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Adaptive Disk Spindown via Optimal Rent-to-Buy
in Probabilistic Environments?

P. Krishnar?, P. M. Long? and J. S. Vittet

Abstract.  In the single rent-to-buy decision problem, without a priori knowledge of the amount of time a
resource will be used we need to decide when to buy the resource, given that we can rent the resource for
$1 per unit time or buy it once and for all foc$In this paper we study algorithms that make a sequence of
single rent-to-buy decisions, using the assumption that the resource use times are independently drawn from
an unknown probability distribution. Our study of this rent-to-buy problem is motivated by important systems
applications, specifically, problems arising from deciding when to spindown disks to conserve energy in mobile
computers [4], [13], [15], thread blocking decisions during lock acquisition in multiprocessor applications [7],
and virtual circuit holding times in IP-over-ATM networks [11], [19].

We develop a provably optimal and computationally efficient algorithm for the rent-to-buy problem. Our
algorithm useD (/1) time and space, and its expected cost fortthaesource use converges to optimal as
0O(,/logt/t), for any bounded probability distribution on the resource use times. Alternatively, Ggihg
time and space, the algorithm almost converges to optimal.

We describe the experimental results for the application of our algorithm to one of the motivating systems
problems: the question of when to spindown a disk to save power in a mobile computer. Simulations using disk
access traces obtained from an HP workstation environment suggest that our algorithm yields significantly
improved powefresponse time performance over the nonadaptive 2-competitive algorithm which is optimal
in the worst-case competitive analysis model.

Key Words. Mobile computing, On-line algorithms, Machine learning, Power conservation, Disk spindown,
Rent-to-buy, Multiprocessor spihlock, IP-over-ATM, Virtual circuit holding time.

1. Introduction. Thesingle rent-to-buy decisigoroblem can be described as follows:
we need a resource for an unknown amount of time, and we have the option to rent it
for $1 per unit time, or to buy it once and for all foc.$For how long do we rent the
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resource before buying it? The best algorithm with full prior knowledge of how long the
resource will be needed (an off-line algorithm) will buy the resource immediately if the
resource will be needed for at leadtme units and rent otherwise. An on-line algorithm
(i.e., one without a priori knowledge of how long the resource will be needed) that rents
the resource foc units of time and then buys it incurs a cost of at most double the
cost of the best off-line algorithm. This competitive faétof 2 is the best possible (for
deterministic algorithms) in the worst case [8]. If we know of a probability distribution

on the time the resource is needed, we can usually find a rent-to-buy strategy whose
expected cost is substantially less than that of the on-line algorithm that evidite

units before buying.

In this paper we are interested in the rent-to-buy problem described above with two
important additional features motivated by practical applications. Many interesting sys-
tems problems can be modeled well bgejuencef single rent-to-buy problems. To
solve thetth single rent-to-buy problem (or thigh round), the on-line algorithm can use
what it has learned from the previous 1 rounds. (The on-line algorithm that waits for
time before buying in each round is still within a factor of 2 of the best possible.) We call
this thesequential rent-to-bugroblem, or just theent-to-buyproblem. In these real-life
situations we can assume that the time for which the resource is needed in each round
is drawn from a probability distribution. However, it is unreasonable to assume that the
distribution is known a priori. We now describe three interesting problems modeled by
a sequence of rent-to-buy decisions.

THE DISK SPINDOWN PROBLEM.  Energy conservation is an important issue in mobile
computing. Portable computers run on battery power and can function for only a few
hours before draining their batteries. Current techniques for conserving energy are based
on shutting down components of the system after reasonably long periods of inactivity.
Recent studies show that the disk subsystem on notebook computers is a major consumer
of energy [4], [13], [15]. Most disks used for portable computers (e.g., the small, light-
weight Kittyhawk from Hewlett Packard [16]) have multiple energy states. Conceptually,
the disk can be thought of as having two statessftianingstate in which the disk can
access data but consumes a lot of energy apdiadowrstate in which the disk consumes
effectively no energy but cannot access da®ninning down a disk and spinning it up
consumes a fixed amount of energy and time (and also produces wear and tear on the
disk). During periods of inactivity, the disk can be spundown to conserve energy at the
expense of increased latency for the next requestdigkespindown probleris to decide

when to spindown the disk so as to conserve energy, with acceptable latency.

The disk spindown scenario can be modeled as a rent-to-buy problem as follows. A
round is the time between any two requests for data on the disk. For each round, we need
to solve the disk spindown problem. Keeping the disk spinning is viewed as renting, since
energy is continuously expended to keep the disk spinning. Spinning down the disk is
viewed as a buy, since the energy to spindown the disk and spin it back up upon the
next request is independent of the remaining amount of time until the next disk access.

5 A k-competitive algorithm incurs a cost of at m@t1) plusk times the cost of the optimal off-line algorithm.
61n general, the disks provide more than just two power management states, but only one state, the fully
spinning state, allows access to data.
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The cost of the increased latency in serving the next disk access can also be integrated
into the cost of the buy, if the algorithm is given as an input the relative importance of
conserving energy and responding quickly to disk accesses. (This is discussed in detalil
in Section 6.) Based on observations of disk access patterns in workstation environments
[18], the times between accesses to disk (which define the rounds) can be assumed to
be generated by a probability distribution. The disk spindown problem will be our main
motivating application for this study.

THE SPIN/BLOCK PROBLEM.  Another interesting and important problem from multi-
processor applications, tispin/block probleminvolves threads trying to acquire locks

to protect access to shared data [7]. A round is defined by a thread requesting locked
data and eventually acquiring the lock. In a round, the system can have the thread wait
(or spin) until the lock is free, incurring a fixed cost per unit time for wasted processor
cycles, or block and incur a higher context switch overhead. The spinning can thus be
viewed as renting, and a block can be viewed as a buy. In this situation too, practi-
cal studies suggest that lock-waiting times can be assumed to obey some unknown but
time-invariant probability distribution [7].

THE VIRTUAL CIRCUIT PROBLEM. Deciding virtual circuit holding times in IP-over-
ATM networks is another scenario modeled by the rent-to-buy framework [19]. When
carrying Internet protocol (IP) traffic over an Asynchronous Transfer Mode (ATM) net-
work, a virtual circuit is opened upon the arrival of an IP datagram, and the ATM
adaptation layer has to decide how long to hold a virtual circuit open. There are many
possible pricing policies for virtual circuit holding times. As described in Section 5 of
[19], in future ATM networks it is expected that a large number of virtual circuits could
be held open by paying a charge per unit time to keep the circuit open. Keeping the
virtual circuit open can be thought of as a “rent” while closing it can be considered a
“buy.” The interarrival time of packets on a circuit (i.e., the resource use times in the
rent-to-buy model) can be modeled as being drawn independently from a probability
distribution [14], [19].

An algorithm for the sequential rent-to-buy problem can be visualized in two ways.
In any round, the algorithm can be thought of as making sequential binary decisions of
“should | buy now?” Alternatively, we can think of the algorithm as setting a threshold
or cutoff on the cost it is willing to accrue before buying, and behaving according to the
cutoff. These two views are trivially equivalent; we adopt the second for convenience.
There are two important requirements of any good on-line algorithm for the rent-to-buy
problem: the algorithm should produce good cutoffs, and it should use minimal space
and time to output its cutoffs. In this paper we develop on-line algorithms for the rent-
to-buy problem in probabilistic environments, assuming that the resource use times are
independently randomly drawn from a fixed but unknown probability distribution.

The most straightforward solution to the problem [8] is to store all past resource use
times, and use that cutdiffor the current round which would have had the lowest total
cost had we used it in the past. Straightforward application of results of Vapnik [20]
implies that the expected rent-to-buy cost of this strategy converges to that of the best
fixed cutoff. One can easily see that the cubodit any given time falls on (actually, near)
one of the past resource use times; however, even taking this into account, this solution
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is computationally expensive. For ttth round, this solution would need space and time
proportional toO(t), and this is unacceptable in system environments.

In this paper we develop an algorithin for the rent-to-buy problem which, for
arbitrary probability distributions with support on,[M], converges to optimal; i.e., the
cost of the algorithm converges to the cost of the best algorithm with full prior knowledge
of the distribution. More importantly, for thigh round that lastg; time, the algorithm
usesO(c+/t) space, generates its cutoffs @(1) time, and use® ((Min{x;, ¢/t +
log(ct)) time to update its data structures. Alternatively, our algorithm can be adapted
to work in a situation when the space it can use is limited. Presenteddyghspace,
our algorithmL ¢ usesO(1) time to generate cutoff) ((min{x;, c})s + log(cs)) time
to update its structures, and almost converges to optimal, being away from optimal
additively by O(min{M, c}/s). The O(x;) component of the time used in updating the
data structure can be done “on the fly” as the round is progressing. For example, in the
disk spindown scenario, let thi¢h idle time at disk be < ¢ seconds. Before the idle
period starts, algorithnhg outputs its recommended spindown threshold usd@)
time, and updates its data structureédzs+ log(ct)) time. The updates corresponding
to the ‘zs’ term can be done while the disk is waiting for the next access.

Most practical situations are well-modeled by bounded distributions. For example,
in the disk spindown scenario, any reasonable algorithm will spin down the disk after
a few minutes (say, 30 minutes) since the last access. Therefore, all idle times at disk
greater than 30 minutes are practically equivalent, and can be assumed to be 30 minutes
without loss of generality, resulting in a distribution with bounded support.

Simulations of our algorithm on real-life disk access traces obtained from HP show
that by giving a suitable value af to our algorithm, we effectively trade power for
response time (latency). In Section 6 we introduce the natural notions of excess energy
and effective cost. The “excess energy” discounts from the total energy the portion that
everyalgorithm would have to spend; the effective cost is a measure that merges the
effects of energy conservation and response time performance into one metric based
on a user-specified parameterthe relative importance of response time to energy
conservation. (The buy costvaries linearly witha.) We show that our algorithrh
is best amongst the on-line algorithms considered in terms of effective cost for almost
all values ofa, saving effective cost by 6—25% over the optimal on-line algorithm in
the competitive model (i.e., the 2-competitive algorithm that spins down the disk after
waiting ¢ seconds). In addition, for small values @f(corresponding to when saving
energy is critical), our algorithm when compared against the 2-competitive algorithm
reduces excess energy by 17-60%, and when compared against the 5 second threshold,
it reduced excess energy by 6—42%.

1.1. Related Work The single rent-to-buy problem has been studied in the worst-case
setting and efficient deterministic and randomized algorithms have been developed for
the problem by Karlin et al. [8]. In particular, 2-competitive deterministic algorithms and
e/(e—1)-competitive randomized algorithms have been developed. In [8] it was claimed
that there is an adaptive algorithm achieving a competitive ratio approaehiag- 1)
on input sequences generated according to any time invariant probability distribution.
However, their technique as stated is computationally inefficient.

For the disk spindown problem, current mobile computers spin disks down after about
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5 minutes of inactivity. In [4] and [13] the authors propose a more aggressive spindown
policy, and support their proposal by simulation studies on workstation and notebook
traces. The studies suggest that the gain in energy often overshadows the loss in response
time. In [4] the comparison of fixed-threshold strategies is made against optimal off-
line algorithms. The authors also mention trying out predictive disk spindown policies.
Adaptive spindown policies that continually change the spindown threshold based on
perceived inconvenience to the user are studied in [3]. (Trading power for response time
is an important systems necessity; our rent-to-buy modeling allows us to achieve this
tradeoff in a uniform and elegant manner as explained in Section 6.) In [5] Greenawalt
looks at the disk spindown problem assuming a Poisson arrival of requests at disk, and
studies disk spindown and reliability issues. More recently, our rent-to-buy modeling for
the disk spindown problem has motivated other learning theory-based approaches for
disk spindown [6].

Karlin et al. in [7] have studied the spiblock problem empirically, evaluating differ-
ent spiryblock strategies including fixed-threshold and adaptive strategies. The virtual
circuit problem has been empirically studied by Saran et al. [19], where they propose a
Least Recently Used (LRU)-based holding time policy as performing well in their stud-
ies. The first LRU-based holding time policy they study is the 2-competitive algorithm
described earlier in this paper, and their second holding time policy involves estimating
the mean interreference interval with exponential averaging. In [11] Keshav et al. em-
pirically study an adaptive policy for the virtual circuit problem that tries to estimate the
distribution of interarrival times by keeping a histogram of observed interarrival times
grouped into fixed-size buckets.

In Section 2 we describe the main analytical results of the paper. We present algorithm
A, in Section 3; algorithmA, lies at the heart of our optimal rent-to-buy algorithrhs,
andLs. We analyze algorithmd\, for space used, computational time, and convergence
rate in Section 4. We describe how algorittdn can be used to get algorithnhsand
Ls in Section 5. We explain in Section 6 precisely how the disk spindown problem
can be modeled in the rent-to-buy framework, when the user is concerned about energy
conservation and response time performance. We present our experimental results in
Section 7 and conclude in Section 8.

2. Definitions and Main Analytical Results. We denote the reals by R, the nonneg-
ative reals byR*, and the positive integers by N. Amm-line rent-to-buy algorithnis
given the relative cost > 1 of buying. It works in rounds, where in thth round it first
formulates a cutoff on the amount of time it will wait before buying, and then gets the
tth resource use time. A rent-to-buy algorithm defines a mapping/figm, (R)" (the

past resource use times)&g (the cutoff generated). In other word&(xs, Xo, ..., X;)

is the cutoff generated by algorithAin the ¢ + 1)st round, when the previous resource
use times were, X, ..., X. If the resource use time in any roundxisthen the cost

of choosing cutofb is

if x<b,

X
cost(x, b) = {b +c otherwise.
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For the disk spindown problem, the resource use time in rowndresponds to thith
idle time at disk, and a cutoff is a spindown threshold.

Our first main result is an algorithrh that approaches optimal and is efficient in
terms of the space and time it uses.

THEOREM1. Foranyc> 1, M > 1,there is a rent-to-buy algorithm L thadn round
t with resource use time x

e uses Qc./1) space

e outputs its choice of cutoff in Q) time and updates its data structures in
O((min{x;, c})+/t + log(ct)) time, and

e incurs a cost that approaches optim#iere exists k such that for any distribution D
on[0, M], for all large enough te N,

. Int
Ezept (COSE(X, L(Xq, ..., X—1))) < Igf Ezep(Cost(z, @) + K,/ -

Note that in Theorem 1, the sarkecan used for any distribution with support on
[0, M]. Further, the time and space bounds are independedtad well. It is easy to
adapt algorithil to get algorithmL’ that successively increases its estimat&lefand
converges to optimal for any distribution. However, the convergence rate of algorithm
L” would depend on the distribution.

In many practical situations, we would like to fix the amount of space and time used by
our algorithm while converging approximately, rather than exactly, to optimal. Algorithm
Ls, a restricted space version of algoritiimcan be used in this scenario.

THEOREM2. When presented with:s kIn?(M +c) InIn(M +c) bytes of spagavhere
k is a constantindependent of M andar the tth round algorithm Lg outputs its choice
of cutoff in O(1) time, updates its data structures in (@min{x, c})s + log(cs)) time
and for any probability distribution D orj0, M] for all large enough te N, converges
approximately to optimal

Egept (COSE(Xt, Ls(X1, ..., Xt—1))) < ir;f Ezep(cost(z,a)) + O (M) .

We simulated our algorithms for the disk spindown problem using disk access traces
obtained from an HP workstation environment. Our simulation results are described in
Section 7.

One obvious approach to attack the rent-to-buy problem in probabilistic environments
is to learn the distribution on times for the rounds, calculate the optimal cutoff for the
estimated distribution, and output that cutoff for each round. Thisis unacceptable from the
computational standpoint. In our algorithms we bypass the estimation of the distribution,
directly estimating the efficacy of different cutoff points. The analysis is complicated,
however, by the fact that there are infinitely many cutoff points to evaluate at any given
time on the basis of a finite number of samples from the distribution. We show for the
rent-to-buy problem that to get a good solution, it is sufficient to consider a small finite set
of possible cutoff points. The appropriate choice of this set depends on the distribution,
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and is done using the information gained in early rounds. We call this basic strategy, that
chooses the appropriate set of possible cutoffs and evaluates them to determine the best
cutoff to use in any round, algorithr,.

Our algorithmL is based on algorithm, . It chooses from among successively larger
finite sets of possible cutoff points to converge to optimal. A tree data structure, which
is modified dynamically, is used to store the estimated quality of each considered cutoff
point. AlgorithmL ¢ sets appropriate parameters based on the available Spawtuses
algorithm A, to converge approximately to optimal.

We first describe algorithn\, which lies at the heart of our optimal algorithrhs
andLs.

3. The Main Idea: Algorithm A,. Algorithm A, takes as parametessand M, and
attempts to achieve an expected cost on a given round which is atergosater than
the expected cost incurred by the optimal cutoff. We also call a resource use time an
“example.” Our algorithms estimate optimal cutoffs based on past resource use times;
in other words, they estimate optimal cutoffs based on the examples they have seen.
Algorithm A, works in two stages. In tHast staget uses a small number of examples
to generate a small number of candidate cutoffs. (For the small number of rounds that
constitute the first stage, the algorithm chooses an arbitrary cutoff, say buying immedi-
ately.) It fixes these candidate cutoffs and then starteitend stage-or thetth round
in the second stage, it evaluates the candidate cutoffs on thé paktxamples, and
chooses the cutoff with minimum total cost. The important point is that these small num-
ber of candidate cutoffs when generated carefully are sufficient to achieve a small enough
cost, as described in Section 4.2. Also, updating these cutoffs can be done efficiently, as
described in Section 4.3. We call asuch that O< ¢ < 1/(IN>(M +¢) InIn(M +¢)) a
suitableepsilon; for technical reasons, we assume in our discussions ithatitable.
Note that the problem is trivial i€ > M, since no reasonable algorithm would ever
buy in this case; the case of interest is witcegt M.

3.1. First Stage In the first stage, algorithrd, generates candidate cutoffs, b,

..., b, by partitioning [Q M]into v intervals. Intuitively, to be accurate in its estimations

in the second phase, algorithA wants these candidate cutoffs to be close in one of
two senses: either that the probability of a point falling between them is not too large, or
in absolute distance. However, for computational efficiency, we do not want too many
candidate cutoffs. Hence, algorithf&. attempts to partition [OM] into v < [4c/e]
intervals, such that

1. eachinterval is at least2 in length, and
2. ifaninterval has lengtk ¢/2, then the interior of the interval has probability at most
g/2c.

The endpoints of the intervals define the candidate cutoffs.

We say that aninterval satisfies t@mputational criteriorifitis atleaste /2 in length,
and that it satisfies thaensity criteriorif the probability of the interval is at mosf 2c. (In
other words, at the end of the first stage, algoritynensures that every interval satisfies
the computational criterion, and intervals of length greater th@msatisfy the density
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criterion.) Conceptually, we can think of algorith&. as generating’ intervals that

each satisfy the density criterion, and then moving the potential cutoffs apart (discarding
intervals of size 0) to get < v’ intervals such that the computational criterion holds
for each interval. As a result of the VC theory [1], [21], it is easy to partitionMQ

into v intervals satisfying the density criterion with high probability, by storing=

O (vInv) examples, and calling a procedgenerate _cutoffs(  w, n, o) on[0, M].

The proceduregenerate _cutoffs  breaks a specified interval into intervals by
taking a setr of n examples, and ensuring that in any interval we haie examples
fromo. (The procedurgenerate _cutoffs can be implemented by sortiagto getx

and iteratively moving through/w examples inc to define the intervals.)

Algorithm A, implements its first stage in a space efficient manner by storing at most
O(v) examples at any time. It performs the first stage in tiptegeseslin the first phase,
algorithm A, partitions [Q M] “roughly” into B big intervals, and in the second phase
it refines these big intervals one by one into approximaitélB intervals each. While
refining a specific big interval, algorithrA, discards examples that do not fall in the
big interval. In the third phase, algorithA. moves potential candidate cutoffs apart to
ensure that the computational criterion is met.

Formally, algorithmA, works as follows. Le = ¢/(4(c + M)), and let the ar-
ray o store the examples being retained by algoritédm In the first phase it di-
vides the interval [DM] into B = 1281In(1/§) big intervals It does this by collecting
n1 = 1024B In(2B/§) examples and callingenerate _cutoffs( B, n1, o) on inter-
val [0, M]. Thesecond phaseonsists oB subphases, where, in thia subphase, algo-
rithm A, divides tha th big interval into[4c/(Be)] intervals. It does this by sampling at
mostn, = 4B(n2+In(2B/§)) examples, wherg, = 1024 1n(4c/(¢8))/ (¢ B), and stor-
ing the firsty, examples that fall within thith big interval. Lety,; < n, be the number
of examples stored in thi¢h subphase. Algorithm, callsgenerate _cutoffs(  [4c/
(Be)1, n2i, o) ontheith biginterval. (We will see in Section 4.1 that; = 5, with high
probability.) At the end of the second phase, we are left with the required[4c/¢]
intervals. In the third phase, algorithd. ensures that the computational criterion is
met. Let theith interval at the end of the second phase Ipg;]). Algorithm A, sets
lo = 0,ro = max(e/2,r(), and processes the intervals iteratively by setting r;_1,
andr; = max(r{,l; +¢/2). Theith interval is defined to bd;[ r;), and intervals such
thatl; = r; are discarded. The total number of resulting intervalsis [4c/¢].

The candidate cutoffs are defined tothe=1;,0<i < v, b, = M.

3.2. Second Stage In the second stage, algorithf. repeatedly chooses the cutoff
from among those ifbg, by, ..., b,} that performed the best in the past. Formally, it
formulates itdth cutoff in the second stage as follows{f xo, ..., X_1 arethe resource
use times previously seen in the second stage, faralN, 0 < i < v, algorithm A,
sets

t—1

0 = )_cost(x, bi).

j=1

It uses &, for whichq; < qgx forallk € {0, ..., v} as its cutoff for theth round.
We now study the performance of algoritinin terms of space used, the convergence

rate, and time required for updates.



Adaptive Disk Spindown via Optimal Rent-to-Buy in Probabilistic Environments 39

4. Goodness of AlgorithmA,. In Section 4.1 we see that algorithd can be imple-
mented withO (v) space, and generates good cutoffs with high probability. In Section 4.2
we see that the distance algorithAn is away from optimal approachesst gets large,

and in Section 4.3 we see that in the second stage the strategies can be updated efficiently
with a tree-based data structure.

4.1. Guarantees about the First StageLets = ¢/(4(c+ M)), B =128In(1/8), n1 =
1024B In(2B/3), andn, = 1024 In(4c/(e8))/ (e B) be as defined in Section 3.1. From
the discussion in Section 3.1, it follows that the space used by algoAthim the first
stage is bounded by the number of examples we use at any time plus the number of cutoffs
we retain; i.e., the space used is boundedby v + max{ni, n,} = O(v) = O(c/¢).

The operations in the third phase of the first stage ensure that every interval satisfies
the computational criterion. We say that the first st if at the end of the first stage
there is an interval of length greater thaf2 not satisfying the density criterion. The
event that the first stage fails is a subset of the event that at the end of the second phase
there is some interval that does not satisfy the density criterion.

Let ¢, be thetotal number of examples we see in the first stage; i.e., all examples,
including the ones we discard. We now see that the first stage fails with low probability
(i.e., probability 3).

LEMMA 1. Let¢, = [256cIn?((c 4+ M)/¢e)/e] be the number of examples seen in the
first stagelets = ¢/(4(c + M)), and let | be the event that the first stage fail$ien
for anye that is suitablePr(E;) < ¢/(2(c + M)).

To prove the above lemma, we use a technique due to Kearns and Schapire [10].
Lemma 2 below is a variant of the classical Glivenko—Cantelli theorem (see Section
12.3 of [2]). The precise bound of Lemma 2 follows immediately from the results of
Blumer et al. [1] using the techniques of Vapnik and Chervonenkis [21]. Informally,
Lemma 2 says thah points are enough to estimate the probabilitiegwdryinterval
simultaneously.

LEMMA 2. Choosd < «, 8 < % ¢ > 1, and a probability distribution D ofR*. Then
if m = [(256/a)(In(1/a) + In(1/B))], then

1
Prgcpm (Ela, b st. Prp((a, b)) > 2« andE i x € @b} =< a) <p
and
o 1, .
Prgecpm (Eia, b st. Prp((a, b)) < > anda i x e@b} = a) < B.

The standard Chernoff bounds will be helpful in proving Lemma 1.

LEMMA 3 (Chernoff). For t independent Bernoulli trialseach of which has a proba-
bility of success at least, et LE(p, t, r) denote the probability that there are at most
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r successes inthe t trial¥henfor0 < p<land0<q < p,
LE(p.t.qt) < e”(P-"/2p,

PrROOF OFLEMMA 1. The value for, was obtained by assuming that the first phase
requires us to look aj; = 4kBIn(2B/§) examples, and thieh subphase of the second
phase requires us to look at a total:gf = 4kcln(2B/8)/(¢ B)total examples, where

n2 = 4kcIn(2B/§)/(eB), andB = kIn(1/8)/2. We bound the probability of the first
stage failing by the probability of the event that at the end of the second phase there is
some interval that does not satisfy the density criterion.

We say that the first phase fails if any big interval generated in the first phase has
probability greater than/B or less than 12B. We say that théth subphase fails if
any interval generated in thiéh subphase has probability greater thagc; the second
phase fails if, for any, theith subphase fails. The lemma is proved if we can bound the
probability of the first phase failing or any of the subphases failing/tB; since the net
failure probability is then bounded l§y/B) - (B + 1) < ¢/(2(Cc + M)).

From Lemma 2, by setting = 1/B andg = §/(2B), we can easily verify that if we
look atn; examples, the first phase fails with probability at m&yd8. We now assume
that the first phase did not fail; i.e., the probability of any big interval is betwgaB 1
and 2/B. We could fail in theith subphase if we either do not ggt examples in the
ith big interval, or if after using th@, examples we get an interval with probability
> g/2c. From Lemma 3, by substituting = 1/(2B), r = n,, andt = 7, we see
that the probability that the number of examples that fall inithebig interval is less
thann, is at mosts/(2B). From Lemma 2, by setting = ¢B/(4c) andg = §/(2B),
we see that the probability that tlyg examples did not divide thigh big interval into
subintervals with probabilityc ¢/2c is at mosts/2B. Hence the probability of thih
subphase failing is at moé&t B.

4.2. Convergence of Algorithm A We have seen that the first stage works with high
probability. The main result of this subsection is to bound the performanég. of

THEOREM3. Choose M and c such that M ¢ > 1. Choose any that is suitable
and let m= [256cIn?((c + M)/¢)/e] be the number of examples seen by algorithm
A. in the first stageThere exists k> 0 such that for sufficiently large & N, for any
distribution D on[0, M],

E(CI,Y()ED’"XD‘ (COSE(XI7 Aé‘(ul7 <oy Um,y X1, 000y Xt—l)))

< (inf Ezep (COSE(z, @) + & + ka (€ + M) w

To prove the above theorem, we first show that if the first stage was successful, then
one of the possible cutofty generated in the first stage is orly2 away from optimal
(Lemma 4). Intuitively, by choosing the cutoff with minimal cost in the second stage,
we are close tdy; in cost. We then bound the error in expected cost resulting from the
first stage failing and prove Theorem 3.
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LEMMA 4. Choose0 < ¢ < % ¢ > 1,s € N, and a probability distribution D on
[0, M]. Choose0 = by < by < --- < bs = M. If, forall j € {1,...,s}, either
Prp((bj_1, bj)) < e/2c orby —bj_1 = ¢/2,then there exists‘ie {0, ..., s} such that

Ezcp(COSE(Z b)) < inf Ezcp(Cosk(z @) + 5.

PrOOF  Intuitively, if the optimal cutoff lies betweeln, _, andby;, the way in which the
candidate cutoffs were chosen ensures that the intéoyad, b)) is “small enough” (in
probability or absolute size) so that onelpf; or b; is close to optimal.

Assume without loss of generality that bpis exactly optimal; i.e., for al§ > 0,
there exists aa* ¢ {by, ..., bs}, such that costz, a*) = inf; E,cp(Ccost(z, a)) + 8.
Chooses > 0 and fixa*, bj_1 < a* < b;. We now show that one of = j — 1 or
i* = | satisfies the lemma.

Casel: Pr(bj_1, bj) <e/2c. In this case we show that the lemma holds with=

j — 1. If aresource use timelies outside of the intervabf_1, a*), then the cutoff*
incurs at least as much cost as the cutpff;, sincea*™ > b;_;. If the resource use time
z € (bj_1, @*], then the expected extra cost of cutiaff ; is at most- Prp ((bj_1, a*)) <
c-(g/2c) <¢g/2.

Ezep(COSE(Z, bj_1)) < Ezcp(cost(z, @) | z & [bj_1,a")) - Preep(z € [bj_1, "))
+ Ezep(cost(z,a*) + ¢ | z € (bj_1,a"]) - Prp((bj_1, a*])

Ezep(cost(z, a)) + g (sincePrp((bj_1, b)) < e/20)

IA

IA

igf E,cp(cost(z,a)) + 8 + %

Case2: Pr(bj_1, b)) > ¢/2c. In this case we show that the lemma holds viith= j.
Note thatb; — bj_; = ¢/2. For allc > 1 and all distributionsD, E,cp(cost(z, a))
viewed as a function od is Lipschitz bounded in one direction in a sense. (This is in
spite of the fact that this function af has jump discontinuities in general.) That is, if
0 < a; < ay, then

Ezcp(cOst(z, a2)) — Ezep(COSE(Z, a1)) < @ — as.

Hence,
Ezep(cost(z, bj)) — Ezep(COSt(z,a")) <bj —a* <b; —bj_; < %
which implies that
Ezcp(COSE(Z by 1)) < Inf Ezen (COSH(Z @) +6 + .
Sinces > 0 was chosen arbitrarily, this completes the proof. O

The standard Hoeffding bounds will be useful in proving Theorem 3.
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m

LEMMA 5 (see [17]). Choose M > 0, a probability distribution D on[0, M], and
=% "% — Euen(U)

m € N. Then
1
Pr)’(EDm (
mi=

> 8) < Ze—ZaZm/MZ.

ProOOF OFTHEOREM3. Regardless of what happens in the first stage, fgr alls and
for all x € R, we have costx, bj) < ¢+ M. Thus, applying Lemma 5, we get, for
eachj <s,a >0,

Pr)’(eDm (

Approximatings = [4c/¢] by 8c/e, we get

t—1

1
T D oSt bj) — Exep(Cost(z, b))
i=1

> oc) < 2e72oz2(tfl)/(c+M)2-

-}

Let j* be such thab;- is the cutoff amongst the candidates with minimum cost; i.e.,

t—1

. 1
Q) Prgcpm (EI(] < s) sit. T—1 ;cosg(xi, bj) — Ezep(cost(z, by))

< @e—Zaz(t—l)/((ﬁM)z.
£

Ezep(cost(z, bj-)) = minEzcp(cost(z, b)),
i

and Ietf* be the index of the cutoff used B, in thetth round. Recall that
t—1

1 [
t—1 ;COSE(Xi, b;.) = mjm [m ;cosg(xi, bt .

Let E; be the event that the first stage was successful, i.e., for all intgiyals b;)
generated in the first stage; — bj_1| = ¢/2, orPrp((bj_1, b)) < ¢/2c. We have

2)
E(lal,)ﬂ()GDmXDI (COSE(XU A&(ul’ <oy Um, X1, 000, Xt—l)))
= E@xepmxpt (COSt(Xt, A (U1, ..., Um, X1, ..., %—-1)) | E1) - Pr(Eyp)
+ E(L—J,)‘()EDmXDt (COSE(XU Aa(ulv L] umv le ] X[,l)) | _|El) . Pr(_| El)
< E@epmxpt (COSE(Xt, Ac(Ug, ..., Um, X1, ..., %-1)) | E1) - Pr(Ep)
&
cC+ M) —— Lemmal
+e+ )(2(c+M)) ( )
&
< E@,5epmxpt (COSE(Xt, Ac(U1, ..., Um, X1, ..., %-1)) | E1) + >
Now, assumeilq, . .., un, makeE; true. Fixe > 0. Let E> be the event that all the

estimates oE,cp(cost(z, bj)) obtained throughxs, ..., % are accurate to withie.
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Then

(3) EREDt (COSE(Xt’ AE(uls ceey Uma Xls ceey Xt*l)))
= Exept(COSE(X, Ac (U, ..., Um, X1, ..., X-1)) | E2) - Pr(Ep)
+ EXED‘ (COSE(XU As(ula <oy Um, X1, 000, Xt—l)) | _'EZ) : Pr(_'EZ)
= E;(GD‘ (COSE(XU Aé‘(ul’ coes Um,y X1,y 00y XI—l)) | E2)
16¢(c+ M) —20%(t — 1)
eX ,
* < (C+ M)2

by (1). By the triangle inequality, iEzcp(cost(z, b;.)) > Ezep(COSt(z, bj-)) + 20,
then, for eithew = j* orv = |*,

E.co(Cost(z, b)) — = > cost(x;, by)
i=1

> .

Thus, (3) and Lemma 4 imply that E; is true, then

E)Q(GD1 (COSE(XI’ AF(ul’ <oy Um, X1, .00, Xt—l)))

2
16c(c8+ M) eXp(—Za (t — 1)) .

. &
< (infa Ezep (COSE(Z. @) + 7 + 20 + (C+ M)?

Combining with (2) and setting = 100(c + M)./In ((c + M)t/e) /t completes the
proof. O

4.3. Computation Time of Algorithm A We now describe how the predictions &f
are made efficiently. Let; = X3, X2, . .., X—1 be the sequence formed by the first 1
rounds in the second stage, whergor 1 < i < t, isthe resource use time seen in round
i. Recall from Section 3 that, for théh round, algorithmA, needs to output a strategy
bj that has minimum cost on the rounds;in Any updates to the data structures used by
algorithm A, need to be made efficiently. We now describe a data structure maintained
by algorithm A, that allows predictions to be output (1) time and updates to be
made inO(min{x;, c}/e + log(c/¢)) time. (Note that in problems of interest« M.)

Algorithm A, maintains the different candidate cutoffs as leaves of a balanced tree
T. (See Figure 1.) We label the root of the treeXhynd the leaves of the tree from left
to right as O - - v, such that thg th leaf corresponds to the cutdif. (For simplicity, we
use the nams; for leaf j.) Let T (x) be the subtree oF rooted at node, and letP (x)
be the path from the root to (and including) noddn particular,T is T (A).

With each (leaf and internal) node algorithm A, maintains three variablegiff (x),
min_costx), andmin_cutoff(x). The algorithm maintains the following invariants for
all t before thetth round. (These invariants define the variables.) We refer to the total
cost of an algorithm that repeatedly uses a given cutoff over a sequence of resource use
times as the cost of that cutoff on the sequence. The cost of using bytiwif o; is
proportional to the sum of theiff values of the nodes in the path from the roobjp
i.e., the cost of using cutoff; for o is proportional to) _, . p, , diff (x). The variable
mirLcutoff(x) is the cutoffb; with minimum cost fore; amongst all cutoffs that are
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+

*

Fig. 1. Snapshot of the data structure used by algorithmIn the situation depicted above there are eight
candidate cutoffs labeldm, . . ., b7, appearing as leaves of the tree. The vaduialls betweerb; andb,. The
path P(by) is shown with dotted lines. Theiff values of all nodes marked with a™are increased by the
value of the cutoff at the node plasThediff values of the nodes marked with a “#” are increasea;byhe
min_cutoff andmin_costvalues of all marked nodes (whether marked withkA “#,” or “+") are updated.

leaves ofT (x). The variablemin_cosix) is closely related to the cost of the best cutoff
amongst the leaves @f(x); in particular, it is the cost of the best cutoff amongst the
leaves ofT (x) minus the sum of thdiff values of the nodes iR (parenix)). Formally,
MIN.COS(X) = MiNg 1) {21 -t COSIXi, P} — D icpparent) diff (). It is important to
note that since two siblings i have the same parent, th@n_costvalues at the two
siblings can be directly compared to get tha cutoff value at the parent.

Thetreeisinitialized appropriately. After routid1, algorithmA, outputamin_cutoff(x)
as its cutoff for thetth round. Leth; < x; < bj;1. For the data structure to be consistent
after requesk; (thetth round), the algorithm needs to increase the cost of each dytoff
forO <i < j, byl + c (which varies withi), and the cost of each cutdif for which
i <m <s, byx (which is independent df). As shown in Figure 1, the data structure
is kept consistent by addirg + c to thediff value of each of the leaves 0 j, and by
addingx; to thediff values of each right child of the nodesH(by;) that is not itself in
P(b)). (Notice that exactly oneiff value in the path from each leaf to the root is updated.)
Algorithm A, updates thenin_cutoff andmin_costvariables for the nodes whosif
values were changed and their ancestors.mimecostvalues are updated using the re-
lation min_cost(x) = min{min_cos{left_child(x)), min_costright_child(x))} + diff (x).
(The correctness of this update procedure follows by induction.) Aécutoff(x) is
updated to be thmin_cutoff of the child ofx that has the smallenin_cost

The number of leaves in the tree@(c/s). The time to update théiff values of the
cutoffsbj, 0 < i < |, is O(min{x, c}/¢), since eachlj, b 1] is at leasts/2 in size.
Updating the othediff values takes time proportional to the height of the tree, which
is O(log(c/e)). Hence, the amount of time to make the updated (emin{x;, c})/e +
log(c/e)). The leaves O- - | and (most of) their ancestors can be updated on-line as time
passes, with an extr@(log(c/e)) processing required at the end.
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5. Getting Algorithms L and Lgs from Algorithm A,. In this section we prove
Theorems 1 and 2 by developing our algorithimandL .

5.1. Algorithm L. Our convergent algorithrh is obtained by running\, with con-
tinually decreasing. Clearly, if we startA,, s sufficiently far back in the past and use
the cutoffs generated by it for théh round, we will have an algorithm that converges to
optimal. For obvious computational reasons, we do not want to maintain too Aany
with differente’s at the same time.

Roughly speaking, algorithrh gets over this problem by starting a ney with
e ~ 1/4/t only in roundj, such thatj ~ 4. It “warms up” A, through 4+2, evaluating
the strategies but not using the cutoffs generated byWhenA, is sufficiently warmed
up, algorithmL uses the cutoffs generated By until the 4*2 round, and then discards
A.. This continual learning helps algorithinto converge to optimal, while maintaining
only a small number of,’s at any one time.

Let ¢., the expected number of examples seen in the first stage by algotithbe
as defined in Lemma 1. Formally, algoritimdoes the following.

Algorithm L
begin
for each round with resource use timg do
begin
if there is nccurrent A then use a default threshold
elseuse the threshold generated by therent A
endif
ift=4 — {1/5+2 then start a copy ofA; »i+2 and call this aractive A endif
if t =4' andi > 2then
discardcurrent A, if one exists;
setcurrent A to be Ay
endif
feed resource use time to eachactive A
end
end

Atany sufficiently large timé, there are at most three actidg's; i.e.,if4 <t < 4+1
the activeA,’s are Ay 5, Aqjzi+1, andAq i+2. Hence, the space used by algorithris at
most three times the space used by algori#hyi+2, which we know from Section 4.1
is O(c/2) = O(cy/D). Inroundt, 4 <t < 4+ algorithm A;» has seen at least
4 — 4-2 = 2. 4" examples in its second stage; from Theorem 3, algoritar is
away from optimal by at most

1 [In(t(c+ M)/2) _ Int
E‘f‘kl(c‘i'M) W_O< T)

The update time bound follows from Section 4.3.
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5.2. Algorithm Lg. Algorithm Ls is exactly A, with ¢ set appropriately such that
S = B + v + maxX{ni, n21}. (See Section 4.1.) Sinee= ©(c/s), Theorem 2 follows
from the discussion in Section 4. The lower bounds@nrises frome being suitable.

6. Adaptive Disk Spindown via Rent-to-Buy. As described in Section 1, the disk
spindown scenario can be modeled as a rent-to-buy problem, where spinning the disk is
equivalent to renting, and a spindown is equivalent to a buy. If energy conservation were
the sole consideration of a disk spindown algorithm, the cost of adyig/the ratio of

the energy required to spindown the disk and spin it back up versus the power to keep
the disk spinning. In practice, there are two conflicting goals of a disk spindown policy:
conserving energy and preserving response time performaramaive disk spindown

the user specifies the relative importaaagf latency with respect to conserving energy,
and the cost of the increased latency is integrateddntbe cost of the buy. We now
describe precisely how this is done.

Let Ps be the power consumed by a spinning disk. Typically, a spundown disk con-
sumesPsq > 0 power, wherePsq is much smaller thas. Let T be the net idle time
at disk?! This implies that the disk would consume at le&ist Psq energy independent
of the disk spindown algorithm. While comparing disk spindown algorithms for how
well they do in terms of energy consumed, it is instructive to comparexbess energy
Ex, consumed by a disk while using spindown algoritimwe define€x as the total
energy consumed by algorithKiminusT - Psq. (This is essentially equivalent to saying
that the power for keeping the disk spinningAs— Psq, and the power consumed by a
spundown disk is zero.)

The response time delay incurred while waiting for a spinup is proportional to the
amount of time required to spinup a spundown disk. A natural measure of the net response
time delay is, therefore, the number of operations that are delayed by a spinup. (Other
measures of response time delay are possible as discussed in Section 7.2.5, item 4.)

In adaptive disk spindown, the user specifies a pararaetke relative importance of
latency with respect to conserving energy. Let e the number of operations delayed
by a spinup for algorithnX. Given a disk (spindown) management algorithmand a
user specified parametarwe define EG, theeffective cosof algorithm X, as

(4) ECx = &x +a- Ox.

The goal of the disk spindown algorithm is to minimize the effective cost. The effective
cost models the tradeoff between energy and response time in a natural fashion. In
particular, a small value od implies that energy conservation is the more important
activity, while a larger value od implies that response time is more critical.

Minimizing effective cost can be modeled in the rent-to-buy scenario thus. Given
the relative importanca, we determine the buy cost By definition, the value ot
is the ratio of the effective cost for a spindown versus the effective cost per unit time
to keep the disk spinning. Since a spindown delays one operation, the effective cost of

7 We assume that operations are synchronous, and that every algorithm sees the same sequence of idle times
at disk. If this is not trueT can be defined as the minimum taken over all algorithms of the net idle time at
disk.
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a spindown isEgq + &, whereEgq is the total energy consumed by a spindown and a
spinup. The effective cost per unit time to keep the disk spinnirgy is Psq. Hence,

¢ = (a+ Esq)/(Ps — Psg). For a given disk, the buy costis linearly related to the
relative importance parametar

7. Experimental Results. In this section we describe the results of simulating our
algorithn? L from Section 5.1 for the disk spindown problem. We first describe the
methodology used in our simulations and then describe the results of the simulation.

7.1. Methodology We simulated algorithrh using a disk access trace from a Hewlett-
Packard 9000/845 personal workstation running HP-UX. This trace is described in [18],
and a portion of this trace was also used in a previous study of disk spindown policies
[4]. The trace was obtained by Ruemmler and Wilkes by monitoring the disk for roughly
2 months; it consisted of 416,262 accesses to disk.

We studied our algorithm for two disks, the Kittyhawk C3014A and the Quantum
GoeDrive. The characteristics of the two drives are given in Table 1. (This table is
derived from [4].) For our studies, we merged the active and idle states of the disk into
one active state; notice that a disk can read and write data only in the active state. By
merging these two states we ensure that a “buy” corresponds to a spindown. As in [4],
we assumed that a disk access takes the average time for seek and rotational latency. We
also assumed that all operations and state transitions take the average or “typical” time
specified by the manufacturer, if one is specified, or else the maximum time.

Itis difficult to determine from a disk access trageya specific access arrived at disk.

We assumed that, if the disk is spundown, the application waits for the disk to spinup
and complete the requested operation, and then performs the same sequence of opera-
tions as in the original system. In other words, although our simulations used disks that
were different from the one on which the trace was collected, in our simulator we main-
tained the interarrival time of events at disk as in the original trace: if, in the original trace,

Table 1. Disk characteristics of the Kittyhawk C3014A and QuantumeBive 120. (This
table appears in [4].)

- Hewlett-Packard uantum
Characteristic Kittyhawk C3014A Go?Drive 120

Capacity (Mbytes) 40 120
Power consumed, active (W) 1.50 1.65
Power consumed, idle (W) 0.62 1.00
Power consumed, spundown (W) 0.27 0.20
Power consumed, spinup (W) 2.17 5.50
Normal time to spinup (s) 1.10 2.50
Normal time to spindown (S) 0.55 6.00
Average time to read 1 Kbyte (ms) 22.50 26.7

8 Instead of scheduling a nef, att ~ 4', in our simulations we scheduled a néw att ~ 2'.
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thetth access at disk arrivetl seconds after thé — 1)th access, in our simulation, we
assumed that thi¢h access arrived seconds after th@ — 1)th access was completed by

the disk. The basic problem with any strategy is that data dependency between different
operations cannot be derived from the trace.

We performed simulations for different valuespthe relative importance of response
time to energy. For eacl, we computed the buy costusing the strategy described in
Section 6. We compared our algoritimagainst the following on-line algorithms: the
two-competitive algorithmwhich spins down the disk after seconds of inactivity,
and fixed-threshold policies that spindown the disk after 5 seconds, 30 seconds, and
5 minutes of inactivity; we also compared algoritlhnagainst theptimal off-linerent-
to-buy algorithm, which knows the future and spins down the disk immediately if the
next access is to take place more tieaeconds in the future. For each algoritbimwe
computec€y, the excess energy consumed,, @he number of operations delayed by a
spinup; from these values we computed& @e effective cost of algorithrX, using (4).

For the HP trace, the maximum interarrival time was 1770.4 seconds; the maxdmum
we used corresponded tecaf 1770.4.

7.2. Results In this section we present the results of our simulations. We first see
how the effective cost varies with parametgand then look at how excess energy and
number of operations delayed vary wighRecall that the parametaiis linearly related

to the buy cost. In particular, for the Kittyhawk disk; = 2.54+ a/1.225, and for the
GoeDrive, c = 10.33+ a/1.45.

The discussion from Section 6 implies that algorithrand the 2-competitive algo-
rithm try to optimize for effective cost as defined by (4). In particular, for really small
values ofa, algorithmL will essentially try to reduce excess energy, and for really large
values ofa, algorithmL will essentially try to reduce number of operations delayed.

7.2.1. Effective Cost versus a Figures 2 and 3 show how the effective cost varies with
parametea using the Kittyhawk and GeDrive disks, respectively. Each figure plots the
curves for all values od, and a clearer view for wheais small.

We observe that algorithinperforms bestamongst the on-line algorithms for (almost)
all values ofa. (Itis roughly 1% worse than the 5-second thresholdftying between
18 and 34 while using the Kittyhawk disk, and farying between 14 and 28 while
using the GeDrive.) In particular, the effective cost for algorithimis 6—25% less than
the effective cost of the 2-competitive algorithm (except for a small range of values
of a between 34 and 60 with the Kittyhawk disk and fobetween 28 and 58 for the
GoeDrive when the effective costs for the two algorithms are roughly the same).

As should be expected, each fixed threshold algorithm performs well for a very
limited range of values foa. Interestingly, the 5-second threshold for certain small
values ofa and the 5-minute threshold for certain large valuea pérforms better than
the 2-competitive algorithm.

7.2.2. Excess Energy versus aAs discussed in Section 6, whaiis small, conserving
energy is more important. Figure 4 plots the variation of excess energyawihng the
Kittyhawk and GeDrive disks for the various algorithms.

We observe that for small values af algorithmL has the smallest excess energy
amongst all on-line algorithms. In fact, it does better than the 5-second threshold, and
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Fig. 2. Variation of effective cost witla for the Kittyhawk disk. Part (b) zooms the portion of the graph for
small values ofa. The effective cost of the 5-minute threshold is comparatively high (the curve lies above
2,240,000), and is omitted from (b).
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its curve is almost parallel to the curve for the optimal off-line algorithm. In particular,
algorithmL saves 17—-60% more excess energy compared with the 2-competitive algo-
rithm, and 6—42% more excess energy compared with the 5-second spindown threshold
for small values of (i.e.,a < 25).

We also observe that for small valuesagfthe 5-second threshold does better than
the 2-competitive algorithm in terms of saving excess energy. (From Figures 2 and 3,
we observe that, for most of these valuespthe 5-second threshold is also better than
the 2-competitive algorithm in terms of effective cost.)

7.2.3. Operations Delayed versus a As discussed in Section 6, wharis large, we

want to reduce the number of operations delayed. Figure 5 plots the variation of number
of operations delayed with using the Kittyhawk and GsDrive disks for the various
algorithms.

We observe two interesting phenomenon: first, the curves for the 2-competitive algo-
rithm and the optimal off-line algorithm coincide for a large range of values.f8econd,
algorithmL reduces the number of operations delayed over both these algorithms for
sufficiently largea.

7.2.4. Adaptability and Rent-to-Buy A different way of viewing the tradeoff between
excess energy and response time is presented in Figure 6. In this figure excess energy
is plotted as a function of number of operations delayed, and the different points on the
curve are obtained by varyirgg in particular, the value di (or equivalentlyc) decreases

from left to right along the curve. (The curve for the &rive is similar in shape and is
omitted.)

Figure 6 clearly shows the tradeoff between excess energy and response time obtained
by varyinga. We observe that by increasing the value of one pararagegjuivalent to
varying the value of the buy cos}, we can effectively trade power for response time.
Concerns on how to trade power for response time effectively have been raised for the
disk spindown problem [3], [4], and the rent-to-buy model provides an elegant way of
achieving this tradeoff.

7.2.5. Other Observations Some other observations from our simulations are as fol-
lows:

1. As mentioned in Section 7.2.2, energy conservation is crucial whsismall, and
algorithm L is best amongst the on-line algorithms in terms of excess energy for
smalla. Interestingly, we observed that the excess energy of algotitisriess than
the excess energy of the 2-competitive algorithmaibralues ofa.

2. We also compared our algorithinagainstL s allowing at most 25 potential cutoffs
for algorithmLs. Not surprisingly, algorithnL. performed better than algorithiry;
however, preliminary results suggest that algorithntypically saved only 2-5%
more excess energy than algorithm Allowing more potential cutoffs for algorithm
Ls might help.

3. Inour simulations, we used at most 300 cutoffs for our algorithifhe computation
time for the algorithm was therefore minimal. Interestingly, algorithndid not
change its cutoffs too often in stage 2. (The cutoff changed between 14 and 56 times
when measured over all valuesaj
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Fig. 6. Excess Energy;| , as a function of the number of operations delayed, for algorithmL. The graph
was obtained by varying (i.e., c); the value ofa increases along the curve from left to right.

4. For measuring response time performance, we used the metric of the number of
operations delayed. An alternative measure of response time performangelie R
number of read operations delayed by a spinup for algori¥if@]. This metric
redefines the effective cost from (4) 8st+ a - Rx. The rent-to-buy model can be
easily modified to evaluate this measure, by having different costs for a spindown
(i.e., differentc’'s) depending on whether the operation is a read or a write. We plan
to consider the effect of this modification to the rent-to-buy cost in future work.

For purely comparison purposes, Figure 7 plots the number of reads delayed as
a function ofa for the different algorithms; the algorithms are still optimizing for
effective cost as defined by (4). (In other words, the rent-to-buy algorithms think they
are optimizing for number of operations delayed, while we measure the number of
reads delayed.) Interestingly, the curves from Figure 7 are similar to the corresponding
curves from Figure 5(a), suggesting that we should expect to obtain similar results
as presented in this paper by using the number of reads delayed metric instead of the
number of operations delayed metric, when we modify the definition for effective
cost appropriately.

8. Conclusions. Inthis paperwe have looked at the problem of a sequence of unit rent-
to-buy choices where the resource use times are independently drawn from an unknown
probability distribution. We have described how important systems problems (like the
disk spindown problem in mobile machines) can be modeled by a rent-to-buy framework.
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Fig. 7.Number of reads delayed as a functioradbr the various algorithms, while the rent-to-buy algorithms
are optimizing using the definition of effective cost from (4). This graph s purely for illustration and comparison
with Figure 5(a.) See Section 7.2.5, Item 4.

For the rent-to-buy problem, we have looked at computationally efficient strategies whose
expected cost for thgh resource use converges to optimat as oo for any bounded
probability distribution on the resource use times. We have also looked at a fixed-space
algorithm which almost converges to optimal. We are currently looking at modeling
the resource use times as being generated by a Hidden Markov Model (HMM) and
have optimality results for special types of HMMs. Recently, Markov models have been
effectively used to analyze caching and prefetching algorithms assuming user requests
to pages in cache are generated by Markov sources [9], [12], [22].

Simulations of our algorithm for the disk spindown problem using disk access traces
obtained from HP suggest that the rent-to-buy modelis a good way to study disk spindown
and related systems issues; in particular, a single parametfectively models the
tradeoff between power and response time. We also introduced the new metric of “excess
energy” that really reflects the relative performance in terms of energy consumed of one
disk spindown algorithm against another. We introduced a natural notion of “effective
cost” that incorporates the two metrics of excess energy, and number of operations
delayed weighted by a user-specified paramaténto one cost. We observed that our
algorithmL out-performed other on-line algorithms in terms of effective cost for almost
all values ofa; in particular, it had 6-25% less effective cost than the 2-competitive
algorithm. In addition, for small values @ (corresponding to when saving energy
is critical), we observed that our algorithin saves 17-60% more of excess energy
compared with the 2-competitive algorithm, and 6—42% more excess energy compared
with the 5-second fixed threshold.
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