
Compressed Text Indexing With Wildcards ?

Wing-Kai Hon1, Tsung-Han Ku1, Rahul Shah2,
Sharma V. Thankachan2, and Jeffrey Scott Vitter3

1 National Tsing Hua University, Taiwan. {wkhon,thku}@cs.nthu.edu.tw
2 Louisiana State University, USA. {rahul,thanks}@csc.lsu.edu

3 The University of Kansas, USA. jsv@ku.edu

Abstract. Let T = T1φ
k1T2φ

k2 · · ·φkdTd+1 be a text of total length n,
where characters of each Ti are chosen from an alphabet Σ of size σ, and
φ denotes a wildcard symbol. The text indexing with wildcards problem
is to index T such that when we are given a query pattern P , we can lo-
cate the occurrences of P in T efficiently. This problem has been applied
in indexing genomic sequences that contain single-nucleotide polymor-
phisms (SNP) because SNP can be modeled as wildcards. Recently Tam
et al. (2009) and Thachuk (2011) have proposed succinct indexes for
this problem. In this paper, we present the first compressed index for
this problem, which takes only nHh + o(n log σ) +O(d logn) bits space,
where Hh is the hth-order empirical entropy (h = o(logσ n)) of T .

1 Introduction

Text indexing is a fundamental problem in computer science, where the
task is to index a given text T [1..n] for locating all the occurrences of an
online query pattern P [1..p] within T efficiently. Suffix trees [20, 14] and
suffix arrays [13] are the most popular indexes which can answer this query
in O(p+ occ) and O(p+ log n+ occ) times respectively, where occ is the
number of occurrences of P in T . Both indexes take O(n log n) bits space.
Note that the query time is (almost) optimal, but the index size can be
asymptotically higher than the optimal ndlog σe bits required to store the
text in plain form; here, σ denotes the size of the alphabet Σ from which
the characters of T and P are chosen. The goal of designing optimal-
size indexes was first achieved by Grossi and Vitter (Compressed Suffix
Arrays) [8] and Ferragina and Manzini (FM-index) [5]. Their indexes are
based on Burrows-Wheeler transform (BWT) [2].

A more general problem of text indexing deals with the case where
wildcard characters may appear in the input text T [4, 17, 18]. Let T =
T1φ

k1T2φ
k2 · · ·φkdTd+1 be a text of total length n, where characters of

? This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon)
and US NSF Grant CCF–1017623 (R. Shah).

each Ti are chosen from an alphabet Σ of size σ, and φ represents a
wildcard symbol that may match any single character in Σ. The text
indexing problem with wildcards is to index T such that when we are given
a query pattern P , we can locate the occurrences of P in T efficiently.
This problem has been applied in indexing genomic sequences that contain
single-nucleotide polymorphisms (SNP) because SNP can be modeled as
wildcards.

The problem of text indexing with wildcards was first studied by
Cole et al [4]. They proposed an O(n logk n)-word index with O(p +
logk n log log n + occ) query time, where k is the total number of wild-
cards. Later, Lam et al. [17] proposed an O(n)-word index, but the query
time introduces an additional term of γ =

∑
i,j prefix (P [i..p], Tj), where

prefix (P [i..p], Tj) = 1 if the text segment Tj is a prefix of P [i..p], else
0. Note that γ is upper bounded by pd. Tam et al. [18] further reduced
the space requirement of this index to (3 + o(1))n log σ +O(d log n) bits.
Recently, Thachuk [19] proposed a more space-efficient solution, taking
(2 + o(1))n log σ + O(n) + O(d log n) + O(k log k) bits and requiring a
smaller working space of O((d+ log n)p) bits.

In all the above solutions (which has a γ term in query time), the com-
mon approach is to categorize the occurrences into the following 3 types
and build separate data structures for reporting each type of occurrences
of P in T .

Type-1: P matching a substring of T with no wildcard groups;
Type-2: P matching a substring of T with exactly 1 wildcard group;
Type-3: P matching a substring of T with 2 or more wildcard groups.

In this paper, we propose an index which takes near-optimal nHh +
o(n log σ)+O(d log n) bits space, where Hh is the hth-order empirical en-
tropy of T . The central technique is to make use of the same data struc-
ture (which is an FM-index of T) for handling all types of occurrences.
We need auxiliary structures in locating type-2 and type-3 occurrences,
but the space of those structures is bounded by O(d log n) + o(n) bits.
Moreover, the working space requirement is O((p+γ) log n). As γ is upper
bounded by dp, therefore our working space will be at most a log n factor
worse than Thachuk’s index. However, our index has its advantage when γ
is small (γ = o(dp/ log n)). The table below summarizes the results of our
index along with the previously known results supporting matching with
wildcard characters. Here k, d and d̂ represents the number of wildcards,
wildcard groups, distinct wildcard group lengths, respectively; occ1, occ2
and occ represents the number of type-1, type-2 and overall occurrences
of P in T respectively, and ε′ > 0 is any fixed constant.

Ref Index (bits) Query Time Working (bits)

[4] O(n logk+1 n) O(p+ logk n log log n+ occ) –

[17] O(n logn) O(p logn+ γ + occ) O(n logn)

[18]
(3 + o(1))n log σ +
O(d logn)

O(p(log σ + min(p, d̂) log d) + occ1 logn +
occ2 log d+ γ)

O(n log d+ p logn)

[18]
(3 + o(1))n log σ +
O(d logn)

O(p(log σ + min(p, d̂) log d) + occ1 logn +
occ2 log d+ γ logσ d)

O(n log σ + p logn)

[19]
(2 + o(1))n log σ +
O(n+ d logn+ k log k)

O(p(log σ + min(p, d̂) log k/ log log k) +
occ1 logn+ occ2 log k/ log log k + γ)

O(dp+ p logn)

Ours
nHh + o(n log σ) +
O(d logn)

O(p(log1+ε′ n+ min(p, d̂) log d) +

occ1 log1+ε′ n+ occ2 logε
′
d+ γ log γ)

O(γ logn+ p logn)

2 Preliminaries

2.1 Bit Vectors with Rank/Select

Let B be a bit vector of length n, the rank and select operations are
defined as rank(k) =

∑k
i=1B[i] and select(k) = i such that A[i] = 1 and

rank(i) = k. Let d be the number of 1s in B, then B can be maintained
in d log(n/d)+O(d+n log log n/ log n) bits such that both rank and select
operations can be performed in constant time [16].

2.2 Suffix Trees and Suffix Arrays

Suffix trees [20, 14] and suffix arrays [13] are two classic data structures
for online pattern matching queries. For a text T [1..n], a substring T [i..n]
with i ∈ [1, n] is called a suffix of T . The suffix tree for T is a lexicographic
arrangement of all these n suffixes in a compact trie structure, where the
ith leftmost leaf represents the ith lexicographically smallest suffix. For
any node v, the string formed by concatenating the edge labels from root
to v is called path(v). The locus node v of a pattern P is defined as the
node closest to the root, such that P is a prefix of path(v).

Suffix array SA[1..n] is an array of length n, such that SA[i] is the
starting position of the ith lexicographically smallest suffix of T . The suffix
range of a pattern P in SA is defined as the the maximal range [L,R]
such that for all j ∈ [L,R], SA[j] is the starting point of a suffix of T with
P as a prefix. Both suffix trees and suffix arrays take O(n log n) bits space
and can perform pattern matching in O(p + occ) and O(p + log n + occ)
time respectively, where p = |P | and occ is the number of occurrences of
P within T .

2.3 Compressed Text Indexes

Text indexes which take space close to the size of the text is called
compressed/succinct text indexes. There are different compressed text
indexes available in the literature, such as [8] and FerMan05. For our
purpose, we use the FM-index by Ferragina et al. [6] which takes only
nHh + o(n log σ) bits space, where Hh denotes the hth-order empirical
entropy (h = o(logσ n)) of T . For σ = O(poly log(n)), this index can
count the number of occurrences of P within T in O(p) time, locate each
pattern occurrence in O(log1+ε n) and display a text substring of length
` in O(`+ log1+ε n) time.

2.4 Compressed Index for Dictionary Matching

The dictionary matching problem is to index a set of (short) text seg-
ments {T1, T2, . . . , Td+1} of total length n, such that all the occurrences
of these text segments within an online (long) query pattern P can be
computed efficiently. This is a well-studied problem and many indexes
are available in the literature [1, 9, 10]. The recently proposed indexes
by Belazzougui [1] and Hon et al. [9] can solve this problem in (almost)
optimal space and optimal time. For our purpose, we choose the most
space-efficient index (even though the query time is not optimal) by Hon
et al. [10]. Their index takes nHh + o(n log σ) +O(d log n) bits space and
the query time is O(p(logε n+log d)+γ), where Hh denotes the hth-order
empirical entropy of the text segments collection and γ denotes number of
occurrences of text segments in P , and ε > 0 is any fixed constant. In [10],
it is assumed that the text segments are stored using Ferragina-Venturini
scheme, where the storage space is nHh + o(n log σ) bits and displaying
a text substring of length ` takes O(`/ logσ n+ 1) time [7] .

2.5 Orthogonal Range Reporting

Let R = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of n points in the two-
dimensional space. An orthogonal range reporting query on R is defined
as follows: Given a query range [x`, xr]× [y`, yr], report all points (xi, yi)
such that x` ≤ xi ≤ xr and y` ≤ yi ≤ yr. For our purpose, we use the
O(n log n) bits structure by Nekrich [15] which can perform an orthogonal
range reporting of t output points in O(log n+ t logε n) time.

2.6 Sparse Suffix Trees

Sparse suffix tree of a text is a compact trie, which consists of only selected
suffixes of the text [3, 11, 12]. We shall define the sparse suffix tree for a

collection {T1, T2, . . . , Td+1} of d + 1 text segments of total length n as
follows: Let α be a sampling factor, and for each text segment Tj [1..|Tj |],
the suffix T [i..|Tj |] such that i mod(α) = 1 is called an α-sampled suffix of
Tj . A trie of all α-sampled suffixes of all text segments is called a (forward)

sparse suffix tree ∆f . Similarly a trie of all α-sampled suffixes of
←−
Tj for

j = 1, 2, . . . , d + 1 is called (reverse) sparse suffix tree ∆r, where
←−
Tj is

the reverse of Tj . The number of nodes in ∆f (∆r) can be bounded by
O(n/α+ d). For each internal node u 6= root, there exists a unique node
v such that path(v) can be obtained by deleting the first α characters of
path(u). Then we maintain a pointer from node u to node v, which we
called an α-sampled suffix link. The contiguous range of all α-sampled
suffixes in the subtree of u is called the suffix range of a pattern P , where
u is the locus node (node closest to root such that P is a prefix of path(u))
of P . Note that neither ∆f , nor ∆r is a self-index, hence we maintain the
original text T = T1φ

k1T2φ
k2 · · ·φkdTd+1 in the form of FM-index [6] in

nHh + o(n log σ) bits, which is capable of retrieving any substring of T of
length ` in O(` + log1+ε n) time (σ = polylog(n)). We store the starting
character of every edges explicitly and from every node (6= root), we
maintain a pointer to its ancestor. By choosing α = log1+ε n, ε > 0, the
size of ∆f and ∆r, together with the encoding of T , can be bounded by
nHh + o(n log σ) +O(d log n) bits.

Lemma 1 Given a pattern P [1..p], the suffix ranges of all its suffixes
(P [i..p] for i = 1, 2, 3, . . . , p) in ∆f can be computed in O(p log1+ε

′
n)

time. Similarly the suffix ranges of the reverse of all its prefixes (
←−−−−
P [1..i],

for i = 1, 2, 3, . . . , p) in ∆r can be computed in O(p log1+ε
′
n) time, where

ε′ > 0.

Proof : Firstly we show how to compute the suffix ranges of all suf-
fixes of P in ∆f . The procedure works in α stages. At stage k (for
k = 1, 2, 3, . . . , α), we compute the suffix ranges of all α-sampled suffixes
(P [k..p], P [(k+α)..p], P [(k+ 2α)..p], . . .) of P [k..p]. The main challenge
comes from the fact that the time for retrieving a substring of T of length
` is O(`+log1+ε n), which means O(log1+ε n) time is needed for retrieving
even a single character in T . We handle this situation carefully as follows:
Firstly, we do a blind matching of first α characters of P [k..p] in ∆f by
only matching the starting characters of the edges. Next, we verify if this
matching is correct by retrieving α characters from the FM-index and
matching them in O(α log σ) time. If the first α characters are matched,
we continue matching the next α characters, and so on. We stop when

all characters in T [k..p] are matched or encounter the first mismatch. Let
x be the number of characters matched, then the matching time can be
bounded by O(x log σ + log1+ε n) (O(x + log1+ε n) time for retrieving x
characters from FM-index of T and matching those x characters with a
prefix of P [k..p] takes O(x log σ) time).

If x = p−k+1, then P [k..p] is fully matched with prefixes of some text
segments and the first node obtained by traversing further down in ∆f

will be the locus node uk of P [k..p]. Now the locus node of P [(k + α)..p]
can be computed as follows: First reach the node u′k by chasing the α-
sampled suffix link from uk, then the locus node uk+α of P [(k + α)..p]
is given by the node closest to the root in the path from u′k to root,
which is at least x−α distance away from root. The locus node uk+2α of
P [(k+2α)..p] can be obtained similarly by further chasing the α-sampled
suffix link of uk+α and so on. The total number of α-sampled suffix links
chased will be O(p/α+1) and given the locus node of a pattern, its suffix
range can be obtained in constant time. Hence, the total time is bounded
by O(p log σ + log1+ε n).

If x < p − k + 1, then P [k..p] is not fully matched. Let vk be the
node closest to the root such that x is the length of the longest common
prefix of P [k..p] and path(vk). Then, we chase the α-sampled suffix link
from vk and reach a node v′k, and continue matching from the position
x−α distance away from root in path(v′k). Thus, we continue the match-
ing of P [k..p], P [(k+α)..p], P [(k+ 2α)..p], and and so on by chasing the
α-sampled suffix links. Each time we match a small portion of P (that por-
tion will not be matched again) of length say `′ in O(`′+log1+ε n) time and
the number of such portions (number of α-sampled suffix links chased)
is O(p/α + 1). Hence, the time for computing the locus node (if exists)
and the corresponding suffix ranges of all α-sampled suffixes of P [k..p]
is given by O(p log σ + log1+ε n(p/α + 1)). Thus, the total time for com-
puting the suffix ranges of all suffixes of P [1..p] (i.e. α-sampled suffixes of
P [k..p], for k = 1, 2, 3, . . . , α) is given by O((p log σ+log1+ε n) log1+ε n) =
O(p log1+ε n log σ), when p > logσ n logε n.

For computing the suffix range of short patterns (p ≤ logσ n logε n), we
maintain an o(n) bits additional information on ∆f as follows: Along the
path of every (log2 n)th α-sampled suffix in ∆f , we write the first log1+ε n
characters explicitly, which takes only O((n/α + d)/ log2 n) log1+ε n) =
o(n) bits extra space. Thus, to find the suffix range of a pattern P , we
first compute the suffix range [L,R] by considering only those suffixes
whose first log1+ε n characters are explicitly written. This traversal will
take only O(p log σ) time. After this, to find the exact suffix range, we

need to perform a binary search only among log2 n α-sampled suffixes
on either side of the [L,R] and check if the pattern P is matching with
its prefix. Thus we need to retrieve only O(log(log2 n)) substrings of T
(each of length p ≤ logσ n logε n). Hence, the time for computing the suffix
range of P is O(p log σ+ log1+ε n log log n) = O(log1+ε

′
n), where ε′ ≥ 2ε.

Now the suffix range of each suffix of P can be computed independently
and the total time is O(p log1+ε

′
n).

The query time for finding the suffix ranges of the reverse of all prefixes

of P (
←−−−−
P [1..i], for i = 1, 2, 3, . . . , p) in ∆r can be analyzed in the same

fashion. ut

3 Matching with Wildcards in Compressed Text

A wildcard is a character which can match with any character in an
alpahbet Σ, and it is denoted by φ in this paper. Given a text T =
T1φ

k1T2φ
k2 · · ·φkdTd+1 of total length n, where each Ti are strings drawn

over the alphabet Σ of size σ (assume σ = O(poly log(n))), and φj denotes
a string of j consecutive wildcards, our objective is to construct an index
for T for locating all the occurrences of an online pattern P of length
p efficiently. The general way to approach this problem is to categorize
the occurrences of P in T into the following 3 types [17–19] and build a
dedicated data structure for handling each type.

Type-1: P matching a substring of T with no wildcard groups;
Type-2: P matching a substring of T with exactly 1 wildcard group;
Type-3: P matching a substring of T with 2 or more wildcard groups.

We also follow the same approach, however we reduce the index space
by making use of the same data structure (which is an FM-index of T) for
handling all the three types of occurrences. We need auxiliary structures
in type-2 and type-3 occurrences, but the space of those structures is
bounded by O(d log n) + o(n) bits.

3.1 Type-1 Matching

In type-1 matching, we are looking for exact matches of P within T
(without matching any wildcards). This case is the same as the basic
text indexing problem, and by using FM-index [6], we have the following
lemma.

Lemma 2 By maintaining an nHh + o(n log σ) bits index, all the type-1
occurrences can be reported in O(p+occ1 log1+ε n) time, where occ1 is the
number of type-1 occurrences.

3.2 Type-2 Matching

In type-2 matching, we are looking for each substring S within T which
matches with P , such that S contains exactly one wildcard group (could
be partial). We further divide such an occurrence S into the following 3
subcases:

1. S is a concatenation of a suffix of Tj , φkj and a prefix of Tj+1. For this,

we need to find all those text segments Tj such that
←−−−−
P [1..i] is a prefix

of
←−
Tj and P [i+kj +1..p] is a prefix of Tj+1 for 1 ≤ i < (i+kj +1) ≤ p.

If these conditions are satisfied, then P matches at position z − i in
T , where z is the starting position of jth wildcard group within T .

2. S is a concatenation of a portion of φkj and a prefix of Tj+1. For this,
we need to find all those text segments Tj+1 such that P [i + 1..p] is
a prefix of Tj+1 and 1 ≤ i ≤ kj . Then, the matching position of P
within T is z + kj − i.

3. S is a concatenation of a suffix of Tj and a portion of φkj . For this,

we need to find all those text segments Tj such that
←−−−−
P [1..i] is a prefix

of
←−
Tj and 1 ≤ p− i ≤ kj . Then, the matching position of P within T

is z − i.

The above conditions can be verified easily by maintaining different 2-
dimensional orthogonal range reporting structures, where each structure
corresponds to a distinct wildcard group lengths. Let RSβ represents the
orthogonal range searching structure which links two text segments on
either side of all wildcard groups of length β, then RSβ contains all those
points (xj , yj) such that the (lexicographically) xjth (α-sampled) suffix in

∆r is
←−
Tj , the (lexicographically) yjth (α-sampled) suffix in ∆f is Tj+1, and

kj = β (i.e., there are exactly β wildcard symbols between Tj and Tj+1 in
T). The number of 2-dimensional orthogonal range reporting structures
is d̂ (the number distinct wildcard group lengths) and the total number
of points among all those d̂ structures is O(d).

Now, type-2 matching can be performed as follows: first we obtain
the suffix ranges [Lfi , R

f
i] of P [i..p] for i = 1, 2, . . . , p in ∆f and the suffix

ranges [Lri , R
r
i] of

←−−−−
P [1..i] for i = 1, 2, . . . , p in ∆r in O(p log1+ε

′
n) (using

Lemma 1). Then, we have:

– All case-1 occurrences can be obtained by reporting all those points
in RSβ with query range [Lri , R

r
i] × [Lf(i+β+1), R

f
(i+β+1)] for all β < p

and 1 ≤ i < (i+ β + 1) ≤ p.

– All case-2 occurrences can be obtained by reporting all those points
in RSβ with query range [−∞,∞]× [Lf(i+1), R

f
(i+1)] for all β < p and

1 ≤ i < β.
– All case-3 occurrences can be obtained by reporting all those points

in RSβ with query range [Lri , R
r
i] × [−∞,∞] for all β < p and 1 ≤

p− i < β.

The number of orthogonal range searching queries is O(pmin(p, d̂))
and the total number of points among all the orthogonal range search-
ing structures is O(d). Therefore, by using an O(d log n)-bit orthogonal
range searching structure by [15], the query time can be bounded by
O(p log1+ε

′
n+pmin(p, d̂) log d+occ2 logε

′
d), where occ2 is the number of

type-2 occurrences. Moreover, P can trivially be matched at all (kj−p+1)
positions within a wildcard group of length kj ≥ p.

Lemma 3 By maintaining an nHh + o(n log σ) + O(d log n) bits index,
all the type-2 occurrences of P in T can be reported in O(p(log1+ε

′
n +

min(p, d̂) log d) + occ2 logε
′
d) time, where ε′ > 0.

3.3 Type-3 Matching

In type-3 matching, we are looking for each substring of T which matches
with P and contains more than one wildcard groups. Therefore, P con-
tains at least a whole text segment Tj . We follow a similar approach pro-
posed by Lam et al. [17] for handling this case, where we first retrieve all
those text segments Tjs which are completely contained in P , and check
if each such Tj can be extended for a type-3 matching. This is equivalent
to the dictionary matching problem as described in Section 2.4.

The dictionary matching can be performed in O(p(logε n+ log d) + γ)
time using an o(n log σ) + O(d log n) bits index, where γ is the number
of dictionary matching outputs (Section 2.4) [10]. In [10], it is assumed
that the text segments are stored using Ferragina-Venturini scheme [7],
where the storage space is nHh + o(n log σ) bits and a text substring of
length ` can be displayed in O(`/ logσ n + 1) time. However, we cannot
afford to store the text segments using this scheme as it will double the
index space. Since FM-index is already stored for the type-1 and type-2
matchings, we will use the same FM-index as the storage scheme for the
text collection (even though retrieval time is slower). It remains to check
how the dictionary matching time will be affected by using FM-index
(as a storage scheme) instead of Ferragina-Venturini scheme. For this, we
consider the following two facts: (i) The time for displaying a substring of

length ` < log1+ε n using FM-index is O(log1+ε n) and that of Ferragina-
Venturini scheme is Ω(1). Hence, FM-index is worse by at most a factor
of O(log1+ε n). (ii) When ` ≥ log1+ε n, FM-index takes O(`) time, where
as Ferragina-Venturini scheme takes O(`/ logσ n) time. Hence, FM-index
is worse by a factor of Θ(logσ n). Therefore, by using FM-index as a
storage scheme, the dictionary matching time can get worse by a factor
O(max(log1+ε n, logσ n)) = O(log1+ε n). We remark 4 that only the term
p logε n will get multiplied by log1+ε n. Choosing ε′ ≥ 2ε > 0, we have the
following lemma.

Lemma 4 Dictionary matching can be performed in O(p log1+ε
′
n + γ)

time by maintaining an nHh + o(n log σ) +O(d log n) bits index.

To perform type-3 matching, we first use the above lemma to find all
the γ occurrences of text segments within P . Corresponding to each such
occurrence, we compute a pair (s, e) as follows: Let the text segment Tj
has a match within P at position i (i.e. Tj = P [i..(i+ |Tj |]− 1)]) and Tj
starts at position j′ in T . This match will be a part of a valid occurrence
of P in T if and only if P starts at position (j′ − i + 1) within T . Then
(s, e) for this match is given by s = j′−i+1 and e = j′. Further, we obtain
a sorted sequence of all γ pairs (s1, e1), (s2, e2), (s3, e3), . . . , (sγ , eγ) such
that sk < sk+1 or sk = sk+1 and ek < ek+1 in O(γ log γ) time. Along with
this γ pairs of values, we also maintain the suffix ranges corresponding

to all suffixes of P and
←−
P in ∆f and ∆r respectively (using Lemma 1).

Therefore, our query working space is O((p+ γ) log n) bits.
We maintain two bit vectors Bs[1..n] and Be[1..n] for marking the

starting and ending positions of text segments within T , such that Bs[i] =
1 if T [i] 6= φ and T [i − 1] = φ or i = 1, else 0, and Be[i] = 1 if T [i] 6= φ
and T [i+ 1] = φ or i = n, else 0. Using these two bit vectors, the staring
position and ending position (selectBs(j) and selectBe(j), respectively)
of any given text segment Tj can be computed in constant time (Section
2.1). Similarly the text segment Tj or wildcard group φkj corresponding to
a given position i in T can be computed in constant time (j = rankBs(i)
and T [i] will be within a text segment if i ≤ selectBe(j), else T [i] will
be a part of jth wildcard group). We also maintain two arrays Af [1..d]
and Ar[1..d], such that Af stores the lexicographic ordering of Tj in ∆f

(Af [j] = k if Tj is the kth lexicographically smallest α-sampled suffix in

4 In the paper by Hon et al. [10], the computation of the locus of all suffixes of
P in their dictionary matching index takes O(p logε n) time and reporting all the
occurrences takes O(p(logε n + log d) + γ) time. Note that the pattern matching is
needed only in the first step.

∆f) and Ar stores the lexicographic ordering of
←−
T j in ∆r (Ar[j] = k if

←−
T j is the kth lexicographically smallest α-sampled suffix in ∆r) . Thus,
given the suffix range of any pattern in ∆f , in constant time we can check
if this is a prefix of given text segment using Af . Similarly, given the suffix
range of the reverse of any pattern in ∆r, in constant time we can check
if this is a prefix of given text segment using Ar. Now for a pattern P
to match at position s in T (i.e. P = T [s..(s + p − 1)]), the following
conditions should be satisfied:

1. Corresponding to each text segment Tj which is completely contained
in T [s..(s+p−1)], there should be a pair (s, e) with e being the staring
position of the Tj within T , and e = selectBs(j).

2. The longest prefix of T [s..(s+p−1)] without any wildcard should be a
prefix of P . In other words, if T [s] 6= φ and T [s− 1] 6= φ (i.e., a prefix
P [1..x] of P has a match with a suffix (6= Tj′) of a text segment Tj′),←−−−−
P [1..x] should be a prefix of

←−
T j′ (i.e., Ar[j

′] should be within the suffix

range of
←−
T j′ in ∆r) , where j′ = rankBs(s) and x = selectBe(j

′)−s+1.
3. The longest suffix of T [s..(s+ p− 1)] without any wildcard should be

a suffix of P . In other words, if T [s + p − 1] 6= φ and T [s + p] 6= φ
(i.e., a suffix P [y..p] of P has a match with a prefix (6= Tj′′) of a text
segment Tj′′), P [y..p] should be a prefix of Tj′′ (i.e. Af [j′′] should be
within the suffix range of Tj′′ in ∆f), where j′′ = rankBs(s + p − 1)
and y = selectBs(j

′′)− s+ 1.

In each contiguous sublist of (s, e) with same s value, the first con-
dition can be verified by scanning the corresponding e values and the
remaining conditions can be verified in constant time. Thus, the time for
filtering all type-3 occurrences from the sorted list of (s, e) values can be
bounded by O(γ). Thus, we have the following lemma.

Lemma 5 By maintaining an nHh+o(n log σ)+O(d log n) bits index, all
the type-3 occurrences of P in T can be reported in O(p log1+ε

′
n+γ log γ)

time, where ε′ > 0. The working space required is O((p+ γ) log n) bits.

Combining the results of type-1 (Lemma 2), type-2 (Lemma 3), and
type-3 (Lemma 5) matchings, we have the following theorem.

Theorem 1 There exists an index of size nHh + o(n log σ) + O(d log n)
bits for wildcard matching, which can answer each online query for a
pattern P of length p in O(p(log1+ε

′
n + min(p, d̂) log d) + occ1 log1+ε

′
n+

occ2 logε
′
d+γ log γ) time, for any fixed ε′ > 0. The working space required

is O((p+ γ) log n) bits.

References

1. D. Belazzougui. Succinct Dictionary Matching With No Slowdown. In CPM, pages
88–100, 2010.

2. M. Burrows and D. J. Wheeler. A Block-sorting Lossless Data Compression Al-
gorithm. Technical Report 124, Digital Equipment Corporation, Paolo Alto, CA,
USA, 1994.

3. Y. F. Chien, W. K. Hon, R. Shah, and J. S. Vitter. Geometric Burrows-Wheeler
Transform: Linking Range Searching and Text Indexing. In DCC, pages 252–261,
2008.

4. R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary Matching and Indexing
with Errors and Don’t Cares. In STOC, pages 91–100, 2004.

5. P. Ferragina and G. Manzini. Indexing Compressed Text. Journal of the ACM,
52(4):552–581, 2005.

6. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed Representa-
tions of Sequences and Full-Text Indexes. ACM Transactions on Algorithms, 3(2),
2007.

7. P. Ferragina and R. Venturini. A Simple Storage Scheme for Strings Achieving
Entropy Bounds. Theoretical Computer Science, 372(1):115–121, 2007.

8. R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Ap-
plications to Text Indexing and String Matching. SIAM Journal on Computing,
35(2):378–407, 2005.

9. W. K. Hon, T. H. Ku, R. Shah, S. V. Thankachan, and J. S. Vitter. Faster
Compressed Dictionary Matching. In SPIRE, pages 191–200, 2010.

10. W. K. Hon, T. W. Lam, R. Shah, S. L. Tam, and J. S. Vitter. Compressed Index
for Dictionary Matching. In DCC, pages 23–32, 2008.

11. W. K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. On Entropy-Compressed
Text Indexing in External Memory. In SPIRE, pages 75–89, 2009.

12. J. Kärkkäinen and E. Ukkonen. Sparse Suffix Trees. In COCOON, pages 219–230,
1996.

13. U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, 22(5):935–948, 1993.

14. E. M. McCreight. A Space-economical Suffix Tree Construction Algorithm. Journal
of the ACM, 23(2):262–272, 1976.

15. Y. Nekrich. Orthogonal Range Searching in Linear and Almost-Linear Space.
Computational Geometry, 42(4):342–351, 2009.

16. R. Raman, V. Raman, and S. S. Rao. Succinct Indexable Dictionaries with Appli-
cations to Encoding k-ary Trees, Prefix Sums and Multisets. ACM Transactions
on Algorithms, 3(4), 2007.

17. T. W. Lam, W. K. Sung, S. L. Tam, and S. M. Yiu. Space-Efficient Indexes for
String Matching With Don’t Cares. In ISAAC, pages 846–857, 2007.

18. A. Tam, E. Wu, T. W. Lam, and S. M. Yiu. Succinct Text Indexing With Wild-
cards. In SPIRE, pages 39–50, 2009.

19. C. Thachuk. Succincter Text Indexing with Wildcards. InCPM, pages 27–49, 2011.
20. P. Weiner. Linear Pattern Matching Algorithms. In FOCS, pages 1–11, 1973.
21. J. Ziv and A. Lempel. Compression of Individual Sequences via Variable Length

Coding. IEEE Transactions on Information Theory, 24(5):530–536, 1978.

