
Algorithmica (1999) 23: 31–56 Algorithmica
© 1999 Springer-Verlag New York Inc.

Adaptive Disk Spindown via Optimal Rent-to-Buy
in Probabilistic Environments1

P. Krishnan,2 P. M. Long,3 and J. S. Vitter4

Abstract. In the single rent-to-buy decision problem, without a priori knowledge of the amount of time a
resource will be used we need to decide when to buy the resource, given that we can rent the resource for
$1 per unit time or buy it once and for all for $c. In this paper we study algorithms that make a sequence of
single rent-to-buy decisions, using the assumption that the resource use times are independently drawn from
an unknown probability distribution. Our study of this rent-to-buy problem is motivated by important systems
applications, specifically, problems arising from deciding when to spindown disks to conserve energy in mobile
computers [4], [13], [15], thread blocking decisions during lock acquisition in multiprocessor applications [7],
and virtual circuit holding times in IP-over-ATM networks [11], [19].

We develop a provably optimal and computationally efficient algorithm for the rent-to-buy problem. Our
algorithm usesO(

√
t) time and space, and its expected cost for thet th resource use converges to optimal as

O(
√

log t/t), for any bounded probability distribution on the resource use times. Alternatively, usingO(1)
time and space, the algorithm almost converges to optimal.

We describe the experimental results for the application of our algorithm to one of the motivating systems
problems: the question of when to spindown a disk to save power in a mobile computer. Simulations using disk
access traces obtained from an HP workstation environment suggest that our algorithm yields significantly
improved power/response time performance over the nonadaptive 2-competitive algorithm which is optimal
in the worst-case competitive analysis model.

Key Words. Mobile computing, On-line algorithms, Machine learning, Power conservation, Disk spindown,
Rent-to-buy, Multiprocessor spin/block, IP-over-ATM, Virtual circuit holding time.

1. Introduction. Thesingle rent-to-buy decisionproblem can be described as follows:
we need a resource for an unknown amount of time, and we have the option to rent it
for $1 per unit time, or to buy it once and for all for $c. For how long do we rent the
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resource before buying it? The best algorithm with full prior knowledge of how long the
resource will be needed (an off-line algorithm) will buy the resource immediately if the
resource will be needed for at leastc time units and rent otherwise. An on-line algorithm
(i.e., one without a priori knowledge of how long the resource will be needed) that rents
the resource forc units of time and then buys it incurs a cost of at most double the
cost of the best off-line algorithm. This competitive factor5 of 2 is the best possible (for
deterministic algorithms) in the worst case [8]. If we know of a probability distribution
on the time the resource is needed, we can usually find a rent-to-buy strategy whose
expected cost is substantially less than that of the on-line algorithm that waitsc time
units before buying.

In this paper we are interested in the rent-to-buy problem described above with two
important additional features motivated by practical applications. Many interesting sys-
tems problems can be modeled well by asequenceof single rent-to-buy problems. To
solve thet th single rent-to-buy problem (or thet th round), the on-line algorithm can use
what it has learned from the previoust−1 rounds. (The on-line algorithm that waits forc
time before buying in each round is still within a factor of 2 of the best possible.) We call
this thesequential rent-to-buyproblem, or just therent-to-buyproblem. In these real-life
situations we can assume that the time for which the resource is needed in each round
is drawn from a probability distribution. However, it is unreasonable to assume that the
distribution is known a priori. We now describe three interesting problems modeled by
a sequence of rent-to-buy decisions.

THE DISK SPINDOWN PROBLEM. Energy conservation is an important issue in mobile
computing. Portable computers run on battery power and can function for only a few
hours before draining their batteries. Current techniques for conserving energy are based
on shutting down components of the system after reasonably long periods of inactivity.
Recent studies show that the disk subsystem on notebook computers is a major consumer
of energy [4], [13], [15]. Most disks used for portable computers (e.g., the small, light-
weight Kittyhawk from Hewlett Packard [16]) have multiple energy states. Conceptually,
the disk can be thought of as having two states: thespinningstate in which the disk can
access data but consumes a lot of energy and aspundownstate in which the disk consumes
effectively no energy but cannot access data.6 Spinning down a disk and spinning it up
consumes a fixed amount of energy and time (and also produces wear and tear on the
disk). During periods of inactivity, the disk can be spundown to conserve energy at the
expense of increased latency for the next request. Thedisk spindown problemis to decide
when to spindown the disk so as to conserve energy, with acceptable latency.

The disk spindown scenario can be modeled as a rent-to-buy problem as follows. A
round is the time between any two requests for data on the disk. For each round, we need
to solve the disk spindown problem. Keeping the disk spinning is viewed as renting, since
energy is continuously expended to keep the disk spinning. Spinning down the disk is
viewed as a buy, since the energy to spindown the disk and spin it back up upon the
next request is independent of the remaining amount of time until the next disk access.

5 A k-competitive algorithm incurs a cost of at mostO(1) plusk times the cost of the optimal off-line algorithm.
6 In general, the disks provide more than just two power management states, but only one state, the fully
spinning state, allows access to data.
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The cost of the increased latency in serving the next disk access can also be integrated
into the cost of the buy, if the algorithm is given as an input the relative importance of
conserving energy and responding quickly to disk accesses. (This is discussed in detail
in Section 6.) Based on observations of disk access patterns in workstation environments
[18], the times between accesses to disk (which define the rounds) can be assumed to
be generated by a probability distribution. The disk spindown problem will be our main
motivating application for this study.

THE SPIN/BLOCK PROBLEM. Another interesting and important problem from multi-
processor applications, thespin/block problem, involves threads trying to acquire locks
to protect access to shared data [7]. A round is defined by a thread requesting locked
data and eventually acquiring the lock. In a round, the system can have the thread wait
(or spin) until the lock is free, incurring a fixed cost per unit time for wasted processor
cycles, or block and incur a higher context switch overhead. The spinning can thus be
viewed as renting, and a block can be viewed as a buy. In this situation too, practi-
cal studies suggest that lock-waiting times can be assumed to obey some unknown but
time-invariant probability distribution [7].

THE VIRTUAL CIRCUIT PROBLEM. Deciding virtual circuit holding times in IP-over-
ATM networks is another scenario modeled by the rent-to-buy framework [19]. When
carrying Internet protocol (IP) traffic over an Asynchronous Transfer Mode (ATM) net-
work, a virtual circuit is opened upon the arrival of an IP datagram, and the ATM
adaptation layer has to decide how long to hold a virtual circuit open. There are many
possible pricing policies for virtual circuit holding times. As described in Section 5 of
[19], in future ATM networks it is expected that a large number of virtual circuits could
be held open by paying a charge per unit time to keep the circuit open. Keeping the
virtual circuit open can be thought of as a “rent” while closing it can be considered a
“buy.” The interarrival time of packets on a circuit (i.e., the resource use times in the
rent-to-buy model) can be modeled as being drawn independently from a probability
distribution [14], [19].

An algorithm for the sequential rent-to-buy problem can be visualized in two ways.
In any round, the algorithm can be thought of as making sequential binary decisions of
“should I buy now?” Alternatively, we can think of the algorithm as setting a threshold
or cutoff on the cost it is willing to accrue before buying, and behaving according to the
cutoff. These two views are trivially equivalent; we adopt the second for convenience.
There are two important requirements of any good on-line algorithm for the rent-to-buy
problem: the algorithm should produce good cutoffs, and it should use minimal space
and time to output its cutoffs. In this paper we develop on-line algorithms for the rent-
to-buy problem in probabilistic environments, assuming that the resource use times are
independently randomly drawn from a fixed but unknown probability distribution.

The most straightforward solution to the problem [8] is to store all past resource use
times, and use that cutoffb for the current round which would have had the lowest total
cost had we used it in the past. Straightforward application of results of Vapnik [20]
implies that the expected rent-to-buy cost of this strategy converges to that of the best
fixed cutoff. One can easily see that the cutoffb at any given time falls on (actually, near)
one of the past resource use times; however, even taking this into account, this solution
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is computationally expensive. For thet th round, this solution would need space and time
proportional toO(t), and this is unacceptable in system environments.

In this paper we develop an algorithmL for the rent-to-buy problem which, for
arbitrary probability distributions with support on [0,M ], converges to optimal; i.e., the
cost of the algorithm converges to the cost of the best algorithm with full prior knowledge
of the distribution. More importantly, for thet th round that lastsxt time, the algorithm
usesO(c

√
t) space, generates its cutoffs inO(1) time, and usesO((min{xt , c})

√
t +

log(ct)) time to update its data structures. Alternatively, our algorithm can be adapted
to work in a situation when the space it can use is limited. Presented withO(s) space,
our algorithmLs usesO(1) time to generate cutoffs,O((min{xt , c})s+ log(cs)) time
to update its structures, and almost converges to optimal, being away from optimal
additively byO(min{M, c}/s). TheO(xt ) component of the time used in updating the
data structure can be done “on the fly” as the round is progressing. For example, in the
disk spindown scenario, let thet th idle time at disk bez < c seconds. Before the idle
period starts, algorithmLs outputs its recommended spindown threshold usingO(1)
time, and updates its data structure inO(zs+ log(ct)) time. The updates corresponding
to the “zs” term can be done while the disk is waiting for the next access.

Most practical situations are well-modeled by bounded distributions. For example,
in the disk spindown scenario, any reasonable algorithm will spin down the disk after
a few minutes (say, 30 minutes) since the last access. Therefore, all idle times at disk
greater than 30 minutes are practically equivalent, and can be assumed to be 30 minutes
without loss of generality, resulting in a distribution with bounded support.

Simulations of our algorithm on real-life disk access traces obtained from HP show
that by giving a suitable value ofc to our algorithm, we effectively trade power for
response time (latency). In Section 6 we introduce the natural notions of excess energy
and effective cost. The “excess energy” discounts from the total energy the portion that
everyalgorithm would have to spend; the effective cost is a measure that merges the
effects of energy conservation and response time performance into one metric based
on a user-specified parametera, the relative importance of response time to energy
conservation. (The buy costc varies linearly witha.) We show that our algorithmL
is best amongst the on-line algorithms considered in terms of effective cost for almost
all values ofa, saving effective cost by 6–25% over the optimal on-line algorithm in
the competitive model (i.e., the 2-competitive algorithm that spins down the disk after
waiting c seconds). In addition, for small values ofa (corresponding to when saving
energy is critical), our algorithm when compared against the 2-competitive algorithm
reduces excess energy by 17–60%, and when compared against the 5 second threshold,
it reduced excess energy by 6–42%.

1.1. Related Work. The single rent-to-buy problem has been studied in the worst-case
setting and efficient deterministic and randomized algorithms have been developed for
the problem by Karlin et al. [8]. In particular, 2-competitive deterministic algorithms and
e/(e−1)-competitive randomized algorithms have been developed. In [8] it was claimed
that there is an adaptive algorithm achieving a competitive ratio approachinge/(e− 1)
on input sequences generated according to any time invariant probability distribution.
However, their technique as stated is computationally inefficient.

For the disk spindown problem, current mobile computers spin disks down after about
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5 minutes of inactivity. In [4] and [13] the authors propose a more aggressive spindown
policy, and support their proposal by simulation studies on workstation and notebook
traces. The studies suggest that the gain in energy often overshadows the loss in response
time. In [4] the comparison of fixed-threshold strategies is made against optimal off-
line algorithms. The authors also mention trying out predictive disk spindown policies.
Adaptive spindown policies that continually change the spindown threshold based on
perceived inconvenience to the user are studied in [3]. (Trading power for response time
is an important systems necessity; our rent-to-buy modeling allows us to achieve this
tradeoff in a uniform and elegant manner as explained in Section 6.) In [5] Greenawalt
looks at the disk spindown problem assuming a Poisson arrival of requests at disk, and
studies disk spindown and reliability issues. More recently, our rent-to-buy modeling for
the disk spindown problem has motivated other learning theory-based approaches for
disk spindown [6].

Karlin et al. in [7] have studied the spin/block problem empirically, evaluating differ-
ent spin/block strategies including fixed-threshold and adaptive strategies. The virtual
circuit problem has been empirically studied by Saran et al. [19], where they propose a
Least Recently Used (LRU)-based holding time policy as performing well in their stud-
ies. The first LRU-based holding time policy they study is the 2-competitive algorithm
described earlier in this paper, and their second holding time policy involves estimating
the mean interreference interval with exponential averaging. In [11] Keshav et al. em-
pirically study an adaptive policy for the virtual circuit problem that tries to estimate the
distribution of interarrival times by keeping a histogram of observed interarrival times
grouped into fixed-size buckets.

In Section 2 we describe the main analytical results of the paper. We present algorithm
Aε in Section 3; algorithmAε lies at the heart of our optimal rent-to-buy algorithms,L
andLs. We analyze algorithmAε for space used, computational time, and convergence
rate in Section 4. We describe how algorithmAε can be used to get algorithmsL and
Ls in Section 5. We explain in Section 6 precisely how the disk spindown problem
can be modeled in the rent-to-buy framework, when the user is concerned about energy
conservation and response time performance. We present our experimental results in
Section 7 and conclude in Section 8.

2. Definitions and Main Analytical Results. We denote the reals by R, the nonneg-
ative reals byR+, and the positive integers by N. Anon-line rent-to-buy algorithmis
given the relative costc ≥ 1 of buying. It works in rounds, where in thet th round it first
formulates a cutoff on the amount of time it will wait before buying, and then gets the
t th resource use time. A rent-to-buy algorithm defines a mapping from

⋃
n∈N (R+)n (the

past resource use times) toR+ (the cutoff generated). In other words,A(x1, x2, . . . , xt )

is the cutoff generated by algorithmA in the (t +1)st round, when the previous resource
use times werex1, x2, . . . , xt . If the resource use time in any round isx, then the cost
of choosing cutoffb is

costc(x,b) =
{

x if x ≤ b,
b+ c otherwise.
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For the disk spindown problem, the resource use time in roundt corresponds to thet th
idle time at disk, and a cutoff is a spindown threshold.

Our first main result is an algorithmL that approaches optimal and is efficient in
terms of the space and time it uses.

THEOREM1. For any c> 1, M > 1, there is a rent-to-buy algorithm L that, on round
t with resource use time xt ,

• uses O(c
√

t) space,
• outputs its choice of cutoff in O(1) time, and updates its data structures in

O((min{xt , c})
√

t + log(ct)) time, and
• incurs a cost that approaches optimal: there exists k such that for any distribution D

on [0,M ], for all large enough t∈ N,

EEx∈Dt (costc(xt , L(x1, . . . , xt−1))) ≤ inf
a

Ez∈D(costc(z,a))+ k

√
ln t

t
.

Note that in Theorem 1, the samek can used for any distribution with support on
[0,M ]. Further, the time and space bounds are independent ofD as well. It is easy to
adapt algorithmL to get algorithmL ′ that successively increases its estimate ofM , and
converges to optimal for any distribution. However, the convergence rate of algorithm
L ′ would depend on the distribution.

In many practical situations, we would like to fix the amount of space and time used by
our algorithm while converging approximately, rather than exactly, to optimal. Algorithm
Ls, a restricted space version of algorithmL, can be used in this scenario.

THEOREM2. When presented with s> k ln2(M+c) ln ln(M+c) bytes of space, where
k is a constant independent of M and c, for the tth round, algorithm Ls outputs its choice
of cutoff in O(1) time, updates its data structures in O((min{xt , c})s+ log(cs)) time,
and, for any probability distribution D on[0,M ] for all large enough t∈ N, converges
approximately to optimal:

EEx∈Dt (costc(xt , Ls(x1, . . . , xt−1))) ≤ inf
a

Ez∈D(costc(z,a))+ O

(
min{c,M}

s

)
.

We simulated our algorithms for the disk spindown problem using disk access traces
obtained from an HP workstation environment. Our simulation results are described in
Section 7.

One obvious approach to attack the rent-to-buy problem in probabilistic environments
is to learn the distribution on times for the rounds, calculate the optimal cutoff for the
estimated distribution, and output that cutoff for each round. This is unacceptable from the
computational standpoint. In our algorithms we bypass the estimation of the distribution,
directly estimating the efficacy of different cutoff points. The analysis is complicated,
however, by the fact that there are infinitely many cutoff points to evaluate at any given
time on the basis of a finite number of samples from the distribution. We show for the
rent-to-buy problem that to get a good solution, it is sufficient to consider a small finite set
of possible cutoff points. The appropriate choice of this set depends on the distribution,
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and is done using the information gained in early rounds. We call this basic strategy, that
chooses the appropriate set of possible cutoffs and evaluates them to determine the best
cutoff to use in any round, algorithmAε.

Our algorithmL is based on algorithmAε. It chooses from among successively larger
finite sets of possible cutoff points to converge to optimal. A tree data structure, which
is modified dynamically, is used to store the estimated quality of each considered cutoff
point. AlgorithmLs sets appropriate parameters based on the available spaces, and uses
algorithmAε to converge approximately to optimal.

We first describe algorithmAε which lies at the heart of our optimal algorithmsL
andLs.

3. The Main Idea: Algorithm Aε. Algorithm Aε takes as parametersε andM , and
attempts to achieve an expected cost on a given round which is at mostε greater than
the expected cost incurred by the optimal cutoff. We also call a resource use time an
“example.” Our algorithms estimate optimal cutoffs based on past resource use times;
in other words, they estimate optimal cutoffs based on the examples they have seen.

Algorithm Aε works in two stages. In thefirst stageit uses a small number of examples
to generate a small number of candidate cutoffs. (For the small number of rounds that
constitute the first stage, the algorithm chooses an arbitrary cutoff, say buying immedi-
ately.) It fixes these candidate cutoffs and then starts itssecond stage. For thet th round
in the second stage, it evaluates the candidate cutoffs on the pastt − 1 examples, and
chooses the cutoff with minimum total cost. The important point is that these small num-
ber of candidate cutoffs when generated carefully are sufficient to achieve a small enough
cost, as described in Section 4.2. Also, updating these cutoffs can be done efficiently, as
described in Section 4.3. We call anε such that 0< ε < 1/(ln2(M + c) ln ln(M + c)) a
suitableepsilon; for technical reasons, we assume in our discussions thatε is suitable.

Note that the problem is trivial ifc ≥ M , since no reasonable algorithm would ever
buy in this case; the case of interest is whenc¿ M .

3.1. First Stage. In the first stage, algorithmAε generates candidate cutoffsb0, b1,

. . . , bv by partitioning [0,M ] into v intervals. Intuitively, to be accurate in its estimations
in the second phase, algorithmAε wants these candidate cutoffs to be close in one of
two senses: either that the probability of a point falling between them is not too large, or
in absolute distance. However, for computational efficiency, we do not want too many
candidate cutoffs. Hence, algorithmAε attempts to partition [0,M ] into v ≤ d4c/εe
intervals, such that

1. each interval is at leastε/2 in length, and
2. if an interval has length> ε/2, then the interior of the interval has probability at most
ε/2c.

The endpoints of the intervals define the candidate cutoffs.
We say that an interval satisfies thecomputational criterionif it is at leastε/2 in length,

and that it satisfies thedensity criterionif the probability of the interval is at mostε/2c. (In
other words, at the end of the first stage, algorithmAε ensures that every interval satisfies
the computational criterion, and intervals of length greater thanε/2 satisfy the density
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criterion.) Conceptually, we can think of algorithmAε as generatingv′ intervals that
each satisfy the density criterion, and then moving the potential cutoffs apart (discarding
intervals of size 0) to getv ≤ v′ intervals such that the computational criterion holds
for each interval. As a result of the VC theory [1], [21], it is easy to partition [0,M ]
into ν intervals satisfying the density criterion with high probability, by storingη =
2(v ln v) examples, and calling a proceduregenerate cutoffs( w, η, σ ) on [0,M ].
The proceduregenerate cutoffs breaks a specified interval intow intervals by
taking a setσ of η examples, and ensuring that in any interval we haveη/w examples
fromσ . (The proceduregenerate cutoffs can be implemented by sortingσ to getκ
and iteratively moving throughη/w examples inκ to define the intervals.)

Algorithm Aε implements its first stage in a space efficient manner by storing at most
O(v) examples at any time. It performs the first stage in threephases. In the first phase,
algorithm Aε partitions [0,M ] “roughly” into B big intervals, and in the second phase
it refines these big intervals one by one into approximatelyv′/B intervals each. While
refining a specific big interval, algorithmAε discards examples that do not fall in the
big interval. In the third phase, algorithmAε moves potential candidate cutoffs apart to
ensure that the computational criterion is met.

Formally, algorithmAε works as follows. Letδ = ε/(4(c + M)), and let the ar-
ray σ store the examples being retained by algorithmAε. In the first phase, it di-
vides the interval [0,M ] into B = 128 ln(1/δ) big intervals. It does this by collecting
η1 = 1024B ln(2B/δ) examples and callinggenerate cutoffs( B, η1, σ ) on inter-
val [0,M ]. Thesecond phaseconsists ofB subphases, where, in thei th subphase, algo-
rithm Aε divides thei th big interval intod4c/(Bε)e intervals. It does this by sampling at
mostη′2 = 4B(η2+ ln(2B/δ)) examples, whereη2 = 1024c ln(4c/(εδ))/(εB), and stor-
ing the firstη2 examples that fall within thei th big interval. Letη2,i ≤ η2 be the number
of examples stored in thei th subphase. AlgorithmAε callsgenerate cutoffs( d4c/
(Bε)e, η2,i , σ ) on thei th big interval. (We will see in Section 4.1 thatη2,i = η2 with high
probability.) At the end of the second phase, we are left with the requiredv′ ≈ d4c/εe
intervals. In the third phase, algorithmAε ensures that the computational criterion is
met. Let thei th interval at the end of the second phase be [l ′i , r

′
i ). Algorithm Aε sets

l0 = 0, r0 = max(ε/2, r ′0), and processes the intervals iteratively by settingl i = ri−1,
andr i = max(r ′i , l i + ε/2). The i th interval is defined to be [l i , ri ), and intervals such
thatl i = ri are discarded. The total number of resulting intervals isv ≤ d4c/εe.

The candidate cutoffs are defined to bebi = l i , 0≤ i < v, bv = M .

3.2. Second Stage. In the second stage, algorithmAε repeatedly chooses the cutoff
from among those in{b0, b1, . . . ,bv} that performed the best in the past. Formally, it
formulates itst th cutoff in the second stage as follows. Ifx1, x2, . . . , xt−1 are the resource
use times previously seen in the second stage, for alli ∈ N,0 ≤ i ≤ v, algorithm Aε
sets

qi =
t−1∑
j=1

costc(xj ,bi ).

It uses abi for whichqi ≤ qk for all k ∈ {0, . . . , v} as its cutoff for thet th round.
We now study the performance of algorithmAε in terms of space used, the convergence

rate, and time required for updates.
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4. Goodness of AlgorithmAε. In Section 4.1 we see that algorithmAε can be imple-
mented withO(v) space, and generates good cutoffs with high probability. In Section 4.2
we see that the distance algorithmAε is away from optimal approachesε ast gets large,
and in Section 4.3 we see that in the second stage the strategies can be updated efficiently
with a tree-based data structure.

4.1. Guarantees about the First Stage. Let δ = ε/(4(c+M)), B = 128 ln(1/δ), η1 =
1024B ln(2B/δ), andη2 = 1024c ln(4c/(εδ))/(εB) be as defined in Section 3.1. From
the discussion in Section 3.1, it follows that the space used by algorithmAε in the first
stage is bounded by the number of examples we use at any time plus the number of cutoffs
we retain; i.e., the space used is bounded byB+ v +max{η1, η2} = O(v) = O(c/ε).

The operations in the third phase of the first stage ensure that every interval satisfies
the computational criterion. We say that the first stagefails if at the end of the first stage
there is an interval of length greater thanε/2 not satisfying the density criterion. The
event that the first stage fails is a subset of the event that at the end of the second phase
there is some interval that does not satisfy the density criterion.

Let `ε be thetotal number of examples we see in the first stage; i.e., all examples,
including the ones we discard. We now see that the first stage fails with low probability
(i.e., probability 2δ).

LEMMA 1. Let `ε = d256c ln2((c+ M)/ε)/εe be the number of examples seen in the
first stage, let δ = ε/(4(c+ M)), and let E1 be the event that the first stage fails. Then,
for anyε that is suitable, Pr(E1) ≤ ε/(2(c+ M)).

To prove the above lemma, we use a technique due to Kearns and Schapire [10].
Lemma 2 below is a variant of the classical Glivenko–Cantelli theorem (see Section
12.3 of [2]). The precise bound of Lemma 2 follows immediately from the results of
Blumer et al. [1] using the techniques of Vapnik and Chervonenkis [21]. Informally,
Lemma 2 says thatm points are enough to estimate the probabilities ofeveryinterval
simultaneously.

LEMMA 2. Choose0< α, β ≤ 1
2, c ≥ 1, and a probability distribution D onR+. Then

if m = d(256/α)(ln(1/α)+ ln(1/β))e, then

Pr Ex∈Dm

(
∃a,b s.t. PrD((a,b)) ≥ 2α and

1

m

∣∣{ j : xj ∈ (a,b)}
∣∣ ≤ α) ≤ β

and

Pr Ex∈Dm

(
∃a,b s.t. PrD((a,b)) ≤ α

2
and

1

m

∣∣{ j : xj ∈ (a,b)}
∣∣ ≥ α) ≤ β.

The standard Chernoff bounds will be helpful in proving Lemma 1.

LEMMA 3 (Chernoff). For t independent Bernoulli trials, each of which has a proba-
bility of success at least p, let L E(p, t, r ) denote the probability that there are at most
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r successes in the t trials. Then, for 0< p < 1 and0≤ q ≤ p,

L E(p, t,qt) ≤ e−(p−q)2t/2p.

PROOF OFLEMMA 1. The value for̀ ε was obtained by assuming that the first phase
requires us to look atη1 = 4kB ln(2B/δ) examples, and thei th subphase of the second
phase requires us to look at a total ofη′2 = 4kc ln(2B/δ)/(εB)total examples, where
η2 = 4kc ln(2B/δ)/(εB), andB = k ln(1/δ)/2. We bound the probability of the first
stage failing by the probability of the event that at the end of the second phase there is
some interval that does not satisfy the density criterion.

We say that the first phase fails if any big interval generated in the first phase has
probability greater than 2/B or less than 1/2B. We say that thei th subphase fails if
any interval generated in thei th subphase has probability greater thanε/2c; the second
phase fails if, for anyi , thei th subphase fails. The lemma is proved if we can bound the
probability of the first phase failing or any of the subphases failing byδ/B, since the net
failure probability is then bounded by(δ/B) · (B+ 1) ≤ ε/(2(c+ M)).

From Lemma 2, by settingα = 1/B andβ = δ/(2B), we can easily verify that if we
look atη1 examples, the first phase fails with probability at mostδ/B. We now assume
that the first phase did not fail; i.e., the probability of any big interval is between 1/2B
and 2/B. We could fail in thei th subphase if we either do not getη2 examples in the
i th big interval, or if after using theη2 examples we get an interval with probability
> ε/2c. From Lemma 3, by substitutingp = 1/(2B), r = η2, and t = η′2, we see
that the probability that the number of examples that fall in thei th big interval is less
thanη2 is at mostδ/(2B). From Lemma 2, by settingα = εB/(4c) andβ = δ/(2B),
we see that the probability that theη2 examples did not divide thei th big interval into
subintervals with probability≤ ε/2c is at mostδ/2B. Hence the probability of thei th
subphase failing is at mostδ/B.

4.2. Convergence of Algorithm Aε. We have seen that the first stage works with high
probability. The main result of this subsection is to bound the performance ofAε.

THEOREM3. Choose M and c such that M> c ≥ 1. Choose anyε that is suitable,
and let m= d256c ln2((c+ M)/ε)/εe be the number of examples seen by algorithm
Aε in the first stage. There exists k1 > 0 such that for sufficiently large t∈ N, for any
distribution D on[0,M ],

E(Eu,Ex)∈Dm×Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)))

≤ (inf
a

Ez∈D(costc(z,a)))+ ε + k1(c+ M)

√
ln ((c+ M)t/ε)

t
.

To prove the above theorem, we first show that if the first stage was successful, then
one of the possible cutoffsbj generated in the first stage is onlyε/2 away from optimal
(Lemma 4). Intuitively, by choosing the cutoff with minimal cost in the second stage,
we are close tobj in cost. We then bound the error in expected cost resulting from the
first stage failing and prove Theorem 3.
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LEMMA 4. Choose0 < ε ≤ 1
2, c ≥ 1, s ∈ N, and a probability distribution D on

[0,M ]. Choose0 = b0 < b1 < · · · < bs = M. If, for all j ∈ {1, . . . , s}, either
PrD((bj−1,bj )) ≤ ε/2c or bj − bj−1 = ε/2, then there exists i∗ ∈ {0, . . . , s} such that

Ez∈D(costc(z,bi ∗)) ≤ inf
a

Ez∈D(costc(z,a))+ ε
2
.

PROOF. Intuitively, if the optimal cutoff lies betweenbj−1 andbj , the way in which the
candidate cutoffs were chosen ensures that the interval(bj−1,bj ) is “small enough” (in
probability or absolute size) so that one ofbj−1 or bj is close to optimal.

Assume without loss of generality that nobi is exactly optimal; i.e., for allδ > 0,
there exists ana∗ 6∈ {b0, . . . ,bs}, such that costc(z,a∗) = infa Ez∈D(costc(z,a)) + δ.
Chooseδ > 0 and fixa∗, bj−1 < a∗ < bj . We now show that one ofi ∗ = j − 1 or
i ∗ = j satisfies the lemma.

Case1: Pr(bj−1,bj ) ≤ ε/2c. In this case we show that the lemma holds withi ∗ =
j − 1. If a resource use timez lies outside of the interval [bj−1,a∗), then the cutoffa∗

incurs at least as much cost as the cutoffbj−1, sincea∗ > bj−1. If the resource use time
z ∈ (bj−1,a∗], then the expected extra cost of cutoffbj−1 is at mostc·PrD((bj−1,a∗)) ≤
c · (ε/2c) ≤ ε/2.

Ez∈D(costc(z,bj−1)) ≤ Ez∈D(costc(z,a
∗) | z 6∈ [bj−1,a

∗)) · Prz∈D(z 6∈ [bj−1,a
∗))

+ Ez∈D(costc(z,a
∗)+ c | z ∈ (bj−1,a

∗]) · PrD((bj−1,a
∗])

≤ Ez∈D(costc(z,a
∗))+ ε

2
(sincePrD((bj−1,bj )) ≤ ε/2c)

≤ inf
a

Ez∈D(costc(z,a))+ δ + ε
2
.

Case2: Pr(bj−1,bj ) > ε/2c. In this case we show that the lemma holds withi ∗ = j .
Note thatbj − bj−1 = ε/2. For all c > 1 and all distributionsD, Ez∈D(costc(z,a))
viewed as a function ofa is Lipschitz bounded in one direction in a sense. (This is in
spite of the fact that this function ofa has jump discontinuities in general.) That is, if
0≤ a1 < a2, then

Ez∈D(costc(z,a2))− Ez∈D(costc(z,a1)) ≤ a2− a1.

Hence,

Ez∈D(costc(z,bj ))− Ez∈D(costc(z,a
∗)) ≤ bj − a∗ ≤ bj − bj−1 ≤ ε

2
,

which implies that

Ez∈D(costc(z,bj−1)) ≤ inf
a

Ez∈D(costc(z,a))+ δ + ε
2
.

Sinceδ > 0 was chosen arbitrarily, this completes the proof.

The standard Hoeffding bounds will be useful in proving Theorem 3.
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LEMMA 5 (see [17]). Choose M> 0, a probability distribution D on[0,M ], and
m ∈ N. Then

Pr Ex∈Dm

(∣∣∣∣∣ 1

m

m∑
i=1

xi − Eu∈D(u)

∣∣∣∣∣ ≥ ε
)
≤ 2e−2ε2m/M2

.

PROOF OFTHEOREM3. Regardless of what happens in the first stage, for allj ≤ s and
for all x ∈ R+, we have costc(x,bj ) ≤ c+ M . Thus, applying Lemma 5, we get, for
each j ≤ s, α > 0,

Pr Ex∈Dm

(∣∣∣∣∣ 1

t − 1

t−1∑
i=1

costc(xi ,bj )− Ez∈D(costc(z,bj ))

∣∣∣∣∣ ≥ α
)
≤ 2e−2α2(t−1)/(c+M)2.

Approximatings= d4c/εe by 8c/ε, we get

Pr Ex∈Dm

(
∃( j ≤ s) s.t.

∣∣∣∣∣ 1

t − 1

t−1∑
i=1

costc(xi ,bj )− Ez∈D(costc(z,bj ))

∣∣∣∣∣ ≥ α
)

(1)

≤ 16c

ε
e−2α2(t−1)/(c+M)2.

Let j ∗ be such thatbj ∗ is the cutoff amongst the candidates with minimum cost; i.e.,

Ez∈D(costc(z,bj ∗)) = min
j

Ez∈D(costc(z,bj )),

and let ĵ ∗ be the index of the cutoff used byAε in thet th round. Recall that

1

t − 1

t−1∑
i=1

costc(xi ,bĵ ∗) = min
j

{
1

t − 1

t−1∑
i=1

costc(xi ,bj )

}
.

Let E1 be the event that the first stage was successful, i.e., for all intervals(bj−1,bj )

generated in the first stage,|bj − bj−1| = ε/2, orPrD((bj−1,bj )) < ε/2c. We have

(2)

E(Eu,Ex)∈Dm×Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)))

= E(Eu,Ex)∈Dm×Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)) | E1) · Pr(E1)

+ E(Eu,Ex)∈Dm×Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)) | ¬E1) · Pr(¬E1)

≤ E(Eu,Ex)∈Dm×Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)) | E1) · Pr(E1)

+ (c+ M)

(
ε

2(c+ M)

)
(Lemma 1)

≤ E(Eu,Ex)∈Dm×Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)) | E1)+ ε
2
.

Now, assumeu1, . . . ,um makeE1 true. Fixα > 0. Let E2 be the event that all the
estimates ofEz∈D(costc(z,bj )) obtained throughx1, . . . , xt are accurate to withinα.
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Then

EEx∈Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)))(3)

= EEx∈Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)) | E2) · Pr(E2)

+ EEx∈Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)) | ¬E2) · Pr(¬E2)

≤ EEx∈Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)) | E2)

+ 16c(c+ M)

ε
exp

(−2α2(t − 1)

(c+ M)2

)
,

by (1). By the triangle inequality, ifEz∈D(costc(z,bĵ ∗)) ≥ Ez∈D(costc(z,bj ∗)) + 2α,

then, for eitherv = j ∗ or v = ĵ ∗,∣∣∣∣∣Ez∈D(costc(z,bv))− 1

t − 1

t−1∑
i=1

costc(xi ,bv)

∣∣∣∣∣ ≥ α.
Thus, (3) and Lemma 4 imply that ifE1 is true, then

EEx∈Dt (costc(xt , Aε(u1, . . . ,um, x1, . . . , xt−1)))

≤ (infa Ez∈D(costc(z,a)))+ ε
2
+ 2α + 16c(c+ M)

ε
exp

(
−2α2(t − 1)

(c+ M)2

)
.

Combining with (2) and settingα = 100(c+ M)
√

ln ((c+ M)t/ε) /t completes the
proof.

4.3. Computation Time of Algorithm Aε. We now describe how the predictions ofAε
are made efficiently. Letσt = x1, x2, . . . , xt−1 be the sequence formed by the firstt − 1
rounds in the second stage, wherexi , for 1≤ i < t , is the resource use time seen in round
i . Recall from Section 3 that, for thet th round, algorithmAε needs to output a strategy
bj that has minimum cost on the rounds inσt . Any updates to the data structures used by
algorithmAε need to be made efficiently. We now describe a data structure maintained
by algorithm Aε that allows predictions to be output inO(1) time and updates to be
made inO(min{xt , c}/ε + log(c/ε)) time. (Note that in problems of interest,c¿ M .)

Algorithm Aε maintains the different candidate cutoffs as leaves of a balanced tree
T . (See Figure 1.) We label the root of the tree byλ, and the leaves of the tree from left
to right as 0· · · v, such that thej th leaf corresponds to the cutoffbj . (For simplicity, we
use the namebj for leaf j .) Let T(x) be the subtree ofT rooted at nodex, and letP(x)
be the path from the root to (and including) nodex. In particular,T is T(λ).

With each (leaf and internal) nodex, algorithmAε maintains three variables,diff (x),
min cost(x), andmin cutoff(x). The algorithm maintains the following invariants for
all t before thet th round. (These invariants define the variables.) We refer to the total
cost of an algorithm that repeatedly uses a given cutoff over a sequence of resource use
times as the cost of that cutoff on the sequence. The cost of using cutoffbj for σt is
proportional to the sum of thediff values of the nodes in the path from the root tobj ,
i.e., the cost of using cutoffbj for σt is proportional to

∑
x∈P(bj )

diff (x). The variable
min cutoff(x) is the cutoffbj with minimum cost forσt amongst all cutoffs that are
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Fig. 1. Snapshot of the data structure used by algorithmAε . In the situation depicted above there are eight
candidate cutoffs labeledb0, . . . , b7, appearing as leaves of the tree. The valuext falls betweenb1 andb2. The
path P(b1) is shown with dotted lines. Thediff values of all nodes marked with a “∗” are increased by the
value of the cutoff at the node plusc. Thediff values of the nodes marked with a “#” are increased byxt . The
min cutoff andmin costvalues of all marked nodes (whether marked with a “∗,” “#,” or “+”) are updated.

leaves ofT(x). The variablemin cost(x) is closely related to the cost of the best cutoff
amongst the leaves ofT(x); in particular, it is the cost of the best cutoff amongst the
leaves ofT(x)minus the sum of thediff values of the nodes inP(parent(x)). Formally,
min cost(x) = minbl∈T(x){

∑
1≤i<t cost(xi,bl)} −

∑
i∈P(parent(x)) diff(i). It is important to

note that since two siblings inT have the same parent, themin costvalues at the two
siblings can be directly compared to get themin cutoff value at the parent.

The tree is initializedappropriately.After roundt−1,algorithmAε outputsmin cutoff(λ)
as its cutoff for thet th round. Letbj ≤ xt < bj+1. For the data structure to be consistent
after requestxt (thet th round), the algorithm needs to increase the cost of each cutoffbi

for 0 ≤ i ≤ j , by bi + c (which varies withi ), and the cost of each cutoffbi for which
i < m ≤ s, by xt (which is independent ofi ). As shown in Figure 1, the data structure
is kept consistent by addingbi + c to thediff value of each of the leaves 0· · · j , and by
addingxt to thediff values of each right child of the nodes inP(bj ) that is not itself in
P(bj ). (Notice that exactly onediff value in the path from each leaf to the root is updated.)
Algorithm Aε updates themin cutoff andmin costvariables for the nodes whosediff
values were changed and their ancestors. Themin costvalues are updated using the re-
lation min cost(x) = min{min cost(left child(x)),min cost(right child(x))} + diff (x).
(The correctness of this update procedure follows by induction.) Also,min cutoff(x) is
updated to be themin cutoff of the child ofx that has the smallermin cost.

The number of leaves in the tree isO(c/ε). The time to update thediff values of the
cutoffsbi , 0 ≤ i ≤ j , is O(min{xt , c}/ε), since each [bi ,bi+1] is at leastε/2 in size.
Updating the otherdiff values takes time proportional to the height of the tree, which
is O(log(c/ε)). Hence, the amount of time to make the updates isO((min{xt , c})/ε +
log(c/ε)). The leaves 0· · · j and (most of) their ancestors can be updated on-line as time
passes, with an extraO(log(c/ε)) processing required at the end.
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5. Getting Algorithms L and Ls from Algorithm Aε. In this section we prove
Theorems 1 and 2 by developing our algorithmsL andLs.

5.1. Algorithm L. Our convergent algorithmL is obtained by runningAε with con-
tinually decreasingε. Clearly, if we startA1/

√
t sufficiently far back in the past and use

the cutoffs generated by it for thet th round, we will have an algorithm that converges to
optimal. For obvious computational reasons, we do not want to maintain too manyAε ’s
with differentε’s at the same time.

Roughly speaking, algorithmL gets over this problem by starting a newAε with
ε ≈ 1/

√
t only in round j , such thatj ≈ 4i . It “warms up” Aε through 4i+2, evaluating

the strategies but not using the cutoffs generated byAε. WhenAε is sufficiently warmed
up, algorithmL uses the cutoffs generated byAε until the 4i+3 round, and then discards
Aε. This continual learning helps algorithmL to converge to optimal, while maintaining
only a small number ofAε ’s at any one time.

Let `ε, the expected number of examples seen in the first stage by algorithmAε, be
as defined in Lemma 1. Formally, algorithmL does the following.

Algorithm L
begin

for each roundt with resource use timext do
begin

if there is nocurrent Aε then use a default threshold
elseuse the threshold generated by thecurrent Aε
endif
if t = 4i − `1/2i+2 then start a copy ofA1/2i+2 and call this anactive Aε endif
if t = 4i andi > 2 then

discardcurrent Aε, if one exists;
setcurrent Aε to beA1/2i

endif
feed resource use timext to eachactive Aε

end
end

At any sufficiently large timet , there are at most three activeAε ’s; i.e., if 4i ≤ t < 4i+1,
the activeAε ’s areA1/2i , A1/2i+1, andA1/2i+2. Hence, the space used by algorithmL is at
most three times the space used by algorithmA1/2i+2, which we know from Section 4.1
is O(c/2i ) = O(c

√
t). In round t , 4i ≤ t < 4i+1, algorithm A1/2i has seen at least

4i − 4i−2 = 15
16 · 4i examples in its second stage; from Theorem 3, algorithmA1/2i is

away from optimal by at most

1

2i
+ k1(c+ M)

√
ln(t (c+ M)/2i )

15 · 4i−2
= O

(√
ln t

t

)
.

The update time bound follows from Section 4.3.
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5.2. Algorithm Ls. Algorithm Ls is exactly Aε, with ε set appropriately such that
s = B + v +max{η1, η2,1}. (See Section 4.1.) Sinceε = 2(c/s), Theorem 2 follows
from the discussion in Section 4. The lower bound ons arises fromε being suitable.

6. Adaptive Disk Spindown via Rent-to-Buy. As described in Section 1, the disk
spindown scenario can be modeled as a rent-to-buy problem, where spinning the disk is
equivalent to renting, and a spindown is equivalent to a buy. If energy conservation were
the sole consideration of a disk spindown algorithm, the cost of a buy,c, is the ratio of
the energy required to spindown the disk and spin it back up versus the power to keep
the disk spinning. In practice, there are two conflicting goals of a disk spindown policy:
conserving energy and preserving response time performance. Inadaptive disk spindown,
the user specifies the relative importancea of latency with respect to conserving energy,
and the cost of the increased latency is integrated intoc, the cost of the buy. We now
describe precisely how this is done.

Let Ps be the power consumed by a spinning disk. Typically, a spundown disk con-
sumesPsd > 0 power, wherePsd is much smaller thanPs. Let T be the net idle time
at disk.7 This implies that the disk would consume at leastT · Psd energy independent
of the disk spindown algorithm. While comparing disk spindown algorithms for how
well they do in terms of energy consumed, it is instructive to compare theexcess energy,
EX, consumed by a disk while using spindown algorithmX; we defineEX as the total
energy consumed by algorithmX minusT · Psd. (This is essentially equivalent to saying
that the power for keeping the disk spinning isPs − Psd, and the power consumed by a
spundown disk is zero.)

The response time delay incurred while waiting for a spinup is proportional to the
amount of time required to spinup a spundown disk. A natural measure of the net response
time delay is, therefore, the number of operations that are delayed by a spinup. (Other
measures of response time delay are possible as discussed in Section 7.2.5, item 4.)

In adaptive disk spindown, the user specifies a parametera, the relative importance of
latency with respect to conserving energy. Let OX be the number of operations delayed
by a spinup for algorithmX. Given a disk (spindown) management algorithmX, and a
user specified parametera, we define ECX, theeffective costof algorithmX, as

ECX = EX + a ·OX.(4)

The goal of the disk spindown algorithm is to minimize the effective cost. The effective
cost models the tradeoff between energy and response time in a natural fashion. In
particular, a small value ofa implies that energy conservation is the more important
activity, while a larger value ofa implies that response time is more critical.

Minimizing effective cost can be modeled in the rent-to-buy scenario thus. Given
the relative importancea, we determine the buy costc. By definition, the value ofc
is the ratio of the effective cost for a spindown versus the effective cost per unit time
to keep the disk spinning. Since a spindown delays one operation, the effective cost of

7 We assume that operations are synchronous, and that every algorithm sees the same sequence of idle times
at disk. If this is not true,T can be defined as the minimum taken over all algorithms of the net idle time at
disk.
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a spindown isEsd + a, whereEsd is the total energy consumed by a spindown and a
spinup. The effective cost per unit time to keep the disk spinning isPs − Psd. Hence,
c = (a + Esd)/(Ps − Psd). For a given disk, the buy costc is linearly related to the
relative importance parametera.

7. Experimental Results. In this section we describe the results of simulating our
algorithm8 L from Section 5.1 for the disk spindown problem. We first describe the
methodology used in our simulations and then describe the results of the simulation.

7.1. Methodology. We simulated algorithmL using a disk access trace from a Hewlett-
Packard 9000/845 personal workstation running HP-UX. This trace is described in [18],
and a portion of this trace was also used in a previous study of disk spindown policies
[4]. The trace was obtained by Ruemmler and Wilkes by monitoring the disk for roughly
2 months; it consisted of 416,262 accesses to disk.

We studied our algorithm for two disks, the Kittyhawk C3014A and the Quantum
Go•Drive. The characteristics of the two drives are given in Table 1. (This table is
derived from [4].) For our studies, we merged the active and idle states of the disk into
one active state; notice that a disk can read and write data only in the active state. By
merging these two states we ensure that a “buy” corresponds to a spindown. As in [4],
we assumed that a disk access takes the average time for seek and rotational latency. We
also assumed that all operations and state transitions take the average or “typical” time
specified by the manufacturer, if one is specified, or else the maximum time.

It is difficult to determine from a disk access tracewhya specific access arrived at disk.
We assumed that, if the disk is spundown, the application waits for the disk to spinup
and complete the requested operation, and then performs the same sequence of opera-
tions as in the original system. In other words, although our simulations used disks that
were different from the one on which the trace was collected, in our simulator we main-
tained the interarrival time of events at disk as in the original trace: if, in the original trace,

Table 1. Disk characteristics of the Kittyhawk C3014A and Quantum Go•Drive 120. (This
table appears in [4].)

Characteristic
Hewlett-Packard

Kittyhawk C3014A
Quantum

Go•Drive 120

Capacity (Mbytes) 40 120
Power consumed, active (W) 1.50 1.65
Power consumed, idle (W) 0.62 1.00
Power consumed, spundown (W) 0.27 0.20
Power consumed, spinup (W) 2.17 5.50
Normal time to spinup (s) 1.10 2.50
Normal time to spindown (s) 0.55 6.00
Average time to read 1 Kbyte (ms) 22.50 26.7

8 Instead of scheduling a newAε at t ≈ 4i , in our simulations we scheduled a newAε at t ≈ 2i .
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thet th access at disk arrived1 seconds after the(t − 1)th access, in our simulation, we
assumed that thet th access arrived1 seconds after the(t−1)th access was completed by
the disk. The basic problem with any strategy is that data dependency between different
operations cannot be derived from the trace.

We performed simulations for different values ofa, the relative importance of response
time to energy. For eacha, we computed the buy costc using the strategy described in
Section 6. We compared our algorithmL against the following on-line algorithms: the
two-competitive algorithm, which spins down the disk afterc seconds of inactivity,
and fixed-threshold policies that spindown the disk after 5 seconds, 30 seconds, and
5 minutes of inactivity; we also compared algorithmL against theoptimal off-linerent-
to-buy algorithm, which knows the future and spins down the disk immediately if the
next access is to take place more thanc seconds in the future. For each algorithmX, we
computedEX, the excess energy consumed, OX, the number of operations delayed by a
spinup; from these values we computed ECX, the effective cost of algorithmX, using (4).
For the HP trace, the maximum interarrival time was 1770.4 seconds; the maximuma
we used corresponded to ac of 1770.4.

7.2. Results. In this section we present the results of our simulations. We first see
how the effective cost varies with parametera, and then look at how excess energy and
number of operations delayed vary witha. Recall that the parametera is linearly related
to the buy costc. In particular, for the Kittyhawk disk,c = 2.54+ a/1.225, and for the
Go•Drive, c = 10.33+ a/1.45.

The discussion from Section 6 implies that algorithmL and the 2-competitive algo-
rithm try to optimize for effective cost as defined by (4). In particular, for really small
values ofa, algorithmL will essentially try to reduce excess energy, and for really large
values ofa, algorithmL will essentially try to reduce number of operations delayed.

7.2.1. Effective Cost versus a. Figures 2 and 3 show how the effective cost varies with
parametera using the Kittyhawk and Go•Drive disks, respectively. Each figure plots the
curves for all values ofa, and a clearer view for whena is small.

We observe that algorithmL performs best amongst the on-line algorithms for (almost)
all values ofa. (It is roughly 1% worse than the 5-second threshold fora lying between
18 and 34 while using the Kittyhawk disk, and fora lying between 14 and 28 while
using the Go•Drive.) In particular, the effective cost for algorithmL is 6–25% less than
the effective cost of the 2-competitive algorithm (except for a small range of values
of a between 34 and 60 with the Kittyhawk disk and fora between 28 and 58 for the
Go•Drive when the effective costs for the two algorithms are roughly the same).

As should be expected, each fixed threshold algorithm performs well for a very
limited range of values fora. Interestingly, the 5-second threshold for certain small
values ofa and the 5-minute threshold for certain large values ofa performs better than
the 2-competitive algorithm.

7.2.2. Excess Energy versus a. As discussed in Section 6, whena is small, conserving
energy is more important. Figure 4 plots the variation of excess energy witha using the
Kittyhawk and Go•Drive disks for the various algorithms.

We observe that for small values ofa, algorithmL has the smallest excess energy
amongst all on-line algorithms. In fact, it does better than the 5-second threshold, and
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Fig. 2. Variation of effective cost witha for the Kittyhawk disk. Part (b) zooms the portion of the graph for
small values ofa. The effective cost of the 5-minute threshold is comparatively high (the curve lies above
2,240,000), and is omitted from (b).
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Fig. 3. Variation of effective cost witha for the Go•Drive disk. Part (b) zooms the portion of the graph for
small values ofa. The effective cost of the 5-minute threshold is comparatively high (the curve lies above
2,700,000), and is omitted from (b); similarly, the curves for the 5-second and 30-second policies have been
cropped at smaller values ofa to show the details of the other three curves.
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Fig. 4. Variation of excess energy witha for the Kittyhawk and Go•Drive disks. The excess energy of the
5-minute threshold using the Kittyhawk disk is 2249 KJ, and using the Go•Drive is 2708 KJ; the curves for
the 5-minute threshold are omitted from the graphs.
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its curve is almost parallel to the curve for the optimal off-line algorithm. In particular,
algorithmL saves 17–60% more excess energy compared with the 2-competitive algo-
rithm, and 6–42% more excess energy compared with the 5-second spindown threshold
for small values ofa (i.e.,a < 25).

We also observe that for small values ofa, the 5-second threshold does better than
the 2-competitive algorithm in terms of saving excess energy. (From Figures 2 and 3,
we observe that, for most of these values ofa, the 5-second threshold is also better than
the 2-competitive algorithm in terms of effective cost.)

7.2.3. Operations Delayed versus a. As discussed in Section 6, whena is large, we
want to reduce the number of operations delayed. Figure 5 plots the variation of number
of operations delayed witha using the Kittyhawk and Go•Drive disks for the various
algorithms.

We observe two interesting phenomenon: first, the curves for the 2-competitive algo-
rithm and the optimal off-line algorithm coincide for a large range of values fora. Second,
algorithm L reduces the number of operations delayed over both these algorithms for
sufficiently largea.

7.2.4. Adaptability and Rent-to-Buy. A different way of viewing the tradeoff between
excess energy and response time is presented in Figure 6. In this figure excess energy
is plotted as a function of number of operations delayed, and the different points on the
curve are obtained by varyinga; in particular, the value ofa (or equivalently,c) decreases
from left to right along the curve. (The curve for the Go•Drive is similar in shape and is
omitted.)

Figure 6 clearly shows the tradeoff between excess energy and response time obtained
by varyinga. We observe that by increasing the value of one parametera (equivalent to
varying the value of the buy costc), we can effectively trade power for response time.
Concerns on how to trade power for response time effectively have been raised for the
disk spindown problem [3], [4], and the rent-to-buy model provides an elegant way of
achieving this tradeoff.

7.2.5. Other Observations. Some other observations from our simulations are as fol-
lows:

1. As mentioned in Section 7.2.2, energy conservation is crucial whena is small, and
algorithm L is best amongst the on-line algorithms in terms of excess energy for
smalla. Interestingly, we observed that the excess energy of algorithmL is less than
the excess energy of the 2-competitive algorithm forall values ofa.

2. We also compared our algorithmL againstLs allowing at most 25 potential cutoffs
for algorithmLs. Not surprisingly, algorithmL performed better than algorithmLs;
however, preliminary results suggest that algorithmL typically saved only 2–5%
more excess energy than algorithmLs. Allowing more potential cutoffs for algorithm
Ls might help.

3. In our simulations, we used at most 300 cutoffs for our algorithmL. The computation
time for the algorithm was therefore minimal. Interestingly, algorithmL did not
change its cutoffs too often in stage 2. (The cutoff changed between 14 and 56 times
when measured over all values ofa.)
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Fig. 5.Variation of the number of operations delayed witha for the Kittyhawk and Go•Drive disks. The curves
for the 2-competitive algorithm and the optimal off-line algorithm coincide for a large range of values ofa.
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Fig. 6.Excess Energy,EL , as a function of the number of operations delayed, OL , for algorithmL. The graph
was obtained by varyinga (i.e.,c); the value ofa increases along the curve from left to right.

4. For measuring response time performance, we used the metric of the number of
operations delayed. An alternative measure of response time performance is RX, the
number of read operations delayed by a spinup for algorithmX [4]. This metric
redefines the effective cost from (4) asE + a · RX. The rent-to-buy model can be
easily modified to evaluate this measure, by having different costs for a spindown
(i.e., differentc’s) depending on whether the operation is a read or a write. We plan
to consider the effect of this modification to the rent-to-buy cost in future work.

For purely comparison purposes, Figure 7 plots the number of reads delayed as
a function ofa for the different algorithms; the algorithms are still optimizing for
effective cost as defined by (4). (In other words, the rent-to-buy algorithms think they
are optimizing for number of operations delayed, while we measure the number of
reads delayed.) Interestingly, the curves from Figure 7 are similar to the corresponding
curves from Figure 5(a), suggesting that we should expect to obtain similar results
as presented in this paper by using the number of reads delayed metric instead of the
number of operations delayed metric, when we modify the definition for effective
cost appropriately.

8. Conclusions. In this paper we have looked at the problem of a sequence of unit rent-
to-buy choices where the resource use times are independently drawn from an unknown
probability distribution. We have described how important systems problems (like the
disk spindown problem in mobile machines) can be modeled by a rent-to-buy framework.
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Fig. 7.Number of reads delayed as a function ofa for the various algorithms, while the rent-to-buy algorithms
are optimizing using the definition of effective cost from (4). This graph is purely for illustration and comparison
with Figure 5(a.) See Section 7.2.5, Item 4.

For the rent-to-buy problem, we have looked at computationally efficient strategies whose
expected cost for thet th resource use converges to optimal ast →∞ for any bounded
probability distribution on the resource use times. We have also looked at a fixed-space
algorithm which almost converges to optimal. We are currently looking at modeling
the resource use times as being generated by a Hidden Markov Model (HMM) and
have optimality results for special types of HMMs. Recently, Markov models have been
effectively used to analyze caching and prefetching algorithms assuming user requests
to pages in cache are generated by Markov sources [9], [12], [22].

Simulations of our algorithm for the disk spindown problem using disk access traces
obtained from HP suggest that the rent-to-buy model is a good way to study disk spindown
and related systems issues; in particular, a single parameterc effectively models the
tradeoff between power and response time. We also introduced the new metric of “excess
energy” that really reflects the relative performance in terms of energy consumed of one
disk spindown algorithm against another. We introduced a natural notion of “effective
cost” that incorporates the two metrics of excess energy, and number of operations
delayed weighted by a user-specified parametera, into one cost. We observed that our
algorithmL out-performed other on-line algorithms in terms of effective cost for almost
all values ofa; in particular, it had 6–25% less effective cost than the 2-competitive
algorithm. In addition, for small values ofa (corresponding to when saving energy
is critical), we observed that our algorithmL saves 17–60% more of excess energy
compared with the 2-competitive algorithm, and 6–42% more excess energy compared
with the 5-second fixed threshold.
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