
Design and Analysis of Fast Text Compression

Based on Quasi-Arithmetic Coding

Paul G. Howard and Je�rey Scott Vitter

To appear in Information Processing and Management.

A shorter version appears in the proceedings of the
IEEE Computer Society/NASA/CESDIS Data Compression Conference,

Snowbird, Utah, March 30{April 1, 1993, pages 98{107.

Design and Analysis of Fast Text Compression

Based on Quasi-Arithmetic Coding1

Paul G. Howard2

Department of Computer Science
Brown University

Providence, R.I. 02912{1910

Je�rey Scott Vitter3

Department of Computer Science
Duke University

Durham, N.C. 27706{0129

Abstract

We give a detailed algorithm for fast text compression. Our algorithm, related to

the PPM method, simpli�es the modeling phase by eliminating the escape mechanism
and speeds up coding by using a combination of quasi-arithmetic coding and Rice

coding. We provide details of the use of quasi-arithmetic code tables, and analyze

their compression performance. Our Fast PPM method is shown experimentally to be
almost twice as fast as the PPMC method, while giving comparable compression.

1 Introduction

For compression of text �les, the best compression results from the use of high-order models
in conjunction with statistical coding techniques. The best compression reported in the
literature comes from the PPM (prediction by partial matching) method of Cleary and
Witten [3]; the most widely used implementation is Mo�at's PPMC. The PPM methods use
adaptive context models with a �xed maximum order, and arithmetic coding for the coder.

In this paper we show that we can obtain signi�cantly faster compression with only a
small loss of compression e�ciency by modifying both the modeling and coding aspects
of PPM. The important idea is to concentrate computer resources where they are needed
for good compression while using simplifying approximations where they cause only slight
degradation of compression performance.

On the modeling side, we eliminate the explicit use of escape symbols, we use approximate
probability estimation, and we simplify the repeated-symbol-exclusion mechanism. For the
coder, we replace the time-consuming arithmetic coding step with various combinations
of quasi-arithmetic coding and simple pre�x codes from the Rice family. Quasi-arithmetic
coding, introduced and explained in [6], is a variation of arithmetic coding [11] that uses
lookup tables after performing all the arithmetic ahead of time. The computations are done
to low precision to keep the table sizes manageable.

In Section 2 we briey describe the PPM method and our speed-oriented enhancements.
In Section 3 we describe our implementation, including a detailed example showing both en-
coding and decoding using quasi-arithmetic coding. In Section 4 we analyze quasi-arithmetic
coding, showing that using it instead of full-precision arithmetic coding causes only a small
loss of compression e�ciency. In Section 5 we show experimentally that our methods run
nearly twice as fast as PPMC, with comparable compression.

2 Prediction by Partial Matching

The Cleary-Witten PPM method. The PPM idea is to maintain contexts of di�erent
lengths up to a �xed maximum order o. To encode a new symbol, we check whether the
current order-o context has occurred, and if so, whether the new symbol has occurred
in that context. If it has, we use arithmetic coding to encode the symbol based on the

1A shorter version of this paper appears in the proceedings of the IEEE Computer Soci-

ety/NASA/CESDIS Data Compression Conference, Snowbird, Utah, March 30{April 1, 1993, 98{107.
2Support was provided in part by NASA Graduate Student Researchers Program grant NGT{50420, by

a Universities Space Research Association/CESDIS associate membership, and by National Science Foun-
dation grant IRI{9116451.

3Work was performed while the author was at Brown University. Support was provided in part by a
National Science Foundation Presidential Young Investigator Award with matching funds from IBM and by

Air Force O�ce of Scienti�c Research grant number F49620{92{J{0515. Additional support was provided
by a Universities Space Research Association/CESDIS associate membership.

Order Context Symbol Count Action

3 nin � � automatic escape

2 in 1 NOT FOUND

n 1 NOT FOUND, escape

1 n 1 exclude
n 1 exclude
i 1 NOT FOUND, escape

0 � n 4 exclude
i 3 exclude

2 exclude
e 2 NOT FOUND

t 1 NOT FOUND

h 1 NOT FOUND

b 1 NOT FOUND

g 1 FOUND

�1 Full alphabet not needed.

Symbol

0
1 n
2 i
3 e
4 t
5 h
6 b
7 g
8 new-symbol

9 end-of-�le

(a) (b)

Table 1: Example of PPM operation, maximum coding order o = 3. (a) Standard PPM.
Suppose we are encoding the short message \in the beginning" (representing the space
character), and that we have coded all but the �nal `g'. The current order 3 context, `nin',
has never occurred, so we try order 2. Neither of the symbols that have occurred in the
current order-2 context are the one we want, so we explicitly escape to order 1. At order 1
we can exclude ` ' and `n' since we already checked them at order 2; `i' is not the letter we
want, so we escape to order 0, the empty context. At order 0 we exclude `n', `i', and ` ',
and check the others until we come to `g'. This is the letter we want, so we code it and stop.
If the symbol had not yet occurred in the message, we would have escaped to order \�1"
which includes the entire alphabet. In this example contexts of all orders have been created
or updated after coding each symbol. (b) Concatenated list in Fast PPM at the same point
in the coding. It results from combining the lists of various orders and eliminating duplicate
symbols. The new-symbol and end-of-�le pseudo-symbols have been added to the end of the
list. We code `g' by indicating 7 NOT-FOUNDs and one FOUND.

current symbol counts in the context. Otherwise, we encode a special escape symbol (whose
probability must be estimated) and repeat the process with progressively shorter contexts
until we succeed in encoding the symbol. (In the shorter contexts we may exclude from
consideration symbols that have already been rejected in longer contexts.) If a symbol has
never occurred in any context, we escape to a special context containing the entire alphabet
(including a special end-of-�le symbol, but possibly excluding symbols already rejected),
thus ensuring that every symbol can be encoded. Table 1(a) illustrates the coding of one
symbol using the PPM method.

The symbols are coded using a multi-symbol arithmetic coder. The probabilities passed
to the coder are based on symbol frequency counts, periodically scaled down to exploit
locality of reference. At least seven di�erent methods have been used to estimate the escape
probability [1,3,6,8,10]; Mo�at's PPMC [8] is the most widely used, although our PPMD
method [6] consistently gives about one percent better compression on text �les.

Fast PPM. We observe that the use of arithmetic coding guarantees good compression
but runs slowly: the multi-symbol version used in PPMC requires two multiplications and
two divisions for each symbol coded, including escapes. We also note that often the PPM
method predicts very well. When we compress text �les using a maximum order of 3 or
more, we �nd that the symbol that actually occurs is the most frequent symbol in the longest
available context more than half the time, as seen in Table 2. This implies that the escape

mechanism is not needed very often. (This is one reason for the observations by Cleary,
Witten, and Bell that the choice of escape probability makes little di�erence in the amount

Maximum order
File

1 2 3 4 5

bib 30.3 47.0 58.7 62.6 63.5

book1 26.9 39.4 48.8 53.2 54.2
book2 24.5 39.7 52.9 59.4 61.2

news 22.6 37.9 50.4 55.4 56.4

paper1 25.2 42.1 52.6 55.6 56.0
paper2 26.5 41.3 51.4 54.8 55.3

progc 27.9 45.9 54.9 57.0 57.4
progl 31.0 49.3 60.4 64.0 65.3

progp 38.0 56.4 65.8 67.7 68.2

trans 33.6 52.9 65.9 69.7 70.7

Table 2: Probability of �nding next symbol in one trial. We show the percentage of symbols
that are found as the most probable symbol in the �rst usable context. The rows represent
the ten text �les of the Calgary corpus. The columns represent di�erent maximum model
orders. The compression program is a version of Fast PPM in which the symbol lists within
each context are maintained in approximate frequency count order: when a symbol occurs,
its count is compared with that of its predecessor in the list; if the current symbol's count is
greater than or equal to that of its predecessor, the two symbols are transposed in the list.
For models of maximum order 3, 4, or 5, we �nd the current symbol in the �rst position of
the longest context more than half the time.

of compression obtained.) Finally, we recall that arithmetic coding signi�cantly outperforms
pre�x codes like Hu�man coding only when the symbol probabilities are highly skewed.

In the methods presented here, we eliminate the escape mechanism altogether. First
we concatenate the symbol lists of the current contexts of various orders, beginning with
the longest, as shown in Table 1(b). (Of course the concatenation is only conceptual. In
practice we simply search through the context's lists, moving to the next list when one is
exhausted and stopping when we �nd the current symbol.) To avoid wasting code space, we
exclude all but the �rst occurrence of repeated symbols using the fast exclusion mechanism
described in Section 3.

We must identify the current symbol's position within the concatenated list. We choose
one of a number of related methods, our choice depending on the speed and compression
required. The idea is to use binary quasi-arithmetic coding to encode NOT-FOUND/FOUND
decisions for the symbols with highest probability, then if necessary to use a simple pre�x
code (in particular, a Rice code) to encode the symbol's position in the remainder of the list.
For maximum speed, we can eliminate the quasi-arithmetic coding step altogether, while
for maximum compression we can eliminate the pre�x code, using only a series of binary
decisions to identify each symbol. Using quasi-arithmetic coding for just the �rst symbol in
the longest context is a good practical choice, as is using quasi-arithmetic coding until the
FOUND probability falls below a speci�ed threshold. Lelewer and Hirschberg [5] also use
the idea of coding a symbol's position within a PPM context list.

Quasi-arithmetic coding. In arithmetic coding, we subdivide the real interval [0; 1), the
lengths of the subdivisions being proportional to the probabilities of the events that can
occur, then select the subinterval corresponding to the event that actually occurs. We
recursively repeat the subdivision and selection process for all input symbols. At the end
of coding we output enough bits to distinguish the �nal interval from all other possible
�nal intervals. In practice we use integer arithmetic and subintervals of an integer interval
[0; N). We output bits as soon as we know them and expand the interval, allowing us to
limit the coding delay and to use �nite precision arithmetic. Witten, Neal, and Cleary [11]
present a very clear implementation of arithmetic coding; they use a large N for the interval,
namely N = 65;536. In [6] we introduce quasi-arithmetic coding, a reduced-precision version
of the Witten-Neal-Cleary implementation of arithmetic coding. Our idea is to do all the
arithmetic ahead of time and to store the results in lookup tables. Since the number of coder
states is 3N2=16, if we choose a small enough value for N , the number of coder states will
be small enough to permit keeping all the lookup tables in memory. Table 3 is the entire
coding table for N = 8; in practice somewhat larger values of N give slightly better results.

Start Probability
0 input 1 input

state of 0 input Out
Next

Out
Next

state state

[0; 8) 0.000 { 0.182 000 [0; 8) � [1; 8)

0.182 { 0.310 00 [0; 8) � [2; 8)
0.310 { 0.437 0 [0; 6) � [3; 8)

0.437 { 0.563 0 [0; 8) 1 [0; 8)

0.563 { 0.690 � [0; 5) 1 [2; 8)
0.690 { 0.818 � [0; 6) 11 [0; 8)

0.818 { 1.000 � [0; 7) 111 [0; 8)

[0; 7) 0.000 { 0.208 000 [0; 8) � [1; 7)

0.208 { 0.355 00 [0; 8) � [2; 7)
0.355 { 0.500 0 [0; 6) � [3; 7)

0.500 { 0.645 0 [0; 8) 1 [0; 6)

0.645 { 0.792 � [0; 5) 1f [0; 8)
0.792 { 1.000 � [0; 6) 110 [0; 8)

[0; 6) 0.000 { 0.244 000 [0; 8) � [1; 6)

0.244 { 0.415 00 [0; 8) f [0; 8)

0.415 { 0.585 0 [0; 6) f [2; 8)
0.585 { 0.756 0 [0; 8) 10 [0; 8)

0.756 { 1.000 � [0; 5) 101 [0; 8)

[0; 5) 0.000 { 0.293 000 [0; 8) � [1; 5)
0.293 { 0.500 00 [0; 8) f [0; 6)

0.500 { 0.707 0 [0; 6) f f [0; 8)

0.707 { 1.000 0 [0; 8) 100 [0; 8)

[1; 8) 0.000 { 0.208 001 [0; 8) � [2; 8)
0.208 { 0.355 0f [0; 8) � [3; 8)

0.355 { 0.500 0 [2; 8) 1 [0; 8)

0.500 { 0.645 � [1; 5) 1 [2; 8)
0.645 { 0.792 � [1; 6) 11 [0; 8)

0.792 { 1.000 � [1; 7) 111 [0; 8)

Start Probability
0 input 1 input

state of 0 input Out
Next

Out
Next

state state

[1;7) 0.000 { 0.244 001 [0; 8) � [2; 7)

0.244 { 0.415 0f [0; 8) � [3; 7)
0.415 { 0.585 0 [2; 8) 1 [0; 6)

0.585 { 0.756 � [1; 5) 1f [0; 8)

0.756 { 1.000 � [1; 6) 110 [0; 8)

[1;6) 0.000 { 0.293 001 [0; 8) f [0; 8)
0.293 { 0.500 0f [0; 8) f [2; 8)

0.500 { 0.707 0 [2; 8) 10 [0; 8)

0.707 { 1.000 � [1; 5) 101 [0; 8)

[1;5) 0.000 { 0.369 001 [0; 8) f [0; 6)
0.369 { 0.631 0f [0; 8) f f [0; 8)

0.631 { 1.000 0 [2; 8) 100 [0; 8)

[2;8) 0.000 { 0.244 010 [0; 8) � [3; 8)

0.244 { 0.415 01 [0; 8) 1 [0; 8)
0.415 { 0.585 f [0; 6) 1 [2; 8)

0.585 { 0.756 f [0; 8) 11 [0; 8)
0.756 { 1.000 � [2; 7) 111 [0; 8)

[2;7) 0.000 { 0.293 010 [0; 8) � [3; 7)

0.293 { 0.500 01 [0; 8) 1 [0; 6)

0.500 { 0.707 f [0; 6) 1f [0; 8)
0.707 { 1.000 f [0; 8) 110 [0; 8)

[3;8) 0.000 { 0.293 011 [0; 8) 1 [0; 8)

0.293 { 0.500 f f [0; 8) 1 [2; 8)

0.500 { 0.707 f [2; 8) 11 [0; 8)
0.707 { 1.000 � [3; 7) 111 [0; 8)

[3;7) 0.000 { 0.369 011 [0; 8) 1 [0; 6)

0.369 { 0.631 f f [0; 8) 1f [0; 8)

0.631 { 1.000 f [2; 8) 110 [0; 8)

Table 3: Complete quasi-arithmetic coding code table for N = 8, based on the arithmetic
coding method described by Witten, Neal, and Cleary. The initial state is [0; 8). An f in
an \Out" (output) column indicates that the bits-to-follow count should be incremented.
Within a given state we choose the row based on the probability of a 0 input; the probability
ranges are calculated according to Equation (1).

Rice codes. Because a quasi-arithmetic coder must encode a number of binary decisions,
a text coder that uses quasi-arithmetic coding alone can take almost as long as PPMC. By
encoding a number of decisions at once, however, we can speed up the coder. Rice codes [9]
are eminently suitable for encoding a number of NOT-FOUND decisions followed by a single
FOUND decision.

Each Rice code has a non-negative integer parameter k. We encode a non-negative
integer n by outputting bn=2kc in unary, then outputting n mod 2k in binary. In practice,
we divide the binary representation of n into high- and low-order parts, the low-order part
consisting of k bits; then we output the high-order part as a unary number, and the low-
order part directly as a binary number. For example, to encode n = 5 with the Rice code
whose parameter k = 2, we divide 510 = 1012 into 1�01, output 10 (the unary representation
of 1, the high order part), and then output 01 (the low order k bits). Several Rice codes
are illustrated in Table 4.

Strictly speaking, Rice codes apply to exponential distributions, but in fact they will
give good compression for almost any decaying probability distribution. If we keep our
symbol lists ordered by frequency count within each context, the concatenated list used to
�nd a symbol will be in decreasing probability order except possibly for bumps where the
context lists are joined, so we can use Rice coding to encode symbol positions within the
concatenated lists.

n k = 0 k = 1 k = 2 k = 3

0 0� 0�0 0�00 0�000
1 10� 0�1 0�01 0�001
2 110� 10�0 0�10 0�010
3 1110� 10�1 0�11 0�011
4 11110� 110�0 10�00 0�100
5 111110� 110�1 10�01 0�101
6 1111110� 1110�0 10�10 0�110
7 11111110� 1110�1 10�11 0�111
8 111111110� 11110�0 110�00 10�000
9 1111111110� 11110�1 110�01 10�001
...

...
...

...
...

Table 4: Examples of the beginnings of some Rice codes for several parameter values. In
this table a midpoint (�) separates the high-order (unary) part from the low-order (binary)
part of each code.

To choose the parameter value k, in each context we maintain a cumulative count for
each reasonable parameter value of the number of bits that would have been required if we
had always used that parameter value; we then choose the parameter value with the smallest
count. This parameter estimation method is presented in detail in [7], where we prove that
under reasonable assumptions it produces a code length only O(

p
t) bits in excess of that

of the optimal Rice code for a context that occurs t times.
Rice codes are a subset of Golomb codes [4]; in Golomb codes we encode n by outputting

bn=mc in unary and n modm in binary (adjusted to avoid wasting code space if m is not a
power of 2). Since the Rice codes are just the Golomb codes where m is a power of 2, Rice
codes are somewhat simpler. Since there are fewer reasonable Rice codes, the parameter
estimation technique is faster. We could use Golomb codes in the Fast PPM method; in
practice, Rice codes run slightly faster and give about 1 percent worse compression.

3 Implementation

In this section we describe an implementation of the Fast PPM text compression system.
We explain the di�erences in modeling between our method and the PPMC method. Then
we discuss the coding phase, particularly quasi-arithmetic coding with precomputed tables.
We give an extended example that includes complete coding tables for a small coder.

Data structure for high order models. We use a multiply-linked list structure similar
to the vine pointers of Bell et al. [2]; the structure is illustrated in Figure 1. In the versions
of the Fast PPM system that use Rice coding, we keep the context lists sorted according
to frequency count, while in the version that uses only quasi-arithmetic coding we do not
reorganize the lists at all.

We delay creating new nodes in order to save time and control the number of nodes
present. Every symbol instance appears simultaneously in contexts of all orders from 0
to o, but we do not create nodes for all possible orders. Instead, we create at most one
new node for any symbol instance, just one order higher than the one at which the symbol
was found. (If it was found at the highest order, we do not create any new nodes.) This
procedure runs somewhat counter to a recommendation of Bell et al. [2, pages 149{150],
but compression does not appear to su�er greatly. We also use a lazy update rule as in [2],
updating statistics only for contexts actually searched. In our implementation we allow
the model to grow without bound, never deleting nodes or restarting the model. This is a
reasonable approach considering the increasing availability of large amounts of inexpensive
memory. Hirschberg and Lelewer [5] use a hashing approach to save space in PPM-like
models.

Exclusion mechanism. The standard approach for exclusions is to maintain a bit map
of alphabet symbols, together with a list of currently excluded symbols to quickly reset
the bit map after every symbol. We can make resetting the exclusion map unnecessary by

Null context

15

i

3

i
n

4

n

2

t

1

t
g

1

g

in

3

n
n

1

nn

1

n ni

1

i 8

in

1

inn

1

n 3

11 12 13 14

6 7

2

10 5

1

4

9

Figure 1: Implementation of part of the multiply-linked list data structure for Fast PPM,
maximumorder o = 3, after coding everything but the �nal `g' in \in the beginning". Each
node except at the highest order is both a node in the list for a certain order (middle link)
and the head of a list of the next greater order (upper link). Each node also points to the
head of the list of the next smaller order (lower link). For example, the node labeled `in' is
the �rst (and only) node in the `i' context; it is the head of the list for the `in' context, on
the top row; and it points to the head of the list for the `n' context. The numbers in the
nodes are frequency counts. To code the last `g', we would begin at node `in' and follow the
links in the order indicated by the small boxed numbers.

using a time stamp array, with one element for each alphabet symbol. The \time" is the
position of the current symbol within the �le. When we reject a symbol in the concatenated
list, we write the current time in the symbol's position in the time stamp array. If a
symbol's entry in the array is the same as the current time, then we must have previously
encountered it in the concatenated list for the current symbol, so we can exclude it. We
must clear the time stamp array only when the symbol position counter overows, typically
after about 232 � 4� 109 bytes. When we are using quasi-arithmetic coding for all coding,
this mechanism introduces a small inaccuracy in the FOUND/NOT-FOUND probabilities:
the NOT-FOUND probabilities will be higher than they should be since they include symbols
further down the list that should be excluded. Fortunately the e�ect is minor.

Coding new symbols and end-of-�le. At any point in the coding, the concatenated,
duplicate-free context list contains exactly k symbols, where k is the number of distinct
alphabet symbols seen so far in the �le. To deal with symbols not yet seen in any context,
we add a pseudo-symbol whose meaning is \new symbol". When a new symbol occurs,
we send the new-symbol pseudo-symbol, followed by the uncoded bits of the new symbol.
(Using arithmetic coding to identify new symbols requires considerably more work and saves
only k log

2
n � (log

2
n!� log

2
(n � k)!) bits for a �le with k distinct characters drawn from

an n-character alphabet. For n = 256 and k = 100, this is about 4 bytes.) We also append
a second pseudo-symbol to the concatenated list; its meaning is \end-of-�le". Hence a
sequence of k + 1 NOT-FOUNDs (however we choose to code them) means that the �le is
complete.

Coding. We now explain the coding mechanism and illustrate it with a complete tables
and a short example using a small coder. In practice we would use larger tables, but their
size remains manageable; the construction and use of the tables follows exactly the same
principles. In the example we use N = 8, i.e., the full interval is [0; 8). Using N = 32
improves compression by about 3:5 percent, and using N = 128 gives only another 0:2
percent improvement.

Probability estimation for quasi-arithmetic coding. We use a modi�cation of the
scaled-count technique to estimate the FOUND/NOT-FOUND probabilities used by the

Index Counts Probability Transitions

F NF of F after F after NF

P = 0 1 4 0:200 P = 3 P = 0
P = 1 1 3 0:250 P = 4 P = 0

P = 2 1 2 0:333 P = 7 P = 1

P = 3 2 4 0:333 P = 5 P = 1
P = 4 2 3 0:400 P = 8 P = 3

P = 5 3 4 0:429 P = 9 P = 4

P = 6 1 1 0:500 P = 13 P = 2
P = 7 2 2 0:500 P = 11 P = 4

P = 8 3 3 0:500 P = 10 P = 5

P = 9 4 4 0:500 P = 10 P = 5
P = 10 4 3 0:571 P = 11 P = 9

3P = 11 3 2 0:600 P = 12 P = 8
P = 12 4 2 0:667 P = 14 P = 10

P = 13 2 1 0:667 P = 14 P = 7
1P = 14 3 1 0:750 P = 15 2P = 11
P = 15 4 1 0:800 P = 15 P = 12

Table 5: Probability arrays for quasi-arithmetic coding.

quasi-arithmetic coder. In e�ect we use small counts for the FOUND and NOT-FOUND

events at each decision point; i.e., we keep a count pair F : NF. Only a few bits are used for
each count. When either count overows, we scale both counts downward; the new scaled
count pair is the closest to the (unavailable) new count pair, closeness being measured by
average excess code length.

In the implementation we denote each possible pair of counts by an index number, and
we precompute all the transitions to new count states, including those requiring scaling.
In Table 5 we show the correspondence among counts, probabilities, and probability index
numbers for a small example coder, as well as all the transitions. For example4, 1 index
P = 14 corresponds to F : NF = 3 : 1 and 2we �nd that P = 11 is the index of the new
count state after a NOT-FOUND event, where 3 index P = 11 corresponds to F : NF = 3 : 2.
In the example we allow counts to reach 4; in practice we allow somewhat larger counts (up
to 10 or so), and allow some of the unbalanced counts to be larger than the balanced ones.
It is quite feasible to store each probability index number in one byte. Only the transition
columns are needed by the coder.

Use of quasi-arithmetic coding. We use quasi-arithmetic coding to encode binary de-
cisions, with probabilities (indicated by probability index numbers) supplied by the model.
In the implementation we include internal states corresponding to expandable subintervals.
The process consists of selecting a new state based on the current event and event probabili-
ties, possibly followed by the output of some bits and a second transition to an unexpandable
state. This mechanism makes very e�cient use of space in the code tables, allowing us to
use a larger full interval and hence to obtain more precise coding and more compression.

We use a pointer into a code table to indicate the state of the coder, corresponding to
the current interval in a true reduced-precision arithmetic coder. Table 6 shows a complete
code table for N = 8 (full interval [0; 8)); the initial state is Q08, marked 24 in the table. In
practice we use a somewhat larger value of N , say 32. We use left subintervals for FOUND
decisions and right subintervals for NOT-FOUND decisions.

We illustrate the use of the coder with an example. 4Suppose we are in state Q17 =
[1; 7), the F : NF counts are 3 : 1, indicated by index P = 14 1, and the next decision
is NOT-FOUND. 5The W entry for state Q17 is W6 since the width of the interval is 6;
6W6 is a pointer to one of the �ve vectors in the delta array (Table 7), the interface
between the probability estimator and the coder. (In Section 4 we show how to �nd the
cuto� probabilities between successive values of �, which can then be used with Table 5 to
compute the delta array.) 7We use P = 14 to index into theW6 vector, and 8 �nd � = 2;
this is the size of the right subinterval of [1; 7). 9 If the decision were FOUND, we would

4The small circled numbers key the text to the tables.

Terminal states Nonterminal states

W H T L R F N Q

24Q08 W8 H8 8 Q04 0 � 0 1 Q08

Q07 W7 H7 7 Q03 0 � 0 1 Q06

Q06 W6 H6 6 Q02 0 0 0 2 Q08

Q05 W5 H5 5 Q01 0 00 0 3 Q08

Q18 W7 H8 8 Q14 0 � 0 1 Q28

4Q17 W6

5 H7

10 7
26 Q13 0 � 1 2 Q08

Q16 W5 H6 6 Q12 0 01 0 3 Q08

9Q15 W4 H5 5

Q28 W6 H8 8 Q26 � � 1 1 Q08

Q27 W5 H7 7 Q25 � � 1 1 Q06

Q24 0 1 0 2 Q08

Q23 0 10 0 3 Q08

Q38 W5 H8 8 Q36 � � 1 1 Q28

Q37 W4 H7 7 Q35 � � 2 2 Q08

Q34 0 11 0 3 Q08

More nonterminal states

L R F N Q

Q48 1 � 0 1 Q08

Q47 1 � 0 1 Q08

Q46 1 0 0 2 Q08

Q45 1 00 0 3 Q08

Q58 1 � 0 1 Q08

14Q57 1
16

�

20 1
21 2

27 Q08

23

Q56 1 01 0 3 Q08

Q68 1 1 0 2 Q08

Q67 1 10 0 3 Q08

Q78 1 11 0 3 Q08

Table 6: Complete implementation of the quasi-arithmetic coding table for N = 8. Terminal
states are the states that appear in Table 3; nonterminal states are internal states that can
be expanded with output. The L and R entires are used only by the encoder, the T and N
entires only by the decoder, and all other entires by both. This table and the companion
delta array (Table 7) and right-branch array (Table 8) are considerably more compact and
faster in operation than the conceptual N = 8 quasi-arithmetic coder shown in Table 3.

move down � = 2 rows in the code table to Q15, a \terminal state" (one for which no output
or interval expansion is possible). But in fact the decision is NOT-FOUND, so 10we use
the H entry for state Q17, namely H7, which indicates that 7 is the high end of the interval
[1; 7). 11H7 is a pointer to one of the four vectors in the right-branch array (Table 8).
12We use � = 2 as an index into the H7 vector, and 13 �nd the next state, Q57. 14We go
to state Q57 in the code table. It is a nonterminal state, so we perform the output indicated
by the L, R, F , and Q entries, which were computed by applying the Witten-Neal-Cleary
algorithm to the interval [5; 7).

To do the output, we use a two-byte bu�er and two counts (Table 9). We insert new bits
into the upper end of the low-order byte, then shift the useful bits into the high-order byte;
when the high-order byte is full of useful bits, we output them. Continuing the example,
15 suppose that the output bu�er contains 6 useful bits, so there is room for 2 more, and that
the pending count is 2, meaning that the next output bit will be followed by two opposite
bits, as in the bits-to-follow mechanism of Witten et al. [11]5 16The leading output bit L
is 1, so 17we put 10000000 into the low byte of the bu�er (if L had been 0, we would have
put 01111111 into the low byte of the bu�er). We then shift left by three bits altogether,
one for the leading bit and two for the pending bits. Since there was only room for two bits,
18we shift left by two bits, output 01011010, indicate that space remains for 8 bits, and
19 shift left by one more bit. 20The R entry shows that there are no remaining bits. (If
there had been, we would have put them into the upper end of the low-order byte of the
bu�er, then shifted them into the high-order byte.) 21The F entry shows that the pending
count should be increased by 1. The resulting bu�er state is shown at 22. Finally, 23 the
Q entry shows that the next coder state is Q08, indicated at 24.

Decoding is more mysterious but slightly easier than encoding. We illustrate it by
showing how to decode the decision used in the encoding example. Suppose that the encoded
�le contains the bytes : : : 01011010 01000101 01001000 : : : , the �rst of these bytes
being the byte written in the encoding example. Again we maintain a two-byte bu�er,
shown in Table 10; 25 as we begin decoding this decision, all eight bits of the �rst byte have

5Briey, when the endpoints of the current interval in arithmetic coding are both in the range [1=4; 3=4)
but on opposite sides of 1=2, we know that the next two output bits are 01 or 10. We do not know what the

next bit is, but whatever it is, the following bit must be the opposite. So we keep track of this fact, and
expand the middle half of the interval. The process can be repeated any number of times.

W4 W5 W6

6 W7 W8

P = 0 3 4 5 6 6

P = 1 3 4 4 5 6
P = 2 3 3 4 5 5

P = 3 3 3 4 5 5

P = 4 2 3 4 4 5
P = 5 2 3 3 4 5

P = 6 2 2 3 3 4
P = 7 2 2 3 3 4

P = 8 2 2 3 3 4

P = 9 2 2 3 3 4
P = 10 2 2 3 3 3

P = 11 2 2 2 3 3

P = 12 1 2 2 2 3
P = 13 1 2 2 2 3

7P = 14 1 1 2
8 2 2

P = 15 1 1 1 1 2

Table 7: Delta array. The �ve vectors, one for
each possible terminal state width, are indexed
by probability index numbers to �nd �, the size
of the right subinterval.

Encoding bu�er Bits Pending

left count

15 10010110 00000000 2 2

17 10010110 10000000 2 3

18 01011010 00000000 8 1

19 10110100 00000000 7 0

22 10110100 00000000 7 1

Table 9: Encoding example. Useful bits not yet
output are shown in bold face type.

H5 H6 H7

11 H8

� = 1 Q45 Q56 Q67 Q78

12� = 2 Q35 Q46 Q57

13 Q68

� = 3 Q25 Q36 Q47 Q58

� = 4 Q15 Q26 Q37 Q48

� = 5 Q16 Q27 Q38

� = 6 Q17 Q28

� = 7 Q18

Table 8: Right branch array. The four
vectors, one for each possible value of
the high end of a terminal state, are in-
dexed by �, the size of the right subin-
terval, to �nd a pointer to the next
state.

Decoding bu�er Bits

left

25 11000101 01001000 16

28 00010101 00100000 14

29 10010101 00100000 14

Table 10: Decoding example. Useful
bits not yet processed are shown in bold
face type.

been consumed, the third byte has been read, and the �rst bit of the next byte has been
changed from 1 to 0, to account for the pending bits left over from the previous decision.
As in the encoder, 4we are in state Q17, and we �nd � = 2 as in steps 5 through 8.
26We take the T entry for the current state (T = 7, indicating that 7 is the top of the
current state) and subtract � = 2 to obtain the cuto� value C = 5 between the left and
right decisions. We shift this value to left-justify it in a byte; since in this coder N = 8,
three bits of C are signi�cant, so we shift C leftward by 5 bits, giving 10100000. If the
actual value of the high-order byte in the bu�er had been less than C, we would have a
left (FOUND) branch, but in this case 25 the high-order byte 11000101 is greater than
(or equal to) the cuto� value, so we have a right (NOT-FOUND) branch. As in steps 10
through 13, we �nd the next state to be nonterminal state Q57, indicated at 14. 27From
the N entry for state Q57 we �nd that 2 bits are to be consumed (corresponding to the
output of the leading 1 bit and the incrementing of the pending count by 1). 28To consume
the two bits, we shift the entire bu�er leftward by two bits. (We would have paused to read
another byte had the number of useful bits fallen below 9.) Because 21 the F entry for
state Q57 is nonzero, 29we change the value of the high-order bit of the high-order byte, in
this case from 0 to 1. Finally, 23we use the Q entry to �nd the next state, Q08, indicated
at 24.

Use of Rice coding. The use of Rice codes to encode the symbol positions is straight-
forward. The only complication is the di�culty of interleaving the quasi-arithmetic code
output and the pre�x code output. The bits (or bytes) must be output by the encoder in
the order that the decoder will read them. The resulting bu�ering problem can be solved,
but here we sidestep the problem by simply using two separate output �les.

4 Analysis of quasi-arithmetic coding

We now show that using quasi-arithmetic coding causes an insigni�cant increase in the code
length compared with pure arithmetic coding. We analyze several cases.

First we assume that we know the success probability p of each event, and we show both
how to minimize the average excess code length and how small the excess is. In arithmetic
coding we divide the current interval (whose width is W) into subintervals of length L and
R, the left subinterval being associated with the success event; this gives an e�ective coding
probability q = L=W since the resulting code length is � log

2
q for the left branch and

� log
2
(1 � q) for the right. When we encode a binary event with probability p using an

e�ective coding probability q, the average code length l(p; q) is given by

l(p; q) = �p log
2
q � (1� p) log

2
(1� q):

If we use exact arithmetic coding, we can subdivide the interval into lengths pW and (1 �
p)W , thus making q = p and giving an average code length equal to the entropy, �p log

2
p�

(1� p) log
2
(1� p); this is optimal.

Consider two probabilities p1 and p2 that are adjacent based on the subdivision of an
interval of widthW ; in other words, p1 = (W��1)=W , p2 = (W��2)=W , and �2 = �1�1.
For any probability p between p1 and p2, either p1 or p2 should be chosen, whichever gives
a shorter average code length. There is a cuto� probability p� for which p1 and p2 give the
same average code length. We can compute p� by solving the equation l(p�; p1) = l(p�; p2),
giving

p� =
1

1 +
log

p2
p1

log
1� p1
1� p2

=
log

�1

�2

log
W ��2

W ��1

�1

�2

: (1)

Clearly we can construct the delta table by computing cuto� probabilities for every pair of
adjacent coding probabilities and every possible interval size and then applying them to the
count state probabilities. As an example, we compute the value of �, the size of the right
subinterval, to be used for F : NF = 3 : 1 (i.e., for p = 3=4) and W = 6. Clearly � = 1 or 2,
so p1 = 4=6 (�1 = 2) and p2 = 5=6 (�2 = 1). We compute p� = log2= log(5=2) � 0:756, and
choose � = �1 = 2 since 0:667 < 0:750 < 0:756 < 0:833, i.e., p1 < p < p� < p2. This is the
entry at 8 in Table 7.

Probability p� is the probability between p1 and p2 with the worst average quasi-
arithmetic coding performance, both in excess bits per decision and in excess bits relative
to optimal compression. (This can be shown by monotonicity arguments.) For a quasi-
arithmetic coder with full interval [0; N), the shortest terminal state intervals have size
W = N=4 + 2; the worst average error occurs for the smallest W and the most extreme
probabilities. We bound the absolute and relative average excess code length in the following
theorem. (This analysis excludes probabilities less than 1=W and greater than (W � 1)=W ,
for which the relative excess code length becomes in�nite. It is not unusual for probabilities
to be very large or small in image compression applications, but in text compression extreme
probabilities occur infrequently.)

Theorem 1 If we construct a quasi-arithmetic coder based on full interval [0; N), and use

correct probability estimates for probabilities between 1=N and (N � 1)=N , the number of

bits per input symbol by which the average code length obtained by the quasi-arithmetic coder

exceeds that of an exact arithmetic coder is at most

4

ln 2
log

2

2

e ln 2

1

N
+ O

�
1

N2

�
� 0:497

N
+ O

�
1

N2

�
;

and the fraction by which the average code length obtained by the quasi-arithmetic coder

exceeds that of an exact arithmetic coder is at most

log
2

2

e ln 2

1

log
2
N

+ O

�
1

(logN)2

�
� 0:0861

log
2
N

+ O

�
1

(logN)2

�
:

Compressed size Encoding throughput

(bits per input character) (thousands of characters per second)

File Fast PPM Fast PPM

QA QA/Rice
PPMC compress

QA QA/Rice
PPMC compress

bib 2.19 2.32 2.12 3.35 23.2 29.0 16.4 111.3

book1 2.51 2.58 2.52 3.46 23.2 30.1 18.5 108.3
book2 2.29 2.41 2.28 3.28 23.5 30.6 18.1 111.1

news 2.78 2.94 2.77 3.86 16.9 23.5 12.6 99.2

paper1 2.62 2.83 2.48 3.77 17.8 24.7 13.6 106.3
paper2 2.51 2.67 2.46 3.52 21.1 26.5 15.2 102.7

progc 2.68 2.92 2.49 3.87 16.9 23.6 12.4 99.0

progl 1.99 2.16 1.87 3.03 24.8 31.7 18.4 119.4
progp 1.96 2.17 1.82 3.11 22.0 31.1 16.5 98.8

trans 1.88 2.09 1.75 3.27 23.7 32.1 18.0 117.1

Table 11: Compression and encoding throughput on the ten text �les in the Calgary corpus.

If we let p = (p1+p2)=2 and note that the maximumvalue of p in our analysis is 1�1=W ,
we can expand Equation (1) asymptotically in W to express p� as

p� = p+
1

6W 2

p� 1=2

p (1� p)
+ O(1=W): (2)

The O(�) term is 1=W because of the e�ect of the maximumpossible value of p. The constant
in the O(1=W) term is very small, less than 0:002. We can use Equation (2) to approx-
imate the cuto� probabilities using rational arithmetic; the compression loss introduced
by using the approximation ep� instead of the exact value of p� is completely negligible,
never more than 0:06%. In the example above with p1 = 2=3 and p2 = 5=6, we �nd that
p� = log 2= log(5=2) � 0:75647 and ep� = 245=324 � 0:75617.

Next we consider a more general case, in which we compare quasi-arithmetic coding
with arithmetic coding for a single worst-case event. We assume that both coders use
the same estimated probability, but that the estimate need not be right. In this case we
�nd the cuto� probability between p1 and p2 for 1=2 � p1 < p2 by equating the excess
code length from using probability p1 for the more probable event and the excess from using
probability p2 for the less probable event, that is, by solving the equation� log

2
p1+log2 p

� =
� log

2
(1 � p2) + log

2
(1� p�); this yields

p� =
1

1 +
1� p2

p1

=
W ��1

W � 1
:

The excess code length in this case is just log
2
(W=(W � 1)) � 1=W ln 2 regardless of the

value of �1. We note that the smallest value of W is N=4 + 2, and thus we bound the
worst-case excess code length in the following theorem.

Theorem 2 If we construct a quasi-arithmetic coder based on full interval [0; N), and use

arbitrary probability estimates between 1=N and (N � 1)=N , the number of bits per input

symbol by which the code length obtained by the quasi-arithmetic coder exceeds that of an

exact arithmetic coder in the worst case is at most

log
2

N + 8

N + 4
� 4

N ln 2
� 5:771

N
:

5 Experimental Results

We compare the Fast PPM method with PPMC and with the Unix compress program; the
results appear in Table 11. We show results for two versions of Fast PPM: one that uses
quasi-arithmetic coding for all binary decisions (QA) and one that uses quasi-arithmetic
coding for one decision in each context, then uses Rice coding if necessary to encode the
symbol's position in the remainder of the concatenated context list (QA/Rice). For quasi-
arithmetic coding use we N = 32 and an order-3 coder; the time needed to precompute the

tables is not included, since the tables can be compiled into the coder. The PPMC imple-
mentation also uses exclusions and an order 3 model. The test data consists of the 10 text
�les of the Calgary corpus. We see that Fast PPM outcompresses the compress program on
all text �les. Fast PPM with quasi-arithmetic coding gives compression performance com-
parable to that of PPMC, especially for larger �les. We show timing results for encoding
on a Sun SPARCstation1GX; decoding times are similar for the PPM methods. We see
that Fast PPM, even using quasi-arithmetic coding alone, is always faster than PPMC; the
version that uses some Rice coding is nearly twice as fast as PPMC.

6 Conclusion

We have identi�ed several parts of the PPMC text compression method that can be speeded
up by the introduction of simplifying approximations. In the Fast PPM method presented
here we speed up the modeling phase by eliminating the need for escape symbols; since
they occur infrequently anyway this does not hurt compression much. We speed up coding
by using quasi-arithmetic coding instead of arithmetic coding when we need high-precision
predictions, and by using Rice codes to encode the context list positions of low-probability
symbols. Quasi-arithmetic coding gives enough precision for practical use as a binary coder
and runs much faster than true arithmetic coding; Rice codes waste some code space because
of the limitations of their models, but the amount is small because we apply them only to
infrequently occurring symbols.

We have presented a detailed example of a quasi-arithmetic coder and its use, and
analysis showing that the excess code length introduced is only O(1=N) (in both the average
and worst cases) and that the excess relative code length is only O(1= logN). The analysis
is also useful in the construction of the code tables.

Finally, we have shown experimentally that Fast PPM gives compression comparable to
that of PPMC, with nearly twice the throughput.

References

[1] R. B. Arps, G. G. Langdon & J. J. Rissanen, \Method for Adaptively Initializing a Source
Model for Symbol Encoding," IBM Technical Disclosure Bulletin 26 (May 1984), 6292{6294.

[2] T. C. Bell, J. G. Cleary & I. H. Witten, Text Compression, Prentice-Hall, Englewood Cli�s,

NJ, 1990.

[3] J. G. Cleary & I. H. Witten, \Data Compression Using Adaptive Coding and Partial String

Matching," IEEE Trans. Comm.COM{32 (Apr. 1984), 396{402.

[4] S. W. Golomb, \Run-Length Encodings," IEEE Trans. Inform. Theory IT{12 (July 1966), 399{

401.

[5] D. S. Hirschberg & D. A. Lelewer, \Context Modeling for Text Compression," in Image and

Text Compression, J. A. Storer, ed., Kluwer Academic Publishers, Norwell, MA, 1992, 113{144.

[6] P. G. Howard & J. S. Vitter, \Practical Implementations of Arithmetic Coding," in Image and

Text Compression, J. A. Storer, ed., Kluwer Academic Publishers, Norwell, MA, 1992, 85{112.

[7] P. G. Howard & J. S. Vitter, \Fast and E�cient Lossless Image Compression," in Proc. Data

Compression Conference, J. A. Storer & M. Cohn, eds., Snowbird, Utah, Mar. 30-Apr. 1, 1993,

351{360.

[8] A. M. Mo�at, \Implementing the PPM Data Compression Scheme," IEEE Trans. Comm.COM{
38 (Nov. 1990), 1917{1921.

[9] R. F. Rice, \Some Practical Universal Noiseless Coding Techniques," Jet Propulsion Laboratory,
JPL Publication 79{22, Pasadena, California, Mar. 1979.

[10] I. H. Witten & T. C. Bell, \The Zero Frequency Problem: Estimating the Probabilities of

Novel Events in Adaptive Text Compression," IEEE Trans. Inform. Theory IT{37 (July 1991),

1085{1094.

[11] I. H. Witten, R. M. Neal & J. G. Cleary, \Arithmetic Coding for Data Compression," Comm.

ACM 30 (June 1987), 520{540.

