. In order to reduce alignment time, we construct a new reference

274274274

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:06:22 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 CS2A alignment

Input: heap,Φ, C, P,maxP,maxHeapSize
Output: result

CS2A(heap,Φ, C, P,maxP,maxHeapSize)
1: d← Diff(Φ, C, P)
2: heap← ∅; result← ∅

3: x.l← 0;x.r ← n− 1;x.i← m− 1;x.pen← 0;x.z ← 0
4: heap← Extend(P,Φ, C, x, heap) � handle pm−1

5: while heap �= ∅ do
6: x← extractMin(heap)
7: if x.i < 0 then
8: Insert(result, x); continue � obtain a good alignment
9: end if

10: if x.z ≤ d[x.i] and x.pen ≤ maxP then
11: heap← Extend(P,Φ, C, x, heap) � handle p0 . . . pm−2

12: end if
13: while heapSize(heap) > maxHeapSize do
14: heapDropMax(heap)
15: end while
16: end while
17: return result

genome by connecting the reference genome and its complementary strand together. So, we need to align a short read to

reference genome only once.

Given a string T , to construct its compressed suffix array we need to construct the suffix array of T firstly. However, the

suffix array construction usually occupies about 9 times memory footprint of the original text size. Considering the scale

of the human genome (2.8 GB), this approach is difficult to be used for constructing the suffix array of genomic sequences

with a normal PC. Therefore, we use a space-efficient construction method proposed in [6] to construct the compressed

suffix array of the reference genome. As the CSA of the reference genome is created only once, it can be re-used.

B. Using the SAI intermediate file

Using CS2A, we can obtain a suffix array interval [l, r] of a pattern P quickly. However, it is time-consuming for the

CS2A to map the interval [l, r] to chromosome coordinates. We define the Sequence Alignment Intermediate file format

(SAI) to save the alignment time, which is used to store intermediate alignment results. The SAI file only stores short read

alignments occurring in the suffix range [l, r], mapping accuracy [11] and performed operations information. Combining

with the index structure of the reference genome, the Output procedure transforms the intermediate alignment results from

the SAI format to the SAMformat [13].

C. Using seed to improve accuracy

In DNA sequencing, the closer a base is to the 5′ end of a DNA fragment, the higher its call quality is, and vice versa.

In the seed-and-extend alignment approach, the high-quality end of a short read is selected as seed, which only allows one

or two mismatches in alignment. Using the seed policy, we can further improve search accuracy and efficiency. In detail,

we select the first 32 bases from 5′ end of a short read as seed by default. The number of mismatches, gap openings, and

gap extensions has more limits on the seeded than non-seeded subsequences. Because of the high limit in the seed region,

we can align seed firstly and discard search directions which do not satisfy the constraint of seed policy.

D. Paired-end mapping

CS2A supports paired-end alignment. Paired-end sequencing technique sequences both ends of a DNA fragment and

outputs a pair of reads. Given a pair of short reads, we align the two reads using CS2A respectively, and then we check the

two sets of alignment results to find consistent pairs.

Restricted by sequencing accuracy, paired-end sequencing can only sequence two ends of a DNA fragment. Usually, there

is an area between a pair of reads where it cannot be sequenced. Furthermore, the exact length of a DNA fragment is

unknown. The default fragment length of Illumina sequencer is between 200 and 300 bps. In paired-end mapping, when

275275275

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:06:22 UTC from IEEE Xplore. Restrictions apply.

a pair of reads are aligned to different strands of the reference genome, and their genomic coordinates are within a given

maximal distance, it is considered as a consistent pair.

IV. EXPERIMENTAL RESULTS

A. Data Sets and Settings

We made a comparison of CS2A with three popular aligners: Bowtie [10], BWA [11], and SOAP2 [17]. All the aligners

are carried out on a workstation that has 24 Intel(R) Xeon(R) CPU E5-2692 v2 @2.20GHz cores and 64GB of memory.

The operating system is Red Hat Enterprise Linux Server release 6.4 (Santiago).

Efficiency and accuracy are two important measurements of short read alignment. Besides alignment time and memory

footprint, we use Confidence and Mapping accuracy [11] to evaluate the performance of different aligners. Confidence is

defined as the fraction of confidently mapped reads to all the reads (Conf), calculated by S/N and mapping accuracy is

defined as the fraction of confidently and correctly mapped reads among all the confidently mapped reads (Acc), calculated

by S1/S, where N is the number of total reads, S is the number of confidently mapped reads, and S1 is the number of

confidently and correctly mapped reads.

In the experiments, we use the human genome ’hg19.fa’ released by NCBI as the reference genome. Using the ’wgsim’

simulator in SAMtools [13], we generate three paired-end short read samples from the reference genome, including ds35,

ds70 and ds125. Each sample is composed of one million pairs of reads. The read length of ds35, ds70 and ds125 is 35, 70

and 125, respectively. The SNP mutation rate of ’wgsim’ is set to 0.09%, indel mutation rate is set to 0.01%, and fragment

distance of a pair of reads meets the normal distribution N(500, 50).

B. Influence of the seed length on performance

Firstly, we analyze the influence of seed length on alignment accuracy and efficiency. Suppose that this is an unspaced

seed. With different seed lengths, we map ds70 to the reference genome using CS2A. The experimental results are shown

in Figure 2. It shows that the alignment time decreases with the increasing of seed length. The mapping accuracy increases

with the increasing of seed length, but the Confidence decreases. This is because with longer seed CS2A can filter out more

candidate alignments at the beginning. When setting seed length to 32bp, we can align one million pairs of 70bp reads in

1.272 hours, and get nearly 85% Conf and more than 99.9% Acc. To strike a balance among alignment time, Confidence

and Accuracy, we set the seed length to 32bp without specific statement in the following experiments.

Figure 2. The alignment effect of CS2A under different seed lengths

C. Evaluation on simulated data sets

To compare the performance of these aligners, we align ds35, ds70 and ds125 short read samples to the human genome

’hg19.fa’ in single-end and paired- end modes. All the aligners are deployed using their default configuration. Their mapping

accuracies are evaluated using wgsim eval.pl included in the SAMtools [13] package. The experimental results are given in

Table I, where T, M, C, and A represents time (in hour), memory (in GB), confidence, and mapping accuracy, respectively.

In column ’Program’ of Table I, the number after aligner name gives the read length. For example, Bowtie-35 means that

using Bowtie to map ds35 to the human genome hg.19.

Table I shows that in both single-end and paired-end alignment modes, the time required by each aligner increases with

the increase of read length. For all data sets, SOAP2 is among the fastest alignment but has the worst memory usage. SOAP2

276276276

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:06:22 UTC from IEEE Xplore. Restrictions apply.

can compete in Conf and Acc with the other three methods. Bowtie is among the smallest space usage. Both CS2A and

BWA can also map the simulated samples in acceptable amounts of time. The Confidence of CS2A is better than Bowtie in

both single-end and paired-end mapping, which means that CS2A can correctly align more reads than Bowtie, but slightly

less than BWA; at the same time, CS2A and BWA have similar levels of accuracy, both are more accurate than Bowtie. The

memory usage of CS2A is between those of Bowtie and BWA.

Table I
SINGLE/PAIRED-END MAPPING ON SIMULATED DATA SETS

Program
Single-end mapping Paired-end mapping

T M C(%) A(%) T M C(%) A(%)
Bowtie-35 0.292 2.85 77.55 97.06 0.298 2.85 81.33 98.54
BWA-35 0.256 3.41 80.32 99.76 0.420 4.76 90.48 99.94
SOAP2-35 0.04 5.56 82.10 99.13 0.20 5.57 91.82 99.73
CS2A-35 0.514 3.25 79.88 99.74 0.539 3.79 83.35 99.93
Bowtie-70 0.411 2.85 80.21 98.64 0.441 2.86 83.47 98.67
BWA-70 0.666 3.42 89.33 99.91 0.724 4.84 94.71 99.97
SOAP2-70 0.09 5.59 89.32 99.64 0.18 5.60 92.25 99.78
CS2A-70 1.272 3.30 84.44 99.91 1.299 3.93 88.57 99.97
Bowtie-125 0.497 2.86 83.36 99.27 0.534 2.88 84.12 99.02
BWA-125 1.689 3.44 91.57 99.96 1.729 4.91 96.11 99.99
SOAP2-125 0.25 5.61 89.73 99.87 0.55 5.61 83.76 99.85
CS2A-125 3.438 3.37 86.83 99.97 3.473 4.06 90.96 99.96

D. Evaluation on real-world data sets

To evaluate the performance of CS2A on real-world short reads data sets, we download 12.2 million pairs of 51bps reads

from European Read Archive (AC: ERR000589) and align these short reads to the hg19.fa human reference genome. The

experimental results are given in Table II, where Time is in hour and Memory is in GB. Similar to the results obtained

on the simulated samples, all four aligners can align these reads to the reference genome in acceptable amounts of time.

SOAP2 is among the fastest alignment but has the worst memory usage. BWA and SOAP2 align more reads than Bowtie

and CS2A, in the meanwhile almost all reads mapped by BWA and CS2A can be paired. The memory usage of CS2A is

smaller than that of BWA, but larger than that of Bowtie.

Table II
EVALUATION ON REAL-WORLD DATA SETS

Program Time Memory Conf(%) Paired(%)
Bowtie 4.08 2.94 84.71 95.43
BWA 3.08 4.73 87.67 99.83
SOAP2 2.20 5.56 88.81 98.04
CS2A 6.83 3.91 83.18 99.75

V. CONCLUSION

Next generation sequencing technologies greatly enable the studying of gene expression and genome variation on a genome

scale. Although there has been several alignment tools available, short reads alignment still is one of the major bottlenecks

in the analysis of NGS Data. In this paper, we implemented a novel short reads aligner: CS2A, which is based upon CSA

and backward search. It supports gapped alignment for single-end reads and paired-end mapping. The experiments on both

simulated and real-world data show that CS2A can map millions of short reads in acceptable amounts of time; the memory

footprint of CS2A is independent of the scale of short reads, and is less than 4GB for the human genome; the mapping

accuracy of CS2A is comparable to the state-of-the-art aligners.

Although this work shows that CS2A can align NGS short reads onto a large reference genome such as the human genome,

there is still room for future development. Firstly, CS2A only maps nucleotide-space short reads generated by Illumina or

Roche 454 systems. It should be extended to map color-space short reads obtained from the ABI SOLiD system. Secondly,

CS2A does not completely use base call quality scores reported in the FASTQ files. Higher sensitivity is expected to be

achieved if we set different penalty values for different quality bases in the branch and bound strategy. Finally, for simplicity

CS2A indiscriminately converts any nucleotide that is not ’A’, ’C’, ’G’ or ’T’ to ’N’. Since this may decrease alignment

accuracy, future work will also include considering the specific meaning of such ambiguous but nevertheless informative

nucleotides.

277277277

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:06:22 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

The authors would like to thank Heng Li for clarifying some data structures related to BWA [11], and also wish to thank

the anonymous reviewers for their careful reading and their constructive comments, which have considerably improved the

quality of the paper. This work is supported in part by China NSF grants 61173025 and 61373044 (H. Huo), and China NSF

grant 61502366 (Q. Yu), by US NSF grant CCF-1017623 (J.S. Vitter), and US NIH grants P20 GM103638, P30 AG035982,

and P30 HD002528 (X. Wang).

REFERENCES

[1] C. Alkan and J. M. Kidd. Personalized copy number and segmental duplication maps using next-generation sequencing. Nature
Genetics, 41(10):1061–1067, 2009.

[2] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical Report 124, Digital Equipment
Corporation, Palo Alto, CA, USA, 1994.

[3] P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions on Information Theory, 21(2):194–203, 1975.

[4] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string matching. SIAM
Journal on Computing, 35(2):378–407, 2005.

[5] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proceedings of Symposium on Discrete Algorithms,
pages 841–850, 2003.

[6] W. K.Hon, T. W.Lam, K. Sadakane, et al.. A space and time efficient algorithm for constructing compressed suffix arrays. Algorithmica,
48(1): 23C-36, 2007.

[7] H. Huo, L. Chen, J. S. Vitter, and Y. Nekrich. A Practical Implementation of Compressed Suffix Arrays with Applications to Self-
Indexing. In Proceedings of Data Compression Conference, pages 292–301, 2014.

[8] H. Huo, Z. Sun, S. Li, J. S. Vitter, X. Wang, Q. Yu, and J. Huan. Source code for compressed suffix array-based short read alignment.
https://github.com/bluecliff/csa-alignment, 2014.

[9] O. M. Külekci, W. K. Hon, R. Shah, J. S. Vitter, and B. Xu. Ψ-RA: a parallel sparse index for genomic read alignment. BMC
Genomics, 12(Suppl 2):S7, Jul. 2011.

[10] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and memory-efficient alignment of short DNA sequences to the human
genome. Genome Biology, 10(3):R25, 2009.

[11] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14):1754–1760,
2009.

[12] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome
Research, 18(11):1851–1858, 2008.

[13] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, et al.. The sequence alignment/map format and SAMtools.
Bioinformatics, 25(16):2078–2079, 2009.

[14] H. Li and H. Nils. A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics, 11(5):473–
483, 2010.

[15] Y. Li, J. M. Patel, and A. Terrell. Wham: a high-throughput sequence alignment method. ACM Transactions on Database Systems,
37(4):28, 2012.

[16] R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: short oligonucleotide alignment program. Bioinformatics, 24(5):713–714, 2008.

[17] R. Li, C. Yu, Y. Li, T. W. Lam, S. M. Yiu, K. Kristiansen, and J. Wang. SOAP2: an improved ultrafast tool for short read alignment.
Bioinformatics, 25(15):1966–1967, 2009.

[18] Y. Liao, G. Y. Smyth, and W. Shi. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids
Research, gkt214, 2013.

[19] M. L. Metzker. Sequencing technologies - the next generation. Nature Reviews Genetics, 11(1):31–46, 2010.

[20] M. Ruffalo, T. LaFramboise, and M. Koyutürk. Comparative analysis of algorithms for next-generation sequencing read alignment.
Bioinformatics, 27(20):2790–2796, 2011.

[21] G. Zhang, T. Fedyunin, S. Kirchner, C. Xiao, A. Valleriani, and Z. Ignatova. FANSe: an accurate algorithm for quantitative mapping
of large scale sequencing reads. Nucleic Acids Research, gks196, 2012.

278278278

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on February 28,2021 at 20:06:22 UTC from IEEE Xplore. Restrictions apply.

