
Fast progressive lossless image compression

Paul G. Howard� and Je�rey Scott Vittery

�AT&T Bell Laboratories, Visual Communications Research, Holmdel, New Jersey 07733{3030
yDuke University, Department of Computer Science, Durham, North Carolina 27708{0129

ABSTRACT

We present a method for progressive lossless compression of still grayscale images that combines

the speed of our earlier FELICS method with the progressivity of our earlier MLP method. We use

MLP's pyramid-based pixel sequence, and image and error modeling and coding based on that of

FELICS. In addition, we introduce a new pre�x code with some advantages over the previously used

Golomb and Rice codes. Our new progressive method gives compression ratios and speeds similar to
those of non-progressive FELICS and those of JPEG lossless mode, also a non-progressive method.

The image model in Progressive FELICS is based on a simple function of four nearby pixels. We
select two of the four nearest known pixels, using the two with the middle (non-extreme) values.
Then we code the pixel's intensity relative to the selected pixels, using single bits, adjusted binary

codes, and simple pre�x codes like Golomb codes, Rice codes, or the new family of pre�x codes
introduced here. We estimate the coding parameter adaptively for each context, the context being
the absolute value of the di�erence of the predicting pixels; we adjust the adaptation statistics at
the beginning of each level in the progressive pixel sequence.

1. INTRODUCTION

Lossless compression of still images is required in a number of scienti�c and engineering disciplines,

notably space science, medical imagery, and nondestructive testing of materials. Progressive com-
pression methods provide a gradual increase in precision or spatial resolution over the entire image,
in contrast to raster-scan methods, in which pixels are coded to full precision and resolution along

the rows of the image. In e�ect, a progressive coding consists of a typically small lossy part followed
by a lossless part. The parts can be separated, allowing a user to browse a set of lossily-compressed

images prior to ordering a particular image for lossless transmission or display.

We have recently developed a very fast non-progressive (raster-scan based) lossless image compres-

sion method called FELICS1; it gives compression comparable to that of the lossless mode of the
JPEG standard for image compression (also a non-progressive method) while running three to �ve

times as fast. We have also developed a progressive method called MLP2,3, based on a hierarchical
pixel sequence. MLP consistently gives the best compression ratios reported in the literature for

lossless compression of grayscale images, about 6 to 10 percent better than JPEG lossless mode;

however, it is compute-intensive and runs very slowly.

In this paper we show that we can combine the hierarchical pixel sequence of MLP with the fast



PP1

P2

PP1P2

P

P1 P2

min(P1; P2) max(P1; P2)
�

pixel intensity values

In range, 0+ binary code

Above range,

11+ pre�x code

Below range,

10 + pre�x code

(a) (b)

Figure 1: FELICS coding process. (a) Coding context, consisting of the two nearest neighbors,

P1 and P2. The shading illustrates the normal case of a pixel in the interior of the image. (b)

Coding for di�erent intensity ranges relative to the larger and smaller of the two context pixels.

The probability of an in-range event is about equal to that of an out-of-range event, and above-range

and below-range events are about equally likely.

image and error modeling and coding of FELICS. The result is a progressive coder which we call
Progressive FELICS; it runs up to twice as fast as JPEG lossless mode while providing slightly
better compression ratios. In Section 2 we provide background for Progressive FELICS by brie
y
describing both the original non-progressive FELICS method and the MLP method. In Section 3
we discuss the image modeling aspects of Progressive FELICS, and in Section 4 we describe the

coding aspects, including the new family of pre�x codes. In Section 5 we give experimental results.

2. BACKGROUND

Our Fast, E�cient, Lossless Image Compression System (FELICS) obtains its speed by using a
simpli�ed but fairly accurate model of the image together with a combination of a number of very
fast, slightly suboptimal pre�x codes. The image model in FELICS is based on a pixel's two nearest
previously coded neighbors. We use a raster-scan pixel sequence, so for each pixel away from the

edges the nearest pixels are the immediate neighbors to the left and above. (See Figure 1.) We

treat the absolute value of the di�erence between the neighbors as the context for the pixel. About
half the time the pixel's intensity is between that of its neighbors, so we can use one bit to indicate
that fact, followed by a binary code (adjusted if the absolute di�erence is not one less than a power

of 2) to specify the exact value. Otherwise we use one bit to specify that the pixel's intensity is

outside the range of its neighbors, a second bit to indicate whether it is above or below the range,
and a simple pre�x code (a Golomb or Rice code, described in Section 4) to tell how far out of

range the intensity value lies. Golomb and Rice codes each form a family with a single parameter
that indicates how peaked the distribution is. We have devised a provably good method, described

in Section 4.1, for adaptively estimating the parameter1; we apply the method separately to each

context.

In our Multi-Level Progressive image compression method (MLP), the model is based on using
nearby pixels in all directions. We code in levels such that before coding each level we already know



CODING

SCALE

1
p
2

ROTATE

45�

(a) (b) (c)

Figure 2: MLP coding process. (a) At the beginning of a level, the known pixels form a square grid.

The midpoints of the grid squares (small dots) will be predicted in this level. (b) After coding the

midpoints, the known pixels form a checkerboard pattern. (c) After scaling by
p
2 and rotation by

45�, the known pixels form exactly the same pattern as in (a). In the next level we again code the

midpoints, namely all the remaining pixels.

the intensities of the pixels at the lattice points of a square grid, and we are about to code the pixels
at the midpoints of the grid squares, thus doubling the number of known pixels. (See Figure 2.) For
the next level we scale the coordinate system and rotate it by 45 degrees, returning to the situation

of knowing the intensities of the pixels on a square grid. The MLP pixel sequence is similar to that
of Knowlton4 and others5{8. In MLP we use a linear combination of 16 nearby pixels to predict the
intensity of a pixel and to model the error of the prediction, and we use arithmetic coding to code
the prediction error using the distribution supplied by the model.

3. PROGRESSIVE FELICS: IMAGE MODELING

In Progressive FELICS we retain the hierarchical pixel sequence of MLP to obtain a progressive
coding. The image model is based on a simple function of just four nearby pixels. We select two of

the four nearest known pixels and proceed as in FELICS, coding the pixel's intensity using single
bits, adjusted binary codes, and simple pre�x codes like Rice codes.

The selection of two of the four neighbors can be done in a number of ways. We could use the

maximum and minimum values, the two middle values, an appropriately selected pair of spatially

adjacent values, or a pair of spatially opposite values. We shall see in Section 5.1 that empirically

the best choice is to use the two pixels with the middle (non-extreme) values, ties being broken in
any consistent way. Pixels near the edges require special treatment.

After selecting the two predicting pixels, we use their absolute di�erence as the context. We use

one bit to indicate whether the current pixel's value is in range. Then we use an adjusted binary

code for the exact value within the range, or an above-range/below-range bit followed by a pre�x
code for an out-of-range value. The pre�x codes are described in Section 4.

As in FELICS, we estimate the coding parameter separately for each context. Since the di�erence
between the nearby pixels is correlated with the local variance of the image intensity, we �nd that

contexts based on smaller di�erences correspond to more sharply-peaked distributions. However,



Table 1: The beginnings of Golomb and Rice codes for a few parameter values. The codes can be

extended to all non-negative values of n, and codes can be constructed for all m > 0 and all k � 0.

In this table a midpoint (�) separates the high-order (unary) part from the low-order (binary or

adjusted binary) part of each codeword.

Golomb m = 1 m = 2 m = 3 m = 4 : : : m = 6 : : : m = 8

Rice k = 0 k = 1 k = 2 k = 3

n = 0 0� 0�0 0�0 0�00 0�00 0�000
1 10� 0�1 0�10 0�01 0�01 0�001
2 110� 10�0 0�11 0�10 0�100 0�010
3 1110� 10�1 10�0 0�11 0�101 0�011
4 11110� 110�0 10�10 10�00 0�110 0�100
5 111110� 110�1 10�11 10�01 0�111 0�101
6 1111110� 1110�0 110�0 10�10 10�00 0�110
7 11111110� 1110�1 110�10 10�11 10�01 0�111
8 111111110� 11110�0 110�11 110�00 10�100 10�000
9 1111111110� 11110�1 1110�0 110�01 10�101 10�001
...

...
...

...
...

...
...

because of the progressivity of this new method, we must modify the adaptive parameter estimation
scheme. Because the predicting pixels become closer together with each level of the progressive
coding, a given intensity di�erence has di�erent implications for the underlying local image variance
as we move through the levels. In Progressive FELICS we take this e�ect into account by adjusting
the statistics used for each context's adaptive parameter estimation. At the start of each level we

divide all the statistics by a scaling factor s, in e�ect giving less weight to data from earlier levels.

4. PROGRESSIVE FELICS: CODING

In FELICS we use Rice coding9 to code the values of out-of-range pixels. To encode a non-negative
integer n using the Rice code with parameter k, we �rst divide the binary representation of n into
high-order and low-order parts, the low-order part containing k bits. Then we output the unary

code for the high-order part, followed by the k low-order bits with no coding. Rice codes are very

easy to implement and are theoretically tractable.

Rice codes are a subset of Golomb codes10. To encode non-negative integer n by the Golomb code
with parameter m, we output bn=mc in unary, followed by n mod m in a binary code, adjusted to

avoid wasting code space if m is not a power of 2. If m is a power of 2 (say 2k), we have the Rice

code with parameter k. Golomb codes provide a denser choice of models, and hence usually give
slightly better compression than Rice codes. Although the coding is somewhat more complicated,

and more statistics must be maintained for parameter estimation, Golomb coding is only slightly
slower than Rice coding, especially if the code tables are precomputed. Both families of codes are

illustrated in Table 1.



Table 2: The beginnings of the new subexponential codes for a few parameter values. The codes

can be extended to all non-negative values of n, and codes can be constructed for all k � 0. In this

table a midpoint (�) separates the high-order (unary) part from the low-order (binary) part of each

codeword.

Subexponential k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 0 0� 0�0 0�00 0�000 0�0000 0�00000
1 10� 0�1 0�01 0�001 0�0001 0�00001
2 110�0 10�0 0�10 0�010 0�0010 0�00010
3 110�1 10�1 0�11 0�011 0�0011 0�00011
4 1110�00 110�00 10�00 0�100 0�0100 0�00100
5 1110�01 110�01 10�01 0�101 0�0101 0�00101
6 1110�10 110�10 10�10 0�110 0�0110 0�00110
7 1110�11 110�11 10�11 0�111 0�0111 0�00111
8 11110�000 1110�000 110�000 10�000 0�1000 0�01000
9 11110�001 1110�001 110�001 10�001 0�1001 0�01001
10 11110�010 1110�010 110�010 10�010 0�1010 0�01010
11 11110�011 1110�011 110�011 10�011 0�1011 0�01011
12 11110�100 1110�100 110�100 10�100 0�1100 0�01100
13 11110�101 1110�101 110�101 10�101 0�1101 0�01101
14 11110�110 1110�110 110�110 10�110 0�1110 0�01110
15 11110�111 1110�111 110�111 10�111 0�1111 0�01111
16 111110�0000 11110�0000 1110�0000 110�0000 10�0000 0�10000
...

...
...

...
...

...
...

In this paper we introduce a third family of simple pre�x codes. Golomb and Rice codes are well-
suited to the decaying exponential distributions that often occur in image coding. However, in
such exponential codes the code length increases linearly with n, leading to the possibility of very

long codewords for outlier values. In our new subexponential pre�x code family, the codewords

are identical to those of the corresponding Rice codes for n < 2k+1, but for larger values of n the
codeword lengths increase logarithmically as in Elias codes11 instead of linearly as in Rice codes.
For most images the total code length is slightly larger for these subexponential codes than for Rice

or Golomb codes, but for four of our 28 test images (`crowd' and Donaldsonville Bands 1, 2, and 3)

the code length is smaller. Coding speed is generally very slightly slower than Rice coding and
slightly faster than Golomb coding. The subexponential codes have some interesting theoretical

properties as well, allowing a simpli�cation of the proof that our parameter estimation mechanism
works well.

To code non-negative integer n using the subexponential code with parameter k, we compute

b =

(
k if n < 2k;

blog2 nc if n � 2k
and u =

(
0 if n < 2k;

b� k + 1 if n � 2k.

We output u as a unary number (u + 1 bits), and then output the low-order b bits of n directly.



Hence the total number of bits is given by

u+ b+ 1 =

(
k + 1 if n < 2k;

2blog2 nc � k + 2 if n � 2k:

Examples of this code appear in Table 2. It can easily be shown that for a given value of n, the

code lengths for adjacent values of k di�er by at most 1.

4.1. Estimating the coding parameter

We brie
y describe our method for estimating the coding parameter for Golomb and Rice codes and

for our subexponential code, and give an informal proof that it works well for the subexponential

codes.

For each context � we maintain a cumulative total, for each reasonable parameter value, of the
code length we would have if we had used that parameter to encode all values encountered so far in
the context. Then we simply use the parameter with the smallest cumulative code length to encode
the next value encountered in the context. The total expected excess code length is only O(

p
N )

bits for a context that occurs N times in the image.

Theorem 1. For a stationary source, using our parameter selection algorithm in conjunction with

subexponential coding gives an expected code length that exceeds the expected code length given by

the optimal parameter by at most O(
p
N) bits, where N is the number of samples coded.

Proof sketch: After a short startup period during which any parameter may be best, we alternate
between using the right parameter and the next-best wrong one. When we are using the right
parameter, we get optimal code length, by de�nition. We start using the wrong parameter when its
cumulative code length is one bit shorter than that of the right parameter. We stop using it and
switch back to the right parameter when the right parameter has a cumulative code length one bit

shorter. (The di�erences cannot be more than one bit because the code lengths used in coding a
given n di�er by at most 1 for adjacent values of k; this is the property of the subexponential codes
that makes the proof easier.) While we are using the wrong parameter, we accumulate exactly two
bits of excess code length relative to the right parameter. Thus the excess code length is the same

as the number of parameter changes. By renewal theory the expected number of changes is O(
p
N),

and hence so is the expected excess code length. 2

This theorem is more general than the corresponding theorem for Rice coding1 since it does not
depend on the probability distribution of the source.

5. TUNING AND EXPERIMENTAL RESULTS

Our test data consists of seven photographic images and 21 Landsat Thematic Mapper images,
seven from each of three data sets (Washington, D.C., Donaldsonville, Louisiana, and Ridgely,

Maryland). Ten of these images are illustrated in Figure 3. In Section 5.1 we support our choices

for various algorithm parameters, and in Section 5.2 we compare the resulting method with other
lossless image compression methods in the literature.



W4 D4 R4 couple crowd

lax lena man woman1 woman2

Figure 3: Some of the test images, shown here to identify the images and to give some idea of
their characteristics. The �rst three images are Band 4 of the Washington, Donaldsonville, and

Ridgely Landsat Thematic Mapper data sets. The Ridgely images are 468 � 368 pixels; all others
are 512� 512 pixels. In this �gure all but three images have been cropped to 256� 256 pixels. The
exceptions are `lax', cropped to 192 � 192, and `woman1' and `woman2', left at 512 � 512.

We use the following de�nitions in this section.

Compression ratio =
original size

compressed size
;

Bits/pixel =
8� compressed size

original size
;

Ine�ciency = 100 � log
e

compressed size

best compressed size
;

Throughput =
original size

1000 � encoding time in seconds
:

Ine�ciency is expressed in percent log ratio, denoted by �
�. Since log

e
(1 + x) � x for small x, a

di�erence of any given small percent log ratio means almost the same thing as the same di�erence

expressed as an ordinary percentage. Because of the logarithm in the de�nition, ine�ciencies are

additive, and can be compared by subtraction. Throughput is expressed in thousands of pixels
encoded per second on a SPARCstation 10, Model 40 (40 MHz clock, about 109.5 mips). Although

the results are not listed here, decoding throughput for Progressive FELICS is about the same as

encoding throughput.



5.1. Selection of algorithm parameters

We must make a number of choices to fully specify the Progressive FELICS algorithm:

� the pixel pairs to be used as a context,

� the pre�x code (Golomb, Rice, or subexponential) to be used in the coding step, and

� the scaling factor s to be applied to the parameter estimation statistics at the end of each

level, as described at the end of Section 3.

In addition, we investigate speeding up the coding by ceasing to gather statistics for coding param-

eter estimation once the cumulative code length for the best parameter choice reaches a speci�ed

\freezing level" f . Tables in this subsection contain values averaged over all 28 images.

Table 3: Context selection, using Golomb coding with s = 8 and f =1.

Context selection method Comp. ratio Bits/pixel Ine�ciency

Two middle values 2.18 3.68 �
Most widely separated pair 2.08 3.85 4.6
Second most widely separated pair 2.08 3.84 4.4
Third most widely separated pair 2.06 3.89 5.7

Fourth most widely separated pair 2.13 3.76 2.3
Fifth most widely separated pair 2.03 3.95 7.1
Least widely separated pair 1.99 4.01 8.7

Most widely separated pair of adjacent pixels 2.08 3.84 4.3
Second most widely separated pair of adjacent pixels 2.06 3.89 5.7
Third most widely separated pair of adjacent pixels 2.02 3.95 7.3
Least widely separated pair of adjacent pixels 1.98 4.04 9.5

Most widely separated pair of opposite pixels 2.03 3.94 6.9
Least widely separated pair of opposite pixels 2.13 3.75 2.0

We �rst decide which of the many possible pairs of values to use as the two-pixel context. Table 3

compares 13 di�erent possible contexts, using Golomb coding and reasonable choices for the other

parameters. Using the two intermediate values gives the best compression for every test image
except `lax'; it is also one of the faster methods.

Table 4: Selection of coding method, using the two middle values as context, with s = 12 and

f =1.

Coding method Comp. ratio Bits/pixel Ine�ciency Throughput

Golomb 2.18 3.67 � 104

Rice 2.17 3.68 0.1 109

Subexponential 2.16 3.70 0.6 108



In Table 4 we see that Golomb coding gives slightly better compression (less than 1�
�) than either

Rice coding or subexponential coding, and that it runs slightly slower (about 4�
�). Subexponential

coding is about 0:2�
� better than Golomb coding for the `crowd' image, and a few bytes better for

bands 1, 2, and 3 of the Donaldsonville data set. Overall, the best choice seems to be Golomb

coding for maximum compression or Rice coding for maximum speed, but the di�erences are small.

Table 5: Selection of scaling factor s be be applied at the end of each level, using the two middle

values as context, Golomb coding, and f =1.

Scaling factor Comp. ratio Bits/pixel Ine�ciency

1 2.1641 3.6967 0.603

2 2.1743 3.6793 0.133

4 2.1765 3.6756 0.033

6 2.1770 3.6748 0.010
8 2.1771 3.6746 0.005
12 2.1772 3.6744 �
16 2.1772 3.6744 �
24 2.1771 3.6746 0.003

The di�erences are even smaller when choosing among possible values of the end-of-level scaling
factor s, as seen in Table 5. Almost any value greater than 1 works �ne; for general use we
recommend using s = 12.

Table 6: Selection of freezing level f , using the two middle values as context, Golomb coding, and
s = 12.

Freezing level Comp. ratio Bits/pixel Ine�ciency Throughput

128 2.16 3.70 0.8 134
256 2.16 3.70 0.6 132

512 2.17 3.69 0.4 130
1024 2.17 3.69 0.3 126

2048 2.17 3.68 0.1 122

4096 2.18 3.68 0.1 118
1 2.18 3.67 � 105

Finally we select the freezing level f . This is a pure tradeo�: a lower freezing level gives more speed

but less compression by halting the adaptation of the coding parameter statistics. Table 6 shows

that by choosing f = 1024 we can obtain about 20 percent more throughput at a cost of only 0:3�
�

compression ine�ciency.

5.2. Comparative results

In Tables 7 and 8 we compare Progressive FELICS with non-progressive FELICS, the lossless mode

of the JPEG standard (using two-point prediction), Unix compress, and the MLP method. The



Table 7: Summary of compression results for di�erent image coding methods. High compression

mode for the FELICS methods is based on Golomb coding and omission of the freezing heuristic.

Fast mode uses Rice coding and freezing with f = 1024.

Coding method Comp. ratio Bits/pixel Ine�ciency Throughput

Progressive FELICS
High compression mode 2.18 3.67 5.7 106

Fast mode 2.17 3.69 6.1 132

Non-progressive FELICS

High compression mode 2.16 3.71 6.7 192

Fast mode 2.14 3.74 7.4 314

JPEG lossless mode 2.15 3.72 7.1 61

Unix compress 1.63 4.92 34.9 286

MLP 2.31 3.47 � 7

FELICS versions in Table 8 use Golomb coding and no freezing. Progressive FELICS compresses
better than both non-progressive FELICS and JPEG lossless mode for most images. MLP consis-
tently gives the best compression ratios, but it runs very slowly. Progressive FELICS is slower than
non-progressive FELICS because of its more complicated pixel sequence and context selection, but

it is still about twice as fast as JPEG lossless mode.

6. CONCLUSION

Progressive FELICS is a lossless compression method that combines the fast image and error mod-
eling and coding of our earlier FELICS method with the progressive pixel sequence of our earlier
MLP method. Progressivity has obvious browsing applications; it also leads to excellent compres-
sion. In fact, Progressive FELICS gives about one percent better compression than non-progressive

FELICS. We have given details of pixel sequence, image and error modeling, and coding using
simple pre�x codes. In addition, we have introduced a new pre�x code with some advantages over

the previously used Golomb and Rice codes.

7. ACKNOWLEDGMENTS

Support was provided in part by Air Force O�ce of Strategic Research grant F49620{92{J{0515,

by Army Research O�ce grant DAAH04{93{G{0076, and by associate memberships in CESDIS.

Some of this research was performed while the �rst author was at Duke University.

The authors acknowledge Allan R. Moser of E. I. duPont de Nemours and Company (Inc.) for
assisting us with experimental evaluation of JPEG lossless mode compression.



Table 8: File-by-�le comparison of progressive FELICS (high compression mode) with other lossless

image compression methods in the literature. The �gures are compression ratios.

Progressive Non-progressive JPEG

FELICS FELICS lossless
compress MLP

W1 2.13 2.12 2.07 1.70 2.21

W2 2.68 2.71 2.67 2.21 2.83

W3 2.32 2.33 2.28 1.92 2.44

W4 1.85 1.85 1.81 1.46 1.93
W5 1.73 1.72 1.68 1.34 1.79
W6 5.24 5.01 7.92 5.36 9.76
W7 2.15 2.14 2.10 1.70 2.24

D1 2.33 2.32 2.26 1.79 2.41
D2 3.01 3.01 3.07 2.36 3.24

D3 2.58 2.54 2.58 1.99 2.72
D4 1.90 1.87 1.85 1.34 1.98
D5 1.87 1.85 1.82 1.34 1.94
D6 5.59 5.39 9.25 6.14 11.26
D7 2.22 2.19 2.17 1.65 2.31

R1 2.40 2.37 2.28 1.79 2.46

R2 2.99 2.97 2.94 2.26 3.18
R3 2.53 2.51 2.45 1.86 2.66
R4 2.31 2.30 2.24 1.76 2.42
R5 1.87 1.85 1.78 1.34 1.94
R6 2.18 2.14 2.08 1.58 2.25

R7 5.17 5.09 7.43 5.50 8.78

couple 1.61 1.63 1.54 1.17 1.64
crowd 1.90 1.83 1.87 1.31 2.02
lax 1.35 1.36 1.31 1.04 1.38
lena 1.83 1.77 1.72 1.14 1.89

man 1.71 1.69 1.64 1.15 1.75

woman1 1.66 1.64 1.58 1.30 1.66
woman2 2.33 2.25 2.28 1.40 2.50



8. REFERENCES

1. P. G. Howard and J. S. Vitter, \Fast and E�cient Lossless Image Compression," in Proc. Data

Compression Conference, J. A. Storer and M. Cohn, eds., pp. 351{360, Snowbird, Utah, Mar.

30-Apr. 1, 1993.

2. P. G. Howard and J. S. Vitter, \New Methods for Lossless Image Compression Using Arithmetic

Coding," Information Processing and Management , 28:6, pp. 765{779, 1992.

3. P. G. Howard and J. S. Vitter, \Error Modeling for Hierarchical Lossless Image Compression,"

in Proc. Data Compression Conference, J. A. Storer and M. Cohn, eds., pp. 269{278, Snowbird,

Utah, Mar. 24-26, 1992.

4. K. Knowlton, \Progressive Transmission of Gray-Scale and Binary Pictures by Simple, E�cient,

and Lossless Encoding Schemes," Proc. of the IEEE , 68:7, pp. 885{896, July 1980.

5. N. Garcia, C. Munoz and A. Sanz, \Image Compression Based on Hierarchical Coding," SPIE

Image Coding, 594, pp. 150{157, 1985.

6. H. H. Torbey and H. E. Meadows, \System for Lossless Digital Image Compression," Proc. of

SPIE Visual Communication and Image Processing IV , 1199, pp. 989{1002, Nov. 8-10, 1989.

7. T. Endoh and Y. Yamakazi, \Progressive Coding Scheme for Multilevel Images," Picture Coding
Symp., Tokyo 1986.

8. P. Roos, M. A. Viergever, M. C. A. van Dijke and J. H. Peters, \Reversible Intraframe Com-

pression of Medical Images," IEEE Trans. Medical Imaging, 7:4, pp. 328{336, Dec. 1988.

9. R. F. Rice, \Some Practical Universal Noiseless Coding Techniques," Jet Propulsion Laboratory,
JPL Publication 79{22, Pasadena, California, Mar. 1979.

10. S. W. Golomb, \Run-Length Encodings," IEEE Trans. Inform. Theory, IT{12:4, pp. 399{401,
July 1966.

11. P. Elias, \Universal Codeword Sets and Representations of Integers," IEEE Trans. Inform. The-

ory, IT{21:2, pp. 194{203, Mar. 1975.


