Arithmetic Coding for Data Compression

PAUL G. HOWARD AND JEFFREY SCOTT VITTER, FELLOW, IEEE

Invited Paper

Arithmetic coding provides an effective mechanism for removing
redundancy in the encoding of data. We show how arithmetic
coding works and describe an efficient implementation that uses
table lookup as a fast alternative to arithmetic operations. The
reduced-precision arithmetic has a provably negligible effect on
the amount of compression achieved. We can speed up the imple-
mentation further by use of parallel processing. We discuss the role
of probability models and how they provide probability information
to the arithmetic coder. We conclude with perspectives on the
comparative advantages and disadvantages of arithmetic coding.

I. ARITHMETIC CODING

The fundamental problem of lossless compression is
to decompose a data set (for example, a text file or an
image) into a sequence of events, then to encode the events
using as few bits as possible. The idea is to assign short
codewords to more probable events and longer codewords
to less probable events. Data can be compressed whenever
some events are more likely than others. Statistical coding
techniques use estimates of the probabilities of the events
to assign the codewords. Given a set of mutually distinct
events ej, €3,€3, -, €n, and an accurate assessment of
the probability distribution P of the events, Shannon [1]
proved that the the smallest possible expected number of
bits needed to encode an event is the entropy of P, denoted
by

n

H(P) =" —p{ex}logsp{er}

k=1

where p{eix} is the probability that event e; occurs. An
optimal code outputs —log,p bits to encode an event
whose probability of occurrence is p. Pure arithmetic codes

Manuscript received November 1, 1993; revised January 15, 1994. This
work was supported by NASA Graduate Student Researchers Program
under Grant NGT-50420, by a National Science Foundation Presiden-
tial Young Investigator Award with matching funds from IBM, and
by Air Force Office of Scientific Research under Grant F49620-92-J-
0515. Additional support was provided by Universities Space Research
Association/CESDIS associate memberships.

P. G. Howard is with AT&T Bell Laboratories, Visual Communications
Research, Room 4C-516, Holmdel, NY 07733-3030, USA.

J. S. Vitter is with the Department of Computer Science, Duke Univer-
sity, Durham, NC 27708-0129, USA.

IEEE Log Number 9400769.

supplied with accurate probabilities provide optimal com-
pression. The older and better known Huffman codes [2]
are optimal only among instantaneous codes, that is, those
in which the encoding of one event can be decoded before
encoding has begun for the next event.

In theory, arithmetic codes assign one “codeword” to
each possible data set. The codewords consist of half-
open subintervals of the half-open unit interval [0,1), and
are expressed by specifying enough bits to distinguish the
subinterval corresponding to the actual data set from all
other possible subintervals. Shorter codes correspond to
larger subintervals and thus more probable input data sets.
In practice, the subinterval is refined incrementally using
the probabilities of the individual events, with bits being
output as soon as they are known. Arithmetic codes almost
always give better compression than prefix codes, but they
lack the direct correspondence between the events in the
input data set and bits or groups of bits in the coded output
file.

A statistical coder must work in conjunction with a
modeler that estimates the probability of each possible event
at each point in the coding. The probability model need not
describe the process that generates the data; it merely has
to provide a probability distribution for the data items. The
probabilities do not even have to be particularly accurate,
but the more accurate they are, the better the compression
will be. If the probabilities are wildly inaccurate, the file
may even be expanded rather than compressed, but the
original data can still be recovered. To obtain maximum
compression of a file, we need both a good probability
model and an efficient way of representing (or learning)
the probability model.

To ensure decodability, the encoder is limited to the
use of model information that is available to the decoder.
There are no other restrictions on the model; in particular,
it can change as the file is being encoded. The models
can be adaptive (dynamically estimating the probability
of each event based on all events that precede it), semi-
adaptive (using a preliminary pass of the input file to gather
statistics), or nonadaptive (using fixed probabilities for all
files). Nonadaptive models can perform arbitrarily poorly
[3]. Adaptive codes allow one-pass coding but require

0018-9219/94$04.00 © 1994 IEEE

PROCEEDINGS OF THE IEEE, VOL. 82, NO. 6, JUNE 1994

857

a more complicated data structure. Semi-adaptive codes
require two passes and transmission of model data as side
information; if the model data are transmitted efficiently
they can provide slightly better compression than adaptive
codes, but in general the cost of transmitting the model is
about the same as the “learning” cost in the adaptive case
[4].

To get good compression we need models that go beyond
global event counts and take into account the structure
of the data. For images this usually means using the
numeric intensity values of nearby pixels to predict the
intensity of each new pixel and using a suitable probability
distribution for the residual error to allow for noise and
variation between regions within the image. For text, the
previous letters form a context, in the manner of a Markov
process.

In Section I, we provide a detailed description of pure
arithmetic coding, along with an example to illustrate the
process. We also show enhancements that allow incremental
transmission and fixed-precision arithmetic. In Section I
we extend the fixed-precision idea to low precision, and
show how we can speed up arithmetic coding with little
degradation of compression performance by doing all the
arithmetic ahead of time and storing the results in lookup
tables. We call the resulting procedure quasi-arithmetic
coding. In Section IV we briefly explore the possibility of
parallel coding using quasi-arithmetic coding. In Section
V we discuss the modeling process, separating it into
structural and probability estimation components. Each
component can be adaptive, semi-adaptive, or static; there
are two approaches to the probability estimation problem.
Finally, Section VI provides a discussion of the advantages
and disadvantages of arithmetic coding and suggestions of
alternative methods.

II. How ARITHMETIC CODING WORKS

In this section we explain how arithmetic coding works
and give operational details; our treatment is based on that
of Witten, Neal, and Cleary [5]. Our focus is on encoding,
but the decoding process is similar.

A. Basic Algorithm for Arithmetic Coding

The algorithm for encoding a file using arithmetic coding
works conceptually as follows:
1) We begin with a “current interval” [L, H) initialized
to [0, 1).
2) For each event in the file, we perform two steps.

a) We subdivide the current interval into subin-
tervals, one for each possible event. The size
of an event’s subinterval is proportional to the
estimated probability that the event will be the
next event in the file, according to the model
of the input.

b) We select the subinterval corresponding to the
event that actually occurs next, and make it the
new current interval.

858

3) We output enough bits to distinguish the final current
interval from all other possible final intervals.

The length of the final subinterval is clearly equal to the
product of the probabilities of the individual events, which
is the probability p of the particular sequence of events in
the file. The final step uses at most |—log,p|+ 2 bits to
distinguish the file from all other possible files. We need
some mechanism to indicate the end of the file, either a
special end-of-file event coded just once, or some external
indication of the file’s length. Either method adds only a
small amount to the code length.

In step 2, we need to compute only the subinterval
corresponding to the event a; that actually occurs. To do
this it is convenient to use two “cumulative” probabilities:
the cumulative probability

i-1
Pc = Epk
k=1
and the next-cumulative probability
i
Pv=Pe+pi=)Y p
k=1

The new subinterval is
[L+Pc(H-L), L+ Py(H - L)).

The need to maintain and supply cumulative probabilities
requires the model to have a complicated data structure,
especially when many more than two events are possible.

We now provide an example, repeated a number of times
to illustrate different steps in the development of arithmetic
coding. For simplicity, we choose between just two events
at each step, although the principles apply to the multi-
event case as well. We assume that we know a priori that
we have a file consisting of three events (or three letters
in the case of text compression); the first event is either
ay (with probability p{a;} = 2/3) or b; (with probability
p{b1} = 1/3); the second event is as (with probability
p{az} = 1/2) or by (with probability p{b2} = 1/2); and
the third event is a3 (with probability p{as} = 3/5) or
bs (with probability p{bs} = 2/5). The actual file to be
encoded is the sequence b;asbs.

The steps involved in pure arithmetic coding are illus-
trated in Table 1 and Fig. 1. In this example the final
interval corresponding to the actual file by aqbs is

23 5)

3067
The length of the interval is 1/15, which is the probability
of bjaabs, computed by multiplying the probabilities of the
three events:

112 1
pibiplaztpibs} = 552 = 1=

In binary, the final interval is [0.110001...,0.110101...).
Since all binary numbers that begin with 0.11001 are
entirely within this interval, outputting 11001 suffices to
uniquely identify the interval.

PROCEEDINGS OF THE IEEE, i’OL. 82, NO. 6, JUNE 1994

Table 1 Example of Pure Arithmetic Coding

Action Subintervals
Start (0,1)
Subdivide with left prob. p{a:} = % [o, g.),[§, 1)
Input b1, select right subinterval (2,1)
Subdivide with left prob. p{a2} = } (3, 8)[5.0
Input ag, select left subinterval 3,3
Subdivide with left prob. p{as} = [2,2),[%.3
Input b3, select right subinterval ns

= [0.110001 ...2,0.110101 ...2)

0.11001; is the shortest binary
fraction that lies within [Z,)

Output 11001

initial current interval 1
subdivide
i 3
P a1 ¢ b1 1
select by
subdivide ! i
l % a2z % by !
select a2
subdivide [e3-fe?
| Has o[|
select b3
(Eil 16

output 11001 < 0.11001; 0.11010;
Fig. 1. Pure arithmetic coding graphically illustrated.

B. Incremental Output

The basic implementation of arithmetic coding described
above has two major difficulties: the shrinking current
interval requires the use of high-precision arithmetic, and
no output is produced until the entire file has been read.
The most straightforward solution to both of these problems
is to output each leading bit as soon as it is known, and
then to double the length of the current interval so that
it reflects only the unknown part of the final interval.
Witten, Neal, and Cleary [5] add a clever mechanism for
preventing the current interval from shrinking too much
when the endpoints are close to 1/2 but straddle 1/2. In
that case we do not yet know the next output bit, but we
do know that whatever it is, the following bit will have
the opposite value; we merely keep track of that fact,
and expand the current interval symmetrically about 1/2.
This follow-on procedure may be repeated any number
of times, so the current interval size is always strictly
longer than 1/4.

Mechanisms for incremental transmission and fixed pre-
cision arithmetic have been developed through the years by
Pasco [6], Rissanen [7], Rubin [8], Rissanen and Langdon
[9], Guazzo [10], and Witten, Neal, and Cleary [5]. The
bit-stuffing idea of Langdon and others at IBM that limits
the propagation of carries in the additions serves a function
similar to that of the follow-on procedure described above.

HOWARD AND VITTER: ARITHMETIC CODING FOR DATA COMPRESSION

We now describe in detail how the incremental output and
interval expansion work. We add the following step imme-
diately after the selection of the subinterval corresponding
to an input event, step 2(b) in the basic algorithm above.

2 ¢) We repeatedly execute the following steps in se-
quence until the loop is explicitly halted:

1) If the new subinterval is not entirely within one of

the intervals

[07 %)v [if %)v or [%71)

we exit the loop and return.

2) If the new subinterval lies entirely within [0, §),
we output 0 and any following 1’s left over from
previous events; then we double the size of the
subinterval by linearly expanding [0, (1/2)) to [0,1).

3) If the new subinterval lies entirely within [%,1),
we output 1 and any following 0’s left over from
previous events; then we double the size of the
subinterval by linearly expanding [(1/2),1) to [0, 1).

4) If the new subinterval lies entirely within [1/4, 3/4),
we keep track of this fact for future output by
incrementing the follow count; then we double
the size of the subinterval by linearly expanding
[(1/4), (3/4)) 10 (0,1).

Table 2 and Fig. 2 illustrate this process. In the example,
interval expansion occurs exactly once for each input event,
but in other cases it may occur more than once or not at
all. The follow-on procedure is applied when processing the
second input event as. The 1 output after processing the
third event b is therefore followed by its complement 0.
The final interval is [2/15, 2/3). Since all binary numbers
that start with 0.01 are within this range, outputting 01
suffices to uniquely identify the range. The encoded file is
11001, as before. This is no coincidence: the computations
are essentially the same. The final interval is eight times
as long as in the previous example because of the three
doublings of the current interval.

Clearly, the current interval contains some information
about the preceding inputs; this information has not yet been
output, so we can think of it as the coder’s state. If a is the
length of the current interval, the state holds —log,a bits
not yet output. In the basic method the state contains all the
information about the output, since nothing is output until
the end. In the incremental implementation, the state always
contains fewer than two bits of output information, since
the length of the current interval is always more than 1/4.
The final state in the incremental example is [2/15, 2/3),
which contains —log, 8/15 = 0.907 bits of information; the
final two output bits are needed to unambiguously transmit
this information.

C. Use of Integer Arithmetic

In practice, the arithmetic can be done by storing the end-
points of the current interval as sufficiently large integers
rather than in floating point or exact rational numbers. We
also use integers for the frequency counts used to estimate

859

Table 2 Example of Pure Arithmetic Coding with
Incremental Transmission and Interval Expansion

Action Subintervals
Start [0,1)
Subdivide with left prob. p{a;} = % [0,2),[2,1)
Input by, select right subinterval %, 1)
Output 1, expand :1;, 1)
Subdivide with left prob. p{az} = 1 (3, 2).(%1)
Input a2, select left subinterval 3.2
Increment follow count, expand 3,3
Subdivide with left prob. p{as} = 2 L2
Input b3, select right subinterval %%, 3
Output 1, output 0 (follow bit), expand [-1%, %
Output 01 [},1) is entirely within [%, 2
initial current interval 4
subdivide
2 1
3 3
F a1 % b !
select b
L . . L :
/output 1; expand
| A . . !
subdivide
1 1
2 2
! i a2 3 ba !
select a2
L R . . |
/ follow; expand
L i . L
subdivide
3 2
5 5
[P! a3 I bs 3]
select b3
[. i A |

0
;. 1

0.01; 0.10; —» output 01

Fig. 2. Pure arithmetic coding with incremental transmission and
interval expansion, graphically illustrated.

event probabilities. The subdivision process involves se-
lecting nonoverlapping intervals (of length at least 1) with
lengths approximately proportional to the counts. Table 3
illustrates the use of integer arithmetic using a full interval
of [0, N) = [0,1024). (The graphical version of Table 3
is essentially the same as Fig. 2 and is not included.) The
length of the current interval is always at least N/4+2, 258
in this case, so we can always use probabilities precise to
at least 1/258; often the precision will be near 1/1024. In
practice we use even larger integers; the interval [0, 65536)
is a common choice, and gives a practically continuous

860

Table 3 Example of Arithmetic Coding with Incremental
Transmission, Interval Expansion, and Integer Arithmetic (Full
interval is [0, 1024), so in effect subinterval endpoints are
constrained to be multiples of 1/1024.)

Action Subintervals
Start [0,1024)
p{a1} = 2; subdivide with

left probability = 322 ~ 0.66699

[0, 683), [683, 1024)
Input by, select right subinterval [683,1024)
Output 1, expand [342,1024)

Subdivide with left prob. p{a2} = 1 [342,683),[683,1024)
Input a2, select left subinterval [342, 683)
Increment follow count, expand [172,854)
p{a1} = &; subdivide with

left probability = 422 = 0.59971
Input b3, select right subinterval [581,854)
Output 1, output 0 (follow bit), expand [138,654)

Output 01 [256,512) is entirely within [138, 654)

{172,581), [581, 854)

choice of probabilities at each step. The subdivisions in
this example are not quite the same as those in Table 2
because the resulting intervals are rounded to integers. The
encoded file is 11001 as before, but for a longer input file
the encodings would eventually diverge.

III. LIMITED-PRECISION ARITHMETIC CODING

Arithmetic coding as it is usually implemented is slow
because of the multiplications (and in some implementa-
tions, divisions) required in subdividing the current interval
according to the probability information. Since small errors
in probability estimates cause very small increases in code
length, we expect that by introducing approximations into
the arithmetic coding process in a controlled way we
can improve coding speed without significantly degrading
compression performance. In the Q-Coder work at IBM
[11], the time-consuming multiplications are replaced by
additions and shifts, and low-order bits are ignored. In [12]
we describe a different approach to approximate arithmetic
coding. Recalling that the fractional bits characteristic of
arithmetic coding are stored as state information in the
coder, we reduce the number of possible states, and re-
place arithmetic operations by table lookups; the lookup
tables can be precomputed. Here we review this reduced
precision binary arithmetic coder, which we call a quasi-
arithmetic coder. It should be noted that the compression is
still completely reversible; using reduced precision merely
affects the average code length.

B. Development of Binary Quasi-Arithmetic Coding

We have seen that doing arithmetic coding with large
integers instead of real or rational numbers hardly degrades
compression performance at all. In Table 4 we show the
encoding of the same file using small integers: the full
interval [0, N) is only [0,8).

The number of possible states (after applying the interval
expansion procedure) of an arithmetic coder using the
integer interval [0, N) is 3N2/16. If we can reduce the
number of states to a more manageable level, we can

PROCEEDINGS OF THE IEEE, VOL. 82, NO. 6, JUNE 1994

Table 4 Example of Arithmetic Coding with Incremental
Transmission, Interval Expansion, and Small Integer Arithmetic
(Full interval is [0, 8), so in effect subinterval endpoints

are constrained to be multiples of 1/8.)

Subintervals
Start [0,8)

p{a1} = }; subdivide with left prob. = 3 [0,5),[5,8)
Input by, select right subinterval 5,8

Action

Output 1, expand [2,8)
Subdivide with left prob. p{az} = % {2,5),[5,8)
Input a3, select left subinterval 2,5)
Increment follow count, expand [0,6)
p{as} = £; subdivide with left prob. = % [0,4),[4,6)
Input b3, select right subinterval [4,6)
Output 1, output 0 (follow bit), expand [0,4)
Output 0, expand [0,8)

Table 5 Excerpts from N = 8 Quasi-Arithmetic Coding Table
Excerpts from Quasi-Arithmetic Coding Table, N = 8 (Only
the three states needed for the example are shown; there

are nine more states. An “f” output indicates application

of the follow-on procedure described in the text.)

Start | Probability Left (a) i;p “: Right () ;l putt
state | of left input | Output st::e Output st:)t{e
[0,8) [0.000-0.182]| 000 [0,8) | ~ [1,8)
0.182-0310| 00 [0,8) - [2,8)
0.310-0437] o0 [0,6) - [3,8)
0437-0563| o0 0,8) 1 [0,8)

0.563 - 0.690 | — 0,5) 1 [2,8)

0.690 - 0.818 [- 0,6) | 11 [0,8)
0.818-1.000| - 0,7y | 111 [o0,8)

[0,6) | 0.000 - 0.244 | 000 [0,8) - [1,6)
" lo244-0415| 00 [o,8) f [0,8)
0.415-0.585| 0 0,6) f [2,8)
0.585-0.756 | 0 0,8) [10 [0,8)

0756 -1.000| - [0,5) [100 [0,8)

[2,8) [0.000-0.244| 010 [0,8) | — [3,8)
0.244-0415| 01 [0,8) 1 [0,8)
0415-0585| f [0,6) 1 [2,8)

0.585 — 0.756 f [0,8) 11 [0,8)

0756 -1.000| - [27) | 111 [0,8)

precompute all state transitions and outputs and substitute
table lookups for arithmetic in the coder. The obvious way
to reduce the number of states is to reduce N. The value of
N should be a power of 2; its value must be at least 4. If we
choose N = 8 and apply the arithmetic coding algorithm
in a straightforward way, we obtain a table with 12 states,
each state offering a choice of between 3 and 7 probability
ranges. Portions of the table are shown in Table 5.

Table 6 shows how Table 5 is.used to encode our
sample file. Before coding each input event the coder is
in a certain current state, corresponding to the current
subinterval. For each state there are a number of probability
ranges; we choose the one that includes the estimated
probability for the next event. Then we simply select the
input event that actually occurs and perform the indicated
actions: outputting bits, incrementing the follow count, and
changing to a new current state. In the example the encoded
output file is 1100. Because we were using such low

HOWARD AND VITTER: ARITHMETIC CODING FOR DATA COMPRESSION

Table 6 Example of Operation of Quasi-Arithmetic Coding

Start in state [0, 8).

Prob{a;} = £, so choose range 0.563 — 0.690 in [0, 8).

First event is by, so choose right (b) input.

Output 1. Next state is [2,8).

Prob{a;} = }, so choose range 0.415 ~ 0.585 in [2,8).

Second event is a2, so choose left (a) input.

f means increment follow count. Next state is [0, 6).

Prob{as} = 2, so choose range 0.585 — 0.756 in [0, 6).

Third event is b3, so choose right (b) input.

Indicated output is 10. Output 1; output 0 to account
for follow bit; output 0. Next state is [0, 8).

precision, the subdivision probabilities became distorted,
leading to a lower probability for the file (1/16), but
one which ends in the full interval [0, 8), requiring no
disambiguating bits. We usually use a somewhat larger
value of N; in practice, the compression inefficiency of
a binary quasi-arithmetic coder (neglecting very large and
very small probabilities) is less than 1% for N = 32 and
about 0.2% for N = 128.

In implementations, the coding tables can be stripped
down so that the numerical values of the interval endpoints
and probability ranges do not appear. Full details and
examples appear in [13]. The next section explains the com-
putation of the probability ranges. Decoding uses essentially
the same tables, and in fact is easier than encoding.

B. Analysis of Binary Quasi-Arithmetic Coding

We now prove that using binary quasi-arithmetic coding
causes an insignificant increase in the code length compared
with pure arithmetic coding. We mathematically analyze
several cases.

In this analysis we exclude very large and very small
probabilities; namely, those that are less than 1/W or
greater than (W — 1)/W, where W is the width of the
current interval. For these probabilities the relative excess
code length can be large.

First we assume that we know the probability p of the
left branch of each event, and we show both how to
minimize the average excess code length and how small
the excess is. In arithmetic coding we divide the current
interval (of width W) into subintervals of length L and R;
this gives an effective coding probability ¢ = L/W since
the resulting code length is —log,q for the left branch and
—log,(1 — ¢) for the right. When we encode a sequence of
binary events with probabilities p and 1 — p using effective
coding probabilities ¢ and 1 — ¢, the average code length
L(p,q) is given by

L(p,q) = —plogyq — (1 — p)logy(1 — g).

If we use pure arithmetic coding, we can subdivide the
interval into lengths pW and (1 — p)W, thus making ¢ = p
and giving an average code length equal to the entropy

H(p) = —plogyp — (1 — p)logy(1 — p)

this is optimal.

861

Consider two probabilities p; and p, that are adjacent
based on the subdivision of an interval of width W; in
other words, py = (W — A1)/W, ps = (W — A,)/W, and
Az = A; — 1. For any probability p between p; and ps,
either p; or p, should be chosen, whichever gives a shorter
average code length. There is a cutoff probability p* for
which p; and p, give the same average code length. We can
compute p* by solving the equation L(p*,p1) = L(p*, p2),
giving

« 1

p = : 1)
1+ (log £ / log —P—}:p;)

We can use (1) to compute the probability ranges in the
coding tables. As an example, we compute the cutoff
probability used in deciding whether to subdivide interval
[0,6) as {[0,3),[3,6)} or {[0,4),[4,6)}; this is the number
0.585 that appears in Table 5. In this case p; = 1/2 and
p2 = 2/3. We compute p* = log(3/2)/log2 ~ 0.585.
Hence when we encode the third event in the example (with
p{as} = 3/5), we use the {[0,4),[4,6)} subdivision.

Probability p* is the probability between p; and p, with
the worst average quasi-arithmetic coding performance,
both in excess bits per event and in excess bits relative to
optimal compression. This can be shown by monotonicity
arguments.

Theorem 1 If we construct a quasi-arithmetic coder based
on full interval [0, N), and use correct probability estimates,
the number of bits per input event by which the average code
length obtained by the quasi-arithmetic coder exceeds that of
an exact arithmetic coder is at most

2 (1og, 2=)+ 0 =)~ 227, o L
n2\ *®2ein2)N N)5TN Nz)
and the fraction by which the average code length obtained by

the quasi-arithmetic coder exceeds that of an exact arithmetic
coder is at most

lo, 2 ! +0 !
82z) log, N (log N)?

LO086L (1
~ log,N (logN)?)"

Proof: For a quasi-arithmetic coder with full interval
[0, N), the shortest terminal state intervals have size W =
N/4 + 2. The worst average error occurs for the smallest
W and the most extreme probabilities, that is, for W =
N/fd+2,p = (W-2)/W, and pp = (W - 1)/W
(or symmetrically, p; = 1/W and ps = 2/W). For these
probabilities, we find the cutoff probability p*. Then for the
first part of the theorem we take the asymptotic expansion
of L(p2,p*) — H(p2), and for the second part we take the
asymptotic expansion of (L(ps,p*) — H(p2))/H(p2). O
If we let p = (p1 + p2)/2, we can expand (1) asymptot-
ically in W and obtain an excellent rational approximation
for p*:

1 p—1/2
6W2p(1-5)

P=F+

862

The compression loss introduced by using p* instead of
p* is completely negligible, never more than 0.06%. In
the example above with p; = 1/2, po = 2/3, and
W = 6, we find that p* = log(3/2)/log2 ~ 0.58496 and
p* = 737/1260 =~ 0.58492. As we expect, only for small
values of W (the short intervals that occur when using very
low precision arithmetic) do we need to be careful about
roundoff when subdividing intervals; for larger values of
W we can practically round the interval endpoints to the
nearest integer.

We can prove a similar theorem for a more general
case, in which we compare quasi-arithmetic coding with
arithmetic coding for a single worst case event. We assume
that both coders use the same estimated probability, but that
the estimate may be arbitrarily bad. (The proof is omitted
to save space.)

Theorem 2 If we construct a quasi-arithmetic coder based
on full interval [0, N), and use arbitrary probability estimates,
the number of bits per input event by which the code length
obtained by the quasi-arithmetic coder exceeds that of an exact
arithmetic coder in the worst case is at most

o NH8 45
B Nt2 Nmz2© N

IV. PARALLEL CODING

In [14] we present general-purpose algorithms for encod-
ing and decoding using both Huffman and quasi-arithmetic
coding. We are considering the case where we wish to do
both encoding and decoding in parallel, so the location
of bits in the encoded file must be computable by the
decoding processors before they begin decoding. The main
requirement for our parallel coder is that the model for
each event is known ahead of time; it is not necessary for
each event to have the same model. We use the PRAM
model of parallel computation; the number of processors
is p. We allow concurrent reading of the parallel memory,
and limited concurrent writing, to a single 1-bit register,
which we call the completion register. 1t is initialized to 0
at the beginning of each time step; during the time step any
number of processors (or none at all) may write 1 to it. We
assume that n events are to be coded. The main issue is
in dealing with the differences in code lengths of different
events. For simplicity we do not consider input data routing.

We describe the algorithm for the Huffman coding case,
since prefix codes are easier to handle, and then extend it to
quasi-arithmetic coding. First, the n events are distributed
as evenly as possible among the p processors. Then each
processor begins encoding its assigned events in a deter-
ministic sequence, outputting 1 bit in each time step; the
bits output in each time step are contiguous in the output
stream. As soon as one or more processors complete all of
their assigned events, they indicate this fact by writing 1 to
the completion register. When the completion register is 1,
the output process is interrupted. Events whose processing
has not begun are distributed evenly among the processors,
using a prefix operation; events whose processing has begun
but not finished remain assigned to their current processors.
Processing of the reallocated events then continues until

PROCEEDINGS OF THE IEEE, VOL. 82, NO. 6, JUNE 1994

the next time that one or more processors finishes all their
allocated events. Toward the end of processing, the number
of remaining events will become less than the number of
available processors. At this time we deactivate processors,
making the number of active processors equal to the number
of remaining events; we must redirect the output bits from
the remaining processors. No further event reallocations are
needed, but we still have to deactivate processors whenever
any of them finish.

We analyze the time required by the parallel algorithm.
Assuming that in one time unit each processor can output
1 bit, we can easily show that the time required for
bit output is between [nH/p) and [nH/p] + L. The
more interesting analysis concerns the number of prefix
operations required. We define a phase to be the period
between prefix operations. Early phases are those which
take place while the number of events is greater than
the number of processors; each is followed by an event
reallocation. Late phases are those needed to code the final
p or fewer events; each late phase requires a prefix operation
to redirect output bits. We bound the number of prefix
operations needed in the following theorem.

Theorem 3 When coding n events using p processors, the
number of prefix operations needed by the reallocation coding
algorithm is at most Llog,(2n/p) in the worst case.

Proof: We define a superphase to be the time needed
to halve the number of remaining events. Consider the
first superphase. The number of events assigned to each
processor ranges from n/p in the first phase down to n /2p
in the last. At least one processor completes all its events in
each phase; such a processor must output at least 1 bit per
event, since all code words in a Huffman code have at least
1 bit. This processor (and hence all processors) thus output
at least n/2p bits in each phase, making a total of at least
n/2 bits output in each phase. The total number of bits that
must be output in the first superphase is at most nL/2, so
the number of phases in the first superphase is at most L.

The same reasoning holds for all superphases. The num-
ber of superphases needed to reduce the number of remain-
ing events from n to p is logy(n/p), so the number of
phases needed is just Llog,(n/p). Once p or fewer events
remain, at most L late phases are required, so the total
number of phases needed is at most L log,(2n/p). O

The extension of the parallel Huffman algorithm to
quasi-arithmetic coding is fairly straightforward. The only
complication arises when the last event of a processor’s
allocation leaves the processor in a state other than the
starting state. We deal with this by outputting the smallest
possible number of bits (0, 1, or 2) needed to identify a
subinterval that lies within the final interval; this is the
end-of-file disambiguation problem that we have seen in
Section II.

V. MODELING

The goal of modeling for statistical data compression
is to provide probability information to the coder. The
modeling process consists of structural and probability esti-
mation components; each may be adaptive, semi-adaptive,

HOWARD AND VITTER: ARITHMETIC CODING FOR DATA COMPRESSION

or static. In addition, there are two strategies for probability
estimation. The first is to estimate each event’s probability
individually based on its frequency within the data set. The
other strategy is to estimate the probabilities collectively,
assuming a probability distribution of a particular form and
estimating the parameters of the distribution, either directly
or indirectly. For direct estimation, we simply compute
an estimate of the parameter (the variance, for instance)
from the data. For indirect estimation [15], we start with
a small number of possible distributions, and compute the
code length that we would obtain with each; then we select
the one with the smallest code length. This method is very
general and can be used even for distributions from different
families, without common parameters.

For lossless image compression, the structural component
is usually fixed, since for most images pixel intensities
are close in value to the intensities of nearby pixels. We
code pixels in a predetermined sequence, predicting each
pixel’s intensity using a fixed linear combination of a fixed
constellation of nearby pixels, then coding the prediction
error. Typically, the prediction errors have a symmetri-
cal exponential-like distribution with zero mean, so the
probability estimation component consists of estimating
the variance and possibly some other parameters of the
distribution, either directly or indirectly. A collection of
only a few dozen distributions is sufficient to code most
images with minimal compression loss.

For text, on the other hand, the best methods involve
constantly changing structures. In text compression, the
events to be coded are just the letters in the file. Typically,
we begin by assuming only that some unspecified sequences
of letters will occur frequently. (We may also specify a
maximum length for the frequently occurring sequences.)
As encoding proceeds we determine which sequences are
most frequent. In the Ziv—Lempel dictionary-based meth-
ods [16], [17], the sequences are placed directly in the
dictionary. The advantage of Ziv—Lempel methods is their
speed, obtained by coding directly from the dictionary data
structure, bypassing the explicit probability estimation and
statistical coding stages. The PPM method [18] obtains
better compression by constructing a Markov model of
moderate order, proceeding to higher orders as more of
the file is encoded. Complicated data structures are used to
build and update the context information.

Most models for text compression involve estimating
the letter probabilities individually, since there is no ob-
vious mathematical relationship between the probabilities
of different letters. (Numerical proximity of ASCII rep-
resentations does not imply anything about probabilities.)
We usually estimate the probability p of a given letter
by

_ weight of letter
P= ol weight of all letters

The weight of a letter is usually based on the number
of occurrences of the letter in a particular conditioning
context.

863

Since we are often dealing with contexts that have
occurred only a few times, we have to deal with letters that
have never occurred. We cannot give a weight of 0 to such
letters because that would lead to probability estimates of
0, which arithmetic coding cannot handle. This is the zero-
frequency problem, thoroughly investigated by Witten and
Bell [19]. It is possible to assign an initial weight of 1 to
all possible letters, but a better strategy is to assign initial
0 weights and to include a special escape event indicating
“some letter that has never occurred before in this context”;
this event has its own weight, and must be encoded like
an ordinary letter whenever a new letter occurs. There are
a number of methods of dealing with the zero-frequency
problem, differing mainly in the computation of the escape
probability.

A second issue that arises in text compression is locality
of reference: strings tend to occur in clusters within a text
file. One way to take advantage of locality is to scale the
counts periodically, typically by halving all weights when
the total weight reaches a specified number. This effectively
gives more weight to more recent occurrences of each letter,
and has the additional benefit of keeping the counts small
enough to fit into small registers. Analysis [4] shows that
scaling often helps compression, and can never hurt it by
very much.

One technique for probability estimation when only two
events are possible is to use small scaled counts, consid-
ering each count pair to be a probability state. We can
then precompute both the corresponding probabilities and
the state transitions caused by the occurrence of additional
events. The states can be identified by index numbers,
which in turn can be used to index into the probability range
lists in quasi-arithmetic code tables like those in Table 5.

VI. CONCLUSION

The main advantages of arithmetic coding for statistical
data compression are its optimality and its inherent sepa-
ration of coding and modeling. Pure arithmetic coding, as
described in Section II, is strictly optimal for a stochastic
data source whose probabilities are accurately known, but
it relies on relatively slow arithmetic operations like multi-
plication and division. The quasi-arithmetic coding method
described in Section III, which uses table lookup as a low-
precision alternative to full-precision arithmetic, is nearly
optimal and fairly fast, even when the probabilities are close
to 1 or 0.

The separation of coding and modeling is important
because it permits any degree of complexity in the modeler
without requiring any change to the coder. In particular,
the model structure and probability estimates can change
adaptively. (In Huffman coding, by contrast, the probability
information must be built into the coding tables, making
adaptive coding difficult.) Even totally disjoint data streams
can be intertwined; the only requirement is that the decoder
must be able to track the model structure of the encoder.
One occasionally useful advantage to arithmetic coding
is that it is easy to maintain lexicographic order without
any loss in compression efficiency, so that encoded strings

864

can have the same order as the original unencoded data;
maintaining lexicographic order with a prefix code requires
a more complicated algorithm (the Hu-Tucker algorithm
{20]) and entails some sacrifice in efficiency.

The disadvantages of arithmetic coding are that it runs
slowly, it is fairly complicated to implement, and it does not
produce prefix codes. It can be speeded up with only a slight
loss in compression efficiency by using approximations
like quasi-arithmetic coding, the patented IBM Q-Coder,
or Neal’s low-precision coder [21]. The implementation
difficulties are not insurmountable, but arithmetic coding
will not be available as an off-the-shelf package until
a fast, efficient, patent-free method is agreed upon as
a standard. The non-prefix-code property leads to some
technical difficulties: error resistance can be a serious
problem, especially with adaptive models, and the output
delay can be unbounded in the Witten—Neal-Cleary version
described here, although not in the Q-Coder.

For binary alphabets, various forms of run-length encod-
ing can be used instead of arithmetic coding, even if the -
probabilities are highly skewed. Golomb coding [22] and
the related Rice coding [23] are based on exponentially
distributed run lengths. The Golomb and Rice methods
each consist of a family of codes parameterized by a
single parameter; the parameter can be estimated adaptively
[15] giving good compression efficiency. These codes are
extremely fast prefix codes and are easily implemented in
software or hardware. Other nonparameterized run-length
codes like Elias codes [24] are less flexible and hence less
useful.

When more than two input events are possible, the main
alternatives to arithmetic coding are Huffman coding and
coding based on splay trees [25]. Moffat et al. [26] compare
arithmetic coding with these methods. Huffman coding is
very effective in conjunction with a semi-adaptive model;
the probability information can be built into the coding
tables, leading to fast execution. Splay trees are even
faster, since the data structure for coding is the “statistical”
model; compression efficiency suffers somewhat. Golomb
and Rice coding can be used when many events are
possible, maintaining lists of the events in approximate
probability order and coding the positions of the events
within the lists. This is an especially useful technique for
very large alphabets [27].

The main usefulness of arithmetic coding is in obtaining
maximum compression in conjunction with an adaptive
model, or when the probability of one event is much larger
than 1/2. Arithmetic coding gives optimal compression,
but its slow execution can be problematical. Approximate
versions of arithmetic coding give almost optimal com-
pression at improved speeds. Probabilities can be estimated
approximately too, again leading to only slight degradation
of compression performance.

ACKNOWLEDGMENT

The authors wish to acknowledge helpful suggestions
made by M. Cohn.

PROCEEDINGS OF THE IEEE, VOL. 82, NO. 6, JUNE 1994

REFERENCES

[1]1 C. E. Shannon, “A mathematical theory of communication,”
Bell Syst. Tech. J., vol. 27, pp. 398-403, July 1948.

[2} D. A. Huffman, “A method for the construction of minimum
redundancy codes,” Proc.IRE, vol. 40, pp. 1098-1101, 1952.

[3] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression.
Englewood Cliffs, NJ: Prentice-Hall, 1990.

[4] P. G. Howard and J. S. Vitter, “Analysis of arithmetic coding
for data compression,” Informat. Process. Manag., vol. 28, no.
6, pp. 749-763, 1992.

[5] I H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding
for data compression,” Commun. ACM, vol. 30, no. 6, pp.
520-540, June 1987.

[6] R.Pasco, “Source coding algorithms for fast data compression,”
Stanford Univ., Ph.D. dissertation, 1976.

[7] J. J. Rissanen, “Generalized Kraft inequality and arithmetic
coding,” IBM J. Res. Devel., vol. 20, no. 3, pp. 198-203, May
1976.

[8] F. Rubin, “Arithmetic stream coding using fixed precision
registers,” IEEE Trans. Informat. Theory, vol. IT-25, no. 6, pp.
672-675, Nov. 1979.

[9] 1. J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM J.
Res. Devel., vol. 23, no. 2, pp. 146-162, Mar. 1979.

[10] M. Guazzo, “A general minimum-redundancy source-coding
algorithm,” IEEE Trans. Informat. Theory, vol. IT-26, no. 1,
pp. 15-25, Jan. 1980.

[11] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, and R. B.
Arps, “An overview of the basic principles of the Q-coder
adaptive binary arithmetic coder,” IBM J. Res. Devel., vol. 32,
no. 6, pp. 717-726, Nov. 1988.

[12] P. G. Howard and J. S. Vitter, “Practical implementations of
arithmetic coding,” in Image and Text Compression, 1. A. Storer,
Ed. Norwell, MA: Kluwer, 1992, pp. 85-112.

[13] ——, “Design and analysis of fast text compression based on
quasi-arithmetic coding,” in Proc. Data Compression Conf., J.
A. Storer and M. Cohn, Eds. (Snowbird, UT, Mar. 30-Apr. 1,
1993), pp. 98-107.

[14] —, “Parallel lossless image compression using Huffman and
arithmetic coding,” in Proc. Data Compression Conf., J. A.
Storer and M. Cohn, Eds. (Snowbird, UT, Mar. 24-26, 1992),
pp. 299-308.

[15] —, “Fast and efficient lossless image compression,” in Proc.
Data Compression Conf., J. A. Storer and M. Cohn, Eds.
(Snowbird, UT, Mar. 30-Apr. 1, 1993), pp. 351-360.

[16] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Trans. Informat. Theory, vol. IT-23,
no. 3, pp. 337-343, May 1977.

[17] —, “Compression of individual sequences via variable rate
coding,” IEEE Trans. Informat. Theory, vol. 1T-24, no. 5, pp.
530-536, Sept. 1978,

[18] J. G. Cleary and I. H. Witten, “Data compression using adaptive
coding and partial string matching,” IEEE Trans. Commun., vol.
COM-32, no. 4, pp. 396402, Apr. 1984.

[19] 1. H. Witten and T. C. Bell, “The zero frequency problem:
Estimating the probabilities of novel events in adaptive text
compression,” IEEE Trans. Informat. Theory, vol. IT-37, no. 4,
pp- 1085-1094, July 1991.

[20] T.C. Hu and A. C. Tucker, “Optimal computer-search trees and
variable-length alphabetic codes,” SIAM J. Appl. Math., vol. 21
no. 4, pp. 514-532, 1971.

[21] R. M. Neal, “Fast arithmetic coding using low-precision divi-
sion,” unpublished manuscript, 1987.

HOWARD AND VITTER: ARITHMETIC CODING FOR DATA COMPRESSION

[22] S. W. Golomb, “Run-length encodings,” IEEE Trans. Informa.
Theory, vol. IT-12, no. 4, pp. 399401, July 1966.

[23] R. F. Rice, “Some practical universal noiseless coding tech-
niques,” Jet Propulsion Lab., Pasadena, CA, JPL Pub. 79-22,
Mar. 1979.

[24] P. Ealis, “Universal codeword sets and representations of in-
tegers,” IEEE Trans. Informat. Theory, vol. IT-21, no. 2, pp.
194-203, Mar. 1975.

[25] D. W. Jones, “Application of splay trees to data compression,”
Commun. ACM, vol. 31, no. 8, pp. 996-1007, Aug. 1988.

[26] A. M. Moffat, N. Sharman, I. H. Witten, and T. C. Bell,
“An empirical evaluation of coding methods for multi-symbol
alphabets,” in Proc. Data Compression Conf., J. A. Storer and
M. Cohn, Eds. (Snowbird, UT, Mar. 30-Apr. 1, 1993), pp.
108-117.

[27] A. M. Moffat, “Economical inversion of large text files,”
presented at Computing Systems 1992.

Paul G. Howard received the B.S. degree in
computer science from the Massachusetts In-
stitute of Technology, Cambridge, in 1977 and
the M.S. and Ph.D. degrees in computer science
from Brown University, Providence, RI, in 1989
and 1993, respectively.

He was briefly a Research Associate at Duke
University, Durham, NC, before joining AT&T
in 1993. He is Member of Technical Staff in
the Visual Communications Research Depart-
ment of AT&T Bell Laboratories, Holmdel, NJ.
His research interests are in data compression, including coding, image
modeling, and text modeling.

Dr. Howard is a member of Sigma Xi and an associate member of the
Center of Excellence in Space Data and Information Sciences.

Jeffrey Scott Vitter (Fellow, IEEE) received
the B.S. degree in mathematics with highest
honors from the University of Notre Dame,
Notre Dame, IN, in 1977 and the Ph.D. degree
in computer science from Stanford University,
Stanford, CA, in 1980.

He is the Gilbert, Louis, and Edward Lehrman
Professor of Computer Science and the Chair of
the Department of Computer Science at Duke
University, Durham, NC. Previously, he was
Professor at Brown University, Providence, RI,
where he was on the faculty since 1980. He is a Guggenheim Fellow, an
NSF Presidential Young Investigator, and an IBM Faculty Development
Awardee. He is coauthor of the book Design and Analysis of Coalesced
Hashing (Oxford University Press, 1987) and is coholder of a patent in the
area of external sorting. He has written numerous articles and has consulted
often in the areas of combinatorial algorithms, I/O efficiency, parallel and
incremental computation, computational geometry, and machine learning.
He serves on several editorial boards and is a frequent editor of special
issues and member of program committees, He has served ACM SIGACT
as Member-at-Large from 1987 to 1991 and as Vice Chair since 1991.

Dr. Vitter is currently an associate member of the Center of Excellence
in Space Data and Information Sciences.

865

