
Faster Compressed Top-k Document Retrieval �

Wing-Kai Hon1, Rahul Shah2, Sharma V. Thankachan2, and Jeffrey Scott Vitter3

1 National Tsing Hua University, Taiwan. wkhon@cs.nthu.edu.tw
2 Louisiana State University, USA. {rahul,thanks}@csc.lsu.edu

3 The University of Kansas, USA. jsv@ku.edu

Abstract. Let D = {d1, d2, ...dD} be a given collection of D string documents of total

length n, our task is to index D, such that whenever a pattern P (of length p) and an

integer k come as a query, those k documents in which P appears the most number of times

can be listed efficiently. In this paper, we propose a compressed index taking 2|CSA| +
D log n

D
+ O(D) + o(n) bits of space, which answers a query with O(tsa log k log

ε n) per

document report time. This improves the O(tsa log k log
1+ε n) per document report time

of the previously best-known index with (asymptotically) the same space requirements

[Belazzougui and Navarro, SPIRE 2011]. Here, |CSA| represents the size (in bits) of the

compressed suffix array (CSA) of the text obtained by concatenating all documents in D,

and tsa is the time for decoding a suffix array value using the CSA.

1 Introduction

Top-k query processing is an emerging field in Databases, and it is a crucial part

of practical web search engines using inverted indexes, such as Google, Yahoo

and Bing. In string retrieval settings, we are given a set D ={d1, d2, ...dD} of D

string documents of total length n, our task is to index D, such that whenever

a pattern P (of length p) and an integer k come as a query, those k documents

where P appear most times can be listed efficiently. We call this the top-k frequent

document retrieval problem.

Research on the document retrieval problem was started by Matias et. al. [17]

and Muthukrishnan [18], and the top-k frequent document retrieval problem was

introduced in [7]. The recent flurry of activities in this area [1, 2, 5, 8, 13, 19–21, 9,

10, 22] comes with the pioneer work by Hon et al. [11]. Along with a linear space

and near-optimal query time index, they proposed the first compressed index

taking 2|CSA| +D log n
D
+ O(D) + o(n) bits of space with per document report

time O(tsa log
3+ε n). Here |CSA| represents the size (in bits) of the compressed

suffix array of T = d1d2d3...dD
4, the text obtained by concatenating all documents

in D, and tsa is the time for computing a suffix array value using the CSA. This

� This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon) and US NSF

Grant CCF–1017623 (R. Shah).
4 The last character of each document is fixed as a special symbol $, which does not appear anywhere

else in T .

2013 Data Compression Conference

1068-0314/13 $26.00 © 2013 IEEE

DOI 10.1109/DCC.2013.42

341

Table 1. Indexes for Top-k Frequent Document Retrieval

Source Index Space (in bits) Time per reported document

[7] O(n log n+ n log2 D) O(1)

[11] O(n log n) O(log k)

[2] |CSA|+ n logD(1 + o(1)) Unbounded

[5] |CSA|+O(n logD
log logD

) O(log3+ε n)

[1] |CSA|+O(n logD
log logD

) O(log k log2+ε n)

[1] |CSA|+O(n log log logD) O(log k log2+ε n)

[14] O(n log σ + n logD) O(1)

[5] |CSA|+ n logD + o(n) O(log2+ε n)

[1] |CSA|+ n logD + o(n) O(log k log1+ε n)

[10] |CSA|+ 2n logD(1 + o(1)) O(log log n)

[10] |CSA|+ n logD(1 + o(1)) O((log σ log log n)1+ε)

[11] 2|CSA|+D log n
D

+O(D) + o(n) O(log4+ε n)

[1] 2|CSA|+D log n
D

+O(D) + o(n) O(log k log2+ε n)

Ours 2|CSA|+D log n
D

+O(D) + o(n) O(log k log1+ε n)

query time has been improved by Gagie et al. [5], and currently the best-known

bound of O(tsa log k log
1+ε n) is by Belazzougui and Navarro [1]. In this paper, the

query time is further improved to O(tsa log k log
ε n). See Table 1 for the space-

time trade-offs of all known indexes, where we set tsa to be O(log1+ε n) upon the

assumption of using the space-optimal CSA of [4].

2 Basic Components

2.1 Bit Vectors with Rank/Select Support

Let B[1...U] be a bit-vector of length U with m 1’s. The function rankB(i) is

defined as the number of 1s in B[1...i], and selectB(j) is defined as the position of

the jth 1 in B. Then, B can be maintained in m log U
m
+O(m)+o(U) bits and can

support rank/select queries in constant time [23]. Another representation takes

only m log U
m
+O(m) bits, where only select can be supported in constant time.

Lemma 1 [6] A given set of m distinct integers drawn from a set {1, 2, 3, ..., U}
can be encoded in O(m log(U/m)) bits and decoded in O(m) time.

Proof. Define a bit-vector B[1...U] such that, for each integer i to be stored, set

B[i] = 1. All the other bits are set to 0. This can be maintained in m log U
m

+

O(m) = O(m log(U/m)) bits with constant-time select supported. Then, all m

integers can be decoded in O(m) time by performing selectB(j) for j = 1, 2, ...,m.

��

342

2.2 Succinct Representation of Ordinal Trees

Any ordered tree with m nodes can be maintained in 2m + o(m) bits, such that

the following operations can be supported in constant time [12, 25] (node i refers

to the node with pre-order rank i):

– parent(i) returns the parent of node i

– lca(i, j) returns the lowest common ancestor of nodes i and j

– left-leaf(i)/right-leaf(i) returns the the leftmost/rightmost leaf in the subtree

rooted at node i

2.3 Computing Arbitrary Term Frequencies

Let T = d1d2d3...dD, the text (of length n) obtained by concatenating all docu-

ments in D. The last character of each document is fixed as a special symbol $,

which does not appear anywhere else in T . We define a bit-vector BD[1...n], such
that BD[i] = 1 if and only if the character at position i in T is $. We say a suffix

T [i...n] belongs to document dr if r = 1 + rankBD(i).

The document array DA[1...n] is defined as follows: DA[i] = r, if the lexico-

graphically ith smallest suffix of T belongs to document dr. Now,

– rank(r, i) returns the number of occurrences of r in DA[1...i];

– select(r, j) is −1 if j > |dr|, else i where DA[i] = r and rank(r, i) = j

Hon et. al. [11] showed that rank/select operations on DA can be simulated

using the following structures: (i) compressed suffix array CSA of T (of size |CSA|
bits), where SA[·] and SA−1[·] represent the suffix array and inverse suffix array

values in CSA; (ii) compressed suffix array CSAr of document dr (of size |CSAr|
bits) corresponding to every dr ∈ D, where SAr[·] and SA−1r [·] represent the

suffix array and inverse suffix array values in CSAr; and (iii) the bit-vector BD
maintained inD log n

D
+O(D)+o(n) bits with constant-time rank/select supported

(refer to Section 2.1). Hence the total space is
∑D

r=1 |CSAr|+D log n
D
+O(D) +

o(n) ≤ |CSA|+D log n
D
+O(D)+o(n) bits in addition to the |CSA| bits of CSA.

For computing select(r, j), we first compute the jth smallest suffix in CSAr,

and obtain the position pos of this suffix within document dr, from which we can

easily obtain the position pos′ of this suffix within T . After that, we compute

SA−1[pos′] in CSA as the desired answer for select(r, j). This takes O(tsa) time.

The rank(r, i) = j can be obtained in O(tsa log n) time using a binary search on j

such that select(r, j) ≤ i < select(r, j + 1).

The time for computing rank(r, i) can be improved to O(tsa log log n) as follows:

At every (log2 n)th leaf of each CSAr, we explicitly maintain its corresponding

343

position in CSA and a predecessor structure over it [28]. The size of this additional

structure is o(n) bits. Now, when we perform the query, we can first query on this

predecessor structure to get an approximate answer, and the exact answer can be

obtained by performing binary search on a smaller range of only log2 n leaves.

Now given the suffix range [L,R] of a pattern P in CSA, the term frequency

tf(P, dr), defined as the number of occurrences of P in document dr, will be

equal to the number of occurrences of dr in DA[L...R]. This can be computed as

rank(r, R)− rank(r, L− 1) in O(tsa log log n) time.

Lemma 1. Given the suffix range [L,R] of a pattern P in CSA, the tf(P, d) value

corresponding to any document d can be computed in O(tsa log log n) time, using a

data structure of size |CSA|+D log n
D
+O(D)+o(n) bits in addition to the CSA.

2.4 Marked Tree Structures

Let GST denote the suffix tree of T , and g be a parameter called grouping factor.

We identify certain nodes in GST as marked nodes based on the following scheme:

group every g consecutive leaves in the GST together (from left to right), mark

the lowest common ancestor of the first and last leaf in each group. Further, mark

the lowest common ancestor of all pairs of marked nodes. Then, we shall mark

the leftmost and the rightmost leaves within the subtree rooted at every marked

node. Hon et al. [11] observed the following properties:

1. The number of marked nodes by the end of this procedure is O(n/g).

2. For any node u with at least 2g leaves in its subtree, there exists a unique

highest marked descendent node u∗, such that the number of leaves in the

subtree of u, but not in the subtree of u∗, is at most 2g.

The following is a useful lemma.

Lemma 2 Suppose that the suffix range [L,R] of a pattern, and its locus node

u in GST , are given. Then, the pre-order rank of u’s highest marked descendent

node u∗ (if it exists), and the corresponding suffix range [L∗, R∗], can be computed

in O(log n) time using a data structure GSTg of size O((n/g) log g) bits.

Proof. GSTg consists of the following components:

– a compact tree obtained by retaining only those nodes in GST which are

marked. Then corresponding to every marked node in GST , there exists a

unique node in this trie and vice versa. This takes O(n/g) bits of space [11].

– a bit-vector Bno[1...2n], where Bno[i] = 1 if the ith node in GST is marked,

else 0. This can be maintained in O((n/g) log g) bits and can support select in

constant time and rank in O(log n) time (refer to Section 2.1).

344

– a bit-vector Ble[1...n], where Ble[i] = 1 if the ith leftmost leaf in GST is marked,

else 0. This can be maintained in O((n/g) log g) bits and can support select in

constant time and rank in O(log n) time (refer to Section 2.1).

The total space can be bounded by O((n/g) log g) bits. Now given a suffix

range [L,R], then

L∗ = L (respectively R∗ = R) if L (respectively R) is marked.

Otherwise, the L∗th leaf is the first marked leaf towards the right side of L, and

the R∗th leaf is the last marked leaf towards the left side of R. These can be

computed as follows:

L∗ = selectBle
(1 + rankBle

(L− 1)) and R∗ = selectBle
(rankBle

(R)).

Note that L∗ − L < g and R − R∗ < g. Next, to locate u∗ in the GST, we may

find the lowest common ancestor (lca) of the L∗th leftmost leaf and the R∗th
leftmost leaf. However, as GST is not stored explicitly, we shall find u∗ in an

indirect way. First, we identify the leaf nodes corresponding to the above two

leaves in the compact tree. Precisely, they will be the (1 + rankBle
(L − 1))th

and the (rankBle
(R))th leftmost leaves in the compact tree. After that, we find

their lowest common ancestor (say, with pre-order rank x) in the compact tree,

which corresponds to u∗ in GST. It follows that u∗ is the xth marked node in

GST, and its pre-order rank in GST is given by selectBno(x). The procedure takes

O(log n) time as it involves only a constant number of rank/select operations and

an lca operation. Notice that the locus node u is mentioned only for the sake of

explanation, and it is never computed explicitly. ��

3 The Compressed Index

In this section, we briefly describe a compressed index based on the earlier frame-

work by Hon et. al. [11] and the main result is summarized as follows:

Theorem 1. There exists an index of size 2|CSA|+D log n
D
+O(D)+o(n) bits for

top-k frequent document retrieval with O(tsa log
2+ε n) time per reported document.

A set Scand ⊆ D is called a candidate set of a query, if it contains all those

documents that are reported as the answer to the query. Therefore, once the

candidate set is given, the top-k query can be answered by first finding the tf(P, d)

score of each document d ∈ Scand, sort them in its decreasing order of the scores,

and report the first k documents. Using the structure in Section 2.3, this can be

performed in |Scand| ×O(tsa log log n+ log |Scand|) = O(|Scand| tsa log log n) time 5.

5 We assume tsa = Ω(log n) as we shall use the space-optimal CSA of [4]

345

Lemma 3 A top-k query can be answered in O(|Scand| tsa log log n) time once the

candidate set Scand is identified. ��

The query time is directly proportional to the size |Scand| of the candidate list.
Hence, our objective is to find a candidate set with size as small as possible.

3.1 Index for top-z queries for a fixed z

Firstly, we derive an index for answering top-z queries, where z is fixed in advance.

Therefore, the query is now only a suffix range [L,R]. The index consists of (i) a

compressed suffix array CSA of T ; (ii) a data structure for computing arbitrary

term frequencies (Sec 2.3); and (iii) an auxiliary structures specific to z as follows.

By choosing a grouping factor g = z(log n)2+ε, we identify those nodes in GST

which are marked and maintain GSTg in O((n/g) log g) = o(n/ log n) bits (refer

to Lemma 2). Let F (u, z) be the set of top-z frequent documents for node u being

the locus. Then F (., z) is maintained explicitly (in z logD bits) for every marked

node. The space required is O((n/g)z logD) = o(n/ log n) bits. Therefore, the

total index space is 2|CSA|+D log n
D
+O(D) + o(n) bits.

Query Answering: Suppose that the suffix range [L,R] with u being the locus

node is given. Let u∗ be u’s highest marked descendent. The pre-order rank of u∗

and its suffix range [L∗, R∗] can be computed in O(log n) time (refer to Lemma 2).

Hon et. al [11] showed that the union of the following two sets is a candidate set

of size at most 2g + z.

– top-z frequent documents within DA[L
∗..R∗];

– the documents DA[i] for i ∈ [L,L∗ − 1] ∪ [R∗ + 1, R];

All documents in the first set are pre-computed and stored, and hence can be

retrieved in O(z) time. Each DA[.] value can be decoded in O(tsa) time, therefore

retrieval of all documents in the second set takes O(gtsa) time. In summary, we

obtain a candidate set of O(g+z) documents in O(gtsa+z) time. Combining with

Lemma 3, the top-z documents can be answered in another O((g+ z)tsa log log n)

time. By substituting g = z(log n)2+ε and absorbing the log log n factor in logε n,

the resulting query time will be O(ztsa(log n)
2+ε).

3.2 Index for top-k queries for any given k

In order to support top-k queries, we maintain the (at most) logD auxiliary struc-

tures for z = 1, 2, 4, 8, Since an auxiliary structure for a specific z is o(n/ log n)

bits, the overall increase in total space is bounded by o(n) bits. Now, a top-k query

346

can be answered by choosing z = 2�log2 k� and retrieve the top-z documents by

querying on the substructures specific to z. Since k = Θ(z), the resulting query

time will be O(ktsa log
2+ε n). This completes the proof of Theorem 1.

4 Faster Compressed Index

This section is dedicated to the description of our index with improved query

time. The idea is to choose a smaller grouping factor, thereby reducing the size

of candidate set. However, this will result in higher number of marked nodes, and

the explicit storage of pre-computed answers (with logD bits per entry) at these

marked nodes will lead to a non-succinct solution. Our key contribution is to

show how these pre-computed lists can be encoded in O(log log n) bits per entry

(thereby achieving the desired space). Our main result is summarized as follows.

Theorem 2. There exist an 2|CSA|+D log n
D
+O(D)+o(n) bits index for top-k

frequent document retrieval with O(tsa log k log
ε n) time per reported document.

Similar to the index in Section 3, we have (i) a compressed suffix array CSA

of T ; (ii) a data structure for computing arbitrary term frequencies (Sec 2.3); and

(iii) an auxiliary structures specific to z for z = 1, 2, 4, 8, Note that (i) and

(ii) are common for all auxiliary structures. Therefore, we turn our attention only

to (iii) and show that its space is bounded by o(n) bits.

4.1 Auxiliary structure for a fixed z

Here, we mark the nodes in GST based on two grouping factors g and h, where

g = z(log n)2+ε and h = z log z logε n. Then, we maintain the corresponding GSTg

and GSTh in a total of O((n/g) log g + (n/h) log h) = o(n/z) bits. In order to

distinguish the marked nodes based of these two different grouping factors, we

shall use the following terminologies: If a node is marked as per the grouping

factor g, we shall call it as a marked node. Otherwise, if a node is marked as per

the grouping factor h only, we shall call it as a prime node.

Let u be a node in GST with u′ (resp., u∗) being its highest prime (marked)

descendent (if it exists). Let [L,R], [L′, R′] and [L∗, R∗] be the ranges of leaves

within the subtree of u, u∗ and u′, respectively. The following inequalities hold:

1. L ≤ L′ ≤ L∗ < R∗ ≤ R′ ≤ R;

2. L′ − L < h, and R−R′ < h;

3. L∗ − L′ < g, and R′ −R∗ < g.

347

Then, if node u is the locus of a query, the union of the following sets is a

candidate set (say Sh
cand) of size at most 2h+ z:

– top-z frequent documents within DA[L
′...R′] and

– the documents DA[i] for i ∈ [L,L′ − 1] ∪ [R′ + 1, R]

Once Sh
cand is given, it takes only O((h + z)tsa log log n) = O(z tsa log z log

ε n)

additional time6 for answering a top-z query (using Lemma 3). Note that docu-

ments corresponding to DA[i] for i ∈ [L,L′ − 1]∪ [R′ + 1, R] are computed on the

fly in O(h tsa) time and it will not affect the overall time complexity. The only

remaining thing is to show how to obtain the top-z frequent documents within

DA[L
′..R′]. The idea is to store the encoded form of the top-z documents corre-

sponding to every prime node. Using the result in the following lemma, the total

query time can be bounded by O(z tsa log z log
ε n).

Lemma 4 Top-z documents corresponding to every prime node as the locus can be

encoded in O(n/(log z logε n))+o(n/ log n) bits, such that documents corresponding

to any given prime node u′ can be decoded in O(z tsa log log n) time.

Proof. Consider the candidate set corresponding to a prime node u′ as the locus,

which includes

– the top-z frequent documents within DA[L
∗..R∗], which can be obtained in

O(z) time since the top-z documents corresponding to every marked node are

maintained explicitly in O((n/g)z logD) = o(n/ log n) bits.

– the documents DA[i] for i ∈ [L′, L∗ − 1] ∪ [R∗ + 1, R′]. However we can-

not afford to include all O(g) documents into the candidate set. Instead, we

select only at most z elements within this category which still form a de-

sired candidate list of only O(z) elements. Note that even though we have

O(g) documents in this category, only ≤ z can be in the output. For each

output document dj in this category, it can be associated with an integer

i ∈ [L′, L∗− 1]∪ [R∗+1, R′], such that DA[i] = dj. If we replace each such i by

its relative position in [L′, L∗− 1]∪ [R∗+1, R′], this problem can be rephrased

as the encoding of z distinct integers drawn from a set {1, 2, 3, ..., 2g} and it

takes only O(z log(g/z)) = O(z log log n) bits (refer to Lemma 1). The space

consumption is O((n/h)z log log n) = O(n/(log z logε n)). Thus, given such a

relative position, the corresponding document can be retrieved in O(tsa) time.

Now, if a documents djwhich is an output, but does not belong to this category,

it will definitely be in the list of top-z frequent documents within DA[L
∗..R∗],

and hence will be retrieved from the previous category.

6 The log log n factor is absorbed by logε n.

348

Therefore, a candidate list of O(z) elements corresponding to any given prime

node u′ as the locus can be computed in O(z tsa) time using anO(n/(log z logε n))+

o(n/ log n) bits structure. Consequently, the top-z documents for u′ can be com-

puted in O(z tsa log log n) time using Lemma 3.

Putting everything altogether, we have the following lemma.

Lemma 5 The auxiliary structure for a specific z takes O(n/(log z logε n)) +

o(n/ log n) + o(n/z) bits and a top-z query can be answered in O(z tsa log z log
ε n)

time. ��

4.2 Handling top-k queries for any given k

In order to support top-k queries, we maintain the (at most) logD auxiliary

structures for z = 1, 2, 4, 8, . . . as before. This requires a total of:

O(log−ε n
∑

z=1,2,4...

n/ log z) + o(
∑

z=1,2,4...

n/ log n) + o(
∑

z=1,2,4...

n/z) = o(n) bits.

Now, a top-k query can be answered by choosing z = 2�log2 k� and retrieve the

top-z documents by querying on the substructures specific to z. Since k = Θ(z),

the resulting query time will be O(k tsa log k log
ε n). This completes the proof of

Theorem 2. ��

5 Concluding Remarks

In this paper, we have shown how to index the documents in roughly 2 × |CSA|
bits of space, which achieves per-document reporting time for the top-k document

retrieval problem in O(log k log1+ε n) time. An interesting open question is whether

we can further reduce the space to roughly |CSA| bits, while maintaining the same

reporting bound. Also, it will also be interesting to test the practical performance

of our proposed index, and compare it with the series of results developed in the

recent years.

References

1. D. Belazzougui and G. Navarro. Improved Compressed Indexes for Full-Text Document Retrieval.

In SPIRE, pages 386 – 397 2011.

2. S. Culpepper, G. Navarro, S. Puglisi, and A. Turpin. Top-k Ranked Document Search in General

Text Databases. In ESA, pages 194–205, 2010.

3. P. Ferragina and G. Manzini. Indexing Compressed Text. Journal of the ACM, 52(4):552–581,

2005.

349

4. P. Ferragina, G. Manzini, Veli Mäkinen, and G. Navarro, Compressed Representations of Sequences

and Full-Text Indexes, ACM Transactions on Algorithms, 3(2), 2007.

5. T. Gagie, G. Navarro, and S. J. Puglisi. Colored Range Queries and Document Retrieval. In SPIRE,

pages 67–81, 2010.

6. R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applications to Text

Indexing and String Matching. SIAM Journal on Computing, 35(2):378–407, 2005.

7. W. K. Hon, M. Patil, R. Shah, and S.-B. Wu. Efficient Index for Retrieving Top-k Most Frequent

Documents. Journal of Discrete Algorithms, 8(4):402–417, 2010.

8. W. K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. String Retrieval for Multi-pattern Queries.

In SPIRE, pages 55–66, 2010.

9. W. K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Document Listing for Queries with

Excluded Pattern, In CPM, pages 185–195, 2012.

10. W. K. Hon, R. Shah, and S. V. Thankachan. Towards an Optimal Space-and-Query-Time Index for

Top-k Document Retrieval, In CPM, pages 173–184, 2012.

11. W. K. Hon, R. Shah, and J. S. Vitter. Space-Efficient Framework for Top-k String Retrieval Prob-

lems. In FOCS, pages 713–722, 2009.

12. J. Jansson, K. Sadakane, and W. K. Sung. Ultra-succinct Representation of Ordered Trees. In

SODA, pages 575–584, 2007.

13. M. Karpinski and Y. Nekrich. Top-k Color Queries for Document Retrieval. In SODA, pages 401–

411, 2011.

14. G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and linear space In SODA,

pages 1066-1077, 2012.

15. V. Mäkinen and G. Navarro. Compressed Full-Text Indexes. ACM Computing Surveys, 39(1), 2007.

16. U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String Searches. SIAM Journal

on Computing, 22(5): 935–948, 1993.

17. Y. Matias, S. Muthukrishnan, S. C. Sahinalp, and J. Ziv. Augmenting Suffix Trees, with Applica-

tions. In ESA, pages 67–78, 1998.

18. S. Muthukrishnan. Efficient Algorithms for Document Retrieval Problems, In SODA, pages 657–666,

2002.

19. G. Navarro, S. J. Puglisi, and D. Valenzuela. Practical Compressed Document Retrieval. In SEA,

pages 193–205, 2011.

20. G. Navarro and S. J. Puglisi. Dual-Sorted Inverted Lists. In SPIRE, pages 309–321, 2010.

21. M. Patil, S. V. Thankachan, R. Shah, W. K. Hon, J. S. Vitter, and S. Chandrasekaran. Inverted

Indexes for Phrases and Strings. SIGIR, 2011.

22. R. Shah, C. Sheng, S. V. Thankachan, J. S. Vitter. On Optimal Top-K String Retrieval. In CoRR

abs/1207.2632 (2012)

23. R. Raman, V. Raman, and S. Rao. Succinct Indexable Dictionaries with Applications to Encoding

k-ary Trees, Prefix Sums and Multisets. ACM Transactions on Algorithms, 3(4), 2007.

24. K. Sadakane. Succinct Data Structures for Flexible Text Retrieval Systems. Journal of Discrete

Algorithms, 5(1):12–22, 2007.

25. K. Sadakane and G. Navarro. Fully-Functional Succinct Trees. In SODA, pages 134–149, 2010.

26. N. Välimäki and V. Mäkinen. Space-Efficient Algorithms for Document Retrieval. In CPM, pages

205-215, 2007.

27. P. Weiner. Linear Pattern Matching Algorithms. In SWAT, 1973.

28. D. E. Willard. Log-logarithmic Worst-Case Range Queries Are Possible in Space Θ(N). Information

Processing Letters, 17(2):81–84, 1983.

350

