Compression, Indexing, and Retrieval
for Massive String Data

Jeff Vitter

Texas A&M University and University of Kansas, USA
with coauthors

Wing-Kai Hon

National Tsing Hua University, Taiwan

Rahul Shah

Louisiana State University, USA

(and collaborators Sabrina Chandrasekaran, Yu-Feng Chien, Sheng-Yuan Chiu,
Oguzhan Kulekci, Manish Patil, Sharma Thankachan, & Bojian Xu)

Outline

Background on entropy-compressed data structures
— Compressed Suffix Arrays
— FM-index
— Wavelet tree
— Using Sparse Suffixes (for external memory)
Goal is in sight:
To achieve the efficiency of inverted indexes
but allow more general patterns (as in suffix trees)

External Memory Text Indexing with Compression

Document Retrieval
— Top-k retrieval (relevance) - Searching for Multiple Patterns

Conclusions and Open Problems

6/25/2010

The Attack of Massive Data

* Lots of massive data sets being generated
— Web publishing, bioinformatics, XML, e-mail, satellite geographical data
— IP address information, UPCs, credit cards, ISBN numbers, large inverted files
— Petabytes of data (10%° bytes), soon exabytes (108 bytes)

* Data sets need to be compressed (and are compressible)
Mobile devices have limited storage available

Search engines use DRAM in place of hard disks

Next generation cellular phones will cost # bits transmitted
1/0 overhead is reduced
There is never enough memory!

* Goal: design data structures to manage massive data sets
— Near-minimum amount of space
* Measure space in data-aware way, i.e. in terms of each individual data set
— Near-optimal query times for powerful queries
— Efficient in external memory ?

Analogy to a card catalog in a library

= 10-floor library
= card catalog near front entrance
= indexes books’ titles and authors

» negligible additional space

» a small card (few bytes) per book

= limited search operations!

6/25/2010

Word-level indexing (a la Google)
(search for a word using inverted index)

. 000000000000000 000000
| I I I | I

iy iy

—_—

. Split the text into words.
. Collect all distinct words in a dictionary.

3. For each word w, store the
inverted list of its locations i
in the text: iy, iy, -+ ol o

Can be implemented in about 15% of text space
using gap encoding of inverted lists.

N

Full-text Indexing
(where pattern P is arbitrary)

Given a text T of n characters from an alphabet 2,
build an index that can answer the following queries
for any input pattern P (of length p):

1. Count the number of occurrences of Pin T;
2. Report the locations in T where P occurs.

6/25/2010

Inverted Indexing Won’t Work Well

* Not handled efficiently by Google
* Clear notion of word is not always available:

e Some Eastern languages
e unknown structure (e.g., DNA sequences)

* Alphabet 2, text T of size n bytes (i.e., n log | Z| bits) :
each text position is the start of a potential occurrence of P

eee OO00000000000000000O00000O0000000O0 ---
rrerrrrrrrrrrrrrrrrrrrrrrrrrrre

Naive approach: blow-up with O(n?) words of space
Suffix trees and suffix arrays use O(n) words (i.e., O(n log n) bits)
Can we do better with linear space O(n log |Z|) bits?
Or best yet with compressed space n H, (1 + o(1)) bits (where H, is entropy),

which is competitive with inverted indexes?

Suffix tree / Patricia trie, |2|=2

160
floors
2 skip value
40
floors
. . . . 10
* Suffix tree is a compact trie storing the 475/s
suffixes of the input string (eg., bababa#).
— Space is O(n log n) bits, = 16 x text size.
» Suffix array is the array of leaf values.
— Space is O(n log n) bits, =4 x text size. ST SA

6/25/2010

Compressed Suffix Array [Grossi, vitter sTOC00]

* Simulate the suffix array-based binary search

* Avoid storing all the suffix array entries.
Instead generate them on the fly:
T =abaababbs$s
SSl: 1 4 s |2 |5 |7 |8 |
Rl 5 6 7 (1 (4 J38 |2 |

@ is “neighbor function”: SA(®[i]) = SA[i] +1
* ®values are increasing runs, gap compressible
* Recurse to looking only at suffixes in even positions.
* Resulting data structure: first w/ linear size O(n log |Z|).
* [Sada ISAACO00]: O(n H,) space, modified it to be self index.

Compressed Suffix Array (sross, cupta, vitter sona03]

50
floorgipors
% O(p + polylog(n)) search time .
New indexes * First index with size equal to text
(such as our CSA) size in entropy-compressed form

require 20%-40%

~ i I
of the text size (~nH,, ie., w/ mult. constant 1)!

* Self-indexing text:

117 no need to keep the text!
10 floors .
floors x Any portion of the text can be
i = decoded from the index.
floors 7 T
= ﬂlgs % Decoding is fast and does not
= require scanning the whole text.

in\l/erted i
text new . fex 3‘#:2;,‘ » Can cut search time further by

log n factor (word size).

6/25/2010

FM-Index [Ferragina and Manzini FOCS00]
Burrows-Wheeler Transform + Pattern Matching

T=abaababb$ Cla]=0

C[b]=4
backward P=
search
sp = (sp-1).count[c] + C[c] +1

ep = ep.count[c] + C[c]

V)
o

BWT(T)= b

AT T OO T OO

AT T TOD

T T QO
AT T T |D
€T T |

BWTIi] = T[SA[i]-1]

AT T QO T OO TO ¢
LT TOLO T DT |O

Size O(n H,), more recently modified to be ~ n H,

Wavelet Tree [Grossi, Gupta, Vitter SODA03]

* Neighbor function ® (in CSA) and Last-to-First
function (in FM-index) are closely related

— LF(i) = SAT [SA[i] = 1] = ®(i)

* Both computed elegantly by Wavelet Tree [GGVO03]
— Stores a text (e.g., BWT) in O(n log |Z]|) bits
— Supports rank/select & 2D range search in O(log |Z]) time
— Can be 0-th order entropy compressed via RLE
— When used w/ CSA or BWT = higher-order compression!

6/25/2010 15

6/25/2010

Wavelet Tree [Grossi, Gupta, Vitter SODA03]

T=cabf Begcgaae?ea Beg
000101101001110011 5=labedeia)

1
000170100 ==2bca

of e’sin
=3-0=3

6/25/2010

Two Challenges

Our goal is to realize the advantages of inverted
indexes but allow more general search capability.

Challenges discussed today:
1. External memory performance

2. Building relevance into queries
(output top-k answers)

6/25/2010 19

Parallel Disk Model vitter, shriver sTOC90, 94]

80 GB — 100 TB and more!

= problem size
internal memory size
= disk block size

= # independent disks

Block 1/0
8 —500 KB

Internal Scan: O(N/DB)
Memory| 1-4G8 5orting: O((N/DB) logg(N/M))
Search: Of(logy, N)

w See [Vitter 08] book for overview

6/25/2010

Challenge 1: How to externalize?

Problem:
Compressed Suffix Array and FM-Index
access memory randomly and do not exploit locality
and thus have poor I/O performance!

e 1999: String B-tree
— Introduced by Ferragina and Grossi [FG99]

Linear Space

.] O(n) words =
— External memory version of suffix array O(n log n) bits
(B-tree + SA) ®
— Optimum I/0O bound O(p/B + logy n + output/B),
where B is block transfer size to/from disk
* 2008: Geometric Burrows-Wheeler transform
— index by Chien et al [CHSV08] Succinct Space
(using sparse suffixes) O(n log) bits
— Can we make it compressed ? O(n H,) bits?

Index Using Sparse Suffixes [CHSV08]

d d d d
T=|aab‘aba‘aba‘abb

Blocking size
Suffixes from blocking boundaries (KU96a) d=% IOQIZI n characters
aab aba aba abb = > word size
aba aba abb
aba abb

abb

(d = 3 chars. in this example)

Pattern P = aaba

Search for P in

sparse suffix tree Sparse suffix tree(only 4 suffixes)

6/25/2010

Index Using Sparse Suffixes [CHSVO08]

d d d d

T= Jaa bja b ajabaja b b d=05ogyn

Suffixes from blocking boundaries "

Pattern is found at
the beginning of
the first block

Output size =1

aab aba aba abb
aba aba abb
aba abb

abb

Pattern P = aaba

Search for P in . .
sparse suffix tree Sparse suffix tree(only 4 suffixes)

Index Using Sparse Suffixes [CHSVO08]

But sparse suffix tree
could not capture the
second occurrence

Sparse suffix tree will report only those occurrences
that start at a blocking boundary

6/25/2010

10

Geometric BWT: Index Using Sparse Suffixes

[CHSVOS]
d d d d
T=1la a bla b aja b ala b b

Trie of preceding
d characters in reverse

Sparse suffix tree — Break the pattern into d pairs :
(stores every
other d suffixes) P = aaba with d=3 is broken into:
o ° a|aba (offset 1)

° ° aa|ba (offset 2)
aba* ° aab|a (offset 3)

e Preceding d chararacters are
searched in reverse

Can use wavelet tree for 2D search.
d chars fit in machine word - d matches take O(p) time

How to search patterns within a block

* Four Russians technique (table lookup)

* If d < (logs n)/2,
of different short patterns < vnlogn

* Construct a generalized suffix tree of unique
d-sized blocks
— Find the set of blocks in which the pattern occurs

— Next use inverted index which for each unique
block, stores the list of positions in T where the
block occurs

6/25/2010

11

Index Using Sparse Suffixes [CHSV08]

e Pattern matching problem = Orthogonal Range searching query
— Use R-tree or segment tree or even wavelet tree

* History of 2d range search for exact and approximate pattern matching:
— Lempel-Ziv parsing, Karkkainen and Ukkonen [KU96b]

Amir, Keselman, Landau, Lewenstein2, Rodeh [AKLLLR99]

Grossi and Vitter [GV0O0]

Makinen and Navarro [MKO06]

Hon, Shah, Vitter [HSV06] etc.

* Externalizing the Index
Suffix tree = String B-tree

Internal memory range query structure (like wavelet tree)
- external memory (linear-space) 4-sided structure

O(n log |Z]) bits space

O(p/B + (log)s, n)(logg n) + output logg n) I/Os for reporting
Other tradeoffs also possible using other range search structures
* Two questions:

— Can last term in I/O bound be improved to output/B ?
— Can we achieve a compressed version of this Index ?

i.e.,, O(nlog |Z]) 2> O(nH,)?

Points2Text transformation

* Transforms points in 2D to text such that
range queries can be answered by using
pattern matching queries

* Consider points (x; Y;); construct a text block
x;*#y,& for each point and concatenate them
to form text T

* 2D range query on these points can be
answered by using log?n pattern matching
querieson T

* Given range [Xq,, --Xpg], break it up into log n
binary ranges, where each range is specified
by a prefix bitstring of < log n characters

e = 2Drange can be broken into
log? n binary 2D ranges

X
--1D range [7,18] i.e. [00111,10010] can be
broken into{00111, 01***, 1000*, 10010}

* Each binary range is queried by pattern xR#y --2D range ([16,19],[8,15]) => **001#01***

-> pattern 001#01

Existing bounds for range queries
- Output bounds for polylog queries for text indexing are tight

(Alternative is square root time queries with output/B output)

T=xqR#y1&xoR#y & ...&x My &

6/25/2010

12

How to Achieve Entropy-Compressed Space ?

* What if we apply entropy compression on each block?

— Number of blocks is stilln / d
— n/d pointers
— O((n /d) log (n/d)) = O(n log | Z]) bits

* How to reduce the number of blocks?

Variable blocking factor d (d= # characters per block)

Combine as many characters as possible
that can be compressed into a machine word

d can be very large in case of frequent blocks
d offsets > O(d,,,,p / log5; n +...) 1/Os

Our O(H,)-bit Encoding Scheme [HSTV09]

T=‘al)aaabaabbbabaabababbaaa

Continue encoding
k (arithmetic coding)

‘aba“aabaabbbabaabababbaaa‘

Number of characters <

d = (log2n)/log |Z|

Condition 1

N - Continue encoding while !
explicitly both conditions are valid

Encoded length <

Condition 2 - Continue the procedure /

recursively for the

remaining text /)

Y2 log n bits

10010 | [GFFA0HEH

- Obtain the first block :

6/25/2010

13

New Space and I/O bounds

Space Improved
— O(n log) bits = O(n H,)+ o(n log | Z]) bits

1/0 bound increased
— O(p/ B+ (logj5 n) loggn + outputlogyn)1/Os
- O(p (log n) /B +(log3n) / ((log |2|) log B) + outputlogzn)I/Os

This can be further improved to
O(p/ (Blogs n) +(log*n) / loglogn + outputlogyn)I|/Os
— by using external memory sparse suffix tree with t-suffix links

* t-suffix link is implemented using multiple applications of suffix
links in CST

— Slight increase in space term
* O(n H+n)+o(nlog |Z]) bits

Related Work in External Memory

2007: External memory index by Gonzalez and Navarro [GNO7]
- counting: O(p) I/Os
- reporting: O(output / B) I/Os (optimum)
- O(H, (log (1/H,)) n log n) bits of space

2007: External memory index by Arroyuelo-Navarro
uses LZ-indexes [ANO7]

-8 nH, +o(nlog | Z]) bits space

- No theoretical bounds given for pattern searching
- Practical index

- 2060 disk access when p = 5,

- Need more I/Os as p increases

6/25/2010

14

Practical implementation [CHSV10]

ST . Suffix tree (with naive blocking)

ST +SA : Suffix tree (naive blocking) and suffix array
FSBT : Full version of string B-tree

FSBT + SA : Full version of string B-tree and suffix array
SSBT(d) + Rtree : Sparse string B-tree with R-tree
SSBT(d) + kdtree : Sparse string B-tree with kd-tree
SSBT(d) + Wavelet : Sparse string B-tree w/ wavelet tree

6/25/2010 39

|/Os per unsuccessful & successful search query

Number of Disk Access

No oce chart 3000 occ chart
30 T T T T | T T T
ST + 160 L ST +
ST+SA x . ST+SA x
FSBT ; FSBT
25 L FSBT+SA o a0l FSBT+SA o |
SSBT+KDtree - & - ' SSBT+KDtree - -m- -
SSBT+Rtree --© ' SSBT+Rtree - -@
SSBT+Wavelet - - - 120 | SSBT+Wavelet — o - |
20 - B .
scm °
e 100 | 4
S .
15 - Loe -
\ 80 [-
4 &,
. S *
10 + 4 60 g ® g _
u Tem
X 40 . i
n
5+ * o _ X
20 - B
0 1] 1] 0 | | | L
0 5 10 15 20 0 5 10 15 20
Size of Index (MB) Size of Index (MB)

25

6/25/2010

15

Practical Shortcuts for Searching Genome
[KHSVX10]

* Human genome is not readily compressible
 Consists of = 3 billion base pairs = 800 MB space
» Key idea is instead sparsification, d > 1

* Tradeoff: speed (low d) vs. succinctness (high d)
 Verify 1-d results rather than use 2-d searching

* Prioritize rightmost mismatches (where data is
less precise)

6/25/2010 41

Size of the Index for the Human Genome
Using Different Aligners

* SOAP2 : 6.1 GB, bidirectional BWT

* BOWTIE :2.9GB, bidirectional BWT
 W-RA(4) :3.4GB, sparse SA, d=4 bases

* W-RA(8) :2.0GB, sparse SA, d=8 bases
* W-RA(12) : 1.6 GB, sparse SA, d=12 bases
« ZO0OM : No index, sequential scan

Raw human genome occupies =700 MB
(when each base is coded by 2 bits)

6/25/2010

16

6/25/2010

Reference Sequence: Human Chromosome 1
Reads: 1 M randomly sampled short reads from target
Output: <100 random matches reported per read

50

45 ~
. 40
.g \\
o 35 E . —
] ——
g —_
E 30 —=<BOWTIE
.g 25 4 —~ZOOM
£ 20 - PSI-RA(12)
ugo 15 - ——PSI-RA(8)
X -=-PSI-RA(4
<10 - —_—)

5 e . — =

0

25 30 35 40 45

Read Length

Reference Sequence: Human Chromosome 1
Reads: 1 M short reads from SRR001115 experiment
Output: <100 random matches reported per read

40

35

ol N

%]
©
c
< w
(%)
& 25 e
E \\ —~<~BOWTIE
'-g 20 \ —=Z00M
ho
g 15 -~ PSI-RA(12)
go ——PSI-RA(8)
Z 10 '\:\\ ~a-PSI-RA(4)

5 — — a

0

25 30 35 40 45
Read length

17

Two Challenges

Our goal is to realize the advantages of inverted
indexes but allow more general search capability.

Challenges discussed today:
1. External memory performance

2. Building relevance into queries
(output top-k answers)

6/25/2010 46

Document Indexing

Pattern Matching: Given a text T and pattern P

drawn from alphabet Z, find all locations of P in T.

— data structures: Suffix Trees and Suffix arrays

— Better: Compressed Suffix Arrays [GGV03], FM-Index [FMO5]

Document Listing:

Given a collection of text strings (documents) d,,d,,...d,
of total length n, search for query pattern P (of length p).
— Qutput the documents which contain pattern P.

— Issue: Total number of documents output might be much smaller
than total number of pattern occurrences,
so going though all occurrences can be too costly.

— Muthukrishnan: O(n) words of space, answers queries in optimal
O(p + output) time.

— Succinct version by Sadakane and by Valimaki & Makinen.

6/25/2010

18

Suffix tree based solutions

d1:

banana Suffixes:

d2: a$

urban) an$

($<a<b) 02 anad
anana$
ban$
banana$
n$
na$
nana$

. _ ‘“ » rban$

Example: Search for pattern “an urban$

* We look at the node’s subtree:
d1 appears twice and d2 appears once in this subtree

Modified Problem—using Relevance

* Instead of listing all documents (strings) in which pattern
occurs, list only highly “relevant” documents.
— Frequency: where pattern P occurs most frequently.
— Proximity: where two occurrences of P are close to each other.
— Importance: where each document has a static weight
(e.g., Google’s PageRank).
* Threshold vs. Top-k
— Thresholding: K-mine and K-repeats problem [Muthu 2002].
— Top-k: Retrieve only the k most-relevant documents.
* Intuitive for User

6/25/2010

19

6/25/2010

Approaches

* Inverted Indexes
— Popular in IR community.
— Do not efficiently answer arbitrary pattern queries.

* Muthukrishnan’s Structures (based on suffix trees)

— Take O(n log n) words of space for K-mine and K-
repeats problem (thresholding) while answering
queries in O(p + output) time.

— Top-k queries require additional overhead.

Preliminary : RMQs for top-k on array

* Range Maximum Query: Given an array A and query (i,]),
report the maximum of A[i..j]
— Linear space, linear preprocessing time DS with O(1) query time
* Range threshold: Given an array A, and a query (i,j,K),
report all the numbers in A[i..j] which are >=K
— Can be done using repeated RMQs in O(output) time
* Range top-k: Given an array A, and a query (i,j,k) report
top-k highest numbers in A[i..j]
— Repeated RMQs + heap = O(k log k) time
* Generalization: Given array A, and query specifies set of t
ranges [iy,j;], linis] - livii
— Threshold : O(t +output) time; top-k : O(t + k log k) time

20

Our first framework

* Goal: Use only O(n) words of space.

* For a given query pattern P of length p, each document d
gets a score(P, d) based upon the occurrences of P in d.

* Arbitrary score function allowed.

— Examples: frequency, proximity, Google Page Rank are all
captured in this framework.

* Answers the thresholding version in optimal time
O(p+ output), improving space bound of Muthukrishnan.
* Answers top-k version (in sorted order) in
O(p + k log k) time.
* Does not need to look at all matching documents!

N-structure Augmenting Suffix Tree

(2,0)
d1:3, d3:5, d4:3, d5:4

d4:2
(3,1)
(12,

d2:2,d3:

VAN

dl d7 d1 g3 94 d5 d2 3 95 d3d3 dd g3 g0 4 g6 d5 dé

* N-structure N,: At a node v, store an entry for document d; if at least two
children of v have d; in their subtrees.

* The score of d;at node v is # occurrences of d; in the subtree.
* Link every entry for document d; to the entry of d; in its closest ancestor.
* Each link is annotated with preorder numbering of (origin, target).

6/25/2010

21

Query pattern P
(2,1,1)—range query corresponds to the
subtree of node v;
threshold K = 2

Subtree(v) =
preorder range [2,18]
For threshold K = 2,
di1,d2,d3,d5 ... Yes
d4,d6 ... No

d5:2

d5 d3 d3 d4
dl o d1 43 g4 d5 d2 d3 3 | 45 dd de 5

* If the query matches up to node v in the suffix tree, then we need to focus on all the links
with origin in Subtree(v) and target above Subtree(v).
— This ensures each document is considered only once.
¢ Among these links, we need the links whose origin score value is greater than threshold K.

¢ Can be done via a (2,1,1)-query in 3-D

Main Idea !

* Each link has 3 attributes (origin, target, origin_score)
* (2,1,1)-range query in 3D
— Get all links with
e Originin [2,18] (subtree of v, the range where pattern matches)
* Targetvalue <2 (enforces uniqueness of each document)
* Origin score 22 (applies score threshold)

— Best linear space structure takes O(output x log n) time to answer such a 3D
range query—which means O(p + output x logn) time—too costly!

— Our target is O(p + output) time.
* New Ildea: # possible target values < #ancestorsofv < p

— So group the links by their target values and
query each relevant group separately via a (2, 1)-range query in 2D.

6/25/2010

22

Query Transformation

| structures

(2,1)-range queries
in each I-structure

Range of v =[2,18]
|-structure For thresold K=2,
d1,d3,d5 are reported
atroot |, and
d1:3,d3:5,d4:3,d5:4 d2 gets reported at

dummy node |
a9, °
311 211 d4:2
(3.1) ((121
y (28,1)
d2:2,d3: 20,1)
(31,1) ds:2

di:2. (1,)/ /\ d6:2
ds d3 d3 d4 a3 \ N

d1 gy d1 d3 ga d5 d2 d3 g d5 d4 ds d5 db

At each node, make an I-structure array based upon incoming links (origin, doc
ID, score) sorted by the preorder rank of origin:
— Atnode 1:{(2,3,2),(3,1,2),(11,4,1),(12,5,2),(19,4,2),(20,3,3),(28,5,2),(31,1,1)
— At node 2: (6,2,1),(10,3,1),(16,2,1),(17,3,1)

6/25/2010

23

Space Analysis

Number of entries in N-structures is < 2n-1.
So is the number of links.
So is the number of entries in I-structures overall.

Space for RMQ structures is linear in the size of
data.

Thus overall O(n) words of space.

Data size =16 MB
Index size = 10 x input

Preliminary Experimental Results

k vs time

w
G
<)

300

N
&
=]

N
=3
S

.
o)
=]

——1P|=5

time (mico sec)

100 |P| =10
50
0
5 10 15 20 25 30 35 40 45 50
k
Comparing different indexes for P=5 and K=10
|__index | _Indexsize | Query time (micro sec)
Wu/Muthu 250 x input 50
Culpepper et al 2.5 x input 700
Ours 10 x input 70
Times will be substantially larger if the data structure does not fit in internal memory.
6/25/2010 65

6/25/2010

24

Compressed Data Structure

* O(n) words of space in previous solution
(i.e., O(n log n) bits) is >> text size

e Can we design data structures that take only as
much space a compressed text? And still
answer gueries efficiently?

* Yes! We show solutions based on sparsification
and CSA (compressed suffix array).

Sparsification example

Group consecutive g = k X log?*¢ n leaves and mark them.
We build a CSA on the n/g bottom-level marked nodes.

n,a,b,p

At each marked node,
the top-k list is stored explicitly

LCA of two marked nodes

Is also marked \

a,b,e,f

Example: Group sizeg=4

6/25/2010

25

Sparsification Framework

First assume k (or K) is fixed, let group size g = k log?*¢ n.

Take consecutive g leaves (in Suffix tree) from left to
right and make them into groups. Mark the Least
Common Ancestor of each group, and also Mark each
node that is an LCA of two Marked nodes.

Store explicit list of top-k highest scoring documents in
Subtree(v) at each marked node v.

Repeat thislog ntimes: k=1, 2, 4, 8, 16,
Because of the sampling structure, the total space used
is
O((n/ k log?*€ n) x k x log n x log n) words
O(n / log® n) bits
o(n) bits

Query Approach

Explicit top-k list stored at u

Fringe leaves : < 2g documents are separately
queried for their for frequency counts

6/25/2010

26

Results for Document Indexing
with Relevance

* O(n)-word data structures
— K-mine, K-repeats, score-threshold: O(p + output) time.
— Top-k highest relevant documents: O(p + k logk) time.
— O(n) and O(n log n) construction time, resp.

* Compressed data structures
— Frequency
* K-mine: O(p + log? n + output x log**€ n)
* Top-k: O(p + k log**€n)
* Space: 2|CSA| + o(n) + D log (n/D)
— Importance : log3*¢n, 1| CSA| space.
— Document retrieval: |CSA| + o(n) + O(D log(n/D)) bits of
space with O(p + output x log'*€n) time.
— No results for ““proximity”; not succinctly computable

Retrieval for Multiple Patterns

Example relevance measures: TFIDF, proximity
between 2 patterns, combined frequency scores

Top-k: O(n) words of space index with
O(p, + p, + V(nk) log? n) query time
Top-k with approximate TFIDF is achievable

Succinct results ?
— Proximity unlikely

6/25/2010 72

6/25/2010

27

Summary of Relevance Queries

* This framework is provably optimal in query time,

uses linear space, and is constructible in linear time

for single-pattern queries.

* With optimizations, we get an index 7—10 x text size

that can answer queries in << 1 millisecond.
* Competitive with inverted indexes.
* Can improve inverted indexes (for phrase queries).
* We give the first entropy-compressed solutions.
* Linear-space framework for multipattern queries.

Future Challenges in
Compressed Data Structures

Our goal is to realize the advantages of inverted

indexes but allow more general search capability.

Many exciting challenges to explore!

* External memory performance

* Building relevance into queries (outputting top-k)
* Dual problem of dictionary matching

* Biological applications

* Streaming problems

* Approximate matching and maximal matching

* 2D matching

«Building practical systems 82

6/25/2010

28

