
NEW METHODS FOR LOSSLESS IMAGE
COMPRESSION USING ARITHMETIC CODING

(extended abstract)

Paul G. Howard' and Jeffrey Scott Vitter2

Department of Computer Science
Brown University

Providence, R. I. 02912-1910

1 Introduction
Lossless image compression presents a unique set of challenges. Considerable research
has already been done on lossless text compression [1,2,3,4,5]; all good methods found
to date involve some form of moderately high-order exact string matching. However,
this work cannot easily be carried over to lossless image compression, for two reasons:
First, images are two-dimensional, so the contexts are more complicated than one-
dimensional strings. Second and more important, images are essentially quantized
analog data, so the exact matches needed for high-order modeling are only rarely
found in the data.

For lossless image compression, a better plan is to find and encode as much
of the image structure of the data as possible, and then to efficiently encode the
unstructured, noisy residual. We do this in three steps: we predict the value of each
pixel, we model the error of the prediction, and we encode the error of the prediction.
The predictions correspond to lossy compression; the error encoding makes it lossless.

Most of the output code length comes from the error encoding. If we have a
probabilistic model for the errors, we can use arithmetic coding [S] to encode the
errors efficiently with respect to the model. To obtain good compression we want
the model to assign as high a probability as possible to the prediction error that
actually occurs at each pixel. To obtain this, first we need a good predictor, one
whose errors have a small variance so that only a few error values are likely and the
probability of each is high. In addition, we need a good model for the errors, so that
the arithmetic coder is using realistic probabilities. Prediction errors for images are
usually distributed according to a Laplace distribution with zero mean, so to obtain
a realistic model we need a good estimate of the variance of the errors. Too high
a variance allocates too much probability (and code space) to large, unlikely errors,
while too low an estimate assigns too little probability to errors that actually occur.

'Support was provided in part by NASA Graduate Student Researchers Program grant NGT-
50420. Additional support was provided by a Universities Space Research Association/CESDIS
appointment.

*Support was provided in part by an NSF Presidential Young Investigator Award with matching
funds from IBM, by NSF grant CCR-9007851, by ARO grant DAAL03-91-G-0035, and by ONR
grant N00014-83-K-0146, ARPA Order No. 4786.

251 TH0373-1/91/0000/0257$01 .OO - 1991 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

258

Our new methods clearly separate the steps of image modeling, error modeling,
and error coding. Compression is completely lossless, and we obtain excellent com-
pression, typically 2 : l or 3:1, using a modest amount of memory. This compression
is better than that obtained by currently-used lossless image encoders.

The first of our methods has the additional advantages that it is easily parallelized
and is progressive. By “progressive” we mean that the image is encoded in levels;
the first level corresponds to a very highly compressed and very lossy encoding, and
each successive level provides more detail, until ultimately the encoding is completely
lossless. Truncating the encoded file will result in lossy compression of the entire
image, rather than exact compression of part of the image. A progressive method
allows an end user to get a preview of an image without having to decode much of
the encoded data; if more detail is desired, the image can be successively refined as
more of the encoded data is decoded.

In both of our new methods, we obtain lossless image compression by iterating
a three-step coding process. For each pixel (with actual value A p) , we first make
a prediction P, of the pixel’s value and compute A, = A, - P,; then we model
the prediction error by estimating its variance 0;; finally we encode A, using the
estimated variance. We can then use the actual value for predicting other pixels,
since the decoder can reconstruct the actual value from the prediction and the coded
difference.

The error encoding uses arithmetic coding, assuming that the errors are dis-
tributed according to a Laplace distribution; for each pixel we choose one of a num-
ber of precomputed distributions. In Section 2 we describe the error coding process
in detail.

In both our methods the prediction is a linear combination of the values of pixels
whose values are already known. Our methods differ from each other in the sequence
in which pixels are coded, the specific prediction function, and the method of esti-
mating variances. In Section 3 we describe MLP, a multi-level progressive method
that is readily partitioned for parallel processing. It uses a many-point interpolation
function for prediction; a number of different methods are available for variance esti-
mation. In Section 4, we describe PPMI, a context-based method. PPMI encodes an
image in raster-scan order, predicting with a four-point average; variance estimation
of each pixel is based on its context, allowing for inexact matches in a novel way.
PPMI gives slightly better compression than does MLP, but it is not progressive; pro-
posed extensions described later may improve MLP’s compression significantly. Both
MLP and PPMI achieve better image compression than do currently-used methods.

2 Encoding Prediction Errors

Both of our methods encode prediction errors by applying arithmetic coding to a
Laplace distribution. In this section we explain our choice of the Laplace distribution
and describe the application of arithmetic coding.

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

259

2.1 The Laplace distribution
It has long been known that for most images, prediction errors can be very closely
approximated by a Laplace (or symmetric exponential) distribution [7,8,9,10]. In
particular, the distribution of prediction errors is sharply peaked at zero, which is
characteristic of the Laplace distribution but not of the normal distribution.

The probability density function of the Laplace distribution with mean p and
variance u2 is given by

We assume that ,U = 0, and define the discrete probability mass function by

2.2 Description of the error coding procedure
If we use probabilities computed from pUz(.) to encode random variates from a
Laplace distribution with a variance other than u2, the average code length will
be longer than the ideal code length, but if the variances are close, the extra code
length will be small. By appropriate coder design, we place a limit on the average
extra code length.

Precomputation of the distributions. We wish to obtain probabilities to pass on
to the arithmetic coder without excessive computation. To this end, we select a
closely-spaced set of variances, with the idea of encoding a prediction error by using
the closest variance from the set. We use (1) to compute the Laplace distribution
probabilities corresponding to each variance, and build these variances and distribu-
tions into both the encoder and the decoder. By careful choice of the set of variances,
we can guarantee that the average extra code length due to using an approximate
variance will always be less than any given amount. Only 37 variances and distri-
butions are needed to ensure that the coding loss caused by the approximation is
less than 0.005 bit per pixel, a barely measurable quantity. We use this set of 37
variances and distributions for the remainder of this paper.

Coding the error. Once we have prepared the probability distributions, arith-
metic coding allows us to do the coding without difficulty. Given any discrete
probability distribution, we can use arithmetic coding to encode random variates
from that distribution with an average code length almost exactly equal to the en-
tropy of the distribution, Ck -pk log, p k . The mechanism of arithmetic coding is
straightforward [6], and the extra code length introduced in the coding process is
provably small [ll]. Unlike Huffman coding, arithmetic coding performs well even
when the probabilities are not integer powers of 2.

To encode a prediction error Ap (presumed to be a random variate from a Laplace
distribution with zero mean and a given estimated variance), we select the “near-
est” distribution from the set, that is, the one that minimizes the average extra

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

260

code length. We then simply use arithmetic coding to encode A,, according to the
distribution selected.

3 MLP, A Multi-Level Progressive Method
In this section we describe MLP, a new progressive method for image coding. The
prediction step can be done completely in parallel by the encoder, and with a high
degree of parallelism by the decoder. This is a practical scheme; it uses memory
proportional to the size of the image.

We encode the file in a series of levels, each level including twice as many pixels as
the previous one. As we begin to encode each level, the pixels with known values are
on the lattice points of a square grid. Using only the values of pixels on the lattice
points, we predict the value of the pixel at the midpoint of each grid square, and
encode the prediction error. (Of course the decoder can make the same prediction,
and hence can use the decoded error to reconstruct the original value.) After all
pixels in the level have been encoded, the set of known pixels form a checkerboard
pattern; by rotating and scaling the coordinate system we obtain a new square grid
of pixels with known values, with the distance between adjacent pixels only l / f i as
much as before.

Clearly the method is progressive: each level gives us the values of pixels selected
uniformly from the entire image. For example, just before encoding the last level, we
know the values of half the pixels of the image, in a checkerboard pattern over the
whole image. If we stopped the encoding at that point, the decoder could compute
the known pixels and use the prediction function to interpolate the remaining pixels.
In practice, even skipping the last two levels ("4 of the pixels in the image) leaves us
with an image virtually indistinguishable from the original.

The time-consuming step in this method is prediction (not arithmetic coding),
and the predictions are easy to parallelize. The set of predicting pixels for a given
pixel is fixed at the beginning of coding, so for encoding we could even use one
processor per pixel to predict in constant parallel time. Since the predictions made
during decoding depend on values obtained at earlier levels, only the pixels at a
given level can be predicted in parallel; the parallel prediction time for decoding an
n x n image is still small, proportional to the number of levels, 2 log, n.

Precursors of MLP, which use much simpler predictors and sophisticated variance
estimation, are developed in [12,13,14]. The rotating coordinate system appears in
[15,161.

3.1 Description of the MLP algorithm
The encoding algorithm proceeds as follows, for each successive level L: First we
make a prediction P, of every pixel p E L , and compute A, = A, - P,. Next, for
every pixel p E L, we estimate the variance U; to be used in encoding A, (or we
compute the variance and encode it). Then for every pixel p E L , we encode A,

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

261

as described in Section 2. Finally we do housekeeping to rotate and scale the grid.
Decoding is very similar. We now examine in detail the steps specific to MLP.

Prediction. To predict the value of a pixel, we use a linear combination of the
values of a nearby group of previously coded pixels. A 4 x 4 array of pixels works
well in practice, giving better compression and speed than 6 x 6 or 8 x 8 and better
compression than 2 x 2. The coefficients applied to the predicting pixels are selected
so that they do midpoint interpolation. We have tried polynomial and Fourier in-
terpolation; in practice, polynomial interpolation works slightly better.

Variance estimation. There is considerable choice in the method of variance
estimation. In theory, for each pixel we could find the distribution which encodes
the pixel’s error as compactly as possible. For the Laplace distribution with mean 0,
we find (by solving the equation a p , ~ (z) /a (uz) = 0) that the optimal variance is U’ =
2 2 , twice the square of the error. Of course, this method is not practical because
of the large overhead of encoding the optimal variance for each pixel. However, by
optimally encoding the errors and ignoring the cost of encoding the variances, we can
obtain a reasonable lower bound on the attainable code length. This lower bound
applies to MLP for a given prediction function and is based on the assumption that
the errors follow the Laplace distribution, but it does give a good indication of the
compressibility of a particular image.

A more practical method of encoding the variances is to compute and encode the
variance of all the errors at a given level; the overhead is minimal, only log, 37 = 5.21
bits per level. A refinement of this approach is to divide each level into blocks of k x k
pixels and compute and encode the variance of the errors of the pixels in each block.
The overhead increases with the number of blocks, but for medium-sized values of k
(say k = 16) the net code length is often reduced because of the more realistic error
model.

Since we expect that predictions made at a given pixel will be about as good
as those made at nearby pixels, we can use the errors made in predicting those
nearby pixels to estimate the variance of the prediction errors a t a given pixel. This
method has considerable promise for yielding substantially improved compression
because of its potential for accurate variance estimation with no overhead in coding
the variances. We are continuing investigation of it.

Housekeeping. After all the pixels in a level have been coded, we rotate the
coordinate system by 45 degrees and scale it by 1/&. In practice we do this by
alternating between diagonal and axis-parallel coordinate systems, reducing the step
size at each level.

It is necessary to deal with startup and edge effects, when the points that should
be used as predictors are not present in the image. Because of the small number of
pixels involved, these effects have little practical significance. In our implementation
we simply take the prediction coefficients of missing points to be zero.

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

262

4 PPMI, A Context-Based Method with
Approximate Matches

The success of high-order, context-based methods for text compression naturally
leads us to consider similar ideas for lossless image compression. We present a
method similar in spirit to the PPM (prediction by partial matching) method of
Cleary and Witten [3]. PPM encodes each input symbol using the longest context in
which the symbol has already occurred, up to a specified maximum length. For image
compression this method is not completely satisfactory because the exactly-repeated
strings that make text compression possible are not present in images. However,
we have discovered a new way of detecting approximate two-dimensional matches,
eminently suited to image compression. We call this method PPMI.

We again separate the coding
process into prediction, variance estimation, and error coding. For prediction we
use a simple linear combination of a few nearby pixels. For variance estimation we
attempt to make use of previous occurrences of the current context; however, instead
of trying to maximize the size of the matching context as in PPM, we use a small,
fixed-size context and focus on the closeness of the match. If we fail to find enough
previous occurrences of the exact current context, we relax the exactness constraint,
ignoring the least significant bit of each of the context pixels. If we still cannot find
a match, we ignore the next significant bits until we finally find an approximate
“context” that has occurred enough times; we use the statistics of that context to
estimate the variance.

The prediction context and the variance-estimation context need not be the same.
In our implementation we use the same set of pixels for each, the L-shaped neigh-
borhood consisting of the three pixels above and the one pixel immediately to the
left of the pixel being coded. For prediction the context consists of the intensity
values of the predicting pixels; the variance-estimation context consists of the errors
previously made in predicting the values of the pixels.

An alternative to using an L-shaped neighborhood for prediction of a pixel is to
use all eight surrounding pixels. If this is done for each pixel, we can reconstruct
the image exactly if we are given the intensity value of just one pixel in the image.
However in practice this modification requires significantly more computation and
achieves only marginally better compression.

PPMI encodes an image in raster-scan order.

4.1 Description of the algorithm
The encoding algorithm proceeds in raster-scan order. We encode each pixel p as
follows: First we make a prediction Pp using the prediction context, and compute
the error A, = A, - Pp. Then we repeat the following steps as many times as
necessary to estimate the variance: We construct a key, based on the prediction
errors of the pixels in the variance-estimation context, and search (using a hash
table) for previous occurrences of the key. If we find enough previous occurrences,
we use the error statistics of those occurrences to obtain an estimated mean pp and

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

263

variance U,’ for the prediction error of the pixel, and leave the variance-estimation
loop. If we do not find enough previous occurrences, we drop one low-order bit from
the prediction errors of the pixels in the variance-estimation context, and construct
a new key. After finding p p and U;, we encode Ap + pp as described in Section 2,
and update the statistics for one or more of the contexts just examined. Decoding
is very similar. We now examine in more detail the steps specific to PPMI.

Prediction. In our current implementation, we predict a pixel’s intensity by the
rounded arithmeticmean of the intensities of the four pixels in the prediction context.
At edges we simply use fewer pixels. Our prediction in this method is admittedly
very simple; a more sophisticated extrapolation function would give reduced error
variances and improved compression.

As noted above, we construct Ucontexts” of decreasing
precision based on the previously computed prediction errors of the four pixels in
the variance-estimation context. (We could use intensity values, but in practice using
error values works slightly better.) Since we are using errors rather than intensities,
we have to deal with negative values; we use a signed-magnitude representation, the
sign being associated with the most significant nonzero bit.

We follow the procedure described above to find a context that has occurred
enough times to allow a satisfactory estimate of the variance of prediction errors made
in that context. In practice, a context’s statistics are unreliable until the context has
occurred 10 or 15 times; we set the default threshold at 12. For the selected context
we compute the mean p p and the variance U,’ of its previous occurrences. Then we
encode Ap + p p as described in Section 2.

Updating the statistics. Each pixel occurs in a number of variance-estimation
“contexts” of different precisions. Instead of updating each of them, we adopt a
“lazy update” rule that saves time and gives better variance estimates. After coding
each pixel we update the statistics for at most two contexts, the one used for coding
and, if possible, the one with one additional bit of precision.

Variance estimation.

5 Experimental Results
As yet there is no standard for lossless image compression against which to compare
our methods. There are three reasonable choices for our comparisons: the UNIX
compress program, a high-order text compression program, and a DPCM image
compression program. The compress program is the de facto standard for text com-
pression, and in fact gives some compression on images, mostly attributable to its
ability to capture the context-independent entropy of any file. High-order text com-
pression programs outperform compress on text and on images; PPMC [5] is one of
the best available programs in this class, so we include it in our comparisons. PPMC
does best on most images with a first order model, so that is what we use. We also
include a simple, fast, DPCM program that predicts each pixel by the value of the
single pixel to its left; it is representative of the class of lossless image compression
programs designed for speed.

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

264

Abbreviation

comp
PPMC
DPCM
PPMI
MLP

MLPB

MLPopt

Our test data consists of three seven-band Landsat Thematic Mapper data
sets consisting of 8-bit grayscale images, over Washington, D.C., Donaldsonville,
Louisiana (55 miles west of New Orleans), and Ridgely, Maryland (45 miles south-
east of Baltimore). The Washington and Donaldsonville images are 512 x 512; the
Ridgely images are 368 x 468. In the tables, we designate the various compression
methods as follows:

Compression Method

U N I X compress
PPMC, using contexts of order 1
The simple DPCM program
Our PPMI method
Our MLP method, using a 4 x 4 prediction context and

Our MLP method, using a 4 x 4 prediction context and

The bound for MLP based on using optimal variance estimation,

a single variance for each level

a variance encoded for each 16 x 16 block

as described in Section 3.1

The figures in the tables are compression ratios, original file size divided by com-
pressed file size. For each file, the best compression ratio is indicated in boldface. The
MLPopt figures are italicized to indicate that they are bounds instead of attainable
compression ratios.

Band

Band

comp PPMC
Washington, D.C.
DPCM I PPMI MLP

1.70
2.21
1.92
1.46
1.34
5.36

~ 1.70

comp

1.79
2.36
1.99
1.34
1.34
6.14
1.65

-

1.97
2.53
2.20
1.71
1.58
6.72
1.99

1.74
1.93
1.83
1.46
1.30
2.00
1.75

2.18 2.16
2.76 2.74
2.40 2.37
1.91 1.90
1.78 1.76
6.91 8.66
2.20 2.20

Donaldsonville, Louisiana
PPMC

2.12
2.80
2.36
1.66
1.63
7.77
1.99

DPCM
1.79
1.91
1.77
1.41
1.37
2.00
1.67

MLPB
2.17
2.76
2.39
1.90
1.77
8.56
2.20

PPMI MLP MLPB
2.39 2.27 2.34
3.16 2.92 3.10
2.72 2.45 2.59
1.98 1.89 1.92
1.95 1.83 1.87
8.13 9.61 9.55
2.30 2.21 2.24

MLPopt
2.67
3.63
3.02
2.27
2.09

16.15
2.70

MLPopt
2.97
4.31
3.47
2.36
2.31

18.75
2.81

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

265

PPMC DPCM
2.14 1.85
2.71 1.96
2.25 1.85
2.08 1.80
1.64 1.45
1.92 1.68
6.99 2.00

Band
1
2
3
4
5
6
7

PPMI MLP
2.41 2.40
3.04 3.04
2.58 2.55
2.37 2.32
1.91 1.85
2.20 2.17
6.72 8.06

comp

1.79
2.26
1.86
1.76
1.34
1.58
5.50

Band
5

All

BA QT RG comp PPMC DPCM PPMI MLP MLPB MLPopt
1.2, 1.2 0.9* 1.34 1.64 1.45 1.91 1.85 1.86 2.27
1.2 1.6 1.6 1.91 2.31 1.78 2.61 2.60 2.60 3.33

MLPB
2.39
3.04
2.56
2.34
1.86
2.17
7.96

MLPopt
2.98
4.09
3.29
2.98
2.27
2.68

14-64

5.1 Discussion of the Results .

For most of the images, PPMI gives the best compression, but it is only slightly
better than the two variations of MLP. For all but one of the images, all of our
methods outperform all of the other methods; PPMC is consistently the best of the
others. The difference between our methods and the MLPopt bounds indicates that
attempting to improve methods of variance estimation should be a fruitful area of
further research. We expect that the idea discussed in Section 3.1, estimating the
variance of a pixel by using the variances of neighboring pixels, will give good variance
estimation with no overhead; this should considerably improve the performance of
MLP.

6 Conclusions
We identify the three components of a good predictive lossless image compression
method: image modeling and prediction, error modeling, and error coding. We give
a practical method for error coding based on arithmetic coding applied to a set of
Laplace distributions. We also give two new methods, MLP and PPMI, that make
the predictions and variance estimations needed by the coder. Both give excellent
compression, and MLP is both progressive and parallelizable.

We are continuing work on mathematical modeling of the prediction errors. We
are working with Yali Amit of Brown University on a method based on initial trans-
form coding followed by coding of the error file. With Amit we are also investigating

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

266

modeling prediction errors with the normal distribution instead of the Laplace dis-
tribution, since Gaussian fields are more amenable to mathematical analysis.

References

[l] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE
Trans. Inform. Theory, IT-23, no. 3, pp. 337-343, May 1977.

[2] -, “Compression of Individual Sequences via Variable Rate Coding,” IEEE Trans.
Inform. Theory, IT-24, no. 5, pp. 530-536, Sept. 1978.

[3] J. G. Cleary and I. H. Witten, “Data Compression Using Adaptive Coding and Partial
String Matching,” IEEE Trans. Comm., COM-32, no. 4, pp. 396-402, Apr. 1984.

[4] G . V. Cormack and R. N. Horspool, “Data Compression Using Dynamic Markov Mod-
elling,” Computer Science Dept., Univ. of Waterloo, Ontario, Research Report CS-86-18,
May 1986.

[5] A. Moffat, ‘‘A Note on the PPM Data Compression Algorithm,” Dept. of Computer
Science, Univ. of Melbourne, Victoria, Australia, Research Report 88/7, 1988.

[6] I. H. Witten, R. M. Neal and J . G . Cleary, “Arithmetic Coding for Data Compression,”
Comm. ACM, 30, no. 6, pp. 520-540, June 1987.

[7] J. B. O’Neal, “Predictive Quantizing Differential Pulse Code Modulation for the Trans-
mission of Television Signals,’’ Bell Syst. Tech. J., 45, no. 5, pp. 689-721, May-June
1966.

[8] A. Habibi, “Comparison of nth-Order DPCM Encoder With Linear ‘Ibansformations and
Block Quantization Techniques,” IEEE Trans. Comm. Tech., COM-19, no. 6, pp. 948-
956, Dec. 1971.

[9] A. N. Netravali and J. 0. Limb, “Picture Coding: A Review,” Proc. of the IEEE, 68,
no. 3, pp. 366-406, Mar. 1980.

[lo] A. K. Jain, “Image Data Compression: A Review,” Proc. of the IEEE, 69, no. 3, pp. 349-
389, Mar. 1981.

[ll] P. G . Howard and J . S. Vitter, “Analysis of Arithmetic Coding for Data Compression,”
IEEE Data Compression Conference, Snowbird, Utah, 1991.

[12] K. Knowlton, “Progressive Transmission of Gray-Scale and Binary Pictures by Simple,
Efficient, and Lossless Encoding Schemes,” Proc. of the IEEE, 68, no. 7, pp. 885-896,
July 1980.

[13] N. Garcia, C. Munoz and A. Sanz, “Image Compression Based on Hierarchical Coding,”
SPIE Image Coding, 594, pp. 150-157,1985.

[14] H. H. Torbey and H. E. Meadows, “System for Lossless Digital Image Compression,”
presented at SPIE, Visual Communication and Image Processing, Nov. 1989.

(151 T. Endoh and Y. Yamakazi, “Progressive Coding Scheme for Multilevel Images,” pre-
sented at Picture Coding Symp., Tokyo, 1986.

[16] P. Roos, M. A. Viergever, M. C. A. van Dijke and J. H. Peters, “Reversible Intraframe
Compression of Medical Images,” IEEE Trans. Medical Imaging, 7, no. 4, pp. 328-336,
Dec. 1988.

[17] J. C. Tilton and M. Manohar, “Hierarchical Data Compression: Integrated Browse,
Moderate Loss, and Lossless Levels of Data Compression,” preprint, 1990.

Authorized licensed use limited to: Texas A M University. Downloaded on May 13,2010 at 23:11:27 UTC from IEEE Xplore. Restrictions apply.

