
Tight Competitive Ratios
for Parallel Disk Prefetching and Caching∗

Wing-Kai Hon
Dept. of Computer Science

National Tsing-Hua University
wkhon@cs.nthu.edu.tw

Rahul Shah
Dept. of Computer Science
Louisiana State University
rahul@cs.purdue.edu

Peter J. Varman
Dept. of ECE

Rice University
pjv@rice.edu

Jeffrey Scott Vitter
College of Science
Purdue University

jsv@purdue.edu

ABSTRACT
We consider the natural extension of the well-known sin-
gle disk caching problem to the parallel disk I/O model
(PDM) [17]. The main challenge is to achieve as much par-
allelism as possible and avoid I/O bottlenecks. We are given
a fast memory (cache) of size M memory blocks along with
a request sequence Σ = (b1, b2, ..., bn) where each block bi

resides on one of D disks. In each parallel I/O step, at most
one block from each disk can be fetched. The task is to
serve Σ in the minimum number of parallel I/Os. Thus,
each I/O is analogous to a page fault. The difference here is
that during each page fault, up to D blocks can be brought
into memory, as long as all of the new blocks entering the
memory reside on different disks. The problem has a long
history [18, 12, 13, 26]. Note that this problem is non-trivial
even if all requests in Σ are unique. This restricted version
is called read-once. Despite the progress in the offline ver-
sion [13, 15] and read-once version [12], the general online
problem still remained open. Here, we provide comprehen-
sive results with a full general solution for the problem with
asymptotically tight competitive ratios.

To exploit parallelism, any parallel disk algorithm needs
a certain amount of lookahead into future requests. To pro-
vide effective caching, an online algorithm must achieve o(D)
competitive ratio. We show a lower bound that states, for
lookahead L ≤ M , any online algorithm must be Ω(D)-
competitive. For lookahead L greater than M(1 + 1/ε),

where ε is a constant, the tight upper bound of O(
p

MD/L)
on competitive ratio is achieved by our algorithm SKEW.
The previous algorithm tLRU [26] was O((MD/L)2/3) com-
petitive and this was also shown to be tight [26] for an LRU-
based strategy. We achieve the tight ratio using a fairly

∗Supported by NSF CCF–0621457, NSF CNS–0541369.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

different strategy than LRU. We also show tight results for
randomized algorithms against oblivious adversary and give
an algorithm achieving better bounds in the resource aug-
mentation model.

Categories and Subject Descriptors
F.2.m [Analysis of Algorithms and Problem Com-

plexity]: Miscellaneous

General Terms
Algorithms

Keywords
Online algorithms,Competitive Analysis,Parallel Disk Model

1. INTRODUCTION
Parallel disks provide a cost-effective way of speeding up

I/O performance in applications that use massive amounts
of data. The main challenge is to achieve as much paral-
lelism as possible and avoid I/O bottlenecks. The parallel
disk model (PDM) [17] is a popular model for measuring the
I/O complexity of problems when data are allowed to be on
multiple disks. In each parallel I/O step, one block from
each disk can be read (or written) simultaneously. That is,
if D is the number of disks, then one I/O step can read or
write up to D blocks, as long as they fall on different disks.
The objective is to perform a given task in the minimum
number of parallel I/O steps. As an application designer,
the task is to arrange and access data across the disks so as
to have as much parallelism and avoid bottleneck situations
where one may need to access many blocks from the same
disk. Thus, the designer has the freedom to place the data on
appropriate disks. At the systems level, the task of I/O con-
troller is to schedule I/Os and maximize throughput. The
fundamental problem in this model is caching/prefetching:
Given an ordered sequence Σ = (b1, b2, ..., bn) of read re-
quests and a main memory buffer of size M , the problem is
to generate the I/O schedule to serve these requests in the
minimum number of parallel I/Os. Each block in the request
sequence Σ has an associated disk number in {1, .., D}. To
serve the read request for a particular block bi, the block

352

must be in main memory. If it is not present, an I/O must
be done to fetch it. During this I/O step, we might choose to
prefetch some blocks from other disks so that when they are
requested in future they are already in memory. Minimizing
I/Os in such a way using parallelism and some future knowl-
edge is called prefetching. After the block’s read request is
served, we may still want to keep the block in the memory
in case any future request comes for that block. Since the
buffer is of limited size, determining which blocks to keep
in memory and which to throw away so as to make room
for new requests is called the caching problem. A restricted
case of the problem where all the requests in Σ are unique
is called read-once. This version only involves prefetching.
When the request sequence is known in advance, the prob-
lem is offline and then the objective is to compute the min-
imum I/O schedule. On the other hand, when there is no
future knowledge or limited future knowledge, the problem
is online and then the objective is to achieve competitive
performance as compared to the best offline algorithm.

Prefetching is needed to take advantage of parallelism, and
in order to do prefetching effectively, an algorithm needs a
certain amount of lookahead into the request sequence. In
the read-once case, this lookahead can be in the form of next
L blocks in the request sequence. However, for the general
problem, an adversary can nullify the advantage of looka-
head by repeating the same block L times consecutively. In
this case, the lookahead does not provide much informa-
tion. To overcome this problem, many different definitions
of lookaheads are considered in the (single-disk) paging liter-
ature [6, 21, 2]. We shall assume the definition provided by
[6] of strong lookahead. The algorithm has a strong looka-
head of size L if, at any given time, it can see up to the
number of references into the future that are sufficient to
have L distinct blocks in the lookahead string. We shall use
the term “lookahead” to implicitly mean strong lookahead.

1.1 Previous work and our results
Single disk paging algorithms have a long history in com-

puter science. For the offline problem, Belady’s MIN re-
placement policy [27] achieves the minimum number of page
faults. In the online problem, the algorithm needs to achieve
the best competitive ratio. Some fundamental results were
given by [1, 4, 7, 27]. The variants which use lookahead
[6] and use extra memory [21, 1] have also been considered.
The adaptation of LRU with lookahead LRU(L) achieves
the competitive ratio of M−L and the adaptation of MARK,
MARK(L) achieves competitive ratio of 2HM−L [6] (Note
Hk =

Pk
i=1 1/i). When the online algorithm is given K ex-

tra blocks of memory, the competitive ratio of LRU (without
lookahead) becomes (M + K)/(1 + K).

The parallel disk generalization of the problem also has
a long history [18, 12, 13, 15, 26]. This was first formu-

lated in [18]. They gave Θ(
√

D) bounds for the read-once
version when lookahead L = M . Later, [12] generalized
this to get a tight competitive ratio for all ranges of looka-
head for the read-once version. For the general problem of
caching/prefetching on parallel disk, the optimum offline al-
gorithm was given by [15, 13]. The first online solution was
given by [26] based on thresholding. However, the compet-
itive ratio was not tight against the lower bound. Also, it
only considered the lookahead range of L > M(1 + 1/ε). As
noted by [26], the algorithm tLRU cannot achieve a compet-

itive ratio better than O((MD/L)2/3). The main difficulty

is to devise a caching strategy that favors the blocks from
the bottleneck disks to be kept in the cache. However, the
notion of bottleneck disks was not captured very accurately.
Here, we devise the analytic structures like potential func-
tion to capture this notion and devise a caching policy in
accordance with this potential function. We also obtain the
new lower bounds and tight upper bounds for other ranges
of lookahead: L = M and L < M . For the L = M case,
although our lower bound shows that the competitive ratio
cannot be better than Ω(D), we show that if the online algo-

rithm is allowed extra memory, competitive ratio of O(
√

D)
can be achieved. Table 1 shows the spectrum of results on
this problem, previous as well as current.

A similar problem has also been considered by Karlin et al.
[5, 22, 25] and Albers et al. [9, 23, 24] in stall-model which
is more general than PDM. In this model, two factors are
considered: the time needed by the application to process an
in-memory block and the time needed to fetch a block from
disk into memory. The problem is then to minimize total
time or other similar metrics. This model tends to PDM in
the limit as CPU speed increases relative to the disk latency.
Most work is focussed on approximation algorithms for the
offline problem. Some of the strategies used for the offline
algorithm are similar to those used in PDM model. In stall-
model this problem is hard even in offline settings while
for PDM this can be optimally solved. Our online results
(especially the lower bounds) on PDM will have implication
for this more general model as well. Here is the summary of
our new results in this paper:

• We present a deterministic algorithm SKEW which
is the first algorithm to achieve the tight competi-
tive ratio of O(

p

MD/L) for lookahead L > M(1 +
1/ε). This improves upon the previous tLRU which

was O((MD/L)2/3) competitive. This is tight against
the lower bound and thus we close the gap.

• For lookahead L < M − D, we show a lower bound
of Ω(D) for the competitive ratios of randomized algo-
rithms, as well as those with extra memory. We show
upper and lower bounds of Θ(D log(1 + (M − L)/D))
for randomized algorithms against an oblivious adver-
sary.

• For lookahead L = M , we show a lower bound of Ω(D).
This indicates that simple LRU or Supervisor [13] is
tight. We also show that when the online algorithm
is allowed to have 2M extra memory than that of the
offline adversary, competitive ratio of O(

√
D) can be

achieved.

In Section 2, we re-cap some previous results that will be
building blocks for our algorithms in this paper. Section 3
shows bounds for L < M cases and also shows a randomized
upper bound. In Section 4, we give the algorithm for L = M
when an online algorithm is allowed to have 3M memory
as compared to M for the offline adversary. We also give
a lower bound of Ω(D) when no extra memory is allowed.
In Section 5, we present our main algorithm SKEW. We
conclude in Section 6.

2. PRELIMINARIES
Each block in the request sequence Σ has an associated

disk number in {1, .., D}. At the point when request for

353

Lookahead Results (Competitive Ratio) paper
L = ∞ optimal offline duality[15], Supervisor[13]

L ≥ M(1 + 1/ε) Ω(
p

MD/L) [12]
O(MD/L) Supervisor[13]

O((MD/L)2/3) tLRU [26]

O(
p

MD/L) SKEW [this paper]
L = M Ω(D) [this paper]

O(D) LRU, Supervisor [13]

L = M , 3M online memory Ω(
√

D) adaptation of [18]

O(
√

D) [this paper]
L < M − D Ω(M − L) adaptation of [6]

L < M − D, with extra memory Ω(D) [this paper]
L < M − D, randomized Θ(D log(1 + (M − L)/D)) [this paper]

Table 1: Comparison of results

block bi is served, the algorithm can see the strong lookahead
of size L which consist of blocks (bi+1, bi+2, ..., bk) where k
is the largest index such that (bi+1, bi+2, .., bk) consists of at
most L distinct blocks. Lookahead gives information to the
algorithm, not only about which block to maintain in fast
memory (caching) while making room for the new pages
which come, but also about which blocks to prefetch into
the fast memory using parallel I/Os before they are ready
to be accessed.

The competitive ratio in general assumes that both offline
and online algorithms have same amount of fast memory
M . We shall also consider the case when online algorithm
is allowed twice (or thrice) as much memory and we shall
achieve tight competitive ratios in terms of complexity. Our
algorithms and analyses are phase-wise. A phase consists of
contiguous subsequence of Σ such that the subsequent phase
consists of lookahead sequence at the end of previous phase.
Our algorithms will use the lookahead in only phase-wise
sense (rather than in sliding window sense).

2.1 Optimum offline algorithm
We shall use the optimum offline algorithm for the prob-

lem given by duality principle [15] as a building block. The
algorithm works by looking Σ in the reverse order ΣR and
treating this as a write problem where blocks are issued into
fast memory to be written on their respective disks; at most
one block can be written to each disk in an I/O step; also,
the latest instance of any block has to be available in either
fast memory or on the disk. The solution is: in each I/O
step, write to as many disk as possible and for a particu-
lar disk write that block whose next request in ΣR is the
latest. This algorithm when seen as a reverse process gives
optimum offline read (caching) algorithm. Given an initial
fast memory block set S, this algorithm can also be modi-
fied to produce optimum read schedule by generating a write
schedule for ΣRS with an additional liberty that blocks in S
need not be written on the disk. We shall use this algorithm,
separately in every phase.

2.2 Lower bound of Ω(
√

D)

Since read-once is a particular case of general read-many,
the lower bounds on the competitive ratio for the read-once
case also apply to our general case [18]. The lower bound
for the read-once case when the lookahead is of size M
is Ω(

√
D). Intuitively, this can be visualized as following:

Consider the alternating sequence of good phases and bad
phases. A good phase consists of M requests striped equally

on each disk. A bad phase consists of M/
√

D requests on
one particular disk, called the bad disk, and other requests
striped equally. Consider a series of

√
D such good and

bad phases. An offline algorithm can prefetch all the blocks
on bad disks (in their respective bad phases) during the first
bad phase, while the online algorithm has no idea what these
blocks are. Hence, the offline algorithm does M/

√
D+M/D

I/Os in the first pair of phases and then 2M/D in the re-

maining 2
√

D − 2 phases, while the online algorithm incurs
M/

√
D I/Os in every bad phase. For the formal proof and il-

lustration see [18]. This lower bound can be easily extended
to the case when the lookahead L is greater than M . In
this case, M/

√
D is replaced by

p

ML/D, and hence there
are

p

MD/L pairs of phases, thus giving the lower bound
Ω(

p

MD/L) on the competitive ratio [12].

2.3 Request sequence where LRU does bad
When designing single disk online algorithms with looka-

head, LRU turns out to be the best deterministic policy [6].
In the case of parallel disks, however, this is not exactly true.
Consider the following example [19]: Let the lookahead be
2M . Let Σ1 be the request sequence of 3M distinct refer-
ences all striped equally on D disks. Let Σ2 consist of M
distinct references on disk 1. Let all the requests in Σ2 be
distinct from those in Σ1. Now, the request sequence con-
sists of many (possibly infinite) repetitions of Σ1Σ2. Simple
LRU will fault M +3M/D times on each repetition, while if
we only cache the blocks in Σ2, we fault M + 3M/D times
for first occurrence but roughly only 3M/D times in each
subsequent repetition. Thus, LRU can be off by a factor
of O(D). We need to somehow avoid the blocks from disks
containing very few blocks from being stored in the cache
memory so that cache can be effectively used to store blocks
from disks which can create I/O bottlenecks. One simple
strategy is thresholding [26] where during processing of the
phase, only the blocks in excess of threshold t from each disk
are stored. That is up to t blocks in the phase from each disk
are not required to be in caching storage, when the phase
processing is over. We shall see this further in Section 2.4.

2.4 An online algorithm with 2M lookahead
and 2M memory

Here, we shall describe the algorithm which uses twice as
much memory as offline optimum1 and achieves the com-

1This is in the spirit of the resource-augmentation model.
Our algorithm in Sec 4.2 also uses resource-augmentation.

354

petitive ratio of O(
√

D). This algorithm uses thresholding
technique of [26] and forms a basic building block for our
algorithms in Section 4.2 and in Section 5. Our algorithm
A has a memory buffer of size 2M and it manages it in two
components: a processing space P of size M and a caching
storage space C of size M . We shall compare this algorithm
with the optimal offline algorithm O that uses a memory of
size M . For simplicity, we shall assume that the lookahead
for online algorithm A is 2M . This can be generalized to case
where lookahead is M + L to yield O(

p

MD/L) competi-
tive ratio. We use a phase-wise (recall that phase consists
of consequent sequence of request given by lookahead at the
start of the phase) approach, so our algorithm only uses the
lookahead as it exists at the beginning of each phase. Note
that since lookahead is 2M , the optimum offline algorithms
at least does M/D I/Os during the phase. This algorithm

exploits the fact that in every phase, it can allow O(M/
√

D)
I/Os which are accounted by M/D I/Os that O does in the
phase.

Superphase.
The algorithm is history-aware and can run the optimum

offline algorithm on the history of the sequence seen so far
to have an estimate of how many I/Os the optimum offline
algorithm O has done. The algorithm works in superphases.
Superphase r consists of contiguous sequence of phases, fol-
lowing the last phase in superphase r−1. The superphase r
ends at phase k such that k is a minimum number for which
request sequence in phase 1, 2, .., k requires at least rM/

√
D

I/Os. At the end of each superphase, the algorithm flushes
all the blocks in its caching storage C.

Notation.
Let the current superphase consist of phases j, j +1, ..., k.

Let Lj denote lookahead for phase j. Consider a set Qa,b of
disk blocks from request sequence in phases La∪La+1∪ . . .∪
Lb. For any ordered request sequence Σ, let Σ|t denote the
set of blocks consisting of t least recently used blocks on each
disk as seen from the end of Σ. We call this the carry set of
Σ. Let Σ|t = Σ−Σ|t. Let width of Σ be maximum number
of blocks occurring on any disk in Σ. Now, our algorithm A
maintains Qj,l|M/

√
D in its caching memory C at the end of

phase l. Note that since O does less than M/
√

D I/Os over
the phases j, j + 1, .., k − 1, the size of Qj,k−1|M/

√
D is less

than M and always fits in C.

Phase processing.
During processing of the phase l for l < k, A first updates

C (looking at lookahead for the phase) to contain exactly
Qj,l|M/

√
D. Then, while processing the phase, it uses its

memory space P . It uses optimum offline algorithm over
Ll − (Qj,l|M/

√
D). All the requests for blocks in Qj,l|M/

√
D

can be served from C. For processing phase k, the algorithm
A flushes the cache memory C and uses only P to run the
optimal offline algorithm on Lk.

Analysis.
Let Ci be the cache of A at the end of phase i. Let prefetch

cost be I/O cost of getting any block in Ci for the first time
in cache memory C during the superphase. Let the cost of
getting any block in Ci for the second time onwards (from
carry set) be called swapping cost. Let the cost of processing

phase using P be called processing cost. The total prefetch
cost over all the phases in the superphase is at most M .
The swapping is from the carry set whose width is no more
than M/

√
D in each phase. So swapping cost is bounded by

M/
√

D. Once C is updated, the processing is no more than

2M/
√

D I/Os because O can process the phase in less than

M/
√

D I/Os and A can simulate initial memory condition

of O within no more than M/
√

D I/Os. The sum of the
swapping cost and the processing cost during each phase is
no more than 3M/

√
D I/Os. The offline optimum O does

at least M/D I/Os in each phase and does at least M/
√

D
I/Os over the superphase. The cost of processing the last
phase k is no more than M plus the cost of O for the phase
k. Thus, A is O(

√
D) competitive. This can be generalized

to the case where lookahead is L to achieve the competitive
ratio of O(

p

MD/(L − M)) by adjusting the width of the

carry set to be no more than
p

M(L − M)/D and redefining

the superphase to make O do at least O(
p

M(L − M)/D)
I/Os.

Theorem 1. The online algorithm A which uses 2M mem-
ory and 2M lookahead is O(

√
D) competitive when compared

with the optimum offline algorithm having memory size M .
When the lookahead is L > M this competitive ratio becomes
O(

p

MD/(L − M)).

3. NEW RESULTS FOR L < M

A simple lower bound.
First, we show lower bounds for online algorithms with

lookahead M − D + 1. We shall consider randomized algo-
rithms as well as algorithms that are allowed extra memory.
Let S be any set of M − D blocks. Let R be an infinite
sequence of all distinct blocks that is striped equally on all
D disks. That is, the the ith block Ri in R is from the
disk i mod D. Now the request sequence consists of S al-
ternating with a block from R. That is, Σ = SR0SR1SR2...
. The ith phase has lookahead SRi. Any online algorithm
will have to do at least one I/O in every phase. It has no
way of knowing what block Ri is in advance. The optimal
offline algorithm will do one I/O every D phases. It main-
tains set S in memory and fetches next D blocks from R
simultaneously. Thus, regardless of the power online algo-
rithm may have due to randomization or extra memory, any
lookahead less than M − D can be effectively reduced to
no lookahead by the adversary. Thus, if the lookahead is
bounded by M −D + 1, we have a lower bound of Ω(D) on
the competitive ratio.

Randomized upper-bound.
Here, we show that the adaptation of the MARK(L) al-

gorithm [6] is O(D log(1 + (M −L)/D) competitive for L <
M − D. The caching strategy is exactly as in [6]. Note
that the definition of phase in this and next subsection is as
defined by the marking algorithm [7]. Thus, the algorithm
works in phases as defined by marking algorithms. At the
beginning of each phase it evicts as many unmarked pages
as are new in the lookahead. After this point, it exactly
mimics marking[7] algorithm.

Theorem 2. The algorithm MARK(L) is O(D log(1 +
(M − L)/D) competitive.

355

Proof. The proof is almost the same as in [6], except
for the parallel disk implications. The intuition of the proof
hinges on the fact that if during the phase an adversary has
loaded k clean (new) pages, the amortized competitive ratio
of marking during the phase is 2HM/k and subsequently of
MARK(L) is 2H(M−L)/k.

The phase ends when there are no unmarked pages to re-
move and new phase begins with all unmarked pages. Con-
sider an arbitrary phase. A page is called stale if it is un-
marked but was marked in the previous phase, and clean
if it is neither stale nor marked. Let c be number of clean
pages and s be number of stale pages requested in the phase.
Note that c + s = M . Accounting for parallelism, OPT has
an amortized cost of at least dc/2De during the phase. For
bounding the expected cost of MARK(L), let s1 be the num-
ber of stale pages contained in the lookahead at the begin-
ning of the phase and let s2 = s− s1. Let c1 be the number
of clean pages in the lookahead and c2 = c − c1. Then,
following the analysis of [6], the expected cost is equal to

c

M − s1
+

c

M − s1 − 1
+ .. +

c

M − s1 − s2 + 1

= c(HM−s1
− Hc).

Note that c − L + s1 = c2, i.e., M − s1 = M − L + c1 ≤
M − L + c. If c > D, this is bounded by c(HM−L+D −
HD), giving the desired competitive ratio. Else, the cost
is bounded by D(HM−L+D − HD) and this also gives the
desired competitive ratio.

Randomized lower-bound.
Here, we present a lower bound of Ω(D log(1 + (M −

L)/D)) on the competitive ratio for any randomized paging
algorithms. The result is captured in the following theorem,
and whose proof is very similar to that presented by [7].

Theorem 3. Let A be any randomized paging algorithm
for D disks with memory size of M and lookahead of L pages.
Each disk has at least one page, and we assume that the
total number of pages in the disks is at least M + D. Then,
the competitive ratio of A is Ω(DH1+(M−L)/D) against an
oblivious adversary.

Proof. Let N be the total number of pages in all disks.
We show an oblivious adversary can construct a sequence
that will force the claimed competitive ratio on A. For each
j = 1, 2, . . . , N , the adversary maintains the probability pj

that the jth page is not in A’s memory. The calculation of
pj is possible, since adversary knows the probability distri-
bution used by A.

Our sequence of requests for A is composed of an arbitrar-
ily large number of phases. A phase is defined as follows:
phase 0 is the empty sequence; for every i ≥ 1, phase i is
the maximal sequence following phase i− 1 that contains at
most M distinct page requests. Our request sequence will
fix a particular L − 1 pages in the memory at the end of
the previous phase, so that the first L − 1 requests in ev-
ery lookahead in the current phase are the same. Then, the
expected cost for A to load the jth page (when seen as the
Lth request in the lookahead) is pj .

Let L′ = L−1. Each phase will be divided into k = M−L′

subphases. The purpose of each subphase is to fix a new
page in the request sequence. We apply similar strategy
as in Theorem 4.4 in [27], so that at the ith subphase, the

expected cost of A is at least (N − M)/(N − L′ − i + 1).
Thus, the cost of one phase is at least

N − M

N − L′
+

N − M

N − L′ − 1
+ · · · + N − M

N − M + 1

≥ D

M + D − L′
+

D

M + D − L′ − 1
+ · · · + D

D + 1

= Θ(DH1+(M−L)/D).

On the other hand, the cost of the oblivious adversary is one
I/O in each phase. Thus, the competitive ratio follows.

4. NEW RESULTS FOR L = M

4.1 Lower Bound
Here, we present our lower bound of Ω(D) on the com-

petitive ratio of any online algorithms that uses memory of
size M (same as adversary). This bound works even for
lookahead as large as M + cM/D for any constant c. We
show that this bound also similarly holds for the competi-
tive ratio of any randomized algorithm against the oblivious
adversary.

We fix an arbitrarily chosen useful set U of 3M/2 blocks
with 3M/2D blocks on each of the disks. Our request se-
quence will consists of phases. A superphase consists of 2D
consecutive phases. At the end of each superphase the ad-
versary O has M/D blocks on each disk. In each phase,
the request sequence consists of some requests from U and
possibly some others from junk set J . The junk set con-
sists of blocks totally striped across all disks and consists of
possibly infinite number of blocks that never repeat in the
request sequence.

Within a superphase, the phases are classified into alter-
nating odd and even phases (D of each). The odd phases
are downsizing phases, while the even phases are corrective
phases. Let Mi be the memory of O and Ai be that of
A before the start of phase i. In odd phase 2i − 1, the
request sequence consists of: (1) all the blocks of M2i−1 ex-
cept those from disk di that were present in M1, (2) M/2D
equally striped blocks from U − M1 and (3) M/2D equally
striped blocks from J . The first two components of the
lookahead (request sequence) are repeated many (possibly
infinite) times followed by the junk requests once. Thus, to
process this phase, any algorithm must have thrown away
at least M/2D blocks from disk di that were present in M1.
O throws away blocks after looking at A’s choices. It keeps
the blocks A has thrown away and shows them in the next
phase. Although A has a sliding window lookahead, it has
still no way of knowing the blocks which are going to ap-
pear in the next phase before it throws. In the even phase
2i, the request sequence consist of blocks in M2i repeated
many times. Thus, in this phase A will have to correct its
thrown away blocks from the previous phase. Note that
A2i+1 = M2i+1 = M2i. At the end of 2D phases, the super-
phase ends. The memory of O again consists of M blocks
from U , with M/D from each disk. Thus, a new superphase
can begin.

Now let’s analyze the I/O cost for O and A. In the odd
phase 2i−1, O incurs M/D2 I/Os for the new blocks coming
in. A also incurs the same cost. In the even phase O pays
no cost, while A incurs M/2D I/Os. Thus summing over
all phases, O’s cost is M/D I/Os while A’s cost is M/D +
M/2 I/Os. Thus, the competitive ratio of A is at least D/2

356

which is Ω(D). In the case of randomized algorithms against
the oblivious adversary, A’s expected cost in even phases
is M/4D I/Os, which still gives the lower bound of Ω(D).
Thus, we get the following theorem:

Theorem 4. When the lookahead for an online algorithm
is the same as the size of the cache blocks, the competitive
ratio of any deterministic online algorithm is lower bounded
by Ω(D). The same lower bound holds for any randomized
online algorithm against the oblivious adversary.

4.2 Online algorithm with M lookahead and
3M memory

This algorithm works over the algorithm in Section 2.4 as
follows: Allocate 2M memory for the the processing part P
and M for the caching part C. Collect up to 2M distinct
blocks in P , then consider it as a single phase and update
C as in the algorithm in Section 2.4. The main idea here
comes from combining thresholding with the analysis of [12].

Subsuperphase.
Within each superphase (as defined in Section 2.4) we

define subsuperphases. Again, subsuperphases form a con-
secutive sequence of phases, the next starting at the end of
previous subsuperphase. The sequence of phases i, .., j forms
a subsuperphase if Qi,j−1 has less than 2M distinct blocks
and Qi,j has at least 2M distinct blocks.

Phase Processing.
For phases i, .., j − 1 in the subsuperphase, collect all the

blocks in P . At phase j, treat Qi,j as the lookahead and use
the algorithm in Section 2.4 to update C.

Analysis.
During processing, the blocks maintained in C and P in-

cur no cost. Again, we shall prove O(
√

D) competitive ratio.
The only additional cost over the algorithm in Section 2.4
is when the block enters freshly in P . Now within a subsu-
perphase, consider subsubsuperphase (sssphase for short) as

contiguous collection of
√

D phases. Let set O1 be the set
of new requests appearing in the current sssphase. Let O2

be the subset of O1 that was fetched by O in sssphases be-
fore (not during) the previous one. Then, to carry O2 across

the previous sssphase (
√

D phases) without it appearing in
previous sssphase, O pays at least |O2|/D I/Os every phase
(because lookahead is M and |O2| blocks from memory of O
are occupied) and thus it has paid the I/O cost of at least

|O2|/
√

D during the previous sssphase. Thus cost of fetch-
ing O2 for A during this sssphase is justified. The cost for
the remaining subset O1 −O2 is paid by A over

√
D phases.

In each of these phases A never pays more than optimal cost
required to fetch O1 − O2. Thus, this cost is no more than√

D times the cost O paid to acquire these during this and
previous sssphase. Thus, the cost of A during this sssphase
is at most 2

√
D times the cost of O during this and previous

sssphase.

Theorem 5. The online algorithm A that uses 3M mem-
ory and M lookahead is O(

√
D)-competitive when compared

with the optimum offline algorithm having memory size M .

5. ONLINE ALGORITHM SKEW
In this section, we describe our main algorithm that achieves

the competitive ratio of O(
p

MD/(L − M)) for the looka-
head size L. Unlike earlier algorithms, this algorithm uses
no extra memory; and hence, it is a real competitive algo-
rithm. Note that this bound is asymptotically tight for the
ranges of lookahead greater than (1+1/ε)M for any constant
ε > 0. Again, we shall describe it for lookahead L = 2M for
simplicity and achieve O(

√
D) as the competitive ratio. The

parameters of the algorithm can be adjusted appropriately
for more general lookahead. We shall use the basic terminol-
ogy and framework from Section 2.4 to derive our algorithm
here.

Downsizing.
Since we do not assume separate caching and processing

memory here (like Section 2.4), we may not be able to carry
all the blocks in the caching part as we would do in the
previous algorithms. Consider a set S consisting of M/D
blocks on D disks and assume that this set S appears re-
peatedly (infinitely) many times within a given lookahead.
Then, during processing this phase, all the cached blocks be-
fore this phase have to be given up to process this sequence
of requests. In general, the crux of our strategy is to push as
many blocks as possible through the phase while incurring
not too many extra I/Os. Such phases are called downsiz-
ing phases since they require the cache size to be downsized.
However, pushing as many blocks as possible during down-
sizing may not be enough. For example, if the blocks are
pushed in LRU order (as in [26]), the competitive ratio can

be much higher than O(
√

D). Every time a downsize occurs
during the superphase, the online algorithm can be pushed
into repetitive set of corrective I/Os until it determines to
a good extent which set of blocks were thrown away by O
during the downsize.

5.1 An abstract problem (AP)

Motivation.
Consider the following variant of PDM caching problem

with downsizing. Let K =
√

D be the memory size of O
and A. In each phase i, A is shown some set of blocks Li

(0 < |Li| ≤ K, i.e., lookahead size can vary from 1 to K and
can be different for each phase and is adversary’s choice) as
the request and then given a number ki ≤ K such that only
ki blocks (from those in memory before the phase) can be
carried forward by A (and same applies to O). Additionally,
A (and not O) is allowed to carry forward 1 block per disk
for free. There is no I/O cost for throwing away a block (for
both A and O). How many I/Os can O make A do without
itself incurring any I/Os? What is the competitive ratio? Is
it O(K) or O(K2)?

If A was not allowed the extra liberty of carrying 1 block
per disk, the answer would be O(K2). Let’s say O has ac-
quired K blocks (all on different disks) incurring an I/O.
Next, it shows a block in each phase (with ki = K), thus
make A do K I/Os. After this sequence, it sets ki = K − 1.
This forces both O and A to drop a block. Then it repeats
for K − 1 phases (with ki = K − 1) and shows the block
not in A’s memory, forcing further K − 2 I/Os. Now, it sets
ki = K − 2 and so on. Thus, it can force K(K + 1)/2 I/Os.
At the end of this sequence O can do an I/O, load K new

357

blocks and start over again, forcing a competitive ratio of
O(K2).

However, with the liberty for A to carry 1 block free per
each disk, A’s cost in the above example is zero. Even in
this case, O can still force somewhere close to O(K2) I/Os
without it doing an I/O, if initially O had all the K pages on
the same disk (rather than all on different disks). Assume
that initially both O and A have all the same blocks and all
belong to the same disk. Now O can set ki = K − 2. This
will force O to throw 2 blocks and A to throw 1 block. Now,
keeping ki = K − 2, O can force K − 2 I/Os of A in the
phases to come by showing the block not in A’s memory.
After A has identified which block was thrown away by O,
O sets ki = K − 3 and repeats. Thus O could make A
do (K − 1)(K − 2)/2 I/Os. Yet, O cannot really force the
competitive ratio of O(K2) because to revert to its initial
memory configuration O must do K I/Os (and not just 1).
Thus, we could say to force more corrective I/Os on A, O lost
some of the “potential” stored in its memory configuration.
The competitive ratio in this case can be proved to be O(K).
Let d1 > d2 > ... > dK be the number of blocks in the
memory Mi of O, the potential of O is defined as

P

d2
j . Note

that with an I/O of O, the potential can only increase by at
most 2K. Furthermore we shall show that if A was forced
to do x corrective I/Os, then O’s potential loss is at least x.
Note that in above two examples O’s initial potential was
K and K2 respectively. To gain the potential of K2 it must
have done O(K) I/Os initially.

We shall show that our problem can be reduced essen-
tially to this abstract problem. There are additional com-
plexities like how to handle the uncertainty due to multiple
(nested) downsizes simultaneously and how to handle selec-
tive downsizing which we show for the abstract problem in
more formal settings below.

Settings.
More formally, consider following problem: O has a mem-

ory size of K, while A has memory size of K plus extra cache
(called carry cache) of size K which can hold at most one
block from each disk. The request sequence is shown to A
in phases. In each phase, some blocks are shown to A (the
number of blocks to be shown is adversary’s choice). Addi-
tionally, a phase can also request a downsize. Each down-
sizing request is also accompanied with a set Sc of blocks
which have to be retained after the downsize. Such a se-
quence runs from the start of the superphase till the end of
a superphase (i.e., for some set of phases). During this we
assume O does no additional I/Os. Thus, request sequence
is L1,L2,Lj . Each Li consists of a triplet < Ri, S

c
i , ci >,

where Ri is a sequence of shown blocks, Sc
i is a subset of Ri

denoting compulsory blocks which cannot be thrown away
by A during the downsize, and ci is a number called down-
size parameter (or end capacity) which denotes number of
allowed blocks for A and O to be carried after the phase i.
Note that K ≥ c1 ≥ c2... ≥ cj ≥ 0.

A’s strategy and analysis.
Let Mo

i be the memory of O before phase i and Ma
i be

that of A. Let the disk distribution of blocks in Mo
1 be

d1 > d2 >dK . Then, the initial potential of O is defined
as

P

d2
i . For each disk of these disks in Mo

1 , let wi = di be
the weight of each block on that disk. Thus, the potential
is nothing but the sum of weights of all blocks in Mo

i .

We shall show our solution of A’s strategy using a step-
wise gradation among three versions of the abstract problem:
APv1, APv2 and APv3. APv3 is the actual abstract prob-
lem without any assumptions. APv2 is the particular case
of APv3 where A is allowed some extra knowledge. APv1 is
the particular case of APv2 where we assume there is only
one downsizing phase throughout the superphase.

APv1: Let us, for this version, assume that A knows the
initial weights wi for each disk before the beginning of the
superphase. Let us also assume that O and A start with the
same memory configuration. That is, Ma

1 = Mo
1 . Addition-

ally, we assume there is only one downsizing phase during
the superphase. We shall show that A can be designed such
that the number of corrective I/Os A needs to spend after
this downsize is bounded by O’s loss of potential during this
downsize. After the downsize, A manages the blocks using
the following 4-way partition: (1) Certain set C, (2) Uncer-
tain set U (3) Carry Set E (4) Thrown-away set T . The
sets C and U reside in the memory of A while E resides
in the extra carry cache of A. Thus, E can have at most
one block from each disk. At the downsizing phase i, let
K − ci = D̂ + x (where D̂ is number of disks covered by
blocks in memory of A, barring those blocks in Sc

i , at phase
i). Then, A ranks the disks by their decreasing weights.
Next, A shifts 1 block from each disk into carry set E and
it throws away the remaining x blocks from lowest ranked
disks into thrown-away set T . The remaining blocks in the
memory of A now consist of uncertain set U (it is unknown
whether O has these blocks or not). The blocks from Sc

i are
placed in certain set C. We make sure no block from Sc

i

goes into E or T initially. Finally, for a particular disk, if
there are no blocks in the uncertain set from disks below (in
ranked order by weights) it, then its corresponding block in
carry set E is shifted to T .

During subsequent phases, all the blocks in requested set
R get moved to C. If the requested block comes from U , it
is directly placed in C. If it comes from E, it is placed in
C and in exchange one of the blocks from U , from the same
disk, is moved to E. If the requested block comes from T ,
then it is charged as corrective I/O. In this case, the next
block in U from the bottom of the queue (the queue ranks
blocks by their decreasing weights, breaking ties arbitrarily)
is moved to T and the requested block from T moves to C.
After this, A again checks if U has no block below (in all
the disks ranked lesser) some disk. If so, the carry set block
from that disk is moved to T . Note that all the accesses
to T result in corrective I/Os and ends up shifting a block
from U in T . This shifting of blocks from U to T occurs
according to the queue. This ranking by weights is done to
ensure that A’s guess of O’s thrown away set has minimum
possible weight. When the bottom of this queue shifts to an
upward disk, a block from E on that disk gets shifted to T .
We shall prove the following two facts:

Fact 1. The number of access to T at any given instance
is bounded above by the weight of T (i.e., sum of weights of
blocks in T).

Proof. The corrective I/Os happen in the increasing or-
der of weights in queue, because that is how A replaces
blocks in T . Every time our corrective trail moves to an
upward disk, the size of T increases by one block from this
disk which was moved from E to T . Since these carry set
blocks (moved to T) have enough weight to pay for all the

358

requests from their corresponding disk, the weight of T com-
pensates for number of corrective I/Os so far on T .

Fact 2. At any point, the weight of T is bounded above
by weight of T ′, the thrown away set of O.

Proof. This is true because the thrown away set of O
is at least as big as that of A and moreover A chooses the
minimum weighted blocks to throw away.

APv2: Now, consider a more general case, where A
knows O’s initial ranking of the disks but not O’s config-
uration; A starts with empty memory, and there could be
multiple downsizes (not just one).

In this case, A employs the following modifications. It
partitions T into T1, T2,, Tj which are non-empty for each
downsizing phase. Also U is maintained as U1 ⊆ U2 ⊆
... ⊆ Uj = U . Each pair Ti, Ui maintains the best guess
about what was thrown away and what is uncertain due to
the downsizing in phase i. For simplicity, consider T1, T2.
For the request in T2 the next block can be from U1. We
maintain the invariant that thrown away blocks from U1 to
T2 have more weight than those from U2 − U1 to T1(this is
to ensure Fact 3(2)). Thus, when a request from T1 comes,
we actually have to shift a block from T2 to T1 and then
from U1 to T2. Also, when a carry set block from U1 gets
moved to T1 a block from same disk in U2 is moved to E.
Also, in this case previously unseen requests can come (since
A starts with empty memory). These are moved to certain
set and are treated as those coming from T0 (i.e., a block
from U will get thrown away to include this new block in
C). Thus, T1 and subsequently (possibly) T2, T3, ... can be
modified due to this.

Let w(Ti) denote the weight of Ti and let T ′
i be the set of

blocks thrown away by O during downsizing phase i and let
w(T ′

i) be its weight. Let T ′ = ∪T ′
i . Now, similar to Fact 1,

Fact 2, we can show:

Fact 3. (1) The number of corrective I/Os on Ti ≤ w(Ti)

(2)
Ph

i=1 w(Ti) ≤
Ph

i=1 w(T ′
i) for any h ≤ j

It is easy to derive the following lemma from the above
fact:

Lemma 1. During the superphase, the number of correc-
tive I/Os of A is bounded by w(T ′) and hence the number
of corrective I/Os is no more than the loss of potential of
A.

APv3: Now, we are ready to prove our real case where
A does not have any estimate of O’s initial weights. In this
case the essence would be that A learns them as it sees the
blocks. However, this could result in flipping of disk rankings
in between. This could result in queues for T1, T2 opposing
each other, since T2 ranks disks differently that T1. Hence,
the solution above will not work. We need to re-rank the
disks and do the subsequent correction for T1 also. If this re-
ranking happens too often, it could result in a lot of I/Os for
keeping T1 consistent. We shall give a fix for this situation
using pseudoweights. A maintains pseudoweights for each
disk. The pseudoweight pi for disk i is always a power of
two. It is the power of two just less than the number of
blocks seen from disk i so far in the superphase. Thus, for
any disk i, pi ≤ wi, the actual weight of disk i. Using this
we ensure that the rank of disk does not get updated too

often and also that every time a disk changes its rank, there
are enough new I/Os to amortize the cost of re-ranking.

Now, A orders disks in the decreasing order of their pseu-
doweights during any downsize. There is an additional com-
plexity when the pseudoweight of a disk changes. The disk
moves up in the ranking. At this situation, A makes amends
for this, by changing all previous downsizing guesses. This is
done to make sure that the disk rankings of each downsizing
is consistent. Thus, when a disk moves up in the ranking,
all the Th’s involving this disk could change. However, the
number of I/Os required to do this, called re-ranking I/Os,
is no more than the number of blocks on disk i seen so far
(which is pi). These I/Os can be attributed to the new
incoming blocks seen on disk i between this and previous
upgrade of pi. Thus, number of re-ranking I/Os is no more
than 2K over the entire superphase. We can modify Fact 3
to show that the number of corrective I/Os is bounded by
2p(T) which in turn is at most 2w(T).

Thus, we can conclude with the following lemma:

Lemma 2. The number of I/Os done by A during the su-
perphase is no more than 3K plus twice the drop in potential
of O, which is Ψ1 − Ψj+1.

5.2 Algorithm SKEW
We are now ready to sketch our algorithm SKEW which

has a lookahead of 2M blocks in each phase and achieves
the competitive ratio of O(

√
D) for our real problem. Al-

though there is a simpler variant of this algorithm (which is
somewhat harder to analyse) we use the variant of SKEW
which is more close to the abstract problem. For the simpler
variant see the appendix. We shall show how this problem
can essentially be reduced to the abstract problem situation.
Again we shall set t = M/

√
D as in Section 2.4. Intuitively,

imagine each block in abstract problem to be equivalent to
a chunk of t blocks (from same disk) here. Thus, there are

M/t =
√

D = K chunks to manage. Everything that does
not fit into these chunks can be handled by swapping costs
(as in Sec 2.4). We shall assume the same definition of su-
perphase as in Section 2.4 here. Without loss of generality,
let the superphase consist of phases 1 though j.

Firstly, the potential function changes slightly here. Let
d1 ≥ d2 ≥ ... ≥ dD be the disk distribution of Mo

1 . Each
block from disk i in Mo

1 now has the weight equal to bdi/tc
where t = M/

√
D. That is wi = bdi/tc. Note that wi <√

D. The potential function Ψ1 =
PD

i=1 widi. Note that

only
√

D disks can have nonzero weights.
The carry set E here can hold up to t blocks from each

disk. Accesses to the carry set are considered free because
of the O(t) ’free I/Os’ (covered by swapping cost) A gets in
every phase. Also, now O could do at most t I/Os during the
superphase (as opposed to no I/Os in the abstract problem).
To compensate for the extra blocks O can imbibe into its
memory during the superphase, we allow one more carry set
E′ for A. This set E′ holds the least recently seen t blocks
from each disk during the superphase. Thus, E′ acts as a
thresholded set and as before accesses (or swaps) on E′ are
paid by the free I/Os.

It remains to describe what happens during the process-
ing of downsizing phase. Firstly, A estimates the minimum
number of I/Os to process the phase, given its current mem-
ory state. Next, it allows t more I/Os to process the phase
and checks if, by doing this, it can carry all the blocks it

359

needs to in the next phase. Even after these t extra I/Os,
if it is not possible to carry all the blocks, then it declares
the downsizing phase. Once A has decided it is a downsiz-
ing phase, then it uses only t extra I/Os (not 2t) and tries
to carry as many blocks as possible. Out of these blocks,
it tries to use one-to-one exchanges during phase processing
to retain the set which prefers the block on higher ranked
disks over the lower ones. If some block is not exchangeable
i.e., removing it will reduce the number of blocks A carries
forward, then such a block is called a compulsory block. The
compulsory blocks end up in a certain set C after the down-
sizing. All others blocks in the memory of A go either in U ,
E, or T . Thus, compulsory blocks form the set Sc

i in the
downsizing constraint.

Except from downsizing, when the lookahead of the phase
is processed, the updates and transfers of blocks between
U , C, E and T happen exactly in the same way as in the
abstract problem. These four sets serve as a tracking mech-
anism for the best guess of what O did during various down-
sizes and also as analytic counters.

Now analogous to analysis of the abstract problem, we can
show that the weight of thrown away set Ti compensates for
the number of corrective I/Os on Ti. This is because for
every disk which the corrective trail completes (i.e., disks
lesser in weight than the one where the bottom of the queue
is), t blocks from carry set (and from higher disk) are trans-
ferred to Ti. Thus, their collective weight is sufficient. The
other facts and lemmas are applicable directly. Hence we
derive following lemma:

Lemma 3. During a superphase 1, .., j, the number of I/Os

of A is bounded by 3M + 2(Ψ1 − Ψj+1) + O(jM/
√

D).

Now, using the definition of superphase, we can claim the
following theorem:

Theorem 6. The competitive ratio of A is O(
√

D).

Proof. In every superphase, O spends at least M/
√

D
I/Os and it also spends at least M/D I/Os in every phase.
If O does y I/Os then the gain in Ψ cannot be more than

2y
√

D. Thus, the contribution of 2(Ψ1 − Ψj+1) term for A

is no more than 4y
√

D in the amortized sense. Now, if there
are x superphases and yi is the number of O’s I/O in each of

them, then A does at most O(xM +4
√

D
Px

i=1 yi) I/Os in x

superphases. Note that since each yi is at least M/
√

D, the
second term of the summation dominates. Thus, the cost of
A is no more than O(

√
D) times the cost of O. This ensures

the competitive ratio of O(
√

D).

Merely by adjusting t =
p

M(L − M)/D, we can gener-
alize the above theorem:

Theorem 7. For lookahead L > M(1 + 1/ε), there exists

an online algorithm which is O(
p

MD/L) competitive for
caching/prefetching on parallel disks.

6. CONCLUSIONS
We give online algorithms which achieve optimal compet-

itive ratios for the caching/prefetching problem on parallel
disks. Our bounds show that to achieve effective parallelism
one requires lookahead more than the memory size. Note
that the lower bounds are based on some peculiar request

sequences, which are less likely to occur in realistic work-
loads. The characterization of request sequences which can
circumvent these lower bounds is an interesting future di-
rection. Also, online algorithms which are instance optimal,
or whose competitive ratios can be determined in terms of
some function of request sequence, may also be meaningful.

7. REFERENCES
[1] D. D. Sleator and R. E. Tarjan. Amortized efficiency

of the list update and paging rules. Communications
of the ACM, 28:202-208, 1985.

[2] N. Young. Competitive paging and dual-guided on-line
weighted caching and matching algorithms. Ph.D.
thesis, Princeton University, 1991. Available as CS
Tech. Report CS-TR-348-91.

[3] L. A. Belady. A study of replacement algorithms for
virtual storage computers. IBM Systems Journal,
5:78-101, 1966.

[4] A. R. Karlin, M. S. Manasse, L. Rudolph and D. D.
Sleator. Competitive snoopy caching. Algorithmica,
3(1): 79-119, 1988.

[5] P. Cao, E. W. Felton, A. R. Karlin and K. Li. A Study
of integrated prefetching and caching strategies. In
Proc. of the joint Intl. Conf. on measurement and
modeling of computer systems, 188-197, ACM press.
May 1995.

[6] S. Albers. On the influence of lookahead in competitive
paging algorithms. Algorithmica, 18(3):283-305, 1997.

[7] A. Fiat, R. Karp, M. Luby, L. McGoech, D. D. Sleator
and N. E. Young. Competitive Paging Algorithms.
Journal of Algorithms, 12(4):685-699, Dec. 1991.

[8] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116-1127, Sept.
1988.

[9] S. Albers, N. Garg and S. Leonardi. Minimizing stall
time in single and parallel disk systems. In Proc. of
30th Annual ACM Symp. on Theory of Computing
(STOC 98), 454-462, 1998.

[10] J. S. Vitter and E. A. M. Shriver. Optimal algorithms
for parallel memory I: Two-level memories.
Algorithmica, 12(2-3): 110-147, 1994.

[11] P. J. Varman and R. M. Verma. Tight bounds for
prefetching and buffer management algorithms for
parallel I/O systems. IEEE trans. on Parallel and
Distributed Systems, 10:1262-1275, Dec. 1999.

[12] M. Kallahalla and P. J. Varman. Optimal read-once
parallel disk scheduling. In Proc. of Sixth ACM
Workshop on I/O in Parallel and Distributed Systems,
68-77, 1999.

[13] M. Kallahalla and P. J. Varman. Optimal prefetching
and caching for parallel I/O systems. In Symposium
on Parallelism in Algorithms and Architectures, 2001.

[14] R. D. Barve, E. F. Grove and J. S. Vitter. Simple
randomized mergesort on parallel disks. Parallel
Computing, 23(4):601-631, June 1996.

[15] D. A. Hutchinson, P. Sanders and J. S. Vitter. Duality
between prefetching and queued writing with
application to integrated caching and prefetching and
to external sorting. In European Symposium on
Algorithms (ESA 2001), LNCS 2161, 2001.

360

[16] J. S. Vitter and D. A. Hutchinson. Distribution sort
with randomized cycling. In Symposium on Discrete
Algorithms (SODA), 77-86, 2001.

[17] J. S. Vitter. External memory algorithms and data
structures: Dealing with massive data. ACM
Computing surveys, Vol. 33, 2:209-271, June 2001.

[18] R. Barve, M. Kallahalla, P. J. Varman and J. S.
Vitter. Competitive parallel disk prefetching and
buffer management. In Proc. of Fifth Workshop on
I/O in parallel and Distributed Systems, 47-56.
November 1997.

[19] A. Roy. Prefetching and caching with lookahead.
Manuscript, 2001.

[20] M. Kallahalla and P. J. Varman. Red-black
prefetching: An approximation algorithm for parallel
disk scheduling. In Foundations of Software
Technology and Theoretical Computer Science, LNCS
1530, 66-77, December 1998.

[21] D. Breslauer. On competitive online paging with
lookahead. TCS 209(1-2), 365-375, 1998.

[22] T. Kimbrel and A. R. Karlin. Near optimal parallel
prefetching and caching. In Foundations of Computer
Science (FOCS), 540-549, 1996.

[23] S. Albers and M. Buttner. Integrated prefetching and
caching in single and parallel disk systems. In
Symposium on Parallelism in Algorithms and
Architectures (SPAA), 109-117, 2003.

[24] S. Albers and C. Witt. Minimizing stall time in single
and parallel disk systems using multicommodity
network flows. In RANDOM-APPROX, 2001.

[25] T. Kimbrel, P. Cao, E.W. Felten, A. R. Karlin and K.
Li. Integrated parallel prefetching and caching. In
Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), 1996.

[26] R. Shah, P. J. Varman, and J. S. Vitter. Online
algorithms for caching and prefetching on parallel
disks. In Symposium of Parallelism in Algorithms and
Architectures, 2004.

[27] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis, Cambridge University Press,
1998.

APPENDIX
A. SIMPLER VARIANT OF SKEW.

Here, we give a simple (to describe) variant of SKEW.
This also achieves the desired competitive ratio. Let t =
M/

√
D. Assume without loss of generality that the current

superphase consists of the phases l, ..., j. Algorithm SKEW
(simple) works as follows:

• Let I be the set of interest. The set I consists of all the
blocks in Ll ∪ ..∪Lj except for the first (in the order of
their first appearance in the superphase) t blocks from
each disk. Note that I is at most M blocks.

• At every phase SKEW maintains the weights for each
disk in appearing in I. The weight for disk i is bbdi/tcc,
where di is the number of blocks in I from the disk i
seen so far in the superphase and bbxcc denotes the
highest power of 2 less than x. All the blocks from the
disk i have this weight.

• Let y be the number of I/Os O must have done before
the start of this superphase. Then, at the end of each
phase SKEW calculates the highest weighted subset of
I that O can maintain (at the end of this phase) within
y+2t I/Os and keeps this subset in its cache at the end
of the phase. This set can be calculated by simulating
O.

This algorithm is harder to analyse. One way to analyse
this algorithm is by comparing it with the algorithm based
on abstract problem.

B. FIGURE FOR APV2.
Here is an illustrative figure (Fig. 1) showing the book-

keeping data structures in APv2 (and also in APv3). This
shows the effect of nested downsizings.

Nested Data Structure

CU

U

T

1

2

2

T1

Figure 1: Maintaining C, U , E and T

361

