Contents lists available at SciVerse ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

On position restricted substring searching in succinct space $\stackrel{\star}{\sim}$

Wing-Kai Hon^a, Rahul Shah^b, Sharma V. Thankachan^{b,*}, Jeffrey Scott Vitter^c

^a Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

^b Department of Computer Science, Louisiana State University, Baton Rouge, LA, USA

^c Department of Electrical Engineering and Computer Science, University of Kansas, USA

ARTICLE INFO

Article history: Received 25 June 2012 Received in revised form 27 September 2012 Accepted 27 September 2012 Available online 2 October 2012

Keywords: Succinct data structures Pattern matching Range searching

ABSTRACT

We study the position restricted substring searching (PRSS) problem, where the task is to index a text T[0...n-1] of n characters over an alphabet set Σ of size σ , in order to answer the following: given a query pattern P (of length p) and two indices ℓ and r, report all $occ_{\ell,r}$ occurrences of P in $T[\ell \dots r]$. Known indexes take $O(n \log n)$ bits or $O(n \log^{1+\epsilon} n)$ bits space, and answer this query in $O(p + \log n + occ_{\ell,r} \log n)$ time or in optimal $O(p + occ_{\ell,r} \log n)$ $occ_{\ell,r}$) time respectively, where ϵ is any positive constant. The main drawback of these indexes is their space requirement of $\Omega(n \log n)$ bits, which can be much more than the optimal $n \log \sigma$ bits to store the text T. This paper addresses an open question asked by Mäkinen and Navarro [LATIN, 2006], which is whether it is possible to design a succinct index answering PRSS queries efficiently. We first study the hardness of this problem and prove the following result: a succinct (or a compact) index cannot answer PRSS queries efficiently in the pointer machine model, and also not in the RAM model unless bounds on the well-researched orthogonal range query problem improve. However, for the special case of sufficiently long query patterns, that is for $p = \Omega(\log^{2+\epsilon} n)$, we derive an $|CSA_f| +$ $|CSA_r| + o(n)$ bits index with optimal query time, where $|CSA_f|$ and $|CSA_r|$ are the space (in bits) of the compressed suffix arrays (with O(p) time for pattern search) of T and \overleftarrow{T} (the reverse of T) respectively. The space can be reduced further to $|CSA_f| + o(n)$ bits with a resulting query time will be $O(p + occ_{\ell,r} + \log^{3+\epsilon} n)$. For the general case, where there is no restriction on pattern length, we obtain an $O(\frac{1}{c^3}n\log\sigma)$ bits index with $O(p + occ_{\ell,r} + n^{\epsilon})$ query time. We use suffix sampling techniques to achieve these space-efficient indexes. © 2012 Elsevier B.V. All rights reserved.

1. Introduction

Given a text T[0...n-1] of size n over an alphabet set Σ of size σ , the fundamental problem in text indexing is to preprocess T and maintain an index such that whenever a pattern P (of length p) comes as a query, all *occ* occurrences of P in T can be reported efficiently. Classical indexes such as suffix trees and suffix arrays can answer this query in O(p + occ)and $O(p + \log n + occ)$ time respectively [18,17,16]. However, these indexes take $O(n \log n)$ bits space, which can be much more than the optimal $n \log \sigma$ bits. For example, in the human genome data ($\Sigma = \{A, G, C, T\}$), $\log \sigma$ is 2 whereas $\log n$

^{*} Early part of this work appeared in the *Proceedings of Data Compression Conference*, 2008 [6] (Chien et al., 2008). This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123-MY3 (Wing-Kai Hon), and by US NSF Grant CCF-1017623 (Rahul Shah).

^{*} Corresponding author. Postal address: 291 Coates Hall, LSU Computer Science, Baton Rouge, LA 70803, USA. Tel.: +1 225 578 4355; fax: +1 225 578 1465.

E-mail addresses: wkhon@cs.nthu.edu.tw (W.-K. Hon), rahul@csc.lsu.edu (R. Shah), thanks@csc.lsu.edu (S.V. Thankachan), jsv@ku.edu (J.S. Vitter).

^{1570-8667/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jda.2012.09.002

is around 30. This gives a clear motivation to design succinct¹ or compressed indexes, as such indexes may fit in faster but space-limited main memory. This long standing problem was positively answered via the compressed suffix array by Grossi and Vitter [10] and the FM-index by Ferragina and Manzini [8] (see [15] for an excellent survey). While these indexes handle general pattern matching queries efficiently in compressed space, our focus is on designing space efficient indexes for a special problem called *Position-restricted substring searching* (PRSS) defined as follows:

The query input consists of a pattern *P* (of length *p*) and two indices ℓ and *r*, and the task is to report all $occ_{\ell,r}$ occurrences of *P* in $T[\ell ... r]$.

PRSS queries are fundamental in many text searching applications, where the objective is to search only a part of the text collection. Examples include restricting the search to a subset of dynamically chosen documents in a document database, restricting the search to only parts of a long DNA sequence, etc. [14]. This problem also finds applications in information retrieval.

1.1. Related work

The PRSS problem was introduced by Mäkinen and Navarro [14]. They proposed an $O(n \log n)$ bits index with a query time of $O(p + \log n + occ_{\ell,r} \log n)$, where $occ_{\ell,r}$ is the number of occurrences of P in $T[\ell \dots r]$. Similar work has been done by Hon et al. [12]. Mäkinen and Navarro [14] proposed an $O(n \log^{1+\epsilon} n)$ bits index as well (where ϵ is any positive constant) with a near optimal query time of $O(p + \log \log n + occ_{\ell,r})$, which was improved to $O(p + \log \log \sigma + occ_{\ell,r})$ by Kopelowitz et al. [13] and further to optimal $O(p + occ_{\ell,r})$ by Bille and Gørtz [3]. Another optimal query time solution is by Crochemore et al. [7], however its space requirement is $O(n^{1+\epsilon})$ bits.

The counting version of *PRSS* is also a well studied problem. The $O(n \log n)$ bits index by Mäkinen and Navarro [14] can count the number of occurrences $occ_{\ell,r}$ in $O(p + \log n)$ time. A solution by Bille and Gørtz [3] takes the space of $O(n \log^2 n / \log^2 \log n)$ bits and can answer queries in $O(p + \log \log n)$ time. Another solution by Kopelowitz et al. [13] slightly improves this query time to $O(p + \log \log \sigma)$, while maintaining the same space bounds. Recently, Gagie and Gawrychowski proposed an $O(n \log n)$ bits solution with $(p + \log \log n)$ query time, which can be improved to optimal O(p) if $\sigma = \log^{O(1)} n$ [9].

1.2. Our contributions

In this paper, we investigate the possibility of deriving space efficient indexes (i.e., taking $O(n \log \sigma)$ bits space instead of $\Omega(n \log n)$ bits) for the PRSS problem. The following are our main results:

- Designing an $O(n \log \sigma)$ bits index which can answer PRSS queries in *poly-logarithmic* time is at least as hard as designing a linear space structure performing 3-dimensional orthogonal range reporting in *poly-logarithmic* time.
- On a pointer machine, we derive a lower bound of $\Omega(n \log^2 n / \log^2 \log n)$ bits of space for any index with $O(p \log^{O(1)} n + occ_{\ell,r})$ query time.
- For the special case when $p = \Omega(\log^{2+\epsilon} n)$, we develop an $|CSA_f| + |CSA_r| + o(n)$ bits index with optimal $O(p + occ_{\ell,r})$ query time, where $|CSA_f|$ and $|CSA_f|$ are the space (in bits) of the compressed suffix arrays (with O(p) time for pattern search) of T and \tilde{T} (the reverse of T) respectively and ϵ is any positive constant. The index space can be further reduced to $|CSA_f| + o(n)$ bits, with a resulting query time of $O(p + occ_{\ell,r} + \log^{3+\epsilon} n)$.
- We develop an $O(\frac{1}{\epsilon^3}n\log\sigma)$ bits index that can answer PRSS queries in $O(p + occ_{\ell,r} + n^{\epsilon})$ time without any restriction on pattern length.

1.3. Organization of the paper

Section 2 is dedicated to preliminaries. In Section 3, we prove the hardness of the PRSS problem and also derive a space lower bound in the pointer machine model for any index with query time $O(p \log^{O(1)} + oc_{\ell,r})$. In Section 4, we design our compressed index with optimal query time for the special case when the query pattern is sufficiently long. Finally, in Section 5, we introduce a succinct (compact) index which does not have any restriction on pattern length. However, in this case, the query time is sub-linear rather than poly-logarithmic.

¹ In this paper, we use the terms succinct and compact interchangeably to mean $O(n \log \sigma)$ bit index. The term compressed refers to entropy based compression.

2. Preliminaries

2.1. Suffix arrays and compressed suffix arrays

For the text T[0...n-1] to be indexed, each substring T[i...n-1], with $i \in [0, n-1]$, is called a *suffix* of *T*. The suffix array SA[0...n-1] is an array of length *n*, where SA[i] is the starting position (in *T*) of the *i*th lexicographically smallest suffix of *T* [16]. An important property of *SA* is that the starting positions of all suffixes with the same prefix are always stored in a contiguous region in *SA*. Based on this property, we define the *suffix range* of a pattern *P* to be the maximal range [a, b] in *SA*, such that for all $j \in [a, b]$, SA[j] is the starting point of a suffix of *T* with *P* as a prefix. The suffix array along with a data structure called the longest common prefix (LCP) array takes $O(n \log n)$ bits space and can find the suffix range of a pattern *P* in $O(p + \log n)$ time.

The compressed suffix array (CSA) is a space-efficient version of the suffix array which takes space close to the size of the text [10,8,1,15]. For our purpose, we shall assume the $nH_k + O(n) + o(n \log \sigma)$ -bits CSA by Belazzougui and Navarro [1], which can find the locus of *P* in O(p) time, even when the alphabet size is large. Here H_k represents the *k*th order empirical entropy of the text. Using backward search, the suffix ranges of all suffixes of the pattern *P* can be computed in O(p) time.

2.2. Orthogonal range reporting in 3-D (RR3D)

Let *S* be a given set of *n* points of the form (x_i, y_i, z_i) in a $[0, n - 1] \times [0, n - 1] \times [0, n - 1]$ grid. An orthogonal range reporting query consists of three input ranges (x', x''), (y', y'') and (z', z'') and the task is to output all those points (x_j, y_j, z_j) such that, $x' \leq x_j \leq x''$, $y' \leq y_j \leq y''$ and $z' \leq z_j \leq z''$. The best known data structure for this problem in the RAM model is by Chan et al. [4], having a space requirement of $O(n \log^{2+\epsilon} n)$ bits and query time of $O(\log \log n + |output|)$, where |output| is the output size.

3. Hardness of PRSS problem

In this section, we first prove the hardness of the PRSS problem.

Theorem 1. Designing a succinct (compact) index answering PRSS queries in poly-logarithmic time is at least as hard as designing a linear space data structure performing 3-dimensional orthogonal range reporting in poly-logarithmic time.

Assuming a poly-logarithmic query time structure for PRSS in succinct space, we shall show how 3-dimensional range searching can be made poly-logarithmic in linear space.

Let *S* be a set of *n* points of the form (x_i, y_i, z_i) for i = 0, 1, 2, ..., n - 1 in a $[0, n - 1] \times [0, n - 1] \times [0, n - 1]$ grid, such that $z_i \leq z_{i+1}$. Note that each point in *S* can be represented using $O(\log n)$ bits. Let $\langle s \rangle$ denote the binary string representing an integer $s \in [0, n - 1]$ and let $\langle s \rangle$ denote the reverse of $\langle s \rangle$. Now we construct the following string *T'*, which consists of $O(n \log n)$ characters taken from an alphabet set $\Sigma = \{0, 1, \#, \star\}$ and is formed by concatenating the following:

$$T' = \overleftarrow{\langle y_1 \rangle} \# \langle x_1 \rangle \star \overleftarrow{\langle y_2 \rangle} \# \langle x_2 \rangle \star \dots \star \overleftarrow{\langle y_n \rangle} \# \langle x_n \rangle \star$$

Assume there exists a succinct (or a compact) data structure answering PRSS queries in *poly-logarithmic* time. Then, we first index T' (having constant alphabet size) in $O(|T'|) = O(n \log n)$ bits space. Now consider a 3-dimensional range reporting query (RR3D) on *S*, where we need to output all the points within the query box $[x', x''] \times [y', y''] \times [z', z'']$. We prove that this RR3D on *S* can be reduced to $O(\log^2 n)$ PRSS queries on *T'*. The following lemma shows how to generate patterns corresponding to PRSS queries.

Lemma 1. A given range [a, b], where $0 \le a \le b \le n - 1$ can be represented by a set $S' = \{s_1, s_2, \dots, s_k\}$ of $k \le 2 \log n$ binary strings. None of these strings is a prefix of another. For any integer $j, j \in [a, b]$ if and only if there exists $s_i \in S'$ such that s_i is a prefix of $\langle j \rangle$.

Proof. Let Λ be a trie of binary representations of all integers $\in [0, n - 1]$, such that the *i*th leftmost leaf represents integer i - 1. Now any range [a, b] on leaves in Λ can be split into $k \leq 2 \log n$ non-overlapping sub-ranges such that each of these sub-range represents the complete sub-tree of a unique node u in Λ . Then S' is the set of paths(u)'s of all such nodes, where path(u) is the concatenation of edge labels (0 or 1) in the path from root to u. \Box

Let S'_X , and S'_Y represent the set of binary strings (constructed using Lemma 1) corresponding to the intervals [x', x''] and [y', y''] respectively. Then, we generate a set S'_P of binary strings as follows: $S'_P = \{\hat{s}_y \# s_x | s_x \in S'_X, s_y \in S'_Y\}$. Note that we can have $O(\log^2 n)$ combinations of s_x and s_y , hence S'_P consists of $O(\log^2 n)$ distinct binary strings of length $O(\log n)$.

Lemma 2. If an occurrence of a string $P \in S'_P$ overlaps with the ith # symbol in T', then $x' \leq x_i \leq x''$ and $y' \leq y_i \leq y''$.

Proof. Let $P = \hat{s}_y^- \# s_x$, where $s_x \in S'_X$ and $s_y \in S'_Y$. Then s_x is a prefix of $\langle x_i \rangle$ and s_y is a prefix of $\langle y_i \rangle$. Hence the result follows from Lemma 1. \Box

Let ℓ and r be such that $z_{\ell} < z' \leq z_{\ell+1} \leq z_r \leq z'' < z_{r+1}$. In order to report the points within $[x', x''] \times [y', y''] \times [z', z'']$, it is enough to find those occurrences of $P \in S'_p$ within $T'[\ell', r']$, where ℓ' is the starting location of the ℓ th \star in T'and r' is the starting location of the rth \star in T' (proof follows from the definition of T' and Lemma 2). Thus we have a total of $O(\log^2 n)$ PRSS queries with patterns of length $O(\log n)$. Therefore, if there exists an $O(n \log \sigma)$ bits index with $O(p \log^c n + |output| \log^d n)$ query time for PRSS queries, then there exists an $O(n \log n)$ bits data structure performing RR3D in $O(\log^{c+3} n + |output| \log^d n)$ time, where c and d are any constants. This completes the proof of Theorem 1.

Theorem 2. Any data structure supporting PRSS queries in $O(p \log^{O(1)} n + occ_{\ell,r})$ time in pointer machine model has to use $\Omega(n \log^2 n / \log^2 \log n)$ bits space.

Proof. Assume that there exists an $o(n \log^2 n / \log^2 \log n)$ bits index answering PRSS queries in $O(p \log^c n + occ_{\ell,r})$ time. Then we can construct an $o(n \log^2 n / \log^2 \log n)$ words data structure supporting RR3D queries in time $O(\log^{c+3} n + |output|)$ (follows from the proof of Theorem 1). In the pointer machine model, this contradicts the following lower bound by Chazelle: any data structure supporting RR3D queries in $O(\log^{O(1)} n + |output|)$ has to use at least $\Omega(n \log^2 n / \log^2 \log n)$ words space [5]. \Box

4. Optimal-time compressed index for long patterns

In this section, we prove the following.

Theorem 3. There exists an $|CSA_f| + |CSA_r| + o(n)$ bits index supporting PRSS queries in optimal $O(p + occ_{\ell,r})$ time for $p = \Omega(\log^{2+\epsilon} n)$.

Let $\alpha = \Theta(\log^{2+\epsilon/2} n)$ be a sampling factor. We introduce the following definitions:

- α -sampled suffix: $T[x \dots n-1]$ is an α -sampled suffix if $x \equiv 0 \pmod{\alpha}$.
- α -sampled prefix: T[0...x-1] is an α -sampled prefix if $x \equiv 0 \pmod{\alpha}$.
- Offset-t occurrence: An occurrence of P at position i in T (i.e., $P = T[i \dots i + p 1])$ is an offset-t occurrence, if $i \equiv t \pmod{\alpha}$.

Therefore, an offset-0 occurrence of *P* is always a prefix of an α -sampled suffix of *T*. The following is true for an offset-*t* occurrence with $1 \le t < p$ (hence it is true for $p \ge \alpha$ as $\alpha > t$): the prefix $P[0 \dots t - 1]$ of *P* (of length *t*) is a suffix of an α -sampled prefix $T[0 \dots x - 1]$ and the suffix $P[t \dots p - 1]$ of *P* (of length p - t) is a prefix of an α -sampled suffix $T[x \dots n - 1]$.

4.1. Our index

The construction of our index is based on the assumption that $p \ge \alpha$. It consists of the following components:

- CSA_f: compressed suffix array of T.
- CSA_r: compressed suffix array of \overline{T} , where \overline{T} is the reverse of T (i.e., $\overline{T}[i] = T[n-1-i])$.
- *RR3D Structure:* For each α -sampled suffix T[x...n-1], we define a triplet (x, y, z) such that y is the lexicographic rank of T[x...n-1] among all suffixes of T and z be the lexicographic rank of T[0...x-1] among the reverse of all prefixes of T. Therefore, the yth leftmost entry (i.e., corresponding to the yth leftmost leaf in its suffix tree) in CSA_f corresponds to T[x...n-1] and the zth leftmost entry in CSA_r corresponds to T[0...x-1]. Since we have $\Theta(n/\alpha)$ α -sampled suffixes, the number of triplets is bounded by $O(n/\alpha)$. The size of an RR3D structure [4] maintained over these triplets can be bounded by $O((n/\alpha) \log^{2+\epsilon'} n) = o(n)$ bits (assume $\epsilon' < \epsilon/2$).

Putting all space terms together, we have the following lemma.

Lemma 3. The total space of our index is $|CSA_f| + |CSA_r| + o(n)$ bits.

4.2. Query answering

Let $[L_t^f, R_t^f]$ be the suffix range of $P[t \dots p-1]$ in CSA_f . Using backward search on CSA_f , $[L_t^f, R_t^f]$ for $t = 0, 1, 2, \dots, p-1$ can be computed in O(p) time. Similarly, let $[L_t^r, R_t^r]$ be the suffix range of $P[0 \dots t-1]$ (where $t \ge 1$) in CSA_r . Then, $[L_t^r, R_t^r]$

for $t = 1, 2, ..., \alpha - 1$ can be computed using backward search on CSA_r in $O(\alpha)$ time. Our query answering algorithm consists of α steps and in the *t*th step for $t = 0, 1, 2, ..., \alpha - 1$, we retrieve all offset-*t* occurrences of *P* in $T[\ell, r]$.

First, we show how to retrieve all offset-0 occurrences. That is, we show how to find all α sampled suffixes T[x...n-1] satisfying the conditions $x \equiv 0 \pmod{\alpha}$, T[x...x+p-1] = P[0...p-1] and $\ell \leq x \leq r$. As we have defined a tuple (x, y, z) for each α sampled suffix, the above PRSS query can be reduced to the following geometric range searching problem: report all those tuples (x, y, z) such that $\ell \leq x \leq r$ and $L_0^f \leq y \leq R_0^f$. This query can be answered in $O(\log \log n + occ_0)$ time using the RR3D structure, where occ_0 is the number of offset-0 occurrences. Let (x, y, z) be a reported point, then x is an answer to PRSS query. Now, we generalize this to finding offset-t occurrences. Finding all offset-t occurrences for $1 \leq t \leq \alpha - 1$ can be reduced to the following geometric problem: report all those tuples (x, y, z) such that $\ell + t \leq x \leq r + t$, $L_t^f \leq y \leq R_t^f$ and $L_t^r \leq z \leq R_t^r$. This query can be answered in $O(\log \log n + occ_t)$ time using the RR3D structure, where occ_t is the number of offset-t occurrences. Let (x, y, z) such that $\ell + t \leq x \leq r + t$, $L_t^f \leq y \leq R_t^f$ and $L_t^r \leq z \leq R_t^r$. This query can be answered in $O(\log \log n + occ_t)$ time using the RR3D structure, where occ_t is the number of offset-t occurrences. Let (x, y, z) be a reported point, then x - t is an answer to PRSS query. That is, $T[x - t \dots x - t + p - 1] = P$ and $\ell \leq x - t \leq r$.

Lemma 4. For $p = \Omega(\log^{2+\epsilon} n)$, the PRSS query can be answered in optimal $O(p + occ_{\ell,r})$ time, where $occ_{\ell,r}$ is the number of occurrences of *P* in $T[\ell \dots r]$.

Proof. The total time for computing the suffix ranges in CSA_f is O(p) and the time for finding the suffix ranges of $\alpha - 1$ prefixes of P in CSA_r is $O(\alpha)$. The RR3D structure takes $O(\log \log n + occ_t)$ time for reporting all offset-t occurrences within $T[\ell, r]$. Therefore the total time is $O(p + \alpha + \sum_{t=0}^{\alpha - 1} (\log \log n + occ_t)) = O(p + \log^{2+\epsilon/2} n \log \log n + occ_{\ell,r}) = O(p + occ_{\ell,r})$ (note that $p = \Omega(\log^{2+\epsilon} n)$). \Box

By combining Lemmas 3 and 4, we have Theorem 3.

The index space can be further reduced and the following is our result.

Theorem 4. There exists an $|CSA_f| + o(n)$ bits index supporting PRSS queries in $O(p + occ_{\ell,r} + \log^{3+\epsilon} n)$ time, for $p = \Omega(\log^{2+\epsilon} n)$.

Proof. Hon et al. [11] showed that CSA_r can be maintained as a sparse suffix tree taking $O(n \log n/\beta)$ bits in addition to CSA_f with an $O(\beta)$ slow down in pattern search. Therefore CSA_r can be replaced by an o(n) bits sparse suffix tree by choosing $\beta = \Theta(\log^{1+\epsilon/2} n)$. The resulting query time will be $O(p + occ_{\ell,r} + \alpha\beta)$. \Box

5. A compact index for all patterns

In this section, we introduce a compact index for PRSS queries which works without any restriction on the length of the query pattern. This can be seen as an extension of the 2-D technique by Grossi and Vitter [10] to 3 dimensions. The main result is captured in the following theorem.

Theorem 5. There exists an $O(\frac{1}{\epsilon^3}n\log\sigma)$ bits space and $O(p + \operatorname{occ}_{\ell,r} + n^{\epsilon})$ query time index for the PRSS problem.

Firstly, we introduce a new sampling factor $\alpha' = \epsilon \log_{\sigma} n$, where $0 < \epsilon < 1/2$. Then, an occurrence of *P* at position *i* in *T* is an offset-*t* occurrence for some $t = i \mod (\alpha') \in [0, \alpha' - 1]$. Based on pattern length, we categorize the occurrences into two cases and handle both cases separately.

5.1. Case A: offset-t occurrences for t < p

In this case a suffix of *P* will be a prefix of some α' -sampled suffix. Therefore all such occurrences can be reported using a similar data structure described in the previous section. Because of the new sampling factor α' , the number of triplets to be maintained as an RR3D structure is $O(n/\alpha') = O(n \log \sigma / (\epsilon \log n))$. Note that Chan et al.'s RR3D structure is not affordable in this scenario. In Section 5.1, we will introduce an RR3D structure taking $O(\frac{1}{\epsilon^2}n \log n)$ bits space which can answer queries in $O(n^{\epsilon} + |output|)$ time, where ϵ is any positive constant. By using this data structure, our index space can be bounded by $O((n/\alpha')\frac{1}{\epsilon^2}\log n) = O(\frac{1}{\epsilon^3}n\log\sigma)$ bits.

5.2. Case B: offset-t occurrences for $t \ge p$

This case is necessary when the pattern size $p < \alpha'$, the sampling factor. We call a segment $T[x...x + \alpha' - 1]$ of T of length α' a block B(x) if $x \mod (\alpha') = 0$. A block is always a prefix (of length α') of an α' -sampled suffix. The number of blocks of T is $\Theta(n/\alpha') = \Theta(n \log \sigma / (\epsilon \log n))$, whereas the number of distinct blocks is $\gamma = \sigma^{\alpha'} = O(n^{\epsilon})$ and these are represented as $B_1, B_2, B_3, \ldots, B_{\gamma}$. Let L_i be the sorted list of starting locations of the block B_i in T. That is, it is the sorted list of all x such that $B(x) = B_i$. Clearly $\sum_{i=1}^{\gamma} |L_i| = O(n/\alpha')$ and the total space for maintaining all such L_i 's is $O((n/\alpha') \log n) = O(\frac{1}{\epsilon}n \log \sigma)$ bits. We may call an occurrence of P within the block B_{λ} as a type- λ occurrence.

Now all the answers to a PRSS query, which are of type- λ (for $1 \le \lambda \le \gamma$) can be retrieved as follows: first search for *P* in B_{λ} and find all its occurrences using any standard string searching algorithm taking $O(\alpha') = O(\epsilon \log_{\sigma} n)$ time. If there is an occurrence of *P* at position *j* in $B_{\lambda}[0...\alpha'-1]$, then *P* occurs at positions x + j for all those *x* with $B(x) = B_{\lambda}$. Therefore by using the list L_i , all those type- λ occurrences of *P* within $T[\ell...r]$ can be quickly computed in $O(\log n + |output|)$ time $(O(\log n)$ is needed for an initial binary search of ℓ in L_i). Repeat this procedure for $\lambda = 1, 2, 3, ..., \gamma$, and the total query time can be bounded by $O(p + \gamma \log n + occ_{\ell,r}) = O(p + occ_{\ell,r} + n^{\epsilon})$ (by adjusting the constants).

5.3. RR3D structure: $O(\frac{1}{\epsilon^2}n\log n)$ bits space and $O(n^{\epsilon} + |output|)$ query time

We note that similar structure also appears in [2], but we describe it here for the sake of completion.

We first describe a 2-dimensional range reporting structure (RR2D). The idea is to use a B-tree with $B = \Theta(\epsilon n^{\epsilon})$. We may associate each point with a unique leaf node such that, the point with the *i*th smallest *x*-coordinate value (ties broken arbitrary) is stored in the *i*th leftmost leaf. Therefore, at leaf level, the points are maintained in the sorted order of *x*-coordinate values. An internal node stores all those points associated with the leaves in its sub-tree, which are maintained in the sorted order of *y*-coordinate. Now, any *x* range [x, x''] can be decomposed into $O(\frac{1}{\epsilon}B) = O(n^{\epsilon})$ non-overlapping ranges, such that the points within each range are maintained at some internal node in the sorted order of *y*-coordinate. Therefore, an RR2D query can be now decomposed into $O(n^{\epsilon})$ RR1D queries on a sorted array. Hence, the time for RR2D can be bounded by $O(n^{\epsilon} \log n + |output|)$. The tree height is bounded by $O(1/\epsilon)$, hence the total space is $O(\frac{1}{\epsilon}n \log n)$ bits.

Using the RR2D structure described above, our RR3D structure can be constructed as follows: maintain a B-tree with $B = \Theta(\epsilon n^{\epsilon})$ and associate each point with a unique leaf node, based on its *z*-coordinate value. Hence, at leaf level, all points are in the sorted order of *z*-coordinate. At every internal node, we maintain an RR2D structure (on *x* and *y* coordinates) of all those points associated with the leaves in its sub-tree. Using similar arguments as before, any RR3D query can now be decomposed into $O(n^{\epsilon})$ RR2D queries, taking $O(n^{2\epsilon} \log^2 n + |output|)$ time. The index space will be $O(1/\epsilon)$ times the space of the RR2D structure, i.e., $O(\frac{1}{\epsilon^2}n\log n)$ bits. The factor of $n^{2\epsilon}\log^2 n$ can be made to n^{ϵ} by scaling ϵ up by factor of 3. This does not affect the space bounds in terms of the big-O factor.

6. Conclusions

We showed that the position restricted substring searching problem is hard if one wants to derive a succinct or compressed index. However, there are special cases when the pattern size is long or when we are allowed an additive n^{ϵ} factor in search times. In these cases it is possible to derive space-efficient indexes. There are other unsolved hard problems like 2-dimensional matching or parameterized matching where no succinct solutions exist. An open question is: Can we achieve similar lower bounds and upper bounds (may be for special cases) for some of these problems?

References

- [1] D. Belazzougui, G. Navarro, Alphabet-independent compressed text indexing, in: ESA, 2011, pp. 748-759.
- [2] J.L. Bentley, H.A. Maurer, Efficient worst-case data structures for range searching, Acta Informatica 13 (1980) 155-168.
- [3] P. Bille, L.L. Gørtz, Substring range reporting, in: CPM, 2011, pp. 299-308.
- [4] T.M. Chan, K.G. Larsen, M. Patrascu, Orthogonal range searching on the RAM, revisited, in: SoCG, 2011, pp. 1–10.
- [5] B. Chazelle, Lower bounds for orthogonal range searching, I: the reporting case, Journal of the ACM 37 (1990) 200-212.
- [6] Y.F. Chien, W.K. Hon, R. Shah, J.S. Vitter, Geometric Burrows-Wheeler transform: linking range searching and text indexing, in: DCC, 2008, pp. 252-261.
- [7] M. Crochemore, C.S. Iliopoulos, M. Kubica, M.S. Rahman, T. Walen, Improved algorithms for the range next value problem and applications, in: STACS, 2008, pp. 205–216.
- [8] P. Ferragina, G. Manzini, Indexing compressed text, Journal of the ACM 52 (4) (2005) 552-581.
- [9] T. Gagie, P. Gawrychowski, Linear-space substring range counting over polylogarithmic alphabets. CoRR, arXiv:1202.3208, 2012.
- [10] R. Grossi, J.S. Vitter, Compressed suffix arrays and suffix trees with applications to text indexing and string matching, SIAM Journal on Computing 35 (2) (2005) 378–407.
- [11] W.K. Hon, T.H. Ku, R. Shah, S.V. Thankachan, J.S. Vitter, Compressed text indexing with wildcards, in: SPIRE, 2011, pp. 267-277.
- [12] W.K. Hon, R. Shah, J.S. Vitter, Ordered pattern matching: towards full-text retrieval, Technical Report TR-06-008, Purdue University, March 2006.
- [13] T. Kopelowitz, M. Lewenstein, E. Porat, Persistency in suffix trees with applications to string interval problems, in: SPIRE, 2011, pp. 67-80.
- [14] V. Mäkinen, G. Navarro, Position-restricted substring searching, in: LATIN, 2006, pp. 703-714.
- [15] V. Mäkinen, G. Navarro, Compressed full-text indexes, ACM Computing Surveys 39 (1) (2007).
- [16] U. Manber, G. Myers, Suffix arrays: a new method for on-line string searches, SIAM Journal on Computing 22 (5) (1993) 935-948.
- [17] E.M. McCreight, A space-economical suffix tree construction algorithm, Journal of the ACM 23 (2) (1976) 262-272.
- [18] P. Weiner, Linear pattern matching algorithms, in: SWAT, 1973, pp. 1-11.