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optimal data compression and how it can be matched with almost any prob-

abilistic model. We indicate the main disadvantage of arithmetic coding, its

slowness, and give the basis of a fast, space-e�cient, approximate arithmetic

coder with only minimal loss of compression e�ciency. Our coder is based on

the replacement of arithmetic by table lookups coupled with a new deterministic

probability estimation scheme.
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1 Data Compression and Arithmetic Coding

Data can be compressed whenever some data symbols are more likely than others.

Shannon [54] showed that for the best possible compression code (in the sense of

minimum average code length), the output length contains a contribution of � lg p

bits from the encoding of each symbol whose probability of occurrence is p. If we can

provide an accurate model for the probability of occurrence of each possible symbol

at every point in a �le, we can use arithmetic coding to encode the symbols that

actually occur; the number of bits used by arithmetic coding to encode a symbol with

probability p is very nearly � lg p, so the encoding is very nearly optimal for the given

probability estimates.

In this paper we show by theorems and examples how arithmetic coding achieves

its performance. We also point out some of the drawbacks of arithmetic coding
in practice, and propose a uni�ed compression system for overcoming them. We
begin by attempting to clear up some of the false impressions commonly held about
arithmetic coding; it o�ers some genuine bene�ts, but it is not the solution to all data
compression problems.

The most important advantage of arithmetic coding is its 
exibility: it can be
used in conjunction with any model that can provide a sequence of event probabilities.
This advantage is signi�cant because large compression gains can be obtained only
through the use of sophisticated models of the input data. Models used for arithmetic
coding may be adaptive, and in fact a number of independent models may be used

in succession in coding a single �le. This great 
exibility results from the sharp
separation of the coder from the modeling process [47]. There is a cost associated with
this 
exibility: the interface between the model and the coder, while simple, places
considerable time and space demands on the model's data structures, especially in
the case of a multi-symbol input alphabet.

The other important advantage of arithmetic coding is its optimality. Arithmetic
coding is optimal in theory and very nearly optimal in practice, in the sense of encod-

ing using minimal average code length. This optimality is often less important than it

might seem, since Hu�man coding [25] is also very nearly optimal in most cases [8,9,

18,39]. When the probability of some single symbol is close to 1, however, arithmetic

coding does give considerably better compression than other methods. The case of
highly unbalanced probabilities occurs naturally in bilevel (black and white) image

coding, and it can also arise in the decomposition of a multi-symbol alphabet into a
sequence of binary choices.

The main disadvantage of arithmetic coding is that it tends to be slow. We shall

see that the full precision form of arithmetic coding requires at least one multiplication
per event and in some implementations up to two multiplications and two divisions

per event. In addition, the model lookup and update operations are slow because
of the input requirements of the coder. Both Hu�man coding and Ziv-Lempel [59,

60] coding are faster because the model is represented directly in the data structures
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used for coding. (This reduces the coding e�ciency of those methods by narrowing

the range of possible models.) Much of the current research in arithmetic coding

concerns �nding approximations that increase coding speed without compromising

compression e�ciency. The most common method is to use an approximation to

the multiplication operation [10,27,29,43]; in this paper we present an alternative

approach using table lookups and approximate probability estimation.

Another disadvantage of arithmetic coding is that it does not in general produce a

pre�x code. This precludes parallel coding with multiple processors. In addition, the

potentially unbounded output delay makes real-time coding problematical in critical

applications, but in practice the delay seldom exceeds a few symbols, so this is not a

major problem. A minor disadvantage is the need to indicate the end of the �le.

One �nal minor problem is that arithmetic codes have poor error resistance, espe-
cially when used with adaptive models [5]. A single bit error in the encoded �le causes
the decoder's internal state to be in error, making the remainder of the decoded �le
wrong. In fact this is a drawback of all adaptive codes, including Ziv-Lempel codes
and adaptive Hu�man codes [12,15,18,26,55,56]. In practice, the poor error resistance
of adaptive coding is unimportant, since we can simply apply appropriate error cor-

rection coding to the encoded �le. More complicated solutions appear in [5,20], in
which errors are made easy to detect, and upon detection of an error, bits are changed
until no errors are detected.

Overview of this paper. In Section 2 we give a tutorial on arithmetic coding.
We include an introduction to modeling for text compression. We also restate several

important theorems from [22] relating to the optimality of arithmetic coding in theory
and in practice.

In Section 3 we present some of our current research into practical ways of improv-
ing the speed of arithmetic coding without sacri�cing much compression e�ciency.
The center of this research is a reduced-precision arithmetic coder, supported by

e�cient data structures for text modeling.

2 Tutorial on Arithmetic Coding

In this section we explain how arithmetic coding works and give implementation

details; our treatment is based on that of Witten, Neal, and Cleary [58]. We point out
the usefulness of binary arithmetic coding (that is, coding with a 2-symbol alphabet),

and discuss the modeling issue, particularly high-order Markov modeling for text
compression. Our focus is on encoding, but the decoding process is similar.

2.1 Arithmetic coding and its implementation

Basic algorithm. The algorithm for encoding a �le using arithmetic coding works

conceptually as follows:
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Figure 1: Subdivision of the current interval based on the probability of the input

symbol ai that occurs next.

1. We begin with a \current interval" [L;H) initialized to [0; 1).

2. For each symbol of the �le, we perform two steps (see Figure 1):

(a) We subdivide the current interval into subintervals, one for each possible
alphabet symbol. The size of a symbol's subinterval is proportional to the
estimated probability that the symbol will be the next symbol in the �le,
according to the model of the input.

(b) We select the subinterval corresponding to the symbol that actually occurs
next in the �le, and make it the new current interval.

3. We output enough bits to distinguish the �nal current interval from all other

possible �nal intervals.

The length of the �nal subinterval is clearly equal to the product of the probabilities

of the individual symbols, which is the probability p of the particular sequence of
symbols in the �le. The �nal step uses almost exactly � lg p bits to distinguish the

�le from all other possible �les. We need some mechanism to indicate the end of the

�le, either a special end-of-�le symbol coded just once, or some external indication of
the �le's length.

In step 2, we need to compute only the subinterval corresponding to the symbol ai
that actually occurs. To do this we need two cumulative probabilities, PC =

Pi�1
k=1 pk

and PN =
Pi

k=1 pk. The new subinterval is [L+ PC(H � L); L+ PN (H � L)). The
need to maintain and supply cumulative probabilities requires the model to have a
complicated data structure; Mo�at [35] investigates this problem, and concludes for

a multi-symbol alphabet that binary search trees are about twice as fast as move-to-

front lists.

Example 1 : We illustrate a non-adaptive code, encoding the �le containing the
symbols bbb using arbitrary �xed probability estimates pa = 0:4, pb = 0:5, and
pEOF = 0:1. Encoding proceeds as follows:
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Current Subintervals

Interval Action a b EOF Input

[0:000; 1:000) Subdivide [0:000; 0:400) [0:400; 0:900) [0:900; 1:000) b

[0:400; 0:900) Subdivide [0:400; 0:600) [0:600; 0:850) [0:850; 0:900) b

[0:600; 0:850) Subdivide [0:600; 0:700) [0:700; 0:825) [0:825; 0:850) b

[0:700; 0:825) Subdivide [0:700; 0:750) [0:750; 0:812) [0:812; 0:825) EOF

[0:812; 0:825)

The �nal interval (without rounding) is [0:8125; 0:825), which in binary is approx-

imately [0.11010 00000, 0.11010 01100). We can uniquely identify this interval by

outputting 1101000. According to the �xed model, the probability p of this partic-

ular �le is (0:5)3(0:1) = 0:0125 (exactly the size of the �nal interval) and the code
length (in bits) should be � lg p = 6:322. In practice we have to output 7 bits. 2

The idea of arithmetic coding originated with Shannon in his seminal 1948 paper
on information theory [54]. It was rediscovered by Elias about 15 years later, as
brie
y mentioned in [1].

Implementation details. The basic implementation of arithmetic coding de-
scribed above has two major di�culties: the shrinking current interval requires the
use of high precision arithmetic, and no output is produced until the entire �le has
been read. The most straightforward solution to both of these problems is to output

each leading bit as soon as it is known, and then to double the length of the cur-
rent interval so that it re
ects only the unknown part of the �nal interval. Witten,
Neal, and Cleary [58] add a clever mechanism for preventing the current interval from
shrinking too much when the endpoints are close to 1=2 but straddle 1=2. In that
case we do not yet know the next output bit, but we do know that whatever it is, the
following bit will have the opposite value; we merely keep track of that fact, and ex-

pand the current interval symmetrically about 1=2. This follow-on procedure may be
repeated any number of times, so the current interval size is always longer than 1/4.

Mechanisms for incremental transmission and �xed precision arithmetic have been

developed through the years by Pasco [40], Rissanen [48], Rubin [52], Rissanen and
Langdon [49], Guazzo [19], and Witten, Neal, and Cleary [58]. The bit-stu�ng idea

of Langdon and others at IBM that limits the propagation of carries in the additions
is roughly equivalent to the follow-on procedure described above.

We now describe in detail how the coding and interval expansion work. This
process takes place immediately after the selection of the subinterval corresponding

to an input symbol.

We repeat the following steps (illustrated schematically in Figure 2) as many times

as possible:

a. If the new subinterval is not entirely within one of the intervals [0; 1=2), [1=4; 3=4),

or [1=2; 1), we stop iterating and return.
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Figure 2: Interval expansion process. (a) No expansion. (b) Interval in [0; 1=2). (c)
Interval in [1=2; 1). (d) Interval in [1=4; 3=4) (follow-on case).

b. If the new subinterval lies entirely within [0; 1=2), we output 0 and any 1s left
over from previous symbols; then we double the size of the interval [0; 1=2),
expanding toward the right.

c. If the new subinterval lies entirely within [1=2; 1), we output 1 and any 0s left

over from previous symbols; then we double the size of the interval [1=2; 1),

expanding toward the left.

d. If the new subinterval lies entirely within [1=4; 3=4), we keep track of this fact

for future output; then we double the size of the interval [1=4; 3=4), expanding in
both directions away from the midpoint.

Example 2 : We show the details of encoding the same �le as in Example 1.
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Current Subintervals

Interval Action a b EOF Input

[0:00; 1:00) Subdivide [0:00; 0:40) [0:40; 0:90) [0:90; 1:00) b

[0:40; 0:90) Subdivide [0:40; 0:60) [0:60; 0:85) [0:85; 0:90) b

[0:60; 0:85) Output 1

Expand [1=2; 1)
[0:20; 0:70) Subdivide [0:20; 0:40) [0:40; 0:65) [0:65; 0:70) b

[0:40; 0:65) follow

Expand [1=4; 3=4)
[0:30; 0:80) Subdivide [0:30; 0:50) [0:50; 0:75) [0:75; 0:80) EOF

[0:75; 0:80) Output 10

Expand [1=2; 1)

[0:50; 0:60) Output 1

Expand [1=2; 1)

[0:00; 0:20) Output 0

Expand [0; 1=2)

[0:00; 0:40) Output 0

Expand [0; 1=2)

[0:00; 0:80) Output 0

The \follow" output in the sixth line indicates the follow-on procedure: we keep

track of our knowledge that the next output bit will be followed by its opposite; this
\opposite" bit is the 0 output in the ninth line. The encoded �le is 1101000, as
before. 2

Clearly the current interval contains some information about the preceding inputs;
this information has not yet been output, so we can think of it as the coder's state. If

a is the length of the current interval, the state holds � lg a bits not yet output. In the
basic method (illustrated by Example 1) the state contains all the information about
the output, since nothing is output until the end. In the implementation illustrated
by Example 2, the state always contains fewer than two bits of output information,

since the length of the current interval is always more than 1=4. The �nal state in

Example 2 is [0; 0:8), which contains � lg 0:8 � 0:322 bits of information.

Use of integer arithmetic. In practice, the arithmetic can be done by storing

the current interval in su�ciently long integers rather than in 
oating point or exact

rational numbers. (We can think of Example 2 as using the integer interval [0; 100)
by omitting all the decimal points.) We also use integers for the frequency counts

used to estimate symbol probabilities. The subdivision process involves selecting non-
overlapping intervals (of length at least 1) with lengths approximately proportional

to the counts. To encode symbol ai we need two cumulative counts, C =
Pi�1

k=1 ck and

N =
Pi

k=1 ck, and the sum T of all counts, T =
Pn

k=1 ck. (Here and elsewhere we

denote the alphabet size by n.) The new subinterval is [L+ bC(H�L)
T

c; L+ bN(H�L)
T

c).
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(In this discussion we continue to use half-open intervals as in the real arithmetic case.

In implementations [58] it is more convenient to subtract 1 from the right endpoints

and use closed intervals. Mo�at [36] considers the calculation of cumulative frequency

counts for large alphabets.)

Example 3 : Suppose that at a certain point in the encoding we have symbol counts

ca = 4, cb = 5, and cEOF = 1 and current interval [25; 89) from the full interval [0; 128).

Let the next input symbol be b. The cumulative counts for b are C = 4 and N = 9,

and T = 10, so the new interval is [25+ b4(89�25)
10

c; 25+ b9(89�25)
10

c) = [50; 82); we then

increment the follow-on count and expand the interval once about the midpoint 64,

giving [36; 100). It is possible to maintain higher precision, truncating (and adjusting

to avoid overlapping subintervals) only when the expansion process is complete; this

makes it possible to prove a tight analytical bound on the lost compression caused by
the use of integer arithmetic, as we do in [22], restated as Theorem 1 below. In practice
this re�nement makes the coding more di�cult without improving compression. 2

Analysis. In [22] we prove a number of theorems about the code lengths of �les
coded with arithmetic coding. Most of the results involve the use of arithmetic coding
in conjunction with various models of the input; these will be discussed in Section 2.3.
Here we note two results that apply to implementations of the arithmetic coder. The
�rst shows that using integer arithmetic has negligible e�ect on code length.

Theorem 1 If we use integers from the range [0; N) and use the high precision al-

gorithm for scaling up the subrange, the code length is provably bounded by 4=(N ln 2)
bits per input symbol more than the ideal code length for the �le.

For a typical value N = 65;536, the excess code length is less than 10�4 bit per

input symbol.
The second result shows that if we indicate end-of-�le by encoding a special symbol

just once for the entire �le, the additional code length is negligible.

Theorem 2 The use of a special end-of-�le symbol when coding a �le of length t

using integers from the range [0; N) results in additional code length of less than

8t=(N ln 2) + lgN + 7 bits.

Again the extra code length is negligible, less than 0.01 bit per input symbol for

a typical 100;000 byte �le.
Since we seldom know the exact probabilities of the process that generated an

input �le, we would like to know how errors in the estimated probabilities a�ect the

code length. We can estimate the extra code length by a straightforward asymptotic
analysis. The average code length L for symbols produced by a given model in a

given state is given by

L = �
nX
i=1

pi lg qi;
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where pi is the actual probability of the ith alphabet symbol and qi is its estimated

probability. The optimal average code length for symbols in the state is the entropy

of the state, given by

H = �
nX
i=1

pi lg pi:

The excess code length is E = L�H; if we let di = qi�pi and expand asymptotically

in d, we obtain

E =
nX
i=1

 
1

2 ln 2

d2i
pi

+O

 
d3i
p2i

!!
: (1)

(This corrects a similar derivation in [5], in which the factor of 1= ln 2 is omitted.)

The vanishing of the linear terms means that small errors in the probabilities used

by the coder lead to very small increases in code length. Because of this property,
any coding method that uses approximately correct probabilities will achieve a code
length close to the entropy of the underlying source. We use this fact in Section 3.1
to design a class of fast approximate arithmetic coders with small compression loss.

2.2 Binary arithmetic coding

The preceding discussion and analysis has focused on coding with a multi-symbol
alphabet, although in principle it applies to a binary alphabet as well. It is useful

to distinguish the two cases since both the coder and the interface to the model are
simpler for a binary alphabet. The coding of bilevel images, an important problem
with a natural two-symbol alphabet, often produces probabilities close to 1, indicating
the use of arithmetic coding to obtain good compression. Historically, much of the
arithmetic coding research by Rissanen, Langdon, and others at IBM has focused on

bilevel images [29]. The Q-Coder [2,27,33,41,42,43] is a binary arithmetic coder; work
by Rissanen and Mohiuddin [50] and Chevion et al. [10] extends some of the Q-Coder
ideas to multi-symbol alphabets.

In most other text and image compression applications, a multi-symbol alphabet

is more natural, but even then we can map the possible symbols to the leaves of a

binary tree, and encode an event by traversing the tree and encoding a decision at

each internal node. If we do this, the model no longer has to maintain and produce

cumulative probabilities; a single probability su�ces to encode each decision. Cal-
culating the new current interval is also simpli�ed, since just one endpoint changes

after each decision. On the other hand, we now usually have to encode more than one
event for each input symbol, and we have a new data structure problem, maintaining

the coding trees e�ciently without using excessive space. The smallest average num-
ber of events coded per input symbol occurs when the tree is a Hu�man tree, since

such trees have minimum average weighted path length; however, maintaining such

trees dynamically is complicated and slow [12,26,55,56]. In Section 3.3 we present a
new data structure, the compressed tree, suitable for binary encoding of multi-symbol

alphabets.
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2.3 Modeling for text compression

Arithmetic coding allows us to compress a �le as well as possible for a given model

of the process that generated the �le. To obtain maximum compression of a �le,

we need both a good model and an e�cient way of representing (or learning) the

model. (Rissanen calls this principle the minimum description length principle; he

has investigated it thoroughly from a theoretical point of view [44,45,46].) If we allow

two passes over the �le, we can identify a suitable model during the �rst pass, encode

it, and use it for optimal coding during the second pass. An alternative approach is

to allow the model to adapt to the characteristics of the �le during a single pass, in

e�ect learning the model. The adaptive approach has advantages in practice: there

is no coding delay and no need to encode the model, since the decoder can maintain

the same model as the encoder in a synchronized fashion.

In the following theorem from [22] we compare context-free coding using a two-
pass method and a one-pass adaptive method. In the two-pass method, the exact
symbol counts are encoded after the �rst pass; during the second pass each symbol's

count is decremented whenever it occurs, so at each point the relative counts re
ect
the correct symbol probabilities for the remainder of the �le (as in [34]). In the one-
pass adaptive method, all symbols are given initial counts of 1; we add 1 to a symbol's
count whenever it occurs.

Theorem 3 For all input �les, the adaptive code with initial 1-weights gives exactly

the same code length as the semi-adaptive decrementing code in which the input model

is encoded based on the assumption that all symbol distributions are equally likely.

Hence we see that use of an adaptive code does not incur any extra overhead, but it
does not eliminate the cost of describing the model.

Adaptive models. The simplest adaptive models do not rely on contexts for con-
ditioning probabilities; a symbol's probability is just its relative frequency in the part

of the �le already coded. (We need a mechanism for encoding a symbol for the �rst

time, when its frequency is 0; the easiest way [58] is to start all symbol counts at 1

instead of 0.) The average code length per input symbol of a �le encoded using such
a 0-order adaptive model is very close to the 0-order entropy of the �le. We shall

see that adaptive compression can be improved by taking advantage of locality of
reference and especially by using higher order models.

Scaling. One problem with maintaining symbol counts is that the counts can be-
come arbitrarily large, requiring increased precision arithmetic in the coder and more

memory to store the counts themselves. By periodically reducing all symbol's counts

by the same factor, we can keep the relative frequencies approximately the same while
using only a �xed amount of storage for each count. This process is called scaling.

It allows us to use lower precision arithmetic, possibly hurting compression because
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of the reduced accuracy of the model. On the other hand, it introduces a locality of

reference (or recency) e�ect, which often improves compression. We now discuss and

quantify the locality e�ect.

In most text �les we �nd that most of the occurrences of at least some words are

clustered in one part of the �le. We can take advantage of this locality by assigning

more weight to recent occurrences of a symbol in an adaptive model. In practice there

are several ways to do this:

� Periodically restarting the model. This often discards too much information

to be e�ective, although Cormack and Horspool �nd that it gives good results

when growing large dynamic Markov models [11].

� Using a sliding window on the text [26]. This requires excessive computational
resources.

� Recency rank coding [7,13,53]. This is simple but corresponds to a rather coarse
model of recency.

� Exponential aging (giving exponentially increasing weights to successive sym-
bols) [12,38]. This is moderately di�cult to implement because of the changing
weight increments, although our probability estimation method in Section 3.4
uses an approximate form of this technique.

� Periodic scaling [58]. This is simple to implement, fast and e�ective in operation,
and amenable to analysis. It also has the computationally desirable property
of keeping the symbol weights small. In e�ect, scaling is a practical version of

exponential aging.

Analysis of scaling. In [22] we give a precise characterization of the e�ect of scaling
on code length, in terms of an elegant notion we introduce called weighted entropy.

The weighted entropy of a �le at the end of the mth block, denoted by Hm, is the

entropy implied by the probability distribution at that time, computed according to

the scaling model described above.

We prove the following theorem for a �le compressed using arithmetic coding and
a zero-order adaptive model with scaling. All counts are halved and rounded up when

the sum of the counts reaches 2B; in e�ect, we divide the �le into b blocks of length B.

Theorem 4 Let L be the compressed length of a �le. Then we have

B

  
bX

m=1

Hm

!
+Hb �H0

!
� t

k

B

< L < B

  
bX

m=1

Hm

!
+Hb �H0

!
+ t

 
k

B
lg

�
B

kmin

�
+O

 
k2

B2

!!
;
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Table 1: PPM escape probabilities (pesc) and symbol probabilities (pi). The number

of symbols that have occurred j times is denoted by nj.

PPMA PPMB PPMC PPMP PPMX

pesc
1

t+1
k
t

k
t+k

n1
t
� n2

t2
+ : : : n1

t

pi
ci
t+1

ci�1
t

ci
t+k

where H0 = lg n is the entropy of the initial model, Hm is the (weighted) entropy

implied by the scaling model's probability distribution at the end of block m, k is the

number of di�erent alphabet symbols that appear in the �le, and kmin is the smallest

number of di�erent symbols that occur in any block.

When scaling is done, we must ensure that no symbol's count becomes 0; an easy
way to do this is to round fractional counts to the next higher integer. We show in

the following theorem from [22] that this roundup e�ect is negligible.

Theorem 5 Rounding counts up to the next higher integer increases the code length

for the �le by no more than n=2B bits per input symbol.

When we compare code lengths with and without scaling, we �nd that the di�er-
ences are small, both theoretically and in practice.

High order models. The only way to obtain substantial improvements in compres-
sion is to use more sophisticated models. For text �les, the increased sophistication
invariably takes the form of conditioning the symbol probabilities on contexts con-

sisting of one or more symbols of preceding text. (Langdon [28] and Bell, Witten,
Cleary, and Mo�at [3,4,5] have proven that both Ziv-Lempel coding and the dynamic
Markov coding method of Cormack and Horspool [11] can be reduced to �nite context

models, despite super�cial indications to the contrary.)
One signi�cant di�culty with using high-order models is that many contexts do

not occur often enough to provide reliable symbol probability estimates. Cleary and

Witten deal with this problem with a technique called Prediction by Partial Matching

(PPM). In the PPMmethods wemaintainmodels of various context lengths, or orders.
At each point we use the highest order model in which the symbol has occurred in the

current context, with a special escape symbol indicating the need to drop to a lower
order. Cleary and Witten specify two ad hoc methods, called PPMA and PPMB, for

computing the probability of the escape symbol. Mo�at [37] implements the algorithm

and proposes a third method, PPMC, for computing the escape probability: he treats
the escape event as a separate symbol; when a symbol occurs for the �rst time he

adds 1 to both the escape count and the new symbol's count. In practice, PPMC
compresses better than PPMA and PPMB. PPMP and PPMX appear in [57]; they

are based on the assumption that the appearance of symbols for the �rst time in a



12 3 FAST ARITHMETIC CODING

�le is approximately a Poisson process. See Table 1 for formulas for the probabilities

used by the di�erent methods, and see [5] or [6] for a detailed description of the PPM

method. In Section 3.5 we indicate two methods that provide improved estimation

of the escape probability.

2.4 Other applications of arithmetic coding

Because of its nearly optimal compression performance, arithmetic coding has been

proposed as an enhancement to other compression methods and activities related to

compression. The output values produced by Ziv-Lempel coding are not uniformly

distributed, leading several researchers [21,32,51] to suggest using arithmetic coding

to further compress the output. Compression is indeed improved, but at the cost of

slowing down the algorithm and increasing its complexity.

Lossless image compression is often performed using predictive coding, and it is
often found that the prediction errors follow a Laplace distribution. In [23] we present
methods that use tables of the Laplace distribution precomputed for arithmetic coding

to obtain excellent compression ratios of grayscale images. The distributions are
chosen to guarantee that, for a given variance estimate, the resulting code length
exceeds the ideal for the estimate by only a small �xed amount.

Especially when encoding model parameters, it is often necessary to encode arbi-

trarily large non-negative integers. Witten et al. [58] note that arithmetic coding can
encode integers according to any given distribution. In the examples in Section 3.1
we show how some encodings of integers found in the literature can be derived as
low-precision arithmetic codes.

We point out here that arithmetic coding can also be used to generate random

variables from any desired distribution, as well as to produce nearly random bits
from the output of any random process. In particular, it is easy to convert random
numbers from one base to another, and to convert random bits with an unknown but
�xed probability to bits with a probability of 1=2.

3 Fast Arithmetic Coding

In this section we present some of our current research into several aspects of arith-
metic coding. We show the construction of a fast, reduced-precision binary arithmetic

coder, and indicate a theoretical construct, called the �-partition, that can assist in

choosing a representative set of probabilities to be used by the coder. We introduce
a data structure that we call the compressed tree for e�ciently representing a multi-

symbol alphabet as a binary tree. We give a deterministic algorithm for estimating
probabilities of binary events and storing them in 8-bit locations. We give two im-

proved ways of handling the zero-frequency problem (symbols occurring in context

for the �rst time). Finally we show that we can use hashing to obtain fast access of
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contexts with only a small loss of compression e�ciency. All these components can

be combined into a fast, space-e�cient text coder.

3.1 Reduced-precision arithmetic coding

We have noted earlier that the primary disadvantage of arithmetic coding is its slow-

ness. We have also seen that small errors in probability estimates cause very small

increases in code length, so we can expect that by introducing approximations into the

arithmetic coding process in a controlled way we can improve coding speed without

signi�cantly degrading compression performance. In the Q-Coder work at IBM, the

time-consuming multiplications are replaced by additions and shifts, and low-order

bits are ignored.

In this section, we take a di�erent approach to approximate arithmetic coding:
recalling that the fractional bits characteristic of arithmetic coding are stored as
state information in the coder, we reduce the number of possible states, and replace
arithmetic operations by table lookups. Here we present a fast, reduced-precision
binary arithmetic coder (which we refer to as quasi-arithmetic coding in a companion

paper [24]) and develop it through a series of examples. It should be noted that the
compression is still completely reversible; using reduced precision merely a�ects the
average code length.

The number of possible states (after applying the interval expansion procedure) of
an arithmetic coder using the integer interval [0; N) is 3N2=16. If we can reduce the

number of states to a more manageable level, we can precompute all state transitions
and outputs and substitute table lookups for arithmetic in the coder. The obvious
way to reduce the number of states is to reduce N . The value of N must be even; for
computational convenience we prefer that it be a multiple of 4.

Example 4 : The simplest non-trivial coders have N = 4, and have only three states.
By applying the arithmetic coding algorithm in a straightforward way, we obtain

the following coding table. A \follow" output indicates application of the follow-on

procedure described in Section 2.1.

0 input 1 input

State Probf0g Output Next state Output Next state

[0; 4) 0 < p < 1� � 00 [0; 4) - [1; 4)
1� � � p � � 0 [0; 4) 1 [0; 4)

� < p < 1 - [0; 3) 11 [0; 4)

[0; 3) 0 < p < 1=2 00 [0; 4) follow [0; 4)
1=2 � p < 1 0 [0; 4) 10 [0; 4)

[1; 4) 0 < p < 1=2 01 [0; 4) 1 [0; 4)
1=2 � p < 1 follow [0; 4) 11 [0; 4)
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The value of the cuto� probability � in state [0; 4) is clearly between 1=2 and 3=4. If

this were an exact coder, the subintervals of length 3 would correspond to � lg 3=4 �
0:415 bits of output information stored in the state, and we would choose � = 1= lg 3 �
0:631 to minimize the extra code length. But because of the approximate arithmetic,

the optimal value of � depends on the distribution of Probf0g; if Probf0g is uniformly

distributed on (0; 1), we �nd analytically that the excess code length is minimized

when � = (15 �
p
97)=8 � 0:644. Fortunately, the amount of excess code length is

not very sensitive to the value of �; in the uniform distribution case any value from

about 0.55 to 0.73 gives less than one percent extra code length. 2

Arithmetic coding does not mandate any particular assignment of subintervals to

input symbols; all that is required is that subinterval lengths be proportional to sym-

bol probabilities and that the decoder make the same assignment as the encoder. In
Example 4 we uniformly assigned the left subinterval to symbol 0. By preventing the
longer subinterval from straddling the midpoint whenever possible, we can sometimes
obtain a simpler coder that never requires the follow-on procedure; it may also use
fewer states.

Example 5 : This coder assigns the right subinterval to 0 in lines 4 and 7 of Example 4,
eliminating the need for using the follow-on procedure; otherwise it is the same as
Example 4.

0 input 1 input
State Probf0g Output Next state Output Next state

[0; 4) 0 < p < 1� � 00 [0; 4) - [1; 4)
1� � � p � � 0 [0; 4) 1 [0; 4)

� < p < 1 - [0; 3) 11 [0; 4)

[0; 3) 0 < p < 1=2 10 [0; 4) 0 [0; 4)
1=2 � p < 1 0 [0; 4) 10 [0; 4)

[1; 4) 0 < p < 1=2 01 [0; 4) 1 [0; 4)
1=2 � p < 1 1 [0; 4) 01 [0; 4)

2

Langdon and Rissanen [29] suggest identifying the symbols as the more probable
symbol (MPS) and less probable symbol (LPS) rather than as 1 and 0. By doing this

we can often combine transitions and eliminate states.

Example 6 : We modify Example 5 to use the MPS/LPS idea. We are able to reduce

the coder to just two states.



3.1 Reduced-precision arithmetic coding 15

LPS input MPS input

State ProbfMPSg Output Next state Output Next state

[0; 4) 1=2 � p � � 0 [0; 4) 1 [0; 4)

� < p < 1 00 [0; 4) - [1; 4)

[1; 4) 1=2 � p < 1 01 [0; 4) 1 [0; 4)

2

Another way of simplifying an arithmetic coder is to allow only a subset of the

possible interval subdivisions. Using integer arithmetic has the e�ect of making the

symbol probabilities approximate, especially as the integer range is made smaller;

limiting the number of subdivisions simply makes them even less precise. Since the

main bene�t of arithmetic coding is its ability to code e�ciently when probabilities
are close to 1, we usually want to allow at least some pairs of unequal probabilities.

Example 7 : If we know that one symbol occurs considerably more often than the

other, we can eliminate the transitions in Example 6 for approximately equal prob-
abilities. This makes it unnecessary for the coder to decide which transition pair to
use in the [0; 4) state, and gives a very simple reduced-precision arithmetic coder.

LPS input MPS input
State Output Next state Output Next state

[0; 4) 00 [0; 4) - [1; 4)
[1; 4) 01 [0; 4) 1 [0; 4)

This simple code is quite useful, providing almost a 50 percent improvement on the
unary code for representing non-negative integers. To encode n in unary, we output

n 1s and a 0. Using the code just derived, we re-encode the unary coding, treating 1
as the MPS. The resulting code consists of bn=2c 1s, followed by 00 if n is even and

01 if n is odd. We can do even better with slightly more complex codes, as we shall

see in examples that follow. 2

We now introduce the maximally unbalanced subdivision and show how it can be
used to obtain excellent compression when ProbfMPSg � 1. Suppose the current

interval is [L; H). If ProbfMPSg is very high we can subdivide the interval at L+ 1
or H�1, indicating ProbfLPSg = 1=(H�L) and ProbfMPSg = 1�1=(H�L). Since

the length of the current interval H �L is always more than N=4, such a subdivision
always indicates a ProbfMPSg of more than 1�4=N . By choosing a large value of N

and always including the maximally unbalanced subdivision in our coder, we ensure

that very likely symbols can always be given an appropriately high probability.

Example 8 : Let N = 8 and let the MPS always be 1. We obtain the following
four-state code if we allow only the maximally unbalanced subdivision in each state.
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0 (LPS) input 1 (MPS) input

State Output Next state Output Next state

[0; 8) 000 [0; 8) - [1; 8)

[1; 8) 001 [0; 8) - [2; 8)

[2; 8) 010 [0; 8) - [3; 8)

[3; 8) 011 [0; 8) 1 [0; 8)

We can use this code to re-encode unary-coded non-negative integers with bn=4c + 3

bits. In e�ect, we represent n in the form 4a+ b; we encode a in unary, then use two

bits to encode b in binary. 2

Whenever the current interval coincides with the full interval, we can switch to a
di�erent code.

Example 9 : We can derive the Elias code for the positive integers [14] by using the
maximally unbalanced subdivision technique of Example 8 and by doubling the full

integer range whenever we see enough 1s to output a bit and expand the current
interval so that it coincides with the full range. This coder has an in�nite number of
states; no state is visited more than once. We use the notation [L;H)=M to indicate
the subinterval [L;H) selected from the range [0;M).

0 (LPS) input 1 (MPS) input
State Output Next state Output Next state

[0; 2)=2 0 STOP 1 [0; 4)=4
[0; 4)=4 00 STOP - [1; 4)=4
[1; 4)=4 01 STOP 1 [0; 8)=8
[0; 8)=8 000 STOP - [1; 8)=8

[1; 8)=8 001 STOP - [2; 8)=8
...

...
...

...
...

This code corresponds to encoding positive integers as follows:

n Code

1 0

2 100

3 101

4 11000

5 11001
...

...
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In e�ect we represent n in the form 2a + b; we encode a in unary, then use a bits to

encode b in binary. This is essentially the Elias code; it requires b2 lg nc + 1 bits to

encode n. 2

If we design a coder with more states, we obtain a more �ne-grained set of prob-

abilities.

Example 10 : We show a six-state coder, obtained by letting N = 8 and allowing

all possible subdivisions. We indicate only the center probability for each range; in

practice any reasonable division will give good results. Output symbol f indicates

application of the follow-on procedure.

Approximate LPS input MPS input

State ProbfMPSg Output Next state Output Next state

[0; 8) 1/2 1 [0; 8) 0 [0; 8)
5/8 1 [2; 8) - [0; 5)
3/4 11 [0; 8) - [0; 6)
7/8 111 [0; 8) - [0; 7)

[0; 7) 4/7 1 [0; 6) 0 [0; 8)
5/7 1f [0; 8) - [0; 5)
6/7 110 [0; 8) - [0; 6)

[0; 6) 1/2 f [2; 8) 0 [0; 6)
2/3 10 [0; 8) 0 [0; 8)
5/6 101 [0; 8) - [0; 5)

[2; 8) 1/2 f [0; 6) 1 [2; 8)
2/3 01 [0; 8) 1 [0; 8)
5/6 010 [0; 8) - [3; 8)

[0; 5) 3/5 ff [0; 8) 0 [0; 6)
4/5 100 [0; 8) 0 [0; 8)

[3; 8) 3/5 ff [0; 8) 1 [2; 8)
4/5 011 [0; 8) 1 [0; 8)

This coder is easily programmed and extremely fast. Its only shortcoming is that

on average high-probability symbols require 1=4 bit (corresponding to ProbfMPSg =
2�1=4 � 0:841) no matter how high the actual probability is. 2

Design of a class of reduced-precision coders. We now present a very 
ex-

ible yet simple coder design incorporating most of the features just discussed. We

choose N to be any power of 2. All states in the coder are of the form [k;N), so the
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number of states is only N=2. (Intervals with k � N=2 will produce output, and the

interval will be expanded.) In every state [k;N) we include the maximally unbalanced

subdivision (at k+1), which corresponds to values of ProbfMPSg between (N�2)=N

and (N � 1)=N . We include a nearly balanced subdivision so that we will not lose

e�ciency when ProbfMPSg � 1=2. In addition, we locate other subdivision points

such that the subinterval expansion that follows each input symbol leaves the coder

in a state of the form [k;N), and we choose one or more of them to correspond to

intermediate values of ProbfMPSg. For simplicity we denote state [k;N) by k.

We always allow the interval [k;N) to be divided at k + 1; if the LPS occurs we

output the lgN bits of k and move to state 0, while if the MPS occurs we simply

move to state k + 1, then if the new state is N=2 we output a 1 and move to state

0. The other permitted subdivisions are given in the following table. In some cases
additional output and expansion may be possible. It may not be necessary to include
all subdivisions in the coder.

Range of Subdivision LPS input MPS input
states k LPS MPS Output Next State Output Next State

[0; N
2
) [k; N

2
) [N

2
; N) 0 2k 1 0

[0; N
4
) [k; N

4
) [N

4
; N) 00 4k - N

4

[N
8
; N
4
) [k; 3N

8
) [3N

8
; N) 0f 4k � N

2
- 3N

8

[N
4
; 3N

8
) [k; 3N

8
) [3N

8
; N) 010 8k � 2N - 3N

8

[3N
8
; N
2
) [k; 5N

8
) [5N

8
; N) ff 4k � 3N

2
1 N

4

[7N
16
; N
2
) [k; 9N

16
) [9N

16
; N) fff 8k � 7N

2
1 N

8

[N
4
; N
2
) [3N

4
; N) [k; 3N

4
) 11 0 f 2k � N

2

For example, the �fth line indicates that for all states k for which 3N=8 � k < N=2,

we may subdivide the interval at 5N=8. If the LPS occurs, we perform the follow-
on procedure twice, which leaves us with the interval [4k � 3N=2; N); otherwise we

output a 1 and expand the interval to [N=4; N).
A coder constructed using this procedure will have a small number of states, but

in every state it will allow us to use estimates of ProbfMPSg near 1, near 1=2, and

in between. Thus we can choose a large N so that highly probable events require
negligible code length, while keeping the number of states small enough to allow
table lookups rather than arithmetic.

3.2 �-partitions and �-partitions

In Section 3.1 we have shown that is is possible to design a binary arithmetic coder

that admits only a small number of possible probabilities. In this section we give
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a theoretical basis for selecting the probabilities. Often there are practical consid-

erations limiting our choices, but we can show that it is reasonable to expect that

choosing only a few probabilities will give close to optimal compression.

For a binary alphabet, we can use Equation (1) to compute E(p; q), the extra code

length resulting from using estimates q and 1� q for actual probabilities p and 1� p,

respectively. For any desired maximum excess code length �, we can partition the

space of possible probabilities to guarantee that the use of approximate probabilities

will never add more than � to the code length of any event. We select partitioning

probabilities P0; P1; : : : and estimated probabilities Q0; Q1; : : :. Each probability Qi

is used to encode all events whose probability p is in the range Pi < p � Pi+1. We

compute the partition, which we call an �-partition, as follows:

1. Set i := 0 and Q0 := 1=2.

2. Find the value of Pi+1 (greater than Qi) such that E(Pi+1; Qi) = �. We will
use Qi as the estimated probability for all probabilities p such that Qi < p �
Pi+1.

3. Find the value of Qi+1 (greater than Pi+1) such that E(Pi+1; Qi+1) = �. After
we compute Pi+2 in step 2 of the next iteration, we will use Qi+1 as the estimate
for all probabilities p such that Pi+1 < p � Pi+2.

We increment i and repeat steps 2 and 3 until Pi+1 or Qi+1 reaches 1. The values for
p < 1=2 are symmetrical with those for p > 1=2.

Example 11 : We show the �-partition for � = 0:05 bit per binary input symbol.

Range of actual probabilities Probability to use

[0:0000; 0:0130) 0.0003
[0:0130; 0:1427) 0.0676
[0:1427; 0:3691) 0.2501

[0:3691; 0:6309) 0.5000

[0:6309; 0:8579) 0.7499
[0:8579; 0:9870) 0.9324

[0:9870; 1:0000) 0.9997

Thus by using only 7 probabilities we can guarantee that the excess code length does

not exceed 0.05 bit for each binary decision coded. 2

We might wish to limit the relative error so that the code length can never exceed

the optimal by more than a factor of 1 + �. We can begin to compute these �-

partitions using a procedure similar to that for �-partitions, but unfortunately the

process does not terminate, since �-partitions are not �nite. As P approaches 1, the
optimal average code length grows very small, so to obtain a small relative loss Q

must be very close to P . Nevertheless, we can obtain a partial �-partition.
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Example 12 : We show part of the �-partition for � = 0:05; the maximum relative

error is 5 percent.

Range of actual probabilities Probability to use

...
...

[0:0033; 0:0154) 0.0069

[0:0154; 0:0573) 0.0291

[0:0573; 0:1670) 0.0982

[0:1670; 0:3722) 0.2555

[0:3722; 0:6278) 0.5000

[0:6278; 0:8330) 0.7445
[0:8330; 0:9427) 0.9018

[0:9427; 0:9846) 0.9709
[0:9846; 0:9967) 0.9931

...
...

2

In practice we will use an approximation to an �-partition or a �-partition for
values of ProbfMPSg up to the maximum probability representable by our coder.

3.3 Compressed trees

To use the reduced-precision arithmetic coder described in Section 3.1 for an n-symbol

alphabet, we need an e�cient data structure to map each of n symbols to a sequence
of binary choices. We might consider Hu�man trees, since they minimize the average
number of binary events encoded per input symbol; however, a great deal of e�ort
is required to keep the probabilities on all branches near 1=2. For arithmetic coding
maintaining this balance condition is unnecessary and wastes time.

In this section we present the compressed tree, a space-e�cient data structure

based on the complete binary tree. Because arithmetic coding allows us to obtain
nearly optimal compression of binary events even when the two probabilities are
unequal, we are free to represent the probability distribution of an n-symbol alphabet

by a complete binary tree with a probability at each internal node. The tree can be


attened (linearized) by breadth-�rst traversal, and we can save space by storing only

one probability at each internal node, say, the probability of taking the left branch.

(This probability can be stored to su�cient precision in just one byte, as we shall see
in Section 3.4.)

In high-order text models, many longer contexts occur only a few times, and only

a few di�erent alphabet symbols occur in each context. In such cases even the linear
representation is wasteful of space, requiring n � 1 nodes regardless of the number

of alphabet symbols that actually occur. Including pointers in the nodes would at
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(c)

(b)

(a)

38 62

752501006733--
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a b c d e f g h

38 0 20 - 33 100 25

38 0 20 33 100 25

Figure 3: Steps in the development of a compressed tree. (a) Complete binary tree.
(b) Linear representation. (c) Compressed tree.

least double their size. In the compressed tree we collapse the breath-�rst linear
representation of the complete binary tree by omitting nodes with zero probability.
If k di�erent symbols have non-zero probability, the compressed tree representation
requires at most k lg(2n=k) � 1 nodes.

Example 13 : Suppose we have the following probability distribution for an 8-symbol

alphabet:

Symbol a b c d e f g h

Probability 0 0 1=8 1=4 1=8 0 1=8 3=8

We can represent this distribution by the tree in Figure 3(a), rounding probabili-

ties and expressing them as multiples of 0.01. We show the linear representation in
Figure 3(b) and the compressed tree representation in Figure 3(c). 2

Traversing the compressed tree is mainly a matter of keeping track of omitted

nodes. We do not have to process each node of the tree: for the �rst lg n � 2 levels
we have to process each node; but when we reach the desired node in the next-to-

lowest level we have enough information to directly index the desired node of the

lowest level. The operations are very simple, involving only one test and one or
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two increment operations at each node, plus a few extra operations at each level.

Including the capability of adding new symbols to the tree makes the algorithm only

slightly more complicated.

3.4 Representing and estimating probabilities

In our binary coded representation of each context we wish to use only one byte for

each probability, and we need the probability to limited precision. Therefore, we will

represent the probability at a node as a state in a �nite state automaton with about

256 states. Each state indicates a probability, and some of the states also indicate

the size of the sample used to estimate the probability.

We need a method for estimating the probability at each node of the binary
tree. Leighton and Rivest [30] and Pennebaker and Mitchell [41] describe proba-
bilistic methods. Their estimators are also �nite state automata, with each state
corresponding to a probability. When a new symbol occurs, a transition to another

state may occur, the probability of the transition depending on the current state and
the new symbol. Generally, the transition probability is higher when the LPS occurs.
In [30] transitions occur only between adjacent states. In [41] the LPS always causes
a transition, possibly to a non-adjacent state; a transition after the MPS, when one
occurs, is always to an adjacent state.

We give a deterministic estimator based on the same idea. In our estimator
each input symbol causes a transition (unless the MPS occurs when the estimated
probability is already at its maximum value). The probabilities represented by the
states are so close together that transitions often occur between non-adjacent states.
The transitions are selected so that we compute the new probability pnew of the left

branch by

pnew �
(
f pold + (1� f) if the left branch was taken
f pold if the right branch was taken,

where f is a smoothing factor. This corresponds to exponential aging; hence the

probability estimate can track changing probabilities and bene�t from locality of
reference, as discussed in Section 2.3.

In designing a probability estimator of this type we must choose both the scaling
factor f and the set of probabilities represented by the states. We should be guided

by the requirements of the coder and by our lack of a priori knowledge of the process
generating the sequence of branches.

First we note that when the number of occurrences is small, our estimates cannot

be very accurate. Laplace's law of succession, which gives the estimate

p =
c+ 1

t+ 2
(2)

after c successes in t trials, o�ers a good balance between using all available infor-

mation and allowing for random variation in the data; in e�ect, it gives the Bayesian
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estimate assuming a uniform a priori distribution for the true underlying probabil-

ity P .

We recall that for values of P near 1=2 we do not require a very accurate estimate,

since any value will give about the same code length; hence we do not need many

states in this probability region. When P is closer to 1, we would like our estimate

to be more accurate, to allow the arithmetic coder to give near-optimal compression,

so we assign states more densely for larger P . Unfortunately, in this case estimation

by any means is di�cult, because occurrences of the LPS are so infrequent. We also

note that the underlying probability of any branch in the coding tree may change at

any time, and we would like our estimate to adapt accordingly.

To handle the small-sample cases, we reserve a number of states simply to count

occurrences when t is small, using Equation (2) to estimate the probabilities. We do
the same for larger values of t when c is 0, 1, t� 1, or t, to provide fast convergence
to extreme values of P .

We can show that if the underlying probability P does not change, the expected
value of the estimate pk after k events is given by

E(pk) = P + (p0 � P )fk;

which converges to P for all f , 0 � f < 1. The rapid convergence of E(pk) when
f = 0 is misleading, since in that case the estimate is always 0 or 1, depending only

on the preceding event. The expected value is clearly P , but the estimator is useless.
A value of f near 1 provides resistance to random 
uctuations in the input, but
the estimate converges slowly, both initially and when the underlying P changes. A
careful choice of f would depend on a detailed analysis like that performed by Flajolet
for the related problem of approximate counting [16,17]. We make a more pragmatic

decision. We know that periodic scaling is an approximation to exponential aging
and we can show that a scaling factor of f corresponds to a scaling block size B of
approximately f ln 2=(1 � f). Since B = 16 works well for scaling [58], we choose

f = 0:96.

3.5 Improved modeling for text compression

To obtain good, fast text compression, we wish to use the multi-symbol extension

of the reduced-precision arithmetic coder in conjunction with a good model. The

PPM idea described in Section 2.3 has proven e�ective, but the ad hoc nature of the

escape probability calculation is somewhat annoying. In this section we present yet

another ad hoc method, which we call PPMD, and also a more complicated but more
principled approach to the problem.

PPMD. Mo�at's PPMC method [37] is widely considered to be the best method of
estimating escape probabilities. In PPMC, each symbol's weight in a context is taken

to be number of times it has occurred so far in the context. The escape \event,"
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Table 2: Comparsion of PPMC and PPMD. Compression �gures are in bits per input

symbol.
Improvement

using
File Text? PPMC PPMD PPMD

bib Yes 2.11 2.09 0.02
book1 Yes 2.65 2.63 0.02
book2 Yes 2.37 2.35 0.02
news Yes 2.91 2.90 0.01

paper1 Yes 2.48 2.46 0.02
paper2 Yes 2.45 2.42 0.03
paper3 Yes 2.70 2.68 0.02
paper4 Yes 2.93 2.91 0.02
paper5 Yes 3.01 3.00 0.01

paper6 Yes 2.52 2.50 0.02
progc Yes 2.48 2.47 0.01
progl Yes 1.87 1.85 0.02
progp Yes 1.82 1.80 0.02

geo No 5.11 5.10 0.01

obj1 No 3.68 3.70 -0.02

obj2 No 2.61 2.61 0.00
pic No 0.95 0.94 0.01
trans No 1.74 1.72 0.02
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that is, the occurrence of a symbol for the �rst time in the context, is also treated as

a \symbol," with its own count. When a letter occurs for the �rst time, its weight

becomes 1; the escape count is incremented by 1, so the total weight increases by 2.

At all other times the total weight increases by 1.

We have developed a new method, which we call PPMD, which is similar to PPMC

except that it makes the treatment of new symbols more consistent by adding 1=2

instead of 1 to both the escape count and the new symbol's count when a new symbol

occurs; hence the total weight always increases by 1. We have compared PPMC and

PPMD on the Bell-Cleary-Witten corpus [5] (including the four papers not described

in the book). Table 2 shows that for text �les PPMD compresses consistently about

0.02 bit per character better than PPMC. The compression results for PPMC di�er

from those reported in [5] because of implementation di�erences; we used versions of
PPMC and PPMD that were identical except for the escape probability calculations.

PPMD has the added advantage of making analysis more tractable by making the
code length independent of the appearance order of symbols in the context.

Indirect probability estimation. Often we are faced with a situation where we

have no theoretical basis for estimating the probability of an event, but where we
know the factors that a�ect the probability. In such cases a logical and e�ective
approach is to create conditioning classes based on the values of the factors, and to
estimate the probability adaptively for each class. In the PPM method, we know that
the number of occurrences of a state (t) and the number of di�erent alphabet symbols

that have occurred (k) are the factors a�ecting pesc. We have done experiments, using
all combinations of t and k as the conditioning classes (except that we group together
all values of t greater than 48 and all values of k greater than 18). In our experiments
we use a third-order model; when a symbol has not occurred previously in its context
of length 3, we simply use 8 bits to indicate the ASCII value of the symbol. (The

idea of skipping some shorter contexts for speed, space, and simplicity appears also
in [31].) Even with this simplistic way of dropping to shorter contexts, the improved

estimation of pesc gives slightly better overall compression than PPMC for book1,

the longest �le in the Bell-Cleary-Witten corpus. We expect that using indirect
probability estimation in conjunction with the full multi-order PPM mechanism will

yield substantially improved compression.

3.6 Hashed high-order Markov models.

For �nding contexts in the PPM method, Mo�at [37] and Bell et al. [5] give com-
plicated data structures called backward trees and vine pointers. For fast access and

minimal memory usage we propose single hashing without collision resolution. One

might expect that using the same bucket for accumulating statistics from unrelated
contexts would signi�cantly degrade compression performance, but we can show that

often this is not the case.
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Even in the worst case, when the symbols from the k colliding contexts in bucket

b are mutually disjoint, the additional code length is only Hb = H(p1; p2; p3; : : : ; pk),

the entropy of the ensemble of probabilities of occurrence of the contexts. We show

this by conceptually dividing the bucket into disjoint subtrees corresponding to the

various contexts, and noting that the cost of identifying an individual symbol is just

LC = � lg pi, the cost of identifying the context that occurred, plus LS , the cost of

identifying the symbol in its own context. Hence the extra cost is just LC , and the

average extra cost is
Pk

i=1�pi lg pi = Hb. The maximum value of Hb is lg k, so in

buckets that contain data from only two contexts, the extra code length is at most 1

bit per input symbol.

In fact, when the number of colliding contexts in a bucket is large enough that

Hb is signi�cant, the symbols in the bucket, representing a combination of a number
of contexts, will be a microcosm of the entire �le; the bucket's average code length
will approximately equal the 0-order entropy of the �le. Lelewer and Hirschberg [31]
apply hashing with collision resolution in a similar high-order scheme.

4 Conclusion

We have shown the details of an implementation of arithmetic coding and have pointed
out its advantages (
exibility and near-optimality) and its main disadvantage (slow-
ness). We have developed a fast coder, based on reduced-precision arithmetic coding,

which gives only minimal loss of compression e�ciency; we can use the concept of
�-partitions to �nd the probabilities to include in the coder to keep the compression
loss small. In a companion paper [24], in which we refer to this fast coding method
as quasi-arithmetic coding, we give implementation details and performance analysis
for both binary and multi-symbol alphabets. We prove analytically that the loss in

compression e�ciency compared with exact arithmetic coding is negligible.
We introduce the compressed tree, a new data structure for e�ciently representing

a multi-symbol alphabet by a series of binary choices. Our new deterministic proba-

bility estimation scheme allows fast updating of the model stored in the compressed
tree using only one byte for each node; the model can provide the reduced-precision
coder with the probabilities it needs. Choosing one of our two new methods for com-

puting the escape probability enables us to use the highly e�ective PPM algorithm,

and use of a hashed Markov model keeps space and time requirements manageable
even for a high-order model.
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