
Informstion Processrng & Managemenr Vol. 28, No. 6. pp. 749-763, 1992 0306-4573192 IS.00 + .oo
Printed in Great Britain. Copyright 0 1992 Pergamon Press Ltd.

ANALYSIS OF ARITHMETIC CODING
FOR DATA COMPRESSION

PAUL G. HOWARD* and JEFFREY SCOTT VITTER~
Department of Computer Science, Brown University, Providence, RI 02912-1910

Abstract-Arithmetic coding, in conjunction with a suitable probabilistic model, can pro-
vide nearly optimal data compression. In this article we analyze the effect that the model
and the particular implementation of arithmetic coding have on the code length obtained.
Periodic scaling is often used in arithmetic coding implementations to reduce time and
storage requirements; it also introduces a recency effect which can further affect com-
pression. Our main contribution is introducing the concept of weighted entropy and using
it to characterize in an elegant way the effect that periodic scaling has on the code length.
We explain why and by how much scaling increases the code length for files with a ho-
mogeneous distribution of symbols, and we characterize the reduction in code length due
to scaling for files exhibiting locality of reference. We also give a rigorous proof that the
coding effects of rounding scaled weights, using integer arithmetic, and encoding end-
of-file are negligible.

Keywords: Data compression, Arithmetic coding, Analysis of algorithms, Adaptive
modeling.

1. INTRODUCTION

We analyze the amount of compression possible when arithmetic coding is used for text
compression in conjunction with various input models. Arithmetic coding is a technique
for statistical lossless encoding. It can be thought of as a generalization of Huffman cod-
ing [14] in which probabilities are not constrained to be integral powers of 2, and code
lengths need not be integers.

The basic algorithm for encoding using arithmetic coding works as follows:

1.

2.

3.

We begin with a “current interval” initialized to [0 . . . 11.
For each symbol of the file, we do two steps: (a) We subdivide the current inter-
val into subintervals, one for each possible alphabet symbol. The size of a symbol’s
subinterval is proportional to the estimated probability that the symbol will be the
next symbol in the file, according to the input model; and (b) we select the subin-
terval corresponding to the symbol that actually occurs next in the file, and make
it the new current interval.
We transmit enough bits to distinguish the final current interval from all other pos-

sible final intervals.

The length of the final subinterval is clearly equal to the product of the probabilities
of the individual symbols, which is the probabilityp of the particular sequence of symbols
in the file. The final step uses almost exactly -log,p bits to distinguish the file from all other
possible files. For detailed descriptions of arithmetic coding, see [17] and especially [34].

We use the following notation throughout this article:

*Support was provided in part by NASA Graduate Student Researchers Program grant NGT-50420 and by
a National Science Foundation Presidential Young Investigator Award grant with matching funds from IBM. Ad-
ditional support was provided by a Universities Space Research AssociationKESDIS associate membership.

ISupport was provided in part by a National Science Foundation Presidential Young Investigator Award grant
with matching funds from IBM, by NSF grant CCR-9007851, by Army Research Office grant DAAL03-91-G
0035, and by the Office of Naval Research and the Defense Advanced Research Projects Agency under contract
NOOOl4-83-J-4052, ARPA order 8225. Additional support was provided by a Universities Space Research Asso-
ciation/CESDIS associate membership.

749

750 P.G. HOWARD and J.S. VITTER

t = length of the file, in bytes;

n = number of symbols in the input alphabet;

k = number of different alphabet symbols that occur in the file;

c; = number of occurrences of the ith alphabet symbol in the file;

Ig x = log* x;

IP=A(A + 1) -0 . (A + B - 1) (the rising factorial function).

Results for a “typical file” refer to a file with t = 100,000, n = 256, and k = 100. Code
lengths are expressed in bits. We assume eight-bit bytes.

1.1 Modeling effects
The coder in an arithmetic coding system must work in conjunction with a model that

produces probability information, describing a file as a sequence of decisions; at each de-
cision point it estimates the probability of each possible choice. The coder then uses the set
of probabilities to encode the actual decision.

To ensure decodability, the model may use only information known by both the en-
coder and the decoder. Otherwise, there are no restrictions on the model; in particular, it
can change as the file is being encoded. In this subsection we describe several typical mod-
els for context-independent text compression.

The length of the encoded file depends on the model and how it is used. Most mod-
els for text compression involve estimating the probability p of a symbol by

P=
weight of symbol

total weight of all symbols’

which we can then encode in -1gp bits using exact arithmetic coding. The probability es-
timation can be done adaptively (dynamically estimating the probability of each symbol
based on all symbols that precede it), semi-adaptively (using a preliminary pass of the in-
put file to gather statistics), or nonadaptively (using fixed probabilities for all files). Non-
adaptive models are not very interesting, since their effectiveness depends only on how well
their probabilities happen to match the statistics of the file being encoded; Bell, Cleary, and
Witten show that the match can be arbitrarily bad [2].

1.1.1 Static and decrementing semi-adaptive codes. Semi-adaptive codes are concep-
tually simple, and useful when real-time operation is not required; their main drawback is
that they require knowledge of the file statistics prior to encoding. The statistics collected
during the first pass are normally used in a static code; that is, the probabilities used to en-
code the file remain the same during the entire encoding. It is possible to obtain better com-
pression by using a decrementing code, dynamically adjusting the probabilities to reflect
the statistics of just that part of the file not yet coded.

Assuming that encoding uses exact arithmetic, and that there are no computational ar-
tifacts, we can use the file statistics to form a static probabilistic model. Not including the
cost of transmitting the model, the code length Lss for a static semi-adaptive code is

LsS = -Ig k (Ci/t)”
i=l

=tlgt- kc;lgc,,
i=l

the information content of the file. Dividing by the file length gives the self-entropy of the
file, and forms the basis for claims that arithmetic coding encodes asymptotically close
to the entropy. What these claims really mean is that arithmetic coding can encode close to
the entropy of a probabilistic model whose symbol probabilities are the same as those of
the file, because computational effects (discussed in section 3) are insignificant.

Analysis of arithmetic coding for data compression 751

If we know a file’s exact statistics ahead of time, we can get improved compression by
using a decrementing code. We modify the symbol weights dynamically (by decrementing
each symbol’s weight each time it is encoded) to reflect symbol frequencies for just that part
of the file not yet encoded; hence, for each symbol we always use the best available esti-
mates of the next-symbol probabilities. In a sense, it is a misnomer to call this a “semi-adap-
tive” model since the model adapts throughout the second pass, but we apply the term here
since the symbol probability estimates are based primarily on the first pass. The decrement-
ing count idea appears in the analysis of enumerative codes by Cleary and Witten [7]. The
resulting code length for a semi-adaptive decrementing code is

(1)

It is straightforward to show that for all input files, the code length of a semi-adap-
tive decrementing code is at most that of a semi-adaptive static code, equality holding only
when the file consists of repeated occurrences of a single letter. This does not contradict
Shannon’s theorem [30]; he discusses only the best static code.

Static semi-adaptive codes have been widely used in conjunction with Huffman cod-
ing, where they are appropriate, since changing weights often requires changing the struc-
ture of the coding tree.

1 .1.2 Encoding the model. If we assume that all symbol distributions are equally
likely for a given file length t, the cost of transmitting the exact model statistics is

LM = lg(number of possible distributions)

(2)

- n lg(et/n).

A similar result appears in [2] and 171. For a typical file LM is only about 2560 bits,
or 320 bytes. The assumption of equally likely distributions is not very good for text files;
in practice, we can reduce the cost of encoding the model by 50% or more by encoding each
of the counts using a suitable encoding of the integers, such as Fibonacci coding [12].

Strictly speaking, we must also encode the file length t before encoding the model; the
cost is insignificant, between lg t and 2 lg t bits using an appropriate encoding of integers
[ll, 31, 321.

1.1.3 Adaptive codes. Adaptive codes use a continually changing model, in which we
use the frequency of each symbol up to a given point in the file as an estimate of its prob-
ability at that point.

We can encode a symbol using arithmetic coding only if its probability is non-zero, but
in an adaptive code we have no way of estimating the probability of a symbol before it has
occurred for the first time. This is the zero-frequency problem, discussed at length in [l,
2, 331. For large files with small alphabets and simple models, all solutions to this prob-
lem give roughly the same compression. In this section we adopt the solution used in [34],
simply assigning an initial weight of 1 to all alphabet symbols. The code length using this
adaptive code is

LA = -k((bci!)/ni). (3)

By combining eqns (l), (2), and (3) and noting that (’ z “y ’) = n’/t ! , we can show
that for all input files, the adaptive code with initial l-weights gives the same code length
as the semi-adaptive decrementing code in which the input model is encoded based on the
assumption that all symbol distributions are equally likely. In other words, LA = LSD +
LM. This result is found in Rissanen [23, 241. Cleary and Witten [7] and Bell et al. [2]

752 P.G. HOWARD and J.S. VITTER

present a similar result in a more general setting, showing approximate equality between
enumerative codes (which are similar to arithmetic codes) and adaptive codes. Intuitively,
the reason for the equality is that in the adaptive code, the cost of “learning” the model is
not avoided, but merely spread over the entire file [25].

1.1.4 Organization of this article. Section 2 contains our main result, which precisely
and provably characterizes the code length of a file dynamically coded with periodic count-
scaling. We express the code length in terms of “weighted entropies” of the model, which
are the entropies implied by the model at the scaling times. Our result shows both the ad-
vantage to be gained by scaling because of a locality-of-reference effect and the excess code
length incurred by the overhead of the scaling process. For example, scaling has the most
negative effect when the alphabet symbols are distributed homogeneously throughout the
file, and our result shows explicitly the small amount that scaling can cause the code length
to increase. However, when the distribution of the alphabet symbols varies, as is often the
case in files displaying locality of reference, our result characterizes precisely the benefits
of scaling on code length. In section 2.2 we extend this analysis to higher-order models
based on the partial string matching algorithm of Cleary and Witten.

Through the years, practical adjustments have been made to arithmetic coding [21, 26,
28, 341 to allow the use of integer rather than rational or floating point arithmetic and to
transmit output bits almost in real time instead of all at the end. In section 3 we prove that
the loss of coding efficiency caused by practical coding requirements is negligible, thus dem-
onstrating rigorously the empirical claims made in [2, 341.

2. SCALING

Scaling is the process in which we periodically reduce the weights of all symbols. It al-
lows us to use lower precision arithmetic at the expense of making the model more approx-
imate, which can hurt compression when the distribution of symbols in the file is fairly
homogeneous. Scaling also introduces a locality of reference (or recency) effect, which of-
ten improves compression when the distribution of symbols is variable. In this section we
give a precise characterization of the effect of scaling on code length produced by an adap-
tive model. We express the code length in terms of the weighted entropies of the model. The
weighted entropy is the Shannon entropy, computed using probabilities weighted accord-
ing to the scaling process; the term “weighted entropy” is a notational convenience. Our
characterization explains why and by how much scaling can hurt or help compression.

In most text files we find that most of the occurrences of at least some words are clus-
tered in one part of the file. We can take advantage of this locality by assigning more weight
to recent occurrences of a symbol in a dynamic model. In practice there are several ways
to do this:

l Periodically restarting the model. This often discards too much information to be
effective, although Cormack and Horspool find that it gives good results when
growing large dynamic Markov models [8].

l Using a sliding window on the text [15]. This requires excessive computational
resources.

l Recency rank coding [4, 10, 291. This is computationally simple but corresponds to
a rather coarse model of recency.

l Exponential aging (giving exponentially increasing weights to successive symbols) [9,
201. This is moderately difficult to implement because of the changing weight
increments.

l Periodic scaling [34]. This is simple to implement, fast and effective in operation,
and amenable to analysis. It also has the computationally desirable property of keep-
ing the symbol weights small. In effect, scaling is a practical version of exponential
aging. This is the method that we analyze.

In our discussion of scaling, we assume that a file is divided into blocks of length B.
Our model assumes that at the end of each block, the weights for all symbols are multi-

Analysis of arithmetic coding for data compression 753

plied by a scaling factor f, usually i. Within a block we update the symbol weights by
adding 1 for each occurrence.

EXAMPLE. We illustrate an adaptive code with scaling, encoding the eight-symbol file
“abacbcba”. In this example, we start with counts c, = 1, cb = 1, and c, = 1, and set the
scaling threshold at 10, so we scale only once, just before the last symbol in the file. To re-
tain integer weights without allowing any weight to fall to 0, we round all fractional weights
obtained during scaling to the next higher integer. Table 1 shows how the coding proceeds.

The final interval is [O.OOllO 01010 11100 11 101, 0.00110 01010 11110 0101 l] in binary.
The theoretical code length is -1g 0.000044092 = 14.469 bits. The actual code length is 15
bits, since the final subinterval can be determined from the output 00110 01010 11101. 0

In this section we assume an adaptive model and exact rational arithmetic. We intro-
duce the following additional notation for the analysis of scaling:

ai = the ith alphabet symbol that occurs in the block;

si = weight of symbol ai at the start of the block;

ci = number of occurrences of symbol ai in the block;

A = EYE’=, s; (the total weight at the start of the block);

B = Cy=‘=, ci (the size of the block);

C = A + B (the total weight at the end of the block);

f = A/C (the scaling factor);

qi = s;/A (probability of symbol ai at the start of the block);

r; = (.si + c;)/C (probability of symbol ai at the end of the block);

b = number of blocks resulting from scaling;

m = the minimum weight allowed for any symbol, usually 1.

When f = 4, we scale by halving all weights every B symbols, so A = B and b = t/B. In a
typical implementation, A = B = 8192.

2.1 Coding theorem for scaling
In our scaling model each symbol’s counts are multiplied by f whenever scaling takes

place. Thus, scaling has the effect of giving more weight to more recent symbols. If we de-
note the number of occurrences of symbol ai in block m by ci,m, the weight Wi,m of sym-
bol ai after m blocks is given by

wi, m = Ci,m +fW;,m--l

= Ci,m +fCl,,m-1 +f2C;,m_2 +.... (4)

Table 1. Encoding a short file

Symbol Current interval PO Pb

Start

:
(l

;

:

Scaling

a

0.- 1.-

0.- 0.333333333
0.166666667 0.25OOOOOO0
0.166666667 0.2oooooooo
0.194444444 0.2oooooooo
0.196825397 0.198412698
0.198015873 0.198412698
0.198148148 0.198280423

l/3 l/3 l/3

2/4 l/4 l/4
2/5 2/5 l/5
3/6 2/6 l/6
317 2/l 2/l
3/8 3/8 2/8
319 319 3/9
3/10 4110 3/10

2/6 2/6 2/6

3/l 2/l 2/l 0.198148148 0.198192240

IPM 26:6-F

754 P.G. HOWARD and J.S. VITTER

The weighted probability pi, m of symbol ai at the end of block m is then

wi m
Pi, m =A.

i Wi,m

(5)

We now define a weighted entropy in terms of the weighted probabilities:
Definition I. The weighted entropy of a file at the end of the mth block, denoted by

H,,,, is the entropy implied by the probability distribution at that time, computed accord-
ing to the scaling model. That is,

Htn = i -Pi,mkPi,m,
i=l

where Pi,m is given by eqn (5).
We find that l,,,, the average code length per symbol for block m, is related to the

starting weighted entropy H,_, and the ending weighted entropy H,,, in a particularly sim-
ple way:

1, =
1

-H,- f

1 -f
-K-i
1 -f

f
=Hm+ 1 _f - (Hrn - Hm-I).

Letting f = 4, we obtain

1, = 2H,,, -H,,,_,.

When we multiply by the block length and sum over all blocks, we obtain the following pre-
cise and elegant characterization of the code length in terms of weighted entropies:

THEOREM I

Let L be the code length of a file compressed with arithmetic coding using an adap-
tive model with scaling. Then

+(&fL) +HbHo) +t(;k(+-) +O ($)),

where HO = lg n is the entropy of the initial model, H,,, is the (weighted) entropy implied
by the scaling model’s probability distribution at the end of block m, and kmin is the
smallest number of different symbols that occur in any block.

This theorem enables us to compute the code length of a file coded with periodic scal-
ing. To do the calculation we need to know only the symbol counts within each scaling
block; we can then use eqns (4) and (5) and Definition 1. The occurrence of entropy-like
terms in the code length is to be expected; the main contribution of Theorem I is to show
the precise and simple form that the entropy expressions take.

2.1.1 Proof of the upper bound. We prove the upper bound of Theorem I by show-
ing first that the code length of a block depends only on the beginning weights and block
counts of the symbols, and not on the order of symbols within the block. Then we show
that there is an order such that for each symbol certain equalities and inequalities hold,

Analysis of arithmetic coding for data compression 155

which we use to compute a value and an upper bound for the code length of all occurrences
of a single symbol in one block. Finally, we sum over all symbols to obtain the worst-case
code length of a block, and over all blocks to obtain the code length of the file. The proof
of the lower bound is similar.

The first lemma enables us to choose any convenient symbol order within a block.

LEMMA I
The code length of a block depends only on the beginning weights and block counts

of the symbols, and not on the order of symbols within the block.

Proof. The exact code length L of a block,

has no dependence on the order of symbols. For each symbol aj, the adaptive model en-
sures that the numerators in the set of probabilities used for coding the symbol in the block
always form the sequence (si, si + 1, . . . , Si + ci - l), and that for the block as a whole the
denominators always form the sequence (A, A + 1,. . . , A + B - 1). Cl

In the next lemma we prove the almost obvious fact that there is some order of sym-
bols such that the occurrences of each symbol are roughly evenly distributed through the
block. This order will enable us to use a smoothly varying function to estimate the prob-
abilities used for coding the occurrences.

Definition ZZ. A block of length B containing cl, c2,. . . , ck occurrences of symbols

al,a2,..., ak, respectively, has the evenly-distributed (or ED) property if for each symbol
a; and for all m, 1 5 m I ci, the symbol occurs for the mth time not after position mB/c;.

LEMMA II
Every distribution of symbol counts has an order with the ED property.

Proof. Let ri(j) be the number of occurrences of symbol ai required up through
the jth position in any ED order. Such an order exists if and only if Cf=, ri(j) I j for
1 I j I B. We find that ri(j) = [ci(j + 1)/B] - 1 < ci(j + 1)/B. Since Cl”=, Ci = B,
Cf==, ri(j) <j + 1, or Cf==, r;(j) ~j since cb, ri(j) is an integer. This holds for any j, SO
an ED order exists. 0

Next we define a number of related sums and integrals approximating I, the code
length of all occurrences of one symbol in one block. For a given symbol with proba-
bility p = c/B within the block, we can divide the block into c subblocks each of length
B/c = l/p. Then pn(k) and p,(k) give the probability that the dynamic model would give
to the kth occurrence of the symbol if it occurred precisely at the beginning and end of the
kth subblock, respectively.

pB(k) = qA + k. PE(k) = qA + k

A -t k/p’ A + (k + 1)/p’

The expressions S,_ and Su are the lower and upper bounds of the symbol’s code length,
based on its occurrences being as early or as late as possible in the subblocks.

c-1 c-1

SL = 2 - kPB(j); SU = c -1gPEt.i).
j=O j=O

The integrals IL and Zo approximate SL and Su.

c

IL = s c

- kPB (X) dx; Z” = s - kPE (x) dx.
0 0

756 P.G. HOWARD and J.S. VITTER

We define A, to be Zu - I,_. After a considerable amount of algebra, we get

1
A,= l-f - ((c + 1 -f)lg(c + 1 -f) - clgc

- (fc + 1 -f)lg(fc + 1 -f) +fclg(fc)).

The expressions Au and AL are used to bound the error in approximating Su by Zu and St_
by I,_, respectively.

Au =
lg(l+ -$) -lg(l+ *) ifp>q- l/A;

0 if p 4 q - l/A;

AL =
*g(1 +s) -lg(l+ 2) ifpcq;

0 ifp 2 q.

We need a simple lemma from integral calculus.

LEMMA III

Zf g(x) is monotone increasing, then

c-1

&d.d c Cg(x)dx.
j=O s 0

Zf g (x) is monotone decreasing, then

C-l c &u < s g(x) dx - g(c) + g(O).
j=O 0

Proof. The increasing case is obvious. In the decreasing case, the integral for any unit
interval is greater than the value at the right end of the interval: l,!+l g(x) dx > g(j + 1).
We obtain the lemma by adding g(j) - g (j + 1) to both sides and summing over j. •I

LEMMA IV

The code length I for all occurrences of a single symbol in a block in ED order is less
than Z,_ + A, + Au.

Proof. We show that 1~ Su I Zu + Au = It_ + A, + Au_ Since Su represents the code
length for the symbol if all occurrences of the symbol come as late as possible in an ED or-
der, we have I c So. If p < q - l/A, then -lgp,(x) is monotone increasing, so by Lemma
III we have Su < Zu. If p > q - l/A, then -lgpa(x) is monotone decreasing, so by
Lemma III we have Su c Zu + lgpa(c) - lgp,(O) = Zu + Au. If p = q - l/A, then Su =
Zo . In all three cases, Su I Zu + Au. From the definition of A,, Zu = IL + A,. 0

We now relate I,_ to the entropy of the beginning and ending probability distributions.
We write IL(i) to differentiate the values of IL evaluated for different symbols ai. We de-
fine H(R) and H(Q) to be the entropies associated with probability distributions R =
(r1,r2,. . . ,r,> and Q = (q,,q2,. . . ,q,>, respectively, that is,

H(R) = -krilgri;
i=I

H(Q) = -_qiIgqi-
i=l

LEMMA V

Analysis of arithmetic coding for data compression 157

Let LH = B((l/(l -f))H(R) - (f/(1 -f))H(Q)). Then LH = Cf=, IL(i).

Proof. By appropriate substitutions, we have

54_(i) =,$B(+f(-rilgr,) - &f(_~i1f4qi) + kB f

1 ((1 -f)*
(4i - ri) .

i=l i=l 1

The last sum is 0 because Q and R are probability distributions, SO Cf==, qi = Cf=(=, ri = 1.
The lemma follows from the definition of H(a). 0

Finally we bound the per-block error.

LEMMA VI
Let Lj be the compressed length of block j. Then

Lj I B 1 H(R) - - f

1 -f 1 -f
H(Q)

Proof. From Lemmas 4 and 5, we have Lj I LH + Cf==, (A, + AU). A scaling factor
f of i implies that A = B. Asymptotics under this condition give

t

1 - 0(1/c) ifpsq- l/A;
A, + Au =

lg(c/s) + O(S/C) if p > q - l/A.

The sum Cf=, (A1 + AU) is maximized when as many symbols as possible have large c and
small s values; the sum’s largest possible value cannot exceed its value when s = m and
c = B/k for all k symbols, in which case A, + AU = lg(B/km) + O(km/B). We obtain the
result by setting m = 1 and summing over the symbols. 0

The proof of the upper bound in Theorem I follows from Lemma VI by summing over
all blocks, noting that b = t/B. (We are neglecting any special effects of a longer first block
or shorter last block.) There is much cancellation because H(R) of one block is N(Q) of
the next.

2.1.2 Proof of the lower bound. The proof of the lower bound of Theorem I is sim-
ilar to that of the upper bound. In this proof of the lower bound we append a prime to the
label of each definition and lemma to show the correspondence with the definition and
lemmas used in the proof of the upper bound.

Definition ZZ’. A block of length B containing cl, c2, . . . , ck occurrences of symbols
al,a2,. . .,ak, respectively, has the reverse ED property if for each symbol ai and for all
m, 1 5 m s Ci, the symbol occurs for the mth time not before position (m - l)B/Ci.

LEMMA II’
Every distribution of symbol counts has an order with the reverse ED property.

Proof. By Lemma II there is always an order with the ED property. Such an order,
when reversed, has the reverse ED property. 0

LEMMA III’
Zf g(x) is monotone decreasing, then

c-l
C g(j) > ‘g(x) dx.

j=O s 0

Zf g(x) is monotone increasing, then

c-1

’ C&i) > s g(x) dx - g(c) + g(O).
j=O 0

Proof. Similar to that of Lemma III. 0

158

LEMMA IV’

P.G. HOWARD and J.S. VITTER

The code length I for all occurrences of a single symbol in a block in reverse ED or-
der is greater than Z, - AL.

Proof. We show that I > SL 2 Z, - A r. Since IL represents the code length for the
symbol if all occurrences of the symbol come as early as possible in a reverse ED order,
we have I> S,_. If p > q, then -lgp,(x) is monotone decreasing, so by Lemma III’ we
have SL > Z,. If p < q, then -lgpa(x) is monotone increasing, so by Lemma III’ we have
SL > Z,_ + lg pu (c) - lgpB(0) = I,_ - AL. If p = q, then & = I,_. In all three cases, we have
SL L IL - AL. 0

LEMMA VI’
Let Lj be the compressed length of block j. Then

Lj 1 B -!-H(R) -
1 -f

Proof. From Lemmas IV’ and V, Lj 2 L H - CfCl=, A,(i). Asymptotics when f = i
give Ai_ = 1 - O(c/s), which has maximum value 1, so the sum is at most k. 0

The proof of the lower bound in Theorem I follows from Lemma VI’ by summing over
all blocks, noting that b = t/B.

2.1.3 Non-scaling corollary. By letting B = t, f = n/(t + n), and m = 1 in Lemmas
VI and VI’, we obtain the code length without scaling:

COROLLARY 1.
When we do not scale at all, the code length LNS satisfies:

tHfinal + n (Hfid - HO) - k < LNS < tZZfi”al + n (Hfinal - Ho) + k lg(t/k).

We can get important insights by contrasting upper bounds in this corollary and The-
orem 1. Scaling will bring about a shorter encoding by tracking the block-by-block entro-
pies rather than matching a single entropy for the entire file, but when we forgo scaling the
overhead is less, proportional to lg t instead of to t. Scaling will do worst on a homoge-
neously distributed file, but even then the overhead will increase the code length by only
about (k/B)lg(B/k) bits per input symbol, less than 0.1 bit per symbol for a typical file.
We conclude that the benefits of scaling usually outweigh the minor inefficiencies it some-
times introduces.

2.2 Application to higher order models
We now extend our results to higher order models. Cleary and Witten [6] present a

practical adaptive method called prediction by partial matching (or PPM) in which they
maintain models of various orders. At each point they use the highest-order model in which
the symbol has occurred in the current context, with a special escape symbol to indicate the
need to drop to a lower order. (Because most contexts occur only a few times with only a
few different symbols, assigning an initial weight of 1 to each alphabet symbol as we did
in section 1.1 is an unsatisfactory solution to the zero-frequency problem in higher-order
models. Doing so would give too much weight to symbols that never occur.) See [2] or [3]
for a detailed description of the PPM method. Witten, Cleary, Moffat, and Bell have pro-
posed at least five methods for estimating the probability of the escape symbol [6, 19, 331,
and Arps et al. [l] give two more. All of the methods give approximately the same com-
pression; PPMB [6] is the most readily analyzed.

In PPMB, in each context the escape event is treated as a separate symbol with its own
weight and probability; the first occurrence of an ordinary symbol is not counted and the
first two occurrences are coded as escapes. Treating the escape event as a normal symbol,
we can apply the results of section 2 if we make adjustments for the first two occurrences
of each symbol, since in PPMB the code length is independent of the order of the symbols.

Analysis of arithmetic coding for data compression 759

In the block in which a given symbol occurs for the first time, we can take the occur-
rences to be evenly distributed in the sense of Definition II, with symbol weights (numer-
ators) running from 1 to c and occurrence positions (denominators) running from A + B/c
to A + B. If this were coded in the normal way, the code length would be bounded above
by Lemmas IV and V. Since the mechanism of PPMB excludes the last two numerators,
c - 1 and c, and the first two denominators, A + B/c and A + 2B/c, the code length from
the approximation must be adjusted by adding Ladjustment:

Ladjustment = Lctua~ - L&mated

= lg
(c - 1)c

(A + B/c)(A + 2Bk)

=Zlgc-ZlgA+lg(l - k) -lg(l + F) -lg(l +2%).

We must also adjust the entropy: The actual value of the initial probability q is 0 in-
stead of l/A, and the actual value of the final probability r is (c - 1)/(A + B) instead
of (c + l)/(A + B). For convenience we denote the entropy term B((l/l -f)H(R) -
(f/l - f)H(Q)) by h. We define and compute the adjustment:

hadjustment = hactual - kstimated

=,a(1 + -&) +2lgc-1gA +2lgf+lg

The code length is then given by

L -h actual - actual + (ktdjustment - hadjustment) + small terms

=h,,.,,-clg(1 + &) -1gA -2lg+lg(l + ;)

-lg(l+ F) -lg(l+2%) +smallterms.

The net adjustment is always negative if f = 4. We can let f = i if we neglect the ef-
fect of the time before the first scaling in each context.

Now we can extend Theorem I to the PPMB model with scaling, using X subscripts
in the natural way to restrict quantities to context X:

THEOREM II

When we use PPMB with scaling, the code length L is bounded by

L< c ((B
ccmtexts x

;c, Hx, m + Hx, b - Hx,o) + O(kXfxglgB)).

Proof. The proof follows from the discussion above. 0

This theorem does not readily estimate the code length of a file in a direct way. How-
ever, it does show that the code length of a file coded using a high-order Markov model
with scaling can be expressed using the weighted entropy formulation introduced in section
2. In particular, the code length for each context is expressed directly in terms of the
weighted entropies for that context.

760 P.G. HOWARD and J.S. VITTER

3. CODING EFFECTS

In this section we prove analytically that coding effects (as distinguished from mod-
eling effects) are insignificant, and hence that our assumption of exact coding is appropri-
ate. Empirical evidence that the coding effects are negligible appears in [2, 341.

3.1 Rounding counts to integers
In section 2 we analyzed the modeling effect of periodic scaling; here we analyze the

coding effect. Witten, Neal, and Cleary scale the counts to avoid register overflow, and to
prevent any count from falling to 0, they round fractional counts to the next higher inte-
ger. This gives more weight to symbols whose count happens to be odd when scaling occurs.

THEOREM III

Rounding counts up to the next higher integer increases the code length for the file by
no more than n/2B bits per input symbol.

Proof. Each symbol whose weight is rounded up causes the denominators of all prob-
abilities in the next block to be too large, by $. If r is the number of symbols subject to
round up, r/2 of the denominators in computing the coding interval will be approximately
T instead of T/2, each adding one bit to the code length of the block, so the block’s code
length will be r/2 bits longer. The effect for the entire file (t/B blocks) is rt/2B bits, or,
since r I n, at most n/2B bits per input symbol. 0

This effect is typically 0.02 bit or less per input symbol.

3.2 Using integer arithmetic
Witten, Neal, and Cleary use integers from a large fixed range, typically [0,8B], in-

stead of using exact rational arithmetic, and they transmit encoded bits as soon as they
know them instead of waiting until the entire string has been encoded, scaling up the range
to represent only that half of the original range whose identity has not yet been transmitted.
The result is nearly the same compression efficiency as with exact rational arithmetic.

As is apparent from the following description of the coding section of the Witten-Neal-
Clearly algorithm, scaling up the range is only approximate:

1. We select a subrange of the current interval [low, high] whose length within [low,
high] is proportional to p. The new integer values of low and low are obtained by
truncating the results of the exact calculation.

2. We repeat the following steps as many times as possible: (a) If the new subrange
is not entirely in the lower, middle, or upper half of the full range of values, we re-
turn; (b) if the new subrange is in the lower or upper half, we output 0 or 1, respec-
tively, plus any bits left over from previous symbols. If the subrange is entirely in
the middle half, we keep track of this fact for future output; and (c) we scale the
subrange up: (i) we shift the subrange to ignore the part of the full range in which
the subrange is known not to lie, and (ii) we double both low and high and add 1
to high.

In this algorithm, any roundoff error in selecting the first subrange will propagate
through the entire scaling-up process. In the worst case, a symbol with a count of 1 could
result in a subrange of length 1, even though the unrounded subrange size might be just
below 2. In effect, this would assign a symbol probability of only half the correct value,
resulting in a code length one bit too long. In practice, however, the code length error
in one symbol is seldom anywhere near that large, and because the errors can be of either
sign and have an approximately symmetrical distribution with mean 0, the average error
is usually very small. Witten, Neal, and Cleary empirically estimate it at lop4 bit per in-
put symbol.

In order to get a rigorous bound on the compression loss, we analyze a new algorithm
that maintains full precision when scaling up the range. Instead of adding 1 to high at each

Analysis of arithmetic coding for data compression 761

step, we add either 0 or 1 to low, and independently we add 1 or 2 to high, the choice in
each case being based on the fractional bits of the exact results of the initial subrange se-
lection. The resulting code length may be longer than that of exact arithmetic coding, but
by a tiny amount, as shown in the following theorem.

THEOREM IV

When we use the high precision algorithm for scaling up the subrange, the code length
does not exceed the ideal code length --Igp by more than 1/(2B In 2) bits per input symbol.

Proof. After the scaling-up process, the smallest possible subinterval size is 2B. As a
result of rounding while scaling up, low can never be too high, and high can be too low by
as much as 1, so the subinterval can be too short by as much as 1. (It can also be too long
by as much as 1.) An interval too short by 1 can be too short by a factor of as much as
(2B - 1)/2B, which corresponds to a code length increase of -lg((B - i)/B) - 1/(2B In 2).

0

A loss of l/(28 In 2) bits per input symbol is negligible, about 10m4 bit per symbol for
typical parameters. In practice the high precision algorithm gives exactly the same compres-
sion as the algorithm of Witten, Neal, and Cleary, but its compression loss is provably
small.

3.3 Encoding end-of-file
The end of the file must be explicitly indicated when we use arithmetic coding. The ex-

tra code length required is typically very small and is often ignored; for completeness, we
provide a brief analysis of the end-of-file effect.

Witten, Neal, and Cleary introduce a special low-weight symbol in addition to the nor-
mal alphabet symbols; it is encoded once, at the end of the file. In the following theorem
we bound the cost of identifying end-of-file by this method:

THEOREM V

The use of a special end-of-file symbol results in additional code length of less than
t/(B In 2) + lg B + 10 bits.

Proof. The cost has four components:

at most Ig B + 1 bits to encode the end-of-file symbol (since its probability must be
at least as large as the smallest possible probability, 1/2B)
fewer than t/(B In 2) bits in wasted code space to allow end-of-file at any point (each
probability can be reduced by a factor of between (2B - 1)/2B and (B - 1)/B, re-
sulting in a loss of between -lg((2B - 1)/2B) = 1/(2Bln 2) and -lg((B - 1)/B) =
l/(B In 2) bits per symbol)
two disambiguating bits after the end-of-file symbol
up to seven bits to fill the last byte. 0

An alternative, transmitting the length of the original file before its encoding, reduces
the cost to between lg t and 2 Ig t bits by using an appropriate encoding of integers [11, 3 1,
321, but requires the file length to be known before encoding can begin.

The end-of-file cost using either of these methods is negligible for a typical file, less
than 0.01 bit per input symbol.

4. CONCLUSION

Using our notion of weighted entropy, we have precisely characterized the tradeoff be-
tween the overhead associated with scaling and the saving that it can realize by exploiting
locality of reference. The largest code length savings come from more sophisticated (higher
order) models such as PPMB, and our scaling analysis extends accordingly. We have also
proven that the computational effects on the code length in practical arithmetic coding im-

Acknowledeement - We wish to thank Prof. Martin Cohn for helping us to uncover a small mistake in the anal- .
ysis of the effect of using integer arithmetic.

REFERENCES

1.

2.
3.
4.

5.

6.

I.

8.

9.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
22.

23.
24.
25.

26.

Arps, R.B.; Langdon, C.G.; Rissanen, J.J. Method for adaptively initializing a source model for symbol en-
coding. IBM Technical Disclosure Bulletin, 26:6292-6294; 1984.
Bell, T.C.; Cleary, J.G.; Witten, I.H. Text Compression. Englewood Cliffs, NJ: Prentice-Hall; 1990.
Bell, T.C.; Witten, I.H.; Cleary, J.G. Modeling for text compression. Computing Surveys, 21:557-591; 1989.
Bentley, J.L.; Sleator, D.D.; Tarjan, R.E.; Wei, V.K. A locally adaptive data compression scheme. Commu-
nications of the ACM, 29:320-330; 1986.
Chevion, D.; Karnin, E.D.; Walach, E. High efficiency, multiplication free approximation of arithmetic cod-
ing. In: Storer, J.A.; Reif, J.H. eds. Proceedings of the Data Compression Conference, Snowbird, UT, April
8-11; 1991: 43-52.
Cleary, J.G.; Witten, I.H. Data compression using adaptive coding and partial string matching. IEEE Trans.
Communications, COM-32: 396-402; 1984.
Cleary, J.G.; Witten, I.H. A comparison of enumerative and adaptive codes. IEEE Trans. Information The-
ory, IT-30:306-315; 1984.
Cormack, G.V.; Horspool, R.N. Data compression using dynamic Markov modelling. Computer Journal,
30:541-550; 1987.
Cormack, G.V.; Horspool, R.N. Algorithms for adaptive Huffman codes. Information Processing Letters,
18:159-165; 1984.
Elias, P. Interval and recency rank source coding: Two on-line adaptive variable length schemes. IEEE Trans.
Information Theory, IT-33:3-10; 1987.
Elias, P. Universal codeword sets and representations of integers. IEEE Trans. Information Theory, IT-21:194-
203; 1975.
Fraenkel, A.S.; Klein, S.T. Robust universal complete codes as alternatives to Huffman codes. Technical re-
oort. Dem. of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel; 1985.
Howard,. P.G.; Vitter, J.S. Practical implementations of Arithmetic coding. In: Proceedings of the Interna-
tional Conference on Advances in Communication and Control (COMCON 3), Victoria, British Columbia,
Oct. 16-18; 1991.
Huffman, D.A. A method for the construction of minimum redundancy codes. Proceedings of the Institute
of Radio Engineers, 40: 1098-l 101; 1952.
Knuth, D.E. Dynamic Huffman coding. Journal of Algorithms, 6:163-180; 1985.
Langdon, G.G. Probabilistic and Q-coder algorithms for binary source adaptation. In: Storer, J.A.; Reif,
J.H. eds. Proceedings of the Data Compression Conference, Snowbird, UT, April 8-11; 1991: 13-22.
Langdon, G.G. An introduction to arithmetic coding. IBM Journal of Research and Development, 28:135-
149; 1984.
Lanadon. G.G.: Rissanen, J. Compression of black-white images with arithmetic coding. IEEE Trans. Com-
mu&atibns, &M-29:858-867; 1981.
Moffat, A. Implementing the PPM data compression scheme. IEEE Trans. Communications, COM-38:
1917-1921; 1990.
Mohiuddin, K.; Rissanen, J.J.; Wax, M. Adaptive model for nonstationary sources. IBM Technical Disclo-
sure Bulletin, 28:4798-4800; 1986.
Pasco, R. Source coding algorithms for fast data compression. Ph.D. Thesis, Stanford University; 1976.
Pennebaker, W.B.; Mitchell, J.L.; Langdon, G.G.; Arps. R.B. An overview of the basic principles of the
Q-coder adaptive binary arithmetic coder. IBM Journal of Research and Development, 32:717-726; 1988.
Rissanen, J. Stochastic complexity and modeling. Annals of Statistics, 14: 1080-l 100; 1986.
Rissanen, J. Stochastic complexity. Journal of the Royal Statistical Society Series B, 49:223-239; 1987.
Rissanen, J. Universal coding, information, prediction, and estimation. IEEE Transcripts of Information The-
ory, IT-30:629-636; 1984.
Rissanen, J.J. Generalized Kraft inequality and arithmetic coding. IBM Journal of Research and Develop-
ment, 20:198-203; 1976.

762 PG. HOWARD and J.S. VITTER

plementations are small, so we can treat practical arithmetic coders as though they were ex-
act coders.

Another important consideration in making arithmetic coding practical, which we do
not address in this article, is the speed at which the current interval can be updated. In the
basic algorithm outlined in section 1 and in the work of Witten, Neal, and Cleary, up to
two multiplications and one division are needed for each symbol encoded. Work by Ris-
sanen, Langdon, Mohiuddin, and others at IBM [5, 16, 18, 22, 271 eliminates the division
altogether and focuses on approximating the multiplication by combinations of additions
and shifts. In [13] we present an alternative approach in which we approximate an arith-
metic coder by a finite state automaton with a small number of states. Since the arithme-
tic computations are effectively stored in the state tables, coding can proceed quickly using
only table lookups.

Analysis of arithmetic coding for data compression 763

27. Rissanen. J.J.: Mohiuddin. K.M. a multiplication-free multialphabet arithmetic code. IEEE Trans. Commu-
nications; 37: 93-98; 1989:

28. Rubin, F. Arithmetic stream coding using fixed precision registers. IEEE Trans. Information Theory, IT-25:
672-675; 1979.

29. Ryabko, B.Y. Data compression by means of a book stack. Problemy Peredachi Informatsii, 16; 1980.
30. Shannon. C.E. A mathematical theory of communication. Bell Systems Technology Journal, 27:398-403; 1948.
3 1. Stone, R.G. On encoding of commas between strings. Communications of the-ACM, 22:3 IO-3 11; 1979.
32. Wang, M. Almost asymptotically optimal flag encoding of the integers. IEEE Trans. Information Theory,

IT-34:324-326; 1988.
33. Witten, I.H.; Bell, T.C. The zero frequency problem: Estimating the probabilities of novel events in adap-

tive text compression. IEEE Trans. Information Theory, IT-37:1085-1094; 1991.
34. Witten, I.H.; Neal, R.M.; Cleary, J.G. Arithmetic coding for data compression. Communications of the

ACM, 30:520-540; 1987.

