
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 6, pp. 1443–1463

DUALITY BETWEEN PREFETCHING AND QUEUED WRITING
WITH PARALLEL DISKS∗

DAVID A. HUTCHINSON† , PETER SANDERS‡ , AND JEFFREY SCOTT VITTER§

Abstract. Parallel disks promise to be a cost effective means for achieving high bandwidth in
applications involving massive data sets, but algorithms for parallel disks can be difficult to devise.
To combat this problem, we define a useful and natural duality between writing to parallel disks and
the seemingly more difficult problem of prefetching. We first explore this duality for applications in-
volving read-once accesses using parallel disks. We get a simple linear time algorithm for computing
optimal prefetch schedules and analyze the efficiency of the resulting schedules for randomly placed
data and for arbitrary interleaved accesses to striped sequences. Duality also provides an optimal
schedule for prefetching plus caching, where blocks can be accessed multiple times. Another applica-
tion of this duality gives us the first parallel disk sorting algorithms that are provably optimal up to
lower-order terms. One of these algorithms is a simple and practical variant of multiway mergesort,
addressing a question that had been open for some time.

Key words. caching, external memory sorting, load balancing, lower bound, prefetching, ran-
domized algorithm

AMS subject classifications. 68W10, 68W20, 68W40, 68M20, 68P10, 68P20, 68Q17

DOI. 10.1137/S0097539703431573

1. Introduction. External memory (EM) algorithms are those for which the
problem data set is too large to fit into the high-speed random access memory (RAM)
of a computer and therefore must reside on external devices such as disk drives [23]. In
order to cope with the high latency of accessing data on disks, efficient EM algorithms
exploit locality in their design. In the I/O model, EM algorithms access a large block
of B contiguous data elements in one I/O step and perform the necessary algorithmic
operations on the elements in the block while in the high-speed memory. The speedup
can be significant. However, even with blocked access, a single disk provides much
less bandwidth than the internal memory. This problem can be mitigated by using
multiple disks in parallel. For each input/output operation, one block is transferred
between a fast memory of size M and each of the D disks. The algorithm therefore
transfers D blocks at the cost of a single-disk access delay.

A simple approach to algorithm design for parallel disks is to employ large logical
blocks, or superblocks, of size B · D in the algorithm. This reduces the problem to
designing an EM algorithm for one disk with logical block size BD. A superblock is
split into D physical blocks—one on each disk. All D physical blocks are accessed

∗Received by the editors July 18, 2003; accepted for publication (in revised form) March 21, 2005;
published electronically August 17, 2005. A substantial part of this work was done while the authors
were at Duke University.

http://www.siam.org/journals/sicomp/34-6/43157.html
†Department of Systems and Computer Engineering, Carleton University, Ottawa K1S 5B6, ON,

Canada (hutchins@sce.carleton.ca). This author’s research was supported in part by the National
Science Foundation through research grant CCR–0082986.

‡Fakultät für Informatik, Universität Karlsruhe, 76128 Karlsruhe, Germany (sanders@ira.uka.de).
This author’s research was partially supported by the Future and Emerging Technologies programme
of the EU under contract IST-1999-14186 (ALCOM-FT).

§Department of Computer Sciences, Purdue University, West Lafayette, IN 47907–2066 (jsv@
purdue.edu). This author’s research was supported in part by the NSF through research grants CCR–
9877133 and EIA–9870724 and by the Army Research Foundation through MURI grant DAAH04–
96–1–0013 and grants DAAD19–01–1–0725 and DAAD19–03–1–0321.

1443

1444 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

simultaneously whenever the superblock is accessed. We refer to this technique as
superblock striping. Unfortunately, this approach is suboptimal for em algorithms like
sorting that deal with many blocks at the same time. For sorting and many related EM
problems, an optimal algorithm requires independent access to the D disks, in which
each of the D blocks in a parallel I/O operation can reside at a different position
on its disk [25, 23]. Designing algorithms for independent parallel disks has been
surprisingly difficult [25, 21, 20, 10, 11, 5, 6, 23, 22, 24]. In this paper we consider
parallel disk output and parallel disk input separately, in particular as the parallel
output scheduling problem and the parallel prefetch scheduling problem, respectively.

The (online) output scheduling (or queued writing) problem takes as input a fixed
size pool of m (initially empty) memory buffers each capable of storing a block, and the
sequence 〈w0, w1, . . . , wL−1〉 of L block write requests as they are issued. Each write
request is prelabeled with the disk it will use. The solution of the output scheduling
problem is a schedule that specifies when the blocks are output (i.e., the contents of
each parallel output operation). The buffer pool can be used to reorder the outputs
with respect to the logical writing order given by 〈w0, w1, . . . , wL−1〉 so that the total
number of parallel output steps is minimized.

We use the term write for the logical process of moving a block from the re-
sponsibility of the application to the responsibility of the scheduling algorithm. The
scheduling algorithm orchestrates the physical output of these blocks to disks.

The (offline) prefetch scheduling problem takes as input a fixed size pool of m
(empty) memory buffers for storing blocks, and the sequence 〈r0, r1, . . . , rL−1〉 of L
distinct block read requests that will be issued. Each read request is prelabeled with
the disk it will use. The resulting prefetch schedule specifies when the blocks should
be fetched so that they can be consumed by the application in the right order.

By the term read, we mean the logical process of moving a block from the re-
sponsibility of the scheduling algorithm to the application. We use the term fetch (or
prefetch) to refer to the physical disk access.

The central theme in this paper is the duality between these two problems.
Roughly speaking, an output schedule corresponds to a prefetch schedule with re-
versed time axis, and vice versa. The power of this idea is that computations in one
domain can be analyzed via duality with respect to computations in the other domain.

In section 2, we formally introduce the duality principle for the case of distinct
blocks to be written or read (write-once and read-once scheduling). In section 3,
we derive an optimal write-once output scheduling algorithm and apply the duality
principle to obtain an optimal read-once prefetch scheduling algorithm. In section 4,
we modify the previous algorithm so that blocks are fetched as early as possible, so
as to be more robust against delays in practical implementations.

For difficult input sequences, an optimal schedule might use parallel disks very
inefficiently because most disks might still be idle most of the time. In section 5, we
therefore give performance guarantees for two particular classes of input sequences:
randomly placed data and arbitrarily interleaved data streams. A data stream is a
sequence of blocks that is read or written sequentially by the application. Many algo-
rithms access several such streams in an interleaved manner, and the order of accesses
to the streams is not predictable at the time the streams are allocated. Nevertheless,
we obtain performance guarantees for the following allocation strategies of the data
streams:

Fully randomized (FR): Each block is allocated to a random disk.
Striping (S): Consecutive blocks of a data stream are allocated to consecutive disks

DUALITY BETWEEN PREFETCHING AND WRITING 1445

S

SR

RC

FR

Fig. 1.1. A sequence of 16 blocks allocated to 4 disks (1 = white, 2 = light grey, 3 = dark grey,
4 = black) using different allocation strategies.

in a simple, round-robin manner.
Simple randomized (SR): For each data stream, this strategy follows a striping

allocation, where the disk selected for the first block is chosen randomly and
independently of the other data streams.

Randomized cycling (RC): Each data stream i chooses a random (and indepen-
dent) permutation πi of disk numbers and allocates the jth block of stream
i on disk πi(j mod D).

Figure 1.1 gives an example.
In section 6, we relax the restriction that blocks are accessed only once and allow

caching of blocks and repeated block requests (write-many and read-many scheduling).
Again we derive a simple optimal algorithm for the writing case and obtain an optimal
algorithm for the reading case using the duality principle. A similar result has been
obtained by Kallahalla and Varman [16, 17] using more complicated arguments.

In section 7, we apply the results from sections 3 and 5 to parallel disk sorting.
Results on online writing translate into improved sorting algorithms using the distri-
bution paradigm. Results on offline reading translate into improved sorting algorithms
based on multiway merging. By appending a “D” for distribution sort or an “M” for
mergesort to an allocation strategy (FR, S, SR, RC) we obtain a descriptor for a
sorting algorithm (FRD, FRM, SD, SM, SRD, SRM, RCD, RCM). This notation is
an extension of the notation used in [24]. RCD and RCM turn out to be particularly
efficient. Let

Sort(N) =
N

DB

(
1 + logM/B

N

M

)
.

In section 8, we show that 2 · Sort(N) is the lower bound for sorting N elements
on D disks. Our versions of RCD and RCM are the first algorithms that provably
match this bound up to a lower-order term if M = ω(DB). The good performance
of RCM is particularly interesting. The question of whether there is a simple variant
of mergesort that is asymptotically optimal for multiple disks has been open since
the model was formalized in [25]. A summary of the notation used in this paper is
included in the appendix.

Related work. An announcement [14] and a preliminary version [13] of this pa-
per have appeared in conference volumes. The problems of prefetching and caching
have been intensively studied and can be quite difficult. We begin our overview with
offline algorithms for the I/O model. Belady [7] solved the caching problem for a single
disk. Kallahalla and Varman [15, 17] developed an optimal parallel disk prefetching
algorithm for read-once sequences. Besides a simpler algorithm and analysis, our con-
tribution is a linear time algorithm (which is, however, also implicit in [16], which was
published simultaneously with the first announcement of our result [14].) Moreover,

1446 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

the concept of duality allows us to translate performance guarantees for writing into
performance guarantees for reading. The main contribution in [16] is an optimal result
for prefetching plus caching. Again, the concept of duality yields a simpler algorithm
and proof.

Cao et al. [9] and Kimbrel and Karlin [18] have introduced a model that allows us
to study integrated prefetching and caching with overlapping of I/O and computation.
In this penalty model, internal computation is linked to I/Os by a penalty of F time
units for an I/O step. For F → ∞, the penalty model becomes equivalent to the
I/O model since the internal computations become insignificant. Kimbrel and Karlin
[18] already introduced the idea of time reversal and the reverse aggressive algorithm
that has our algorithm as a special case. They also defined a similar kind of duality,
namely between fetches and evictions of a caching algorithm. The analysis in the
penalty model predicts that the performance ratio between reverse aggressive and the
optimal algorithm goes to infinity as F → ∞. Hence it is a bit surprising that the
algorithm turns out to be optimal in the I/O model.

The prudent prefetching algorithm introduced in section 4 is similar to the con-
servative algorithm described in [9]. The main difference is that it applies to the
optimal parallel disk prefetching algorithm rather than to the optimal schedule in a
sequential system.

Albers, Garg, and Leonardi [4] gave an optimal polynomial time offline algorithm
for the single-disk case in the penalty model, but it does not generalize well to multiple
disks. Albers and Büttner [3] overcame this problem by requiring synchronized parallel
disk access (as in the I/O model) and by postulating O(D) additional buffer blocks
not available to the optimal algorithm. Both these algorithms are based on linear
programming and hence are quite complicated and time consuming.

There has also been intensive work on online integrated prefetching and caching.
Albers [2] showed for a single disk that a lookahead for the next Ω (M/B) different
blocks is needed to get good competitiveness. For parallel disks, Kallahalla and Var-
man [15, 17] showed that another factor of Ω (D) lookahead is needed even for the
read-once problem. Applying the optimal offline algorithm to the lookahead matches
this lower bound for read-once sequences.

There are deterministic algorithms for parallel disk external sorting [21, 20] that
are optimal up to a constant factor, but the constant factors are not ideal. The first
optimal (up to a constant factor independent of the parameters N , M , B, and D)
sorting algorithm was a randomized one by Vitter and Shriver [25]. Barve, Grove,
and Vitter [5] and Barve and Vitter [6] introduced a simple and efficient randomized
sorting algorithm called simple randomized mergesort (SRM). For each run, SRM
allocates blocks to disks using the SR allocation discipline. For γ < 1, SRM comes
within an additive term of about γSort(N) of the sorting lower bound if M/B =
Ω(D log(D)/γ2), but for M/B = o(D logD), the bound proven is not asymptotically
optimal. It is an open problem whether SRM or another variant of striped mergesort
could be asymptotically optimal for small internal memory. Knuth [19, Exercise 5.4.9–
31] gives the question of a tight analysis of SR a difficulty rating of 48 on a scale
between 1 and 50.

Sanders, Egner, and Korst [22] analyzed a (slightly) suboptimal output schedul-
ing algorithm for FR allocation that would yield a good parallel disk distribution
sorting algorithm (FRD) yet has the disadvantage that reading cannot be done in
a striped fashion. To overcome the apparent difficulty of analyzing SR, Vitter and
Hutchinson [24] analyzed RC allocation, which provides more randomness but retains

DUALITY BETWEEN PREFETCHING AND WRITING 1447

the advantages of striping. RCD is an asymptotically optimal distribution sort algo-
rithm that allocates successive blocks of a bucket to the disks according to the RC
discipline. The present paper uses the concept of duality to apply these results to
external mergesort.

The lower bound in section 8 is a refinement of the analysis by Aggarwal and
Vitter [1]. In particular, our analysis gives the precise constant factor in the leading
term, and it applies to algorithms that do not necessarily use the same number of
inputs and outputs. The remaining gap between the upper and lower bound is only
a lower-order term if M = ω(DB).

Building on the results in the present paper, Dementiev and Sanders [12] develop a
parallel disk external sorting algorithm that perfectly overlaps I/O and computation.
This algorithms works independently of the failure penalty F and need not know how
much internal work is done between I/O requests. (These times are far from constant
and not easy to predict so that previous results on prefetching in the penalty model
are inapplicable for sorting.)

2. The duality principle. Duality is a quite simple yet powerful concept once
the model is properly defined. Therefore, we start with a more formal description of
the model.

Our machine model is the (independent parallel disk) I/O model of Vitter and
Shriver [25] with a single1 processor, D disks, and an internal memory of size M .
All blocks have the same size B. In one I/O step, one block on each disk can be
accessed in a synchronized fashion. We consider either a queued writing or a buffered
prefetching arrangement, where a pool of m block buffers is available to the algorithm
(see Figure 2.1).

Definition 2.1. A write-once output scheduling problem is defined by a se-
quence Σ = 〈b0, . . . , bL−1〉 of distinct blocks which are to be output using parallel
output operations. Let disk(bi) denote the disk on which block bi is to be located. An
application writes these blocks in the order specified by Σ. We use the term write
for the logical process of moving a block from the responsibility of the application to
the responsibility of the scheduling algorithm. The scheduling algorithm orchestrates
the physical output of these blocks to disks. Time is measured in I/O steps actually
performed. In particular, in each time step at least one block is output.

An output schedule is specified by giving a function oStep : {b0, . . . , bL−1} → N

that specifies for each disk block bi ∈ Σ the time step when it will be output. An output
schedule is correct if the following conditions hold:

(i) No disk is referenced more than once in a single time step. That is, if i �= j
and disk(bi) = disk(bj), then oStep(bi) �= oStep(bj).

(ii) The buffer pool is large enough that it does not overflow. That is, if we
define

oBacklog(bi) = |{j < i : oStep(bj) ≥ oStep(bi)}|

to be the number of blocks bj that are written before block bi but not output before bi,
then we require for all 0 ≤ i ≤ L that oBacklog(bi) < m.
The blocks are output in increasing order of oStep. The number of steps needed by
an output schedule is T = max0≤i<L oStep(bi). An output schedule is optimal if it
minimizes T among all correct schedules.

1Our results generalize to multiple processors as long as data exchange between processors is
much faster than disk access.

1448 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

Output queues / Prefetch buffers

1 2 3 4 5 6

Up to m

Disk numbers

queued or
prefetched
blocks

consumed in
Stream of blocks are

Σ order

produced in

Correspondence between
output Step (oStep) in greedyWriting and
prefetching priority (iStep) in lazy prefetching

Disks

Stream of blocks are

Σ R order

Fig. 2.1. Duality between the prefetching priority and the output step. The hashed blocks
illustrate how the blocks of disk 2 might be distributed.

It will turn out that our write-once output scheduling algorithms work optimally
even if they are given the blocks online, that is, one at a time without specifying Σ
explicitly.

Definition 2.2. Analogously to a write-once output scheduling problem, a read-
once prefetch scheduling problem is defined by a sequence Σ of blocks to be read. By the
term reading, we mean the logical process of moving a block from the responsibility of
the scheduling algorithm to the application. We use the term fetching (or prefetching)
to refer to the physical disk access.

A prefetch schedule is defined using a function iStep : {b0, . . . , bL−1} → N. The
blocks are prefetched in increasing order of iStep. Let us define

iBacklog(bi) = |{j > i : iStep(bj) ≤ iStep(bi)}|

to be the number of blocks bj that are fetched no later than block bi but are read after
bi. All blocks in iBacklog(bi) must be buffered. The limited buffer pool size requires
the correctness condition iBacklog(bi) < m. The number of steps needed by a prefetch
schedule is T = max0≤i<L iStep(bi). A prefetch schedule is optimal if it minimizes T
among all correct schedules.

It will turn out that our prefetch scheduling algorithms work offline; that is, they
need to know Σ in advance. We explain in section 7 how this is sufficient for sorting
applications.

The following theorem shows that reading and writing not only have similar mod-
els but are equivalent to each other in a quite interesting sense.

Theorem 2.3 (duality principle). Consider any sequence Σ = 〈b0, . . . , bL−1〉 of
distinct write requests. Let oStep denote a correct output schedule for Σ that uses T
output steps. Then we get a correct prefetch schedule iStep for ΣR = 〈bL−1, . . . , b0〉

DUALITY BETWEEN PREFETCHING AND WRITING 1449

that uses T fetch steps by setting iStep(bi) = T − oStep(bi) + 1.

Vice versa, every correct prefetch schedule iStep for ΣR that uses T fetch steps
yields a correct output schedule oStep(bi) = T − iStep(bi) + 1 for Σ, using T output
steps.

Proof. For the first part, consider the schedule iStep(bi) = T − oStep(bi) + 1.
The resulting fetch steps are between 1 and T and all blocks on the same disk get
different fetch steps. It remains to be shown that iBacklog(bi) < m for 0 ≤ i < L.
With respect to ΣR, we have

iBacklog(bi) = |{j > i : iStep(bj) ≤ iStep(bi)}|
= |{j > i : T − oStep(bj) + 1 ≤ T − oStep(bi) + 1}|
= |{j > i : oStep(bj) ≥ oStep(bi)}| .

The latter value is oBacklog(bi) with respect to Σ. It is smaller than m because oStep
is a correct schedule.

The proof for the converse case is completely analogous.

3. Optimal write-once and read-once scheduling. We now give an optimal
algorithm for writing a write-once sequence, prove its optimality, and then apply the
duality principle to transform it into a read-once prefetching algorithm.

Consider the algorithm greedyWriting for writing a sequence Σ = 〈b0, . . . , bL−1〉
of distinct blocks. Let Q denote the set of blocks in the buffer pool so, initially,
Q = ∅. Let Qd = {b ∈ Q : disk(b) = d} denote the blocks queued for disk d. Write
the blocks bi in sequence as follows:

1. If |Q| < m, then simply insert bi into Q.
2. Otherwise, each disk d with Qd �= ∅ outputs the block of Qd that appears

first in Σ. The blocks so output are then removed from Q and bi is inserted into Q.
3. Once all blocks are written, the queues are flushed; that is, additional output

steps are performed until Q is empty.

Figure 3.1 gives an example.

A schedule is called a FIFO schedule if blocks are output in arrival order on each
disk. For the write-once case, the following lemma tells us that when we look for
optimal schedules, it is sufficient to consider FIFO schedules. On real disks, FIFO
schedules are not necessarily optimal, since they do not optimize seek times and
rotational delays, but in our synchronous model, using FIFO suffices and simplifies
subsequent proofs.

Lemma 3.1. For any sequence of blocks Σ and every correct output schedule
oStep there is a FIFO output schedule oStep′ consisting of at most the same number
of output steps.

Proof. The proof of the lemma is based on transforming a non-FIFO schedule
into a FIFO schedule by exchanging blocks in the schedule of a disk that are output
out of order. Consider a non-FIFO schedule that services two block requests bi and
bj for the same disk “out of order”; that is, we have i < j but oStep(bi) > oStep(bj).
If we swap the output order of bi and bj , then the buffer pool consumption be-
tween output steps oStep(bj) and oStep(bi) can only decrease or remain the same.
Such swapping operations can be repeated as necessary until a FIFO schedule is
obtained.

Algorithm greedyWriting is one way to compute a FIFO schedule. The following
lemma shows that greedyWriting outputs every block as early as possible.

1450 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

Lemma 3.2. For any sequence of blocks Σ and any FIFO output schedule oStep′

for |Σ|, let oStep denote the schedule produced by algorithm greedyWriting. Then for
all bi ∈ Σ, we have oStep(bi) ≤ oStep′(bi).

Proof. The proof is by induction on |Σ|.
Base case for induction. |Σ| = 0. The claim is vacuously true for |Σ| = 0.

Induction hypothesis. Assume that the claim is true for |Σ| = L− 1.

Induction step |Σ| = L−1 � |Σ| = L. Consider the state of greedyWriting when
the last block bL is scheduled. Let d = disk(bL). Using the induction hypothesis, it
suffices to prove that oStep(bL) ≤ oStep′(bL).

Case 1. oStep(bL) = 1. This case is trivial since 1 is the smallest possible output
step.

Case 2. oStep(bL) = oStep(bl) + 1 for some other block bl with disk(bl) = d.
Applying the induction hypothesis to |Σ| = 〈b1, . . . , bL−1〉, we have oStep(bl) ≤
oStep′(bl). By the definition of FIFO output schedules, we have oStep′(bl) < oStep′(bL);
that is, oStep′(bl) + 1 ≤ oStep′(bL). All in all, we get

oStep(bL) = oStep(bl) + 1 ≤ oStep′(bl) + 1 ≤ oStep′(bL).

All remaining cases. Let t = oStep(bL) > 1. Disk d is idle during step t − 1, and
we have to explain why this is unavoidable. Let C = {bl : oStep(bl) ≥ t− 1} denote
the set of blocks that are queued during step t − 1. We must have |C| ≥ m, since
otherwise greedyWriting would have queued and output bL already during step t− 1
or earlier. Assume that oStep(bL) > oStep′(bL); that is, oStep(bL) − 1 ≥ oStep′(bL).
By the induction hypothesis, oStep′(bl) ≥ oStep(bl) for all bl ∈ C. In other words,

oStep′(bl) ≥ oStep(bl) ≥ oStep(bL) − 1 ≥ oStep′(bL).

Hence, if the schedule defined by oStep′ is used, all blocks in C are written no earlier
than bL, which requires that more than m blocks have to be buffered at the same
time, contradicting the assumption that oStep′ is correct.

Combining Lemmas 3.1 and 3.2 we see that greedyWriting gives us optimal sched-
ules for write-once sequences.

Theorem 3.3. Algorithm greedyWriting gives a correct, minimum length output
schedule for any write-once reference sequence Σ.

Combining the duality principle and the optimality of greedyWriting, we get an
optimal algorithm for read-once prefetching that we call lazy prefetching.

Corollary 3.4. An optimal prefetch schedule iStep for a sequence Σ can be
obtained by using greedyWriting to get an output schedule oStep for ΣR and setting
iStep(bi) = T − oStep(bi) + 1.

The schedule can be computed in time O(L + D) using very simple data struc-
tures. Figure 3.1 (top) gives an example. We refer to this approach as lazy prefetching.

4. Prudent prefetching. Although the lazy prefetching approach in the pre-
vious section allows us to obtain a prefetch schedule with a minimal number of steps
by means of reversing time, it has the practical disadvantage that blocks are accessed
as late as possible even if most blocks could be fetched earlier. For example, in Fig-
ure 3.1 (top) only the bottom-most disk fetches a block in Step 1. This policy may
result in unnecessary delays in real implementations where the access times to the
blocks fluctuate. Many of these delays might be avoidable if some blocks were fetched
earlier. One might instead use “eager prefetching” [6, 15], i.e., always accessing the

DUALITY BETWEEN PREFETCHING AND WRITING 1451

f i

e

l o

h

p q

n

r

g

Σ

87654321

1 output step2345678

input step

buffer pool

Σ R

a b c d e f g h i j k l m n o p q r

f i l o p q r

nhge

a db c j k

lazy
prefetching

87654321input step
prudent
prefetching buffer pool

8 7 6 5 4 3 2 1

output step order
a b f c i d e l g o j h p k q m n r

a b c d j k m

m

Fig. 3.1. Duality between prefetching and output for a sequence Σ = 〈a, b, . . . , r〉 of L = 18
blocks to be read using D = 3 disks and m = 6 buffers. Top part: A lazy prefetch schedule for Σ as
the dual of an output schedule for ΣR. The shading of the blocks indicates the disks where the blocks
are located. Before output Step 2, the eight blocks hijklopq would have to be buffered in order to
output block h in Step 2. But since only six blocks can be buffered, the middle disk has to remain
idle in Step 2. Similarly, before output Step 4, the seven blocks defgilo would have to be buffered
to output block d. Bottom part: The resulting schedule for prudent prefetching. For example, before
Step 3, blocks a and b are fetched and buffers for blocks fcidel are reserved. Block g cannot be
fetched because no buffer is reserved for it. Prudent prefetching using the reading order as a priority
instead of the priorities based on the optimal lazy schedule would need one more I/O step.

highest priority block on each disk. But eager prefetching sometimes has to discard
and refetch blocks, causing complications and inefficiencies.

Here we propose prudent prefetching, a prefetching strategy that avoids both
problems. It maintains optimal schedule length, but attempts to fetch blocks as early
as possible. The idea is to use the oStep obtained by greedyWriting as a priority
rather than as a direct indication of the input step for fetching a block. Algorithm
prudent prefetching allows blocks to be fetched before blocks with higher priority are
fetched but only if buffers have been reserved for them. This way, otherwise idle
disks can prefetch low priority blocks without hindering any fetches of higher priority
blocks in later steps.

This strategy is easy to implement. Prudent prefetching works with a sequence
〈l0, . . . , lL−1〉 of block requests sorted by nonincreasing priority (and hence by non-
decreasing iStep of lazy prefetching). Blocks l0, . . . , lj−1 have either been fetched or
have a reserved buffer while blocks lj , . . . , lL−1 are neither fetched nor have a reserved
buffer.

Before each fetch step, all empty buffers are reserved for the next blocks in the
priority sequence, and j is advanced by the number of buffers so reserved. The highest
priority block from each disk is then fetched if a buffer has been reserved for it. Then
from each disk the highest priority block is fetched if a buffer has been reserved for it.

1452 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

As before, blocks are delivered to the application in the order prescribed by Σ. When
a block is delivered to the application, its buffer becomes empty and is available.

An example of the algorithm is shown in Figure 3.1. We cannot expect algorithm
prudent prefetching to be better than lazy prefetching as long as we only count I/O
steps, but we can show that it is not worse.

Theorem 4.1. For any correct output schedule oStep, prudent prefetching takes
no more I/O steps than lazy prefetching.

Proof. We have already observed that fetching a reserved block can never hinder
a higher priority block from being fetched. Hence, in the ith step, all unfetched blocks
with iStep i will be fetched. We omit a trivial, more detailed proof by induction over
the number of steps.

Another advantage of prudent prefetching is that it can be implemented in an
event driven manner, and the fetch steps for each disk need not be synchronized.
When the next block from Σ is delivered to the application, its buffer can immediately
be used for advancing j. When a disk finishes fetching a block, it waits (if necessary)
until the next highest priority block on this disk has a reserved buffer and then starts
to fetch this block. Thus there is never a need to synchronize the disks, the system
can adapt to variances in access times, and the load of the interconnections between
disks and processors is better balanced than for synchronous access.

5. How good is optimal?. When we have complex data access patterns, the
knowledge that we have an optimal prefetching algorithm is often of little help. We
also want to know “how good is optimal?”. In the worst case, all requests may go
to the same disk and no prefetching algorithm can cure the dreadful performance
caused by this bottleneck. However, the situation is different if an appropriate block
allocation strategy is used; for example, if blocks are allocated to disks using striping,
randomization,2 or both.

Theorem 5.1. Consider a sequence of L block requests, and a buffer pool of size
m ≥ D blocks. The number of I/O steps needed by greedyWriting or lazy prefetching is
given by the following bounds, depending on the block allocation strategy. For striping
and randomized cycling, an arbitrary interleaving of sequential accesses to S sequences
is allowed:

S:

⌊
L

D

⌋
+ S if m > S(D − 1);

FR:

(
1+O

(
D

m

))
L

D
+O

(m
D

logm
)

(expected);

RC:

(
1+O

(
D

m

))
L

D
+min

{
S+

L

D
,O

(m
D

logm
)}

(expected).

For the case of writing, the second term can be dropped if we are only interested in
the number of steps needed to write (but not necessarily output) all blocks.

Proof. Due to our result on duality, it suffices to prove the bounds for writing.

Striping (S). Since greedyWriting is optimal, it suffices to analyze the following
specialized algorithm: Each sequence gets an exclusive allotment of D − 1 buffer
blocks. When a block from sequence k is written there are two possible cases. If the
pool for k has a free buffer block, the block is buffered there. Otherwise, we have

2In practice, this will be done using simple hash functions. However, for the analysis we assume
that we have a perfect source of randomness.

DUALITY BETWEEN PREFETCHING AND WRITING 1453

exactly D consecutive blocks from the striped sequence k so that we can output one
block from sequence k to each disk. There can be at most �L/D� of these output
steps. When all blocks are written, one additional output step for each sequence
suffices to empty all buffers.

Fully random allocation (FR). Since greedyWriting is optimal, it dominates the
algorithm analyzed in [22]. This algorithm admits (1−ε)D blocks into the buffer pool
before each output step. It is shown that with this regime the buffer pool size remains
in O(D/ε) most of the time. More precisely, the probability that the required pool
size exceeds qD is less than e(ln 2−εq)D [22, Lemma 3]. By setting ε = Θ(D/m) we
can make sure that the pool size is exceeded so rarely that we could afford to flush
the queues whenever this happens. We omit the straightforward calculations with
the tail bound showing that after an expected number of (1 + O(D/m))L/D output
steps all blocks have been written. The number of output steps needed to flush the
buffers at the end is the maximum number of blocks queued at a disk. In [22] it is
shown that the probability that the queue length at a particular disk exceeds q is
bounded by 2e−εq. Setting q = ln(2Dm)/ε and multiplying by D, we can see that the
probability pfail that some disk has a final load of more than ln(2Dm)/ε is bounded
by D · 2e−ε ln(2Dm)/ε = 1/m. Since the load cannot exceed L, the expected maximum
load is bounded by ln(2Dm)/ε + L/m = O

(
m
D logm + L/m

)
. The term L/m can be

absorbed into
(
1 + O

(
D
m

))
L
D .

Randomized cycling (RC). Vitter and Hutchinson [24] show that the algorithm
from [22] performs at least as well on RC-streams as it does for fully random allocation.
This extends to greedyWriting by Theorem 3.3. Furthermore, the reverse of a sequence
accessing RC-streams is indistinguishable from a sequence accessing RC-streams in
the forward direction. Theorem 2.3 therefore extends the result to prefetching. Hence,
the bound (

1 + O
(
D

m

))
L

D
+ O

(m
D

logm
)

transfers from the fully random allocation case.
For small L and m this bound can be improved using the observation that the

maximum number of blocks queued at a disk at the end cannot exceed the total
number of blocks allocated to it. The bound for striping shows that this load cannot
exceed L/D + S.

6. Prefetching with caching. We now relax the condition that the read re-
quests in Σ are for distinct blocks, permitting the possibility of saving disk accesses by
keeping previously accessed blocks in memory. For this read-many problem, we get a
tradeoff for the use of the buffer pool because it has to serve the double purposes of
keeping blocks that are accessed multiple times, and decoupling physical and logical
accesses to equalize transient load imbalance of the disks. We define the write-many
problem in such a way that the duality principle from Theorem 2.3 transfers: The
latest instance of each block must be kept either on its assigned disk, or in the buffer
pool. The final instance of each block must be output to its assigned disk.3

We prove that the following offline algorithm manyWriting minimizes the number
of output operations for the write-many problem: Let Q denote the set of blocks in

3The requirement that the latest versions have to be kept might seem odd in an offline setting.
However, this makes sense if there is a possibility that there are reads at unknown times that need
an up-to-date version of a block.

1454 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

the buffer pool, so initially Q = ∅. Let Qd = {b ∈ Q : disk(b) = d} denote the blocks
queued for disk d. To write block bi, if bi ∈ Q, the old version is overwritten in its
existing buffer. Otherwise, if |Q| < m, bi is inserted into Q. If this also fails, an output
step is performed before bi is inserted into Q. The output analogue of Belady’s min

rule [7] is used on each disk; that is, each disk with Qd �= ∅ outputs the block in Qd

that is written again farthest in the future.

Theorem 6.1. Algorithm manyWriting solves the write-many problem with the
fewest number of output steps.

Applying duality, we also get an optimal algorithm for prefetching plus caching
of a sequence Σ; using the same construction as in Corollary 3.4 we get an optimal
prefetching and caching schedule.

Corollary 6.2. The dual of manyWriting solves the read-many problem with
the fewest number of input steps.

It remains to prove Theorem 6.1.

Proof of Theorem 6.1. We generalize the proof of Belady’s algorithm by Borodin
and El-Yaniv [8] to the case of writing and multiple disks. Let Σ = 〈b0, . . . , bL−1〉 be
any sequence of blocks to be written. The proof is based on the following claim.

Claim. Let alg be any algorithm for the write-many problem. Let d denote a
fixed disk. For any 0 ≤ i < L it is possible to construct an offline algorithm algi that
satisfies the following properties:

(i) algi processes the first i− 1 writes exactly as alg does.
(ii) If block bi is the first block written after output step s, then immediately

before output step s there was no free buffer slot.
(iii) If bi is the first block written after output step s, then algi performs this

output according to the min rule on disk d.
(iv) algi takes no more steps than alg.

Once this claim is established, the theorem can be proven as follows: Starting
with an optimal offline algorithm opt, we apply the claim with i = 0 and d = 0 to
obtain another optimal algorithm opt0, then apply the claim with i = 1 and d = 0 to
obtain opt1 and so on. By induction over i, it can be seen that optL−1 never leaves
unused buffer slots before an output step and uses min for deciding which blocks to
output on disk 0. Subsequently, we apply this sequence of L transformations for each
disk. Since these transformations do not undo property (iii) for other disks, we arrive
at an optimal algorithm that works like manyWriting on all disks.

It remains to prove the claim. We initialize algi to alg and transform algi

until it fulfills all four properties. Note that this initialization automatically fulfills
properties (i) and (iv). If properties (ii) and (iii) also hold, we are done.

If property (ii) is violated by algi, then bi is the first block written by algi

after some output step s, and before output step s a free buffer slot was available.
In this case, algi is modified so that bi is now the last block written before output
step s. Note that this transformation preserves the order in which blocks are written
and properties (i) and (iv). This transformation is repeated until algi also satisfies
property (ii).

If properties (i), (ii), and (iv) hold but property (iii) is violated, there must be a
write step s so that bi−1 is the last block written before output step s, and bi is the
first block written after output step s in algi. Now we define a modified algorithm
alg

′
i that mimics algi (and hence alg) until bi−1 is written but uses the min rule in

step s so that properties (i)–(iii) hold for alg
′
i.

It remains to define the behavior of alg
′
i after step s so that property (iv) is also

DUALITY BETWEEN PREFETCHING AND WRITING 1455

maintained. We use X + b as a shorthand for X + {b} for a set of blocks X and a
block b. Immediately after output step s, the buffer pool of algi can be written as
M = X + b whereas alg

′
i has buffer pool M′ = X + b′ where b is the block on disk d

whose next access is farthest in the future. alg
′
i mimics algi as far as possible; that

is, it performs output steps at the same time as algi and outputs the same blocks.
As long as neither b nor b′ is written or output by algi, these two blocks remain the
only difference between M and M′. There are only three types of events that require
special treatment.

Event 1. algi outputs b. In that case, alg
′
i outputs b′. Afterwards we have M =

M′, and from now on alg
′
i can completely mimic algi.

Event 2. Block b′ is rewritten. By definition of b, this situation happens before
block b is rewritten. After b′ is rewritten, we have M = Y + b + b′ and M′ = Y + b′

for some common set Y of blocks. In particular, M′ has one unused buffer slot. If
algi outputs b in this situation, alg

′
i can again unify the states M and M′ by not

outputting anything on disk d.

Event 3. Block b is rewritten. As discussed above, if M �= M′, we must have
M = Y + b + b′ and M′ = Y + b′ before b is rewritten. Now alg

′
i uses its free buffer

slot to accommodate b. We get M = M′ = Y + b + b′.

We end up with an algorithm alg
′
i that fulfills properties (i)–(iv) and hence set

algi=alg
′
i.

7. Application to sorting. In this section we extend the duality between
prefetching and queued writing to apply to problems of merging and distribution.
In the merging phase of mergesort, there are several sorted runs on the disk, and the
problem is to merge them together into a single sorted run. We assume that each run
is striped across the disks using any given striping discipline, such as RC or FR, as
described in the introduction. How to lay out the runs so as to permit fully parallel
I/O is a challenging problem; recent work is surveyed in [23].

A big problem is that the input order Σ for the blocks, namely the order in which
the blocks need to be accessed, is highly data-dependent. The key to duality is to
characterize Σ in a simple and easily implementable way. If we examine the process of
merging, as illustrated in Figure 7.1 from the bottom to top, we see that the merging
buffer contains a partially filled block from each run (not yet expired). When the
block empties all its items into the merged output stream, the next block from that
run is inserted into the merging buffer. The merging buffer is pictured in the upper
rectangle in Figure 7.1, which is distinct from the space reserved for the prefetch
buffers (lower rectangle in Figure 7.1).

The first moment, therefore, that a block absolutely must be in memory is when
the smallest key value of the block is merged into the output stream. We therefore
define the trigger of a block to be its smallest key value. We say that a block is read
when it is moved from the prefetch buffer to the merging buffer, where it stays until
its items are exhausted by the merging process. Thus, the read order Σ of the blocks
is given by the sorted order of the triggers.

We have now reduced the merging problem to that of prefetching for the input
sequence Σ. The dual problem to merging is distribution. To solve it via the duality
principle, we need to process Σ in reverse order. We equate the notion of bucket in
distribution with that of run-in merging, so each block therefore has a bucket assigned
to it. Since each bucket uses a fixed striping discipline, the blocks can then be assigned
to disks. The dual distribution problem is thus well defined, and we get an optimal

1456 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

algorithm for merging by applying the algorithm of section 3.

Streams

via distribution
assembled
Blocks

via merge
or disassembleda b c d

Stream of blocks are

Correspondence between

produced in

consumed in

Stream of blocks are

Σ R

Disks

and prefetching priority (iStep) in lazy prefetching
output Step (oStep) in greedyWriting and

Partitioning buffers

Merging buffers /

1 2 3 4 5 6

Up to m
queued or
prefetched
blocks

Disk numbers

Output queues /

Prefetch buffers

Output of merge / Input to distribution

order

orderΣ

Fig. 7.1. The relationship between merging and distribution. Buffer space is required both
“privately” within the application (for storing the lead block of each run in merging, and for storing
the next block being formed for each bucket in distribution), and for the Output queues / Prefetch
buffers required for the techniques proposed in this paper. During distribution, the priorities of blocks
correspond to their output step. For merging, blocks are read in the order given by the triggers. When
an appropriate allocation discipline is used to allocate blocks of a stream to the parallel disks, the
queued I/O techniques of this paper permit I/O complexity results for distribution sort to be applied
to mergesort (and vice versa if desired).

Mergesort with randomized cycling (RCM). How the blocks of each run are
striped depends on the particular allocation discipline used. We start by discussing
multiway mergesort using randomized cycling allocation (RCM) in some detail and
then survey a number of additional results. Originally, the N input elements are stored
as a single data stream using any kind of striping. During run formation the input
is read in chunks of size M that are sorted internally and then written out in runs
allocated using RC allocation. Neglecting trivial rounding issues, run formation is
easy to do using 2N/(DB) I/O steps. For example, we need O

(
N/(DB2)

)
additional

I/Os for writing the trigger values to separate files. Then we set aside a buffer pool of
size m = D/γ for some parameter γ and perform logM/B−O(D/γ)

N
M � merge phases.

In a merge phase, groups of k = M
B −O(D/γ) runs are merged into new sorted runs;

that is, after the last merge phase, only one sorted run is left. Merging k runs of total
size sB can be performed using s block reads by keeping one block of each run in the
internal memory of the sorting application. The I/O schedule for a merging phase is
found by sorting the triggers for groups of k runs each. These sorted trigger sequences
are then concatenated, yielding the order in which the blocks are to be read. At this
point we can apply duality.

The overhead for this precomputation of Σ (trigger values) is O
(
N/B2

)
I/Os

even for a single disk [6]. The triggers allow us to do optimal prefetching so that
Theorem 5.1 gives an upper bound of

(1 + O(γ))
N

BD
+ min

{
k +

N

BD
,O(log(D/γ)/γ)

}

for the expected number of fetch steps of a phase. The number of output steps for a
phase is N/(BD) if we have an additional output buffer of D blocks. The final result

DUALITY BETWEEN PREFETCHING AND WRITING 1457

Table 7.1

Summary of the I/O complexity for parallel disk sorting algorithms. Each algorithm’s I/O

complexity is given by Sorta,fΔ (N) when the parameters are set according to the algorithm’s entry in
the table. Algorithms with boldface names are asymptotically optimal: M = Mergesort. SM/SD =
Merge / Distribution sort with any S allocation. SRM and SRD use SR. RCD, RCD+, and RCM
use RC allocation.

Sorta,fΔ (N) I/Os Algorithm Source
a f Δ

2 0 0 Lower bound
Deterministic algorithms

2 0 0 M, D = 1 [1]
O(1) 0 0 Greed sort [21]

2 + γ 0 Θ
(
(2D)

1+ 2
γ

)
M, superblock striping

2 + γ 0 Θ
(
(2D)

1+ 2
γ

)
SM here

2 + γ 0 Θ
(
(2D)

1+ 2
γ

)
SD here

Randomized algorithms

2 + γ 0 Θ
(
D log(D)/γ2

)
SRM [6]

2 + γ 0 Θ
(
D log(D)/γ2

)
SRD here

3 + γ 0 Θ(D/γ) RCD [24]

2 + γ min(N
BD

, log(D)/O(γ)) Θ(D/γ) RCM here
2 + γ 0 Θ(D/γ) RCD+ here

is written using any striped allocation strategy; the application calling the sorting
routine need not be able to handle RC allocation. For any constant γ > 0, we can

write the resulting total number of I/O steps as Sort
2+O(γ),min(N

BD , log D
O(γ))

m+D (N), where

Sorta,fΔ (N) =
2N

DB
+ a · N

DB
·
⌈
logM

B −Δ

N

M

⌉
+ f + o

(
N

DB

)
.

Table 7.1 compares a selection of sorting algorithms using this generalized form
of the I/O bound for parallel disk sorting. The term 2N

DB represents the reading
and writing of the input and the final output, respectively. The factor a is decisive
for the I/O complexity for large inputs. Note that for a = 2 and f = Δ = 0 this
expression is the lower bound for sorting. The additive offset f may dominate for small
inputs. The reduction of the memory by Δ blocks in the base of the logarithm is due
to memory that is used for output or prefetching buffer pools outside the merging
or distribution routines, and hence reduces the number of data streams that can be
handled concurrently. One way to interpret Δ is to view it as the amount of additional
memory needed to match the performance of the algorithm on the multihead I/O
model [1] where load balancing disk accesses is not an issue.

Note that the RCM algorithm outlined above is the first asymptotically opti-
mal parallel disk sorting algorithm that approaches the optimal constant factor 2 for
M/B � D. The first two rows of Table 7.1 show that single disk sorting (e.g., mul-
tiway mergesort) is optimal. Greed sort [21] is an optimal (up to a constant factor)
deterministic sorting method based on mergesort; it does it an approximate merge
and then finalizes the merge using columnsort. Balance sort [20] is an equally opti-
mal but more practical deterministic sorting algorithm that uses distribution sorting
together with adaptive allocation of blocks. An algorithm frequently used in practice
is a single disk algorithm together with superblock striping (i.e., using logical blocks
of size BD). This algorithm is quite good if the input is sufficiently small that we can

1458 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

still sort in two passes despite the much larger block size. Using Theorem 5.1, we get
the same asymptotic bounds if we use the parallel disk mergesort outlined above to-
gether with any deterministic striping discipline (SM); that is, even as a deterministic
algorithm, our algorithm has performance comparable to algorithms used in practice.

Mergesort using SRM was analyzed in [6]. Although our optimal prefetching
result simplifies and improves the prefetching algorithms given there, we do not get
improved asymptotic bounds.

Distribution sort with randomized cycling (RCD+). Using random sampling
and the duality between reading and writing, as shown in Figure 7.1, we can transfer
the results for mergesort to results using distribution-based sorting algorithms. We
obtain a new distribution sort using deterministic striping (RD) or simple randomized
striping (SRD). We can also improve the analysis of the variant with RC [24] reducing
the constant factor from three to two. Furthermore, an additional optimization can be
used to remove the additive term min(N

BD , log(D)/O(γ)) in the complexity of RCM.
Below we describe the resulting algorithm RCD+ in more detail since it currently
represents the parallel disk sorting algorithm with the best known bounds. The same
algorithm underlies the results for the other allocation strategies SD and SRD.

The basic idea behind distribution sort is to use a generalization of quicksort where
elements are classified into k = O(M/B) classes based on k−1 splitter elements. The
splitters are chosen in such a way that each class has size O(N/k). These classes are
then sorted recursively and the results are appended to form the final output.

As in mergesort, we start with an input that is striped over the disks using some
arbitrary allocation strategy. We set k = min(N/(M − cBD),M/B − cBD) for an
appropriate parameter c. To find the splitter elements we take dk− 1 random sample
elements for an appropriate integer d. The sample is sorted and every dth element in
the sorted sample is used as a splitter. Standard calculations using Chernoff bounds
indicate that d = O(log k) is sufficient to ensure that with high probability at most
O(N/k) elements lie between two splitters. It can be seen that the number of I/Os
needed for obtaining the sample is only a lower-order term compared to the number
of I/Os needed to scan the input.

Now the input is classified into k classes by scanning the input and putting each
element in the appropriate class. For each class we use an output stream allocated
using RC. For each class, an output buffer block is maintained that is written to
an RC allocated output stream when the buffer is completely filled. Writing uses
greedyWriting. Here it is useful that the algorithm is an online algorithm since it is
not known in advance in what order blocks have to be written out.

The additive term in the I/O bound for RCM mergesort can be avoided in RCD+
using the simple observation that the write buffers need not be flushed—blocks that
are logically written but still in the output queue when the distribution finishes, are
not flushed to disk but kept in the queues; see also the last sentence in Theorem 5.1.
When we read a block in the subsequent recursive sorting phases, we therefore have to
check whether this block is still in the output queue and should be taken from there.

Recursive sorting of the classes proceeds depth first, from left to right. As soon
as a class fits into internal memory, it is loaded and sorted internally, then it is output
using any kind of striping. No randomization is needed for the final output because
there is only a single data stream. It suffices to keep D output buffer blocks for the
final output. Since the output is generated in sorted order, these output buffers need
not be flushed when we are finished with a class which would lead to load imbalance
for writing and partially filled blocks. Rather these buffer blocks are kept until they

DUALITY BETWEEN PREFETCHING AND WRITING 1459

are filled by the sorting of subsequent classes. This way the output is produced in a
perfectly striped fashion without partially filled blocks.

8. A tight lower bound for external sorting. Our main result for parallel
disk sorting is that we close the gap between the upper and lower bounds up to lower-
order terms. However, the lower bound from [1] leaves open the constant factors.
In particular, it is not clear there what happens if the number of output steps and
input steps differ. Therefore we now strengthen the lower bound to obtain the right
constant factor.

Theorem 8.1. Assuming that M/B is an increasing function, the number of
I/Os required to sort or permute n items, up to lower-order terms, is at least

2N

D

log(N/B)

B log(M/B) + 2 logN
∼

⎧⎪⎪⎨
⎪⎪⎩

2N

DB

log(N/B)

log(M/B)
if B log

M

B
= ω(logN),

N

D
if B log

M

B
= o(logN).

The second case in the theorem is the pathological case in which the block size B
and internal memory size M are so small that the optimal way to permute the items
is to move them one at a time in the naive manner, not making use of blocking.

The rest of this section is devoted to a proof of Theorem 8.1.

For the lower bound calculation, we can assume without loss of generality that
there is only one disk, namely, D = 1. The I/O lower bound for general D follows by
dividing the lower bound for one disk by a factor of D.

Definition 8.2. We call an input operation simple if each item that is transferred
from the disk gets removed from the disk and deposited into an empty location in
internal memory; similarly, an output is simple if the transferred items are removed
from internal memory and deposited into empty locations on disk.

Lemma 8.3 (Aggarwal and Vitter [1]). For each computation that implements a
permutation of the N items, there is a corresponding computation strategy involving
only simple I/Os such that the total number of I/Os is no greater.

Proof. It is easy to construct the simple computation strategy by working back-
wards. We cancel the transfer of an item if its transfer is not needed for the final
result. The resulting I/O strategy is simple.

For the lower bound, we use the approach of Aggarwal and Vitter [1] and bound
the maximum number of permutations that can be produced by at most t I/Os. If
we take the value of t for which the bound first reaches N !, we get a lower bound on
the worst-case number of I/Os. We can get a lower bound on the average case in a
similar way.

Definition 8.4. We say that a permutation p1, p2, . . . , pN of the N items
can be produced after tI input operations and tO output operations if there is some
intermixed sequence of tI input operations and tO output operations so that the items
end up in the permuted order p1, p2, . . . , pN in extended memory. (By extended
memory we mean the memory locations of internal memory followed by the memory
locations on disk in sequential order.) The items do not have to be in contiguous
positions in internal memory or on disk; there can be arbitrarily many empty locations
between adjacent items.

As mentioned above, we assume that I/Os are simple. Each I/O transfers exactly
B items, although some of the items may be nil . In addition, the I/Os obey block

1460 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

boundaries, in that all the non-nil items in a given I/O come from or go to the same
block on disk.

Initially, the number of producible permutations is 1. Let us consider the effect of
an output. There can be at most N/B+o−1 nonempty blocks before the oth output
operation, and thus the items in the oth output can go into one of N/B + o places
relative to the other blocks. Hence, the oth output boosts the number of producible
permutations by a factor of at most N/B + o, which can be bounded trivially by

N(1 + logN).(8.1)

For the case of an input operation, we first consider a read I/O from a specific
block on disk. If the b items involved in the read I/O were together in internal memory
at some previous time (e.g., if the block was created by an earlier output operation),
then the items could have been arranged in an arbitrary order by the algorithm while
in internal memory. Thus, the b! possible ordering of the b inputted items relative
to themselves could already have been produced before the input operation. This
implies in a subtle way that rearranging the newly inputted items among the other
M − b items in internal memory can boost the number of producible permutations by
a factor of at most

(
M
b

)
, which is the number of ways to intersperse b indistinguishable

items within a group of size M .
The above analysis applies to input from a specific block. If the input was pre-

ceded by a total of o output operations, there are at most N/B + o ≤ N(1 + logN)
blocks to choose from for the I/O, so the number of producible permutations is boosted
further by at most N(1 + logN). Therefore, assuming that at some point the b in-
putted items were previously together in internal memory, an input operation can
boost the number of producible permutations by at most

N(1 + logN)

(
M

b

)
.(8.2)

Now let us consider an input operation in which some of the inputted items were
not together previously in internal memory (e.g., the first time a block is read). By
rearranging the relative order of the items in internal memory, we can increase the
number of producible permutations. Given that there are N/B full blocks initially,
we get the maximum increase when the N/B blocks are read in full, which boosts the
number of producible permutations by a factor of

(B!)N/B .(8.3)

Let I be the total number of input operations. In the ith input operation, let bi be
the number of items brought into internal memory. By the simplicity property, some
of the items in the block being accessed may not be brought into internal memory,
but rather may be left on disk. In this case, bi counts only the number of items that
are removed from disk and left in internal memory. In particular, we have 0 ≤ bi ≤ B.

By the simplicity property, we need to make room in internal memory for the new
items arriving, and in the end all items are stored back on disk. Therefore we get the
following lower bound on the number O of output operations:

O ≥ 1

B

(∑
1≤i≤I

bi

)
.(8.4)

DUALITY BETWEEN PREFETCHING AND WRITING 1461

Combining (8.1), (8.2), and (8.3), we find that

(
N(1 + logN)

)I+O ∏
1≤i≤I

(
M

bi

)
≥ N !

(B!)N/B
,(8.5)

where O satisfies (8.4).
Let B̄ be the average number of items read during the I input operations. By

a convexity argument, the left-hand side of (8.5) is maximized when each bi has the
same value, namely, B̄. From (8.5) and (8.4), we get

(
N(1 + logN)

)I+O
(
M

B̄

)I

≥ N !

(B!)N/B
,(8.6)

(
N(1 + logN)

)I+O
(
M

B̄

)(I+O)/(1+B̄/B)

≥ N !

(B!)N/B
.(8.7)

The left-hand side of (8.7) is maximized when B̄ = B, so we get

(
N(1 + logN)

)I+O
(
M

B

)(I+O)/2

≥ N !

(B!)N/B
.(8.8)

The theorem follows by taking logarithms of both sides of (8.8) and using Stirling’s
formula and the fact that M/B is an increasing function.

9. Conclusions. In this paper we have exploited a natural duality between
prefetching (read problem) and outputting (write problem). We have shown that
an optimal schedule for one problem is the reverse of an optimal schedule for the
other. We have generalized our approach to the read-many case in which frequently
accessed blocks can be cached in memory. We have further reduced the problem of
mergesorting and distribution sorting to the read and write problems, and by dual-
ity we have given practical yet asymptotically optimal (up to lower-order terms) em
algorithms for mergesort and distribution sort. The algorithms are practical [12] and
have very low overheads, thus making them desirable in practice.

Appendix. Summary of notation.
B: Block size.
bi: The ith block in a sequence of blocks.
D: Number of disks. In an acronym it stands for a sorting algorithm based on data

Distribution.
d: Index of some disk.
disk(bi): The disk where block bi is allocated.
FR: Fully random allocation.
iStep(bi): The input step when block bi is fetched.
iBacklog(bi): |{j > i : iStep(bj) ≤ iStep(bi)}|.
L: Number of blocks in the access sequence Σ.
M : Size of the fast internal memory. In an acronym it stands for a sorting algorithm

based on Merging.
m: Number of buffer blocks in the buffer pool. Note that m ≤ M/B. In the sorting

algorithms m = Θ(M/B).
N : The number of elements to be sorted.
oStep(bi): The output step when block bi is fetched.
oBacklog(bi): |{j < i : oStep(bj) ≥ oStep(bi)}|.

1462 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

RC: Randomized Cycling allocation.
πi: In RC allocation the random permutation used to allocate sequence i.
S: Stands for Striping in an allocation strategy or sorting algorithm.
SR: Simple randomized Striping using a random rotation.
Sort(N): N

DB (1 + logM/B
N
M) the I/O complexity of sorting N elements “without the

constant factor.”
Σ: The sequence of blocks to be read or written.
ΣR: The reverse of sequence Σ.

Acknowledgments. We would like to thank Jeffrey Chase, Andreas Crauser,
S. Mitra, Nitin Rajput, Erhard Rahm, and Berthold Vöcking for valuable discus-
sions. Anonymous referees have given detailed feedback that helped to improve the
readability of the paper.

REFERENCES

[1] A. Aggarwal and J. S. Vitter, The input/output complexity of sorting and related problems,
Comm. ACM, 31 (1988), pp. 1116–1127.

[2] S. Albers, On the influence of lookahead in competitive paging algorithms, Algorithmica, 18
(1997), pp. 283–305.

[3] S. Albers and M. Büttner, Integrated prefetching and caching in single and parallel disk
systems, in Proceedings of the 15th Annual ACM Symposium on Parallel Algorithms and
Architectures, San Diego, 2003, pp. 109–117.

[4] S. Albers, N. Garg, and S. Leonardi, Minimizing stall time in single and parallel disk
systems, in Proceedings of the 30th Annual ACM Symposium on Theory of Computing
(STOC-98), New York, 1998, ACM Press, pp. 454–462.

[5] R. D. Barve, E. F. Grove, and J. S. Vitter, Simple randomized mergesort on parallel disks,
Parallel Comput., 23 (1997), pp. 601–631.

[6] R. D. Barve and J. S. Vitter, A simple and efficient parallel disk mergesort, in Proceedings
of the 11th Annual ACM Symposium on Parallel Algorithms and Architectures, St. Malo,
France, 1999, pp. 232–241.

[7] A. L. Belady, A study of replacement algorithms for virtual storage computers, IBM Systems
J., 5 (1966), pp. 78–101.

[8] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, Cambridge, UK, 1998.

[9] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, Implementation and performance of in-
tegrated application-controlled file caching, prefetching, and disk scheduling, ACM Trans.
Comput. Systems, 14 (1996), pp. 311–343.

[10] F. Dehne, W. Dittrich, and D. Hutchinson, Efficient external memory algorithms by sim-
ulating coarse-grained parallel algorithms, in Proceedings of the 9th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, Newport, RI, 1997, pp. 106–115.

[11] F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari, Reducing I/O complexity by
simulating coarse grained parallel algorithms, in proceedings of the 13th Annual Interna-
tional Parallel Processing Symposium, IEEE, San Juan, Puerto Rico, 1999, pp. 14–20.

[12] R. Dementiev and P. Sanders, Asynchronous parallel disk sorting, in Proceedings of the 15th
Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Diego, 2003,
pp. 138–148.

[13] D. A. Hutchinson, P. Sanders, and J. S. Vitter, Duality between prefetching and queued
writing with parallel disks, in Proceedings of the 9th Annual European Symposium on
Algorithms (ESA), Lecture Notes in Comput. Sci. 2161, Springer, Berlin, 2001, pp. 62–73.

[14] D. A. Hutchinson, P. Sanders, and J. S. Vitter, The power of duality for prefetching and
sorting with parallel disks, in Proceedings of the 12th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA Revue), Crete Island, Greece, 2001, pp. 334–335.

[15] M. Kallahalla and P. J. Varman, Optimal read-once parallel disk scheduling, in Proceedings
of the 6th Annual Workshop on Input/Output in Parallel and Distributed Systems, Atlanta,
GA, 1999, pp. 68–77.

[16] M. Kallahalla and P. J. Varman, Optimal prefetching and caching for parallel I/O systems,
in Proceedings of the 13th Annual Symposium on Parallel Algorithms and Architectures,
Crete Island, Greece, 2001, pp. 219–228.

DUALITY BETWEEN PREFETCHING AND WRITING 1463

[17] M. Kallahalla and P. J. Varman, PC-OPT: Optimal offline prefetching and caching for
parallel I/O systems, IEEE Trans. Comput., 51 (2002), pp. 1333–1344.

[18] T. Kimbrel and A. R. Karlin, Near-optimal parallel prefetching and caching, SIAM J. Com-
put., 29 (2000), pp. 1051–1082.

[19] D. E. Knuth, The Art of Computer Programming—Sorting and Searching, Vol. 3, 2nd ed.,
Addison Wesley, Reading, MA, 1998.

[20] M. H. Nodine and J. S. Vitter, Deterministic distribution sort in shared and distributed
memory multiprocessors, in Proceedings of the 5th Annual ACM Symposium on Parallel
Algorithms and Architectures, Velen, Germany, 1993, pp. 120–129.

[21] M. H. Nodine and J. S. Vitter, Greed sort: Optimal deterministic sorting on parallel disks,
J. ACM, 42 (1995), pp. 919–933.

[22] P. Sanders, S. Egner, and J. Korst, Fast concurrent access to parallel disks, in Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 2000,
pp. 849–858.

[23] J. S. Vitter, External memory algorithms and data structures: Dealing with MASSIVE data,
ACM Computing Surveys, 33 (2001), pp. 209–271.

[24] J. S. Vitter and D. A. Hutchinson, Distribution sort with randomized cycling, in Proceedings
of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, D.C.,
2001, ACM, New York, SIAM, Philadelphia, pp. 77–86.

[25] J. S. Vitter and E. A. M. Shriver, Algorithms for parallel memory I. Two-level memories,
Algorithmica, 12 (1994), pp. 110–147.

